JP6495638B2 - Complex building - Google Patents

Complex building Download PDF

Info

Publication number
JP6495638B2
JP6495638B2 JP2014250658A JP2014250658A JP6495638B2 JP 6495638 B2 JP6495638 B2 JP 6495638B2 JP 2014250658 A JP2014250658 A JP 2014250658A JP 2014250658 A JP2014250658 A JP 2014250658A JP 6495638 B2 JP6495638 B2 JP 6495638B2
Authority
JP
Japan
Prior art keywords
low
building
rise
layer structure
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250658A
Other languages
Japanese (ja)
Other versions
JP2016113748A (en
Inventor
翼 谷
翼 谷
龍大 欄木
龍大 欄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014250658A priority Critical patent/JP6495638B2/en
Publication of JP2016113748A publication Critical patent/JP2016113748A/en
Application granted granted Critical
Publication of JP6495638B2 publication Critical patent/JP6495638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低中層建物と高層建物を上下に近接配置させた複合建物に関する。   The present invention relates to a composite building in which a low-mid-rise building and a high-rise building are arranged close to each other in the vertical direction.

従来から、地震荷重に対して建物の安全性能を高めて、人命を保護するための建物の形式としては、地震時に柱や梁の一部が降伏して地震エネルギーを吸収する耐震構造と、免震装置の上に建物を構築し、建物の固有周期を長くすることで建物に地震エネルギーを伝わりにくくする免震構造と、構造体である柱や梁より先に制震部材を降伏させることで、地震エネルギーを吸収させる制震構造がある。
例えば、耐震構造の場合、特別な装置を用いる必要がないため数多くの建物に採用されているが、大地震時においては、建物の一部にひび割れや破壊が起きることを予め許容した構造形式であり、修復や建て替えが必要であった。
また、免震建物は、免震装置によって建物に作用する地震エネルギーを集中的に吸収させることで、免震装置の上部側に設ける建物の柱梁架構については、地震時に一部が降伏して、地震荷重に抵抗することを前提とするものではなく、細径の柱や梁が実現可能であった(特許文献1)。
上記に述べた耐震構造や免震構造の場合、予め設定した地震荷重レベルまでは、柱梁架構に発生するひび割れや一部破壊、または免震装置の上部側建物の最大水平移動量などが想定され、設計されているため、地震の揺れが治まった後において、修復や復元が可能であった。
また、制震構造は、当該階と上下階との間に制震部材(ダンパー、壁、ブレース)を配置し、建物内部に侵入した地震エネルギーを柱梁架構より先に制震部材を降伏させて吸収させるものであり、柔構造である超高層建物では層間変形量が大きいために制震部材が有効であり、数多く採用されてきた。特に、高層建物の場合、上の層と下の層との間にダンパーを設けて、ダンパーの変形により地震等のエネルギーを吸収させる層間ダンパー型の制震構造が採用される場合がある。しかし、比較的短スパンの柱梁架構を備えた中低層建物の場合、固有周期が短く、層間変形量が小さいために、制震部材により地震エネルギーを効率的に吸収させることは困難であり、制震構造が採用されることは数少なかった。
しかしながら、特許文献2の中低層建物では、建物の下層階に制震装置を取り入れた制震構面を設けるとともに、建物の下層階の柱梁接合部の固定度を低くすることで、柔構造の建物構造を実現し、上下階の間に生じる層間変形量を増幅させて、その層間変形量を制震部材で吸収させる制震構造が開示されている。
また、特許文献1の建物では、下層階部分の水平剛性を低くし、かつ少ない柱本数で、上層階の鉛直荷重を負担させる必要があり、RC造柱は高強度化させて細径で、さらに長柱化される傾向である。また、下層階の柱は、高強度RC造柱として長柱化されることで、大地震が発生した際には脆性破壊する惧れがあった。
Traditionally, building structures to increase the safety performance of buildings against earthquake loads and protect human lives include earthquake-resistant structures that absorb part of the pillars and beams during earthquakes and absorb earthquake energy. By building the building on the seismic device and increasing the natural period of the building, the seismic isolation structure makes it difficult to transmit the seismic energy to the building, and the damping member is surrendered before the pillar or beam that is the structure. There is a seismic control structure that absorbs seismic energy.
For example, in the case of an earthquake-resistant structure, it is used in many buildings because it is not necessary to use special equipment, but in the event of a large earthquake, it is a structural type that allows in advance cracking or destruction of part of the building. There was a need for restoration and rebuilding.
In addition, the seismic isolation building intensively absorbs the seismic energy acting on the building with the seismic isolation device, so that part of the column beam structure of the building provided on the upper side of the seismic isolation device is surrendered during the earthquake. It was not based on the premise of resisting an earthquake load, and a small-diameter column or beam could be realized (Patent Document 1).
In the case of the seismic structure or seismic isolation structure described above, up to a pre-set seismic load level, it is assumed that cracks and partial breaks occur in the column beam frame, or the maximum horizontal movement of the upper building of the seismic isolation device. Since it was designed, it was possible to repair and restore it after the shaking of the earthquake subsided.
In addition, the vibration control structure has a vibration control member (damper, wall, brace) between the floor and the upper and lower floors, and the vibration control member surrenders the seismic energy that has entered the building before the column beam frame. In a super high-rise building with a flexible structure, the amount of inter-layer deformation is large, so that a damping member is effective and has been adopted in many cases. In particular, in the case of a high-rise building, there is a case where an interlayer damper type damping structure is provided in which a damper is provided between an upper layer and a lower layer to absorb energy such as an earthquake by deformation of the damper. However, in the case of medium to low-rise buildings with a relatively short span column beam structure, the natural period is short and the amount of interlayer deformation is small, so it is difficult to efficiently absorb the seismic energy by the damping member, There were few cases where seismic control structures were adopted.
However, in the medium and low-rise buildings of Patent Document 2, a flexible structure is provided by providing a vibration control structure incorporating a vibration control device on the lower floor of the building and lowering the degree of fixation of the column beam joints on the lower floor of the building. A seismic control structure is disclosed in which the building deformation structure is realized, the amount of interlayer deformation generated between the upper and lower floors is amplified, and the amount of interlayer deformation is absorbed by the vibration control member.
Further, in the building of Patent Document 1, it is necessary to lower the horizontal rigidity of the lower floor part and to bear the vertical load of the upper floor with a small number of columns, and the RC pillar is made to have a high strength and a small diameter, Furthermore, there is a tendency to become long pillars. Also, the pillars on the lower floors were made long as high-strength RC pillars, which could cause brittle fracture when a large earthquake occurred.

特許第5592288号公報Japanese Patent No. 5592288 特開平11−223041号公報JP-A-11-223041

また、2011年に東日本大震災を引き起こした東北地方太平洋沖地震のような想定外の大地震に対して、耐震構造、または免震構造、或いは制震構造など、其々1種類のせん断抵抗機構により建物の安全性能を向上させようとすると、柱梁架構を形成するための鉄筋や鉄骨、或いはコンクリート等の使用材料、または免震装置や制震装置などは、高性能で非汎用製品となり、さらに大型化するため、建設費用が高額になるとともに、装置等の設置スペースも大規模となるなど建物を設計する上で制約等が多いなど、問題があった。
上記のような課題点を踏まえて、本発明は、大地震であっても、建物に地震荷重や地震エネルギーを伝達しにくくする免震装置と、建物に作用した地震エネルギーを効率的に吸収させるための制震部材(ダンパー)による複数のせん断抵抗手段を備えた、構造安全性能に優れた複合建物を提案することを課題とする。
In addition, in response to unexpected large earthquakes such as the 2011 off the Pacific coast of Tohoku Earthquake that caused the Great East Japan Earthquake in 2011, one type of shear resistance mechanism such as seismic structure, seismic isolation structure, or seismic control structure was used. When trying to improve the safety performance of the building, the materials used such as reinforcing bars, steel frames, concrete, etc. to form the column beam frame, seismic isolation devices and vibration control devices become high-performance and non-generic products. Due to the increase in size, there are problems such as high construction costs and a large amount of installation space for equipment and so on, and many restrictions on designing the building.
In light of the above-described problems, the present invention efficiently absorbs seismic energy acting on a building and a seismic isolation device that makes it difficult to transmit seismic load and seismic energy to the building even in a large earthquake. It is an object of the present invention to propose a composite building having a plurality of shear resistance means by means of vibration control members (dampers) and having excellent structural safety performance.

本発明者は、建物の構造安全性能を高めるための複合建物として、建物構造を低中層構造体と当該低中層構造体に並設させた高層構造体とに分離し、低中層構造体の上部に、積層ゴム支承とダンパーを有する免震装置を設置して高層構造体を支持させることで、高層構造体の鉛直荷重を低中層構造体で負担させつつ、低中層構造体のせん断耐力を増大させるとともに、高層構造体における複数階に亘った相対水平変形量をダンパーの入力変位量として与えて高い減衰効果を得ることで、効率良く地震エネルギーが吸収できることに着眼し、構造安全性能に優れた複合建物を発明した。
前記課題を解決するために、本発明の複合建物は、低中層構造体の上面と当該上面に対向する高層構造体の下面との間に免震装置を設けており、低中層構造体と高層構造体との鉛直方向および水平方向の間隔は近接し、地震時に両構造体が変形しても衝突しない程度確保されていることを特徴とする。
両構造体の鉛直方向の間隔は、低中層構造体の上面に免震装置を設置する際に、施工効率を低下させることなく設置可能なだけ空間が確保される必要がある。例えば、施工性等を踏まえると、両構造体の距離は約2m以上離れていることが好ましい。
また、両構造体が干渉せず、衝突しない程度の水平方向の間隔とは、低中層構造体の高さに対して、大地震時でも両構造体が衝突しない限界値とする安全限界の層間変形角と、割増安全率を乗じた長さ程度とする。例えば、低中層構造体が階高3.6mで、20階建ての場合、建物高さは72mとなり、安全限界の層間変形角を1/100とし、割増安全率を1.2とした場合、隙間は約0.9mとなる。低中層構造体と高層構造体と水平方向の間隔は、空間として確保しておく場合、または、各階の床スラブ面に鋼板等を敷設して隙間を塞ぐ場合があるが、どちらの場合であっても、地震時には各構造体同士が衝突しないように所定の間隔を確保しておく必要がある。
本願発明の複合建物は、低中層構造体の上面と高層構造体の下面との間に、免震装置の積層ゴム支承(支承機構)とダンパー(減衰機構)を設けることが好ましい。
前記免震装置は、積層ゴム支承または弾性すべり支承であり、前記低中層構造体の梁の上面または柱の上面と、前記高層構造体の柱の下面との間に設けられている。低中層構造体は、積層ゴム支承を介して、高層構造体の鉛直荷重を負担することができる。
なお、ダンパ−は、低中層構造体の各階にダンパーを設けるのではなく、少なくとも低中層構造体の上面または低中層構造体の上部側面で、高層構造体との対向面間に設置してもよい。本明細書では、免震装置の積層ゴム支承(支承機構)と同一フロアにて、積層ゴム支承に近接して配置されるダンパーを、免震装置を構成するダンパー(減衰機構)とし、積層ゴム支承とは異なるフロアに配置されるダンパーを、制震部材としてのダンパーと定義した。
前記低中層構造体と前記高層構造体は、前記低中層構造体の上部以外の全側面にわたって縁切りされているとともに、前記低中層構造体の上部側面と、前記高層構造体の側面との間にダンパーが設けられていることが好ましい。本明細書において、「低中層構造体の上部側面」とは、低中層構造体の頂部から最上段の梁の架設高さ位置または、上から2段目の梁の架設高さ位置付近までとする。また、免震装置は、低中層構造体の上面に設けてもよいし、高層構造体の側面と隣接する上部側面に設けてもよい。
さらに、前記低中層構造物の少なくとも一部は壁構造であり、かつ、前記高層構造物の下層部分の少なくとも一部がラーメン架構構造であって、前記低中層建物の建物剛性は、前記高層建物の下層部分の構造体剛性より高剛性である。
The present inventor separated the building structure into a low-middle structure and a high-rise structure juxtaposed with the low-middle structure as a composite building for improving the structural safety performance of the building, and the upper part of the low-middle structure In addition, by installing a seismic isolation device with laminated rubber bearings and dampers to support the high-rise structure, the low-middle structure increases the shear strength while the vertical load of the high-rise structure is borne by the low-middle structure At the same time, it is possible to efficiently absorb seismic energy by giving the relative horizontal deformation amount over multiple floors in the high-rise structure as the input displacement amount of the damper to obtain a high damping effect, and it has excellent structural safety performance Invented a complex building.
In order to solve the above-mentioned problems, the composite building of the present invention is provided with a seismic isolation device between the upper surface of the low-mid structure and the lower surface of the high-rise structure facing the upper surface. The vertical and horizontal intervals with the structure are close to each other, and are secured to the extent that they do not collide even if both structures are deformed during an earthquake.
The vertical spacing between the two structures needs to secure a space that can be installed without lowering the construction efficiency when the seismic isolation device is installed on the upper surface of the low-mid structure. For example, considering the workability and the like, it is preferable that the distance between the two structures is about 2 m or more.
In addition, the horizontal distance that does not interfere with each other and does not collide is the safety limit between the heights of the low and middle layer structures, which is the limit value that prevents both structures from colliding even during a large earthquake. The length is approximately the product of the deformation angle and the additional safety factor. For example, if the low-middle structure has a floor height of 3.6 m and 20 stories, the building height is 72 m, the interlayer deformation angle at the safety limit is 1/100, and the premium safety factor is 1.2. The gap is about 0.9 m. The space in the horizontal direction between the low-middle structure and the high-rise structure may be secured as a space, or steel sheets may be laid on the floor slab surface of each floor to close the gap. However, it is necessary to ensure a predetermined interval so that the structures do not collide with each other during an earthquake.
In the composite building of the present invention, it is preferable to provide a laminated rubber support (support mechanism) and a damper (attenuation mechanism) of the seismic isolation device between the upper surface of the low-middle structure and the lower surface of the high-rise structure.
The seismic isolation device is a laminated rubber bearing or an elastic sliding bearing, and is provided between the upper surface of the beam or the column of the low-middle layer structure and the lower surface of the column of the high-layer structure. The low middle layer structure can bear the vertical load of the high layer structure through the laminated rubber support.
The damper may not be provided with a damper on each floor of the low-middle layer structure, but may be installed at least on the upper surface of the low-middle layer structure or the upper side surface of the low-middle layer structure and between the surfaces facing the high-layer structure. Good. In this specification, the damper (damping mechanism) that constitutes the seismic isolation device is used as the damper disposed in the vicinity of the laminated rubber bearing on the same floor as the laminated rubber bearing (supporting mechanism) of the seismic isolation device. A damper placed on a different floor from the bearing is defined as a damper as a damping member.
The low middle layer structure and the high layer structure are edged over all sides except for the top of the low middle layer structure, and between the upper side surface of the low middle layer structure and the side surface of the high layer structure It is preferable that a damper is provided. In this specification, the “upper side surface of the low-middle layer structure” means from the top of the low-middle layer structure to the erection height position of the uppermost beam or the vicinity of the erection height position of the second-stage beam from the top. To do. In addition, the seismic isolation device may be provided on the upper surface of the low-middle structure or on the upper side surface adjacent to the side surface of the high-layer structure.
Furthermore, at least a part of the low-middle structure is a wall structure, and at least a part of a lower layer part of the high-rise structure is a rigid frame structure, and the building rigidity of the low-middle building is the high-rise building. rigid der than structure rigidity of the lower portion of the Ru.

本発明の複合建物によれば、低中層構造体と高層構造体とが低中層構造体の上部に設置した免震装置を介して接続されていることで、以下のような効果を得ることができる。
(1)建物を低中層構造体と高層構造体とに分離し、この低中層構造体の上部に免震装置を配置して高層構造体と接合させることで、低中層構造体で鉛直荷重を支持しつつ、低中層構造体および高層構造体の其々の建物に作用する地震荷重を低減させて、建物の安全性能を高めることができる。
(2)建物に入力される地震エネルギ−は、低中層構造体と高層構造体との間の相対水平変位量を免震装置で吸収させることで、建物の損傷や破壊を防止することができる。よって、低中層構造体や高層構造体の柱梁架構の小断面化が可能となる。
(3)低中層構造体を高剛性にし、高層構造体を低剛性にするとともに、低中層構造体と高層構造体との剛性の差を大きくすれば、双方の構造体の固有周期の差を大きくすることができ、ダンパーによる地震エネルギーの吸収能力を向上させることができる。また、低中層構造体は、高層構造体に比べて、建物剛性が高剛性であるために固有周期は短くなり、固有周期の長い高層構造体との間では固有周期の違いによって相対水平変位量が増幅するので、数少ないダンパー(減衰機構)で構造安全性能を高めることができる。
(4)低中層部構造体には、高層構造体の鉛直荷重が加わることで、地震時の水平荷重に抵抗するせん断耐力を増大させることができる。よって、建物の柱梁架構体の小断面化が実現できるため、経済設計が可能となる。
(5)建物は、ある特定階に免震装置を配置して、免震装置の下方側建物と上方側建物とに力学的に完全分離すると、想定を上回る地震荷重が作用した際には、上方側建物の水平移動が免震装置のクリアランスを上回り、壁面に衝突し、建物に甚大な被害が発生することになる。よって、建物に、複数のせん断抵抗機構として免震装置と制震部材を設けることで、大地震に対しても、構造安全性を確保することができる。高層構造体の下層階部分を、低中層構造体に接して設けることで、高層構造体を支持する下層階部分のアスペクト比(縦横比)は大きくなり、低剛性の上方に高層構造体が形成されることになり、柔構造建物を実現することができる。
According to the composite building of the present invention, the following effects can be obtained by connecting the low-middle structure and the high-rise structure via the seismic isolation device installed on the upper part of the low-middle structure. it can.
(1) By separating the building into a low-middle structure and a high-rise structure, placing a seismic isolation device on top of the low-middle structure and joining it to the high-rise structure, While supporting, the seismic load which acts on each building of a low-middle structure and a high-rise structure can be reduced, and the safety performance of a building can be improved.
(2) The seismic energy input to the building can prevent damage and destruction of the building by absorbing the amount of relative horizontal displacement between the low and middle layer structure and the high layer structure with the seismic isolation device. . Therefore, it is possible to reduce the cross section of the column beam frame of the low-middle structure or the high-rise structure.
(3) When the rigidity of the low-middle layer structure and the high-rise structure are made large while the rigidity of the low-middle layer structure is made low and the rigidity of the low-middle layer structure and the high-rise structure is made large, It can be increased, and the ability of the damper to absorb seismic energy can be improved. In addition, the low-middle-layer structure has a higher building rigidity than the high-rise structure, so the natural period is shorter, and the high-rise structure with a long natural period has a relative horizontal displacement due to the difference in natural period. Therefore, structural safety performance can be improved with a few dampers (damping mechanisms).
(4) When the vertical load of the high-rise structure is applied to the low-middle layer structure, the shear strength that resists the horizontal load during an earthquake can be increased. Therefore, since the cross-section of the column beam structure of the building can be realized, economic design is possible.
(5) When a building is placed on a specific floor with a seismic isolation device and mechanically completely separated into a lower building and an upper building of the seismic isolation device, The horizontal movement of the building on the upper side exceeds the clearance of the seismic isolation device and collides with the wall surface, resulting in serious damage to the building. Therefore, by providing the building with a seismic isolation device and a damping member as a plurality of shear resistance mechanisms, structural safety can be ensured even against a large earthquake. By providing the lower floor part of the high-rise structure in contact with the low-middle structure, the aspect ratio (aspect ratio) of the lower floor part that supports the high-rise structure is increased, and the high-rise structure is formed above the low rigidity. As a result, a flexible structure building can be realized.

本発明の複合建物によれば、建物に作用する地震エネルギーは、免震装置の支承機構によって低減させるとともに、建物内部に入力された地震エネルギーは、免震装置の減衰機構または制震部材としてのダンパーによって吸収させることで建物の構造安全性を向上させることが出来る。
また、建物を形成する柱梁架構体の小断面化を行い、経済的な設計を実現する。
According to the composite building of the present invention, the seismic energy acting on the building is reduced by the support mechanism of the seismic isolation device, and the seismic energy input into the building is used as the damping mechanism or the damping member of the seismic isolation device. The structural safety of the building can be improved by absorbing it with the damper.
In addition, the column beam structure that forms the building will be reduced in cross section to realize an economical design.

(a)は本発明の実施形態に係る複合建物を模式的に示す立面図、(b)は他の形態に係る複合建物の立面図である。(A) is an elevation view schematically showing a complex building according to an embodiment of the present invention, and (b) is an elevation view of the complex building according to another embodiment. (a)〜(e)は図1に示す複合建物の他の形態の示す立面図である。(A)-(e) is an elevational view which shows the other form of the complex building shown in FIG. 低中層構造体と高層構造体とに分割された複合建物を模擬した立体振動解析モデルの模式図である。It is a schematic diagram of a three-dimensional vibration analysis model simulating a composite building divided into a low-middle structure and a high-rise structure. 積層ゴム支承の水平剛性をパラメータとした振動解析による最大層間変形角の応答結果である。It is the response result of the maximum interlayer deformation angle by vibration analysis with the horizontal stiffness of the laminated rubber bearing as a parameter. 低中層構造体の縁切り高さ範囲をパラメータとした振動解析による低中層構造体の下部面位置での曲げモーメントの応答結果である。It is a response result of the bending moment at the lower surface position of the low-middle layer structure by vibration analysis using the edge cut height range of the low-middle layer structure as a parameter.

本発明は、建物本体を、高剛性の低中層構造体と低剛性の高層構造体に分離し、低中層構造体の上部にダンパーを設置して、双方の架構体の剛性差によって、低中層構造体と高層構造体との固有周期の差を大きくすることができ、粘弾性ダンパーにより地震エネルギーを吸収させる免震装置を備えた複合建物である。
本実施形態の複合建物1は、図1の(a)に示すように、低中層構造体2と、当該低中層構造体に並設させた高層構造体3と、低中層構造体の上面または上部側面に設ける免震装置4とで構成させる。
免震装置を構成するダンパーは、低中層構造体2の上面に限らず、図1の(b)に示すように低中層構造体の最上段の梁または上面から2段目の梁の架設高さ位置付近の側面に設置してもよい。例えば、ダンパーを低中層構造体2の上部側面に集約して設けることで、複数階に跨った相対水平変形量を、ダンパーの入力変位量として扱うことができる。
本実施形態の複合建物1は、図1の(a)に示すように、高剛性の低中層構造体2と低剛性の高層構造体3とに分離することで、建物剛性の差により、低中層構造体2と高層構造体3との固有周期の差を大きくしている。そのため、粘弾性ダンパー42による地震エネルギーの吸収能力を向上させることができ、その結果、少ない粘弾性ダンパー数により大きな制震効果を得ることができる。
また、高層構造体3の上層部分32の軸力の一部を、積層ゴム支承を介して低中層構造体2により支持しているため、建物に作用する地震荷重を低減させることができるとともに、高層構造体3の下層部分31の各部材(柱梁架構)の小断面化(経済設計)を図ることができる。
また、固有周期の短い高剛性躯体である低中層構造体2を複合建物1の下部(低中層階部分)に配置し、固有周期の長い低剛性躯体である高層構造体3の上層部分32を複合建物1の上部に配置しているため、低中層構造体2の上面と高層構造体3の上層部分32の下面との間に介設された免震装置により、各階ごとの層間変位量ではなく、複数階に亘った大きな相対水平変位量を取り込むことができる。その結果、建物の安全性能を高めることができる。
低中層構造体2は、上端部が免震装置4を介して高層構造体3に接続されているため、地面(基礎)から片持ち形式で支持されている場合に比べて固定度が高く、合理的に設計をすることができる。また、想定を超える過大な入力に対し、高層構造体3の下層部分31の崩壊機構(構造物に塑性ヒンジが形成されて、その構造物が不安定な状態になる機構)形成後も、高剛性の低中層構造体2と免震装置4(積層ゴム支承41)により鉛直荷重を保持することができる。
本実施形態の低中層構造体2は、図1の(a)に示すように、地盤(基礎)に立設されており、中央部に形成された柱21と、柱21の左右の側面から延設された壁(構造壁)22とを備えて構成されている。
低中層構造体2は、主要架構が壁構造であって、壁22は柱21の右側面または左側面のみから延設されていることが好ましい。
低中層構造体2は、複合建物1の低中層階部分(複合建物1の下部分)の中央部(複合建物1の内側部分)に形成された、鉄筋コンクリート造の躯体である。すなわち、低中層構造体2は、複合建物1の低中層階部分において、複数階にわたって形成された連層構造である。
低中層構造体2は、高さおよび平面配置が限定されるものではなく、複合建物1の外周部側に設けられていてもよい。図2の(a)に示すように、高剛性の低中層構造体を外周部に設けて、高層構造体を建物内部側に配置した場合、あらゆる方向から建物に地震力が繰り返して作用する場合であっても、高層構造体の下層階柱が建物内部側に配置されていることで、下層階柱に加わる圧縮軸力と引張力の繰り返し変動幅を低減させることができる。
低中層構造体2の用途は限定されるものではなく、例えば、低中層構造体は、複合建物1のセンターコアの少なくとも一部、複合建物1の外壁の一部、または、居住空間の一部として形成して、駐車場や住居、或いは、災害時の避難建物として利用可能である。
The present invention separates the building body into a high-rigidity low-rise structure and a low-rigidity high-rise structure, and installs a damper at the top of the low-rise structure. It is a complex building with a seismic isolation device that can increase the difference in natural period between the structure and the high-rise structure and absorb the seismic energy by the viscoelastic damper.
As shown in FIG. 1A, the composite building 1 of the present embodiment includes a low-middle structure 2, a high-rise structure 3 arranged in parallel with the low-middle structure, and an upper surface of the low-middle structure or The seismic isolation device 4 is provided on the upper side surface.
The damper constituting the seismic isolation device is not limited to the upper surface of the low-middle layer structure 2, but as shown in FIG. 1B, the uppermost beam of the low-middle layer structure or the height of the second beam from the upper surface You may install in the side surface near the position. For example, by providing the dampers collectively on the upper side surface of the low-middle structure 2, the relative horizontal deformation amount across a plurality of floors can be handled as the input displacement amount of the damper.
As shown in FIG. 1A, the composite building 1 according to the present embodiment is separated into a high-rigidity low-middle structure 2 and a low-rigidity high-rise structure 3, thereby reducing the difference in building rigidity. The difference in natural period between the middle layer structure 2 and the higher layer structure 3 is increased. Therefore, the ability of the viscoelastic damper 42 to absorb earthquake energy can be improved, and as a result, a large seismic control effect can be obtained with a small number of viscoelastic dampers.
In addition, since a part of the axial force of the upper layer portion 32 of the high-rise structure 3 is supported by the low-middle-layer structure 2 through the laminated rubber bearing, the seismic load acting on the building can be reduced, A small cross section (economic design) of each member (column beam frame) of the lower layer portion 31 of the high-rise structure 3 can be achieved.
In addition, the low-middle structure 2 that is a high-rigidity housing with a short natural period is disposed in the lower part (low-middle floor portion) of the composite building 1, and the upper layer portion 32 of the high-rise structure 3 that is a low-rigidity structure with a long natural period is provided. Since it is arranged in the upper part of the composite building 1, the seismic isolation device interposed between the upper surface of the low-middle structure 2 and the lower surface of the upper layer part 32 of the high-rise structure 3 is used to determine the amount of interlayer displacement for each floor. And a large amount of relative horizontal displacement over a plurality of floors can be captured. As a result, the safety performance of the building can be enhanced.
Since the lower middle layer structure 2 is connected to the higher layer structure 3 through the seismic isolation device 4, the degree of fixation is high compared to the case where it is supported in a cantilever form from the ground (foundation), Reasonable design is possible. Moreover, even after formation of a collapse mechanism (a mechanism in which a plastic hinge is formed in the structure and the structure becomes unstable) in response to excessive input exceeding the assumption, A vertical load can be held by the rigid low and middle layer structure 2 and the seismic isolation device 4 (laminated rubber bearing 41).
As shown to (a) of FIG. 1, the low-middle layer structure 2 of this embodiment is erected on the ground (foundation), from the column 21 formed in the center, and the left and right side surfaces of the column 21 An extended wall (structural wall) 22 is provided.
In the low-middle layer structure 2, the main frame is preferably a wall structure, and the wall 22 is preferably extended only from the right side surface or the left side surface of the column 21.
The low-middle-layer structure 2 is a reinforced concrete frame formed in the central portion (the inner portion of the composite building 1) of the low-middle floor portion of the composite building 1 (the lower portion of the composite building 1). That is, the low-middle layer structure 2 is a multi-layered structure formed over a plurality of floors in the low-middle floor portion of the composite building 1.
The low and middle-layer structure 2 is not limited in height and plane arrangement, and may be provided on the outer peripheral side of the composite building 1. As shown in Fig. 2 (a), when a high-rigidity low-mid structure is provided on the outer periphery and the high-rise structure is placed on the inside of the building, seismic force repeatedly acts on the building from all directions Even so, since the lower floor pillars of the high-rise structure are arranged on the inside of the building, it is possible to reduce the repeated fluctuation range of the compression axial force and the tensile force applied to the lower floor pillars.
The use of the low-middle layer structure 2 is not limited. For example, the low-middle layer structure is at least part of the center core of the composite building 1, part of the outer wall of the composite building 1, or part of living space. It can be used as a parking lot, a residence, or an evacuation building in the event of a disaster.

高層構造体3は、図1に示すように、複合建物1の低中層階部分において低中層構造体2に並設された下層部分31と、低中層構造体2および下層部分31の上方に形成された上層部分32とを備えている。高層構造体3は、低中層構造体2の上方(上層部分32)に、鉛直方向に延びる空間(居室階、機械室、非難階)を有している。
よって、高層構造体は、採光、眺望を確保することが容易であり、住居や商業施設等に利用される場合が多い。
本実施形態の高層構造体3は、柱33または柱34と梁35とを組み合わせることにより形成されたラーメン架構構造である。なお、本実施形態では、高層構造体3の建物剛性(水平剛性)を低中層構造体2の建物剛性よりも低剛性とするが、高層構造体3は、少なくとも下層部分31の構造体剛性が、低中層構造体2の建物剛性よりも低剛性であればよい。
柱33は、高層構造体3の全高にわたって配設されたいわゆる連続柱である。すなわち、本実施形態では、低中層構造体2の側方に設けられた柱33が、複合建物1の全高(基礎から頂部)にわたって配設された連続柱により構成されている。一方、低中層構造体2の上方に設けられた柱34は複合建物1の上層階部分の全高(複合建物1の高さ方向中央部から頂部)にわたって配設された連続柱により構成されている。
高層構造体3の下層部分31は、低中層構造体2の周囲に形成されているとともに、低中層構造体2との間に隙間5を有している。すなわち、高層構造体3は、低中層構造体2と全高にわたって(隣接する全構面を鉛直方向にわたって)縁切りされている。
低中層構造体2と高層構造体3との縁切りの範囲は限定されないが、複合建物1の高さに対して40〜70%とするのが望ましい。
高層構造体3の上層部分32は、下層部分31により支持されている。また、上層部分32は、低中層構造体2との間に隙間5を有しており、免震装置4を介して低中層構造体2により支持されている。
As shown in FIG. 1, the high-rise structure 3 is formed above the low-middle structure 2 and the lower layer part 31, and the lower layer part 31 arranged side by side with the low-middle structure 2 in the lower middle level part of the composite building 1. The upper layer portion 32 is provided. The high-rise structure 3 has a space (a living room floor, a machine room, a refusal floor) extending in the vertical direction above the low-middle structure 2 (upper layer portion 32).
Therefore, the high-rise structure is easy to ensure daylighting and a view, and is often used for a residence or a commercial facility.
The high-rise structure 3 of the present embodiment is a rigid frame structure formed by combining the pillar 33 or the pillar 34 and the beam 35. In this embodiment, the building rigidity (horizontal rigidity) of the high-rise structure 3 is set to be lower than that of the low-middle structure 2. However, the high-rise structure 3 has at least the structure rigidity of the lower layer portion 31. The rigidity may be lower than the building rigidity of the low-middle-layer structure 2.
The pillar 33 is a so-called continuous pillar disposed over the entire height of the high-rise structure 3. That is, in the present embodiment, the pillars 33 provided on the sides of the low-middle-layer structure 2 are configured by continuous pillars that are disposed over the entire height (from the foundation to the top) of the composite building 1. On the other hand, the pillar 34 provided above the low-middle structure 2 is constituted by a continuous pillar disposed over the entire height of the upper floor portion of the composite building 1 (from the center to the top in the height direction of the composite building 1). .
The lower layer portion 31 of the high-layer structure 3 is formed around the low-middle structure 2 and has a gap 5 between the lower-layer structure 2. That is, the high-rise structure 3 is edge-cut from the low-middle structure 2 over the entire height (all adjacent structural surfaces are extended in the vertical direction).
The range of the edge cutting between the low-middle structure 2 and the high-rise structure 3 is not limited, but is preferably 40 to 70% with respect to the height of the composite building 1.
The upper layer portion 32 of the high-rise structure 3 is supported by the lower layer portion 31. Further, the upper layer portion 32 has a gap 5 between the lower middle layer structure 2 and is supported by the lower middle layer structure 2 via the seismic isolation device 4.

免震装置4は、図1に示すように積層ゴム支承41と粘弾性ダンパー42とを備えて構成されている。
積層ゴム支承41は、低中層構造体2の柱21の上端面と、高層構造体3(上層部分32)の中央の柱34の下端面との間に介設されていて、高層構造体3の柱34からの鉛直荷重を低中層構造体2の柱21に伝達する支承機構を有している。
積層ゴム支承41や粘弾性ダンパー42は、高層構造体の全ての柱直下に設ける必要はなく、一部の柱直下のみに設置させてもよい。
本実施形態では、積層ゴム支承41として、高層構造体3の下層部分31の建物剛性の20%以下の剛性を備えたものとする(式1参照)。本明細書では、等価せん断剛性を、設計用地震荷重による各層の層せん断力を層間変位で除した剛性として定義した。
The seismic isolation device 4 includes a laminated rubber bearing 41 and a viscoelastic damper 42 as shown in FIG.
The laminated rubber support 41 is interposed between the upper end surface of the column 21 of the lower middle layer structure 2 and the lower end surface of the column 34 at the center of the higher layer structure 3 (upper layer portion 32). A support mechanism for transmitting a vertical load from the pillar 34 to the pillar 21 of the low-middle structure 2 is provided.
The laminated rubber support 41 and the viscoelastic damper 42 do not need to be provided directly below all columns of the high-rise structure, and may be provided only directly below some columns.
In the present embodiment, the laminated rubber bearing 41 is assumed to have a rigidity of 20% or less of the building rigidity of the lower layer portion 31 of the high-rise structure 3 (see Formula 1). In this specification, the equivalent shear stiffness is defined as the stiffness obtained by dividing the layer shear force of each layer by the design seismic load by the interlayer displacement.

Figure 0006495638
Figure 0006495638

積層ゴム支承41は、上部コンクリートと、下部コンクリートと、上部コンクリートと下部コンクリートとの間に介設されたゴム支承本体とを備えている。
上部コンクリートは、ゴム支承本体と柱21との間に介設される鉄筋コンクリート部材であって、高層構造体3の柱34の下面に形成する。上部コンクリートには、ゴム支承本体を固定するためのベースプレートを固定する。なお、上部コンクリートは、高層構造体3の梁35の下面に形成してもよい。
下部コンクリートは、ゴム支承本体と低中層構造体2の柱21との間に介設される鉄筋コンクリート部材であって、柱21の上面に形成する。下部コンクリートには、ゴム支承本体を固定するためのベースプレートを固定する。なお、下部コンクリートは、低中層構造体2の壁22の上面や梁の上面等に形成してもよい。
免震装置を構成する支承機構は、鉛直荷重を支持しつつ、地震時等に水平荷重が作用した際には水平方向に変形して水平荷重を吸収するとともに、建物に地震荷重が入らないようにするものである。
本実施形態では、図1に示すように低中層構造体の上面に、復元力を有する積層ゴム支承41を採用したが、弾性すべり支承や、剛すべり支承、転がり支承であってもよい。
また、減衰機構として、建物に入った地震力等を吸収して揺れを抑えるためにダンパ−42を配置した。
本実施形態では、図1に示すように低中層構造体の上面、または上部側面に粘弾性ダンパー42を設置し、複数階に亘る高層構造体に生じる水平変形量を、低中層構造体と高層構造体との相対水平変形量として作用させて、地震エネルギーを吸収させた。
粘弾性ダンパー42の一端は、低層構造体2の上面、または上部側面にアンカーボルトを介して固定されていて、粘弾性ダンパー42の他端は、高層構造体3の柱34の下面、または梁側面や壁側面に固定されているのが望ましい。梁側面や壁側面に設置されるダンパーは、積層ゴム支承とは異なる建物フロアーに、独立して設置させるもので制震部材である。
本実施形態では、ダンパーとして、ゴム製の粘弾性体を備えた粘弾性ダンパーを採用したが、オイルダンパーや粘性ダンパー等の流体系ダンパーであってもよい。
The laminated rubber bearing 41 includes an upper concrete, a lower concrete, and a rubber bearing body interposed between the upper concrete and the lower concrete.
The upper concrete is a reinforced concrete member interposed between the rubber bearing main body and the column 21, and is formed on the lower surface of the column 34 of the high-rise structure 3. A base plate for fixing the rubber bearing body is fixed to the upper concrete. The upper concrete may be formed on the lower surface of the beam 35 of the high-rise structure 3.
The lower concrete is a reinforced concrete member interposed between the rubber bearing body and the column 21 of the low-middle layer structure 2, and is formed on the upper surface of the column 21. A base plate for fixing the rubber bearing body is fixed to the lower concrete. The lower concrete may be formed on the upper surface of the wall 22 or the upper surface of the beam of the low-middle layer structure 2.
The support mechanism that constitutes the seismic isolation device supports the vertical load, and when a horizontal load is applied during an earthquake or the like, it deforms in the horizontal direction to absorb the horizontal load and prevent the earthquake load from entering the building. It is to make.
In the present embodiment, as shown in FIG. 1, a laminated rubber bearing 41 having a restoring force is employed on the upper surface of the low-middle layer structure. However, an elastic sliding bearing, a rigid sliding bearing, or a rolling bearing may be used.
In addition, as a damping mechanism, a damper 42 is arranged to absorb the seismic force and the like that entered the building and suppress the shaking.
In this embodiment, as shown in FIG. 1, a viscoelastic damper 42 is installed on the upper surface or upper side surface of the low-middle structure, and the amount of horizontal deformation occurring in the high-rise structure over a plurality of floors is reduced. Seismic energy was absorbed by acting as the amount of relative horizontal deformation with the structure.
One end of the viscoelastic damper 42 is fixed to the upper surface or upper side surface of the low-layer structure 2 via an anchor bolt, and the other end of the viscoelastic damper 42 is the lower surface of the column 34 of the high-layer structure 3 or a beam. It is desirable to be fixed to the side or wall side. The dampers installed on the side surfaces of the beams and the side surfaces of the walls are seismic control members that are installed independently on the building floor different from the laminated rubber bearings.
In this embodiment, a viscoelastic damper provided with a rubber viscoelastic body is used as the damper, but a fluid damper such as an oil damper or a viscous damper may be used.

複合建物1では、低中層構造体2と高層構造体3を連結する積層ゴム支承41の水平剛性は、高層構造体3の下層部分31(低剛性部分)の建物剛性の20%以下とすることが好ましい。
低中層構造体2の上部に設けられた積層ゴム支承41が所定の水平剛性を有して、高層構造体3を支持していることで、地震時に水平荷重が高層構造体3に加わった場合であっても、建物のある特定階のみに水平変形が増加して、建物が損傷、破壊するのを抑止させることができる。
また、低中層構造体2と高層構造体3との隣接する構面間での鉛直方向の縁切り高さ範囲は、複合建物1の建物高さの40〜70%とする。低中層構造体2と高層構造体3との間に所定の縁切り高さを設定することで、低中層構造体2に高層構造体3の鉛直荷重が付加されて、低中層構造体2のせん断耐力及びひび割れ発生強度を増加させることができ、複合建物1の構造安全性能を向上させることができる。
In the composite building 1, the horizontal rigidity of the laminated rubber bearing 41 that connects the low-middle structure 2 and the high-rise structure 3 should be 20% or less of the building rigidity of the lower layer portion 31 (low-rigidity portion) of the high-rise structure 3. Is preferred.
When a horizontal load is applied to the high-rise structure 3 at the time of an earthquake because the laminated rubber support 41 provided on the upper part of the low-middle structure 2 has a predetermined horizontal rigidity and supports the high-rise structure 3 Even so, it is possible to prevent the building from being damaged and destroyed by increasing horizontal deformation only on a certain floor of the building.
In addition, a vertical edge cutting height range between adjacent construction surfaces of the low-middle structure 2 and the high-rise structure 3 is 40 to 70% of the building height of the composite building 1. By setting a predetermined edge cutting height between the low middle layer structure 2 and the high layer structure 3, the vertical load of the high layer structure 3 is applied to the low middle layer structure 2, and the low middle layer structure 2 is sheared. The yield strength and cracking strength can be increased, and the structural safety performance of the composite building 1 can be improved.

以下、積層ゴム支承41と高層構造体3の下層部分31との構造剛性比の適正な範囲について行った検証解析の結果について説明する。
本検証は、図3に示す低中層構造体2と高層構造体3に分割された地上41階建ての複合建物を模擬した計算モデルを用いて、立体振動解析により行った。
本検証の各条件は、以下の通りである。
計算モデルでは、柱または梁の主架構部分については部材ごとに弾塑性モデルを設定し、各階の床は剛床弾性モデルとした。また、免震装置は、積層ゴム支承41を1軸バネモデルでモデル化し、ダンパー42は速度型または粘性型の非線形弾性モデルとした。
解析では、積層ゴム支承41の水平剛性、低中層構造体2と高層構造体3との間の縁切り範囲、および入力地震波をパラメータとして、建物の各階ごとの最大層間変形角と、低中層構造体2の最下層部での曲げひびわれモーメントの応答結果について、比較検討した。
積層ゴム支承41の水平剛性は、高層構造体3の下層部分の構造体剛性に対して、15%(積層ゴム支承:建物=15:100)、30%A(積層ゴム支承:建物=30:100)、30%B(建物剛性を低減した。積層ゴム支承:建物=15:50)を設定した。
低中層構造体2と高層構造体3との構面間における鉛直方向の縁切り高さ範囲は、複合建物1の建物高さに対して、12%〜88%まで一定間隔を持って縁切り高さ範囲を設定した。
入力地震波には、建物が500年に1回程度遭遇する可能性がある巨大な地震を想定して、代表的な観測地震波(EL Centro波、八戸波)、及び(財)日本建築センターで設定された模擬地震波(BCJ波)を用いた。
Hereinafter, the result of the verification analysis performed on the appropriate range of the structural rigidity ratio between the laminated rubber support 41 and the lower layer portion 31 of the high-rise structure 3 will be described.
This verification was performed by a three-dimensional vibration analysis using a calculation model simulating a 41-story composite building divided into a low-middle structure 2 and a high-rise structure 3 shown in FIG.
The conditions for this verification are as follows.
In the calculation model, an elasto-plastic model was set for each member for the main frame part of the column or beam, and the floor of each floor was a rigid floor elastic model. In the seismic isolation device, the laminated rubber bearing 41 is modeled by a uniaxial spring model, and the damper 42 is a speed type or viscous type nonlinear elastic model.
In the analysis, using the horizontal rigidity of the laminated rubber bearing 41, the edge cutting range between the low-middle structure 2 and the high-rise structure 3, and the input seismic wave as parameters, the maximum interlayer deformation angle for each floor of the building and the low-middle structure The results of the response of the bending cracking moment at the lowermost layer of No. 2 were compared and examined.
The horizontal rigidity of the laminated rubber bearing 41 is 15% (laminated rubber bearing: building = 15: 100) and 30% A (laminated rubber bearing: building = 30: the structural rigidity of the lower layer portion of the high-rise structure 3. 100), 30% B (building rigidity was reduced. Laminated rubber bearing: building = 15: 50) was set.
The vertical edge cutting height range between the planes of the low-middle structure 2 and the high-rise structure 3 is 12% to 88% with respect to the building height of the composite building 1 with a certain interval. A range was set.
The input seismic wave is set at a representative observation seismic wave (EL Centro wave, Hachinohe wave) and Japan Architecture Center assuming a huge earthquake that the building may encounter about once in 500 years. The simulated earthquake wave (BCJ wave) was used.

図4に、積層ゴム支承の水平剛性をパラメータとした立体振動解析による地上41階建て建物の階数ごとの最大層間変形角の応答結果を示す。
図4中の最大層間変形角は、複数の入力地震波による各応答結果の最大値であり、積層ゴム支承の水平剛性比を15%、30%A、30%Bとした場合の応答結果を示す。
図4中横軸にとった層間変形角は、建物が地震荷重を受けた際に生じる水平変形量を、建物の当該階ごとの相対水平変形量として着目して、上下階の相対水平変形量(層間変形)を階高で割った値である。また、最大層間変形角は、時々刻々変化する層間変形角について絶対値をとった最大値であり、建物の構造安全性を評価する上で重要な指標である。鉄筋コンクリート造や鉄骨造の建物では、大地震時でも構造体が損傷しない限界値として、最大層間変形角が1/100程度以下となるように、柱や梁などの主要架構が設計されることが多い。
応答結果によると、積層ゴム支承の水平剛性比が15%の解析ケース(◆印)では、最大層間変形角は3階付近と22階付近では大きいが、其々1/125以下に収まっている。また、水平剛性比が30%Aの解析ケース(■印)では、最大層間変形角は26階付近で最も大きくなり、最大層間変形角は1/100を上回った応答結果が得られた。
そこで、水平剛性比が15%〜30%の間での最大層間変形角について、其々の応答結果から内挿すると、水平剛性比が20%程度では1/100以下に収まることが推定できる。
よって、積層ゴム支承の水平剛性比を高層構造体の下層部分との構造体剛性に対して、20%以下に設定すると、最大層間変形角が局所的に増加するのを抑止できることを確認した。
FIG. 4 shows a response result of the maximum interlayer deformation angle for each floor of the 41-story building by the three-dimensional vibration analysis using the horizontal rigidity of the laminated rubber bearing as a parameter.
The maximum interlayer deformation angle in FIG. 4 is the maximum value of each response result due to a plurality of input seismic waves, and shows the response result when the horizontal rigidity ratio of the laminated rubber bearing is 15%, 30% A, and 30% B. .
The interlaminar deformation angle on the horizontal axis in FIG. 4 indicates the relative horizontal deformation amount of the upper and lower floors, focusing on the horizontal deformation amount generated when the building is subjected to the seismic load as the relative horizontal deformation amount for each floor of the building. This is the value obtained by dividing (interlayer deformation) by the floor height. Moreover, the maximum interlayer deformation angle is a maximum value obtained by taking an absolute value with respect to the interlayer deformation angle that changes every moment, and is an important index for evaluating the structural safety of a building. In reinforced concrete and steel buildings, the main frames such as columns and beams are designed so that the maximum interlaminar deformation angle is about 1/100 or less as a limit value that does not damage the structure even during a large earthquake. Many.
According to the response result, in the analysis case where the horizontal rigidity ratio of the laminated rubber bearing is 15% (marked with ◆), the maximum interlayer deformation angle is large near the 3rd floor and near the 22nd floor, but is within 1/125 respectively. . Moreover, in the analysis case (marked with ■) where the horizontal rigidity ratio is 30% A, the maximum interlayer deformation angle was the largest near the 26th floor, and the response result was obtained with the maximum interlayer deformation angle exceeding 1/100.
Therefore, when the maximum interlayer deformation angle when the horizontal rigidity ratio is between 15% and 30% is interpolated from the respective response results, it can be estimated that the horizontal rigidity ratio falls within 1/100 or less when the horizontal rigidity ratio is about 20%.
Therefore, it was confirmed that when the horizontal rigidity ratio of the laminated rubber support is set to 20% or less with respect to the structure rigidity with the lower layer portion of the high-rise structure, it is possible to suppress the local increase in the maximum interlayer deformation angle.

次に、低中層構造体2と高層構造体3との間の縁切り高さの適正な範囲について行った検証解析の結果について説明する。
図5に、低中層構造体2の鉛直方向の縁切り高さ範囲をパラメータとした立体振動解析による低中層構造体2の下部面位置での曲げひびわれモーメントと曲げモーメントとの比について応答結果を示す。
本検証は、図4に示す積層ゴム支承41の水平剛性を変化させた場合の振動解析の同様、数種類の入力地震波を用いて複数の解析ケースについて振動解析を行った。
Next, the result of the verification analysis performed on the appropriate range of the edge cutting height between the low and middle layer structure 2 and the high layer structure 3 will be described.
FIG. 5 shows the response results of the ratio of the bending crack moment to the bending moment at the lower surface position of the low-middle structure 2 by the three-dimensional vibration analysis using the vertical edge cutting height range of the low-middle structure 2 as a parameter. .
In this verification, vibration analysis was performed on a plurality of analysis cases using several types of input seismic waves, as in the case of vibration analysis when the horizontal rigidity of the laminated rubber bearing 41 shown in FIG. 4 is changed.

図5中の曲げモーメント比は、数種類の入力地震波による各応答結果の最大値であり、低中層構造体の鉛直方向の縁切り高さ範囲を複合建物の建物高さに対して、12%〜88%まで変化させた場合の応答結果を示す。
横軸の縁切り高さ範囲は、数字が大きくなるほど、低中層構造体2の高さと、高層構造体3との間の鉛直方向の縁切り高さ範囲、及び高層構造体3の高さが、其々等しくなる方に増加することになる。
具体的には、縁切り高さ範囲が高くなると、低中層構造体2の高さも高くなる。その結果、低中層構造体2の上方に位置する高層構造体3の高さ部分は低くなり、低中層構造体2が負担する高層構造体3の鉛直荷重が小さくなる。
したがって、縁切り高さ範囲が高い場合、低中層構造体2が負担する鉛直荷重は小さくなり、低中層構造体2の下部面位置では、圧縮応力度に比例する曲げひびわれモーメントも小さくなり、ひびわれが発生しやすくなる。特に、縁切り高さ範囲が複合建物1の高さの約70%を超えると、低中層構造体2の下部面位置では、M/Mcrが100%以上となりびわれが発生することが応答解析値から推定される。よって、有効な縁切り高さ範囲の上限は、複合建物1の高さの70%程度となる。
また、縁切り高さ範囲を低くして、低中層構造体2が負担する鉛直荷重を大きくした場合には、低中層構造体2の下部面位置での圧縮応力度は大きくなり、ひびわれ発生時の曲げひびわれモーメントは大きくなってひびわれが発生しづらいことが解析結果から推定される。
特に、縁切り高さ範囲を低くして約40%を下回った場合、M/Mcrは50%以下となりひびわれの発生を抑止できることが応答解析値から推定される。
よって、縁切り高さ範囲を低くすることで、高層構造体3の鉛直荷重の大部分を低中層構造体2に負担させる場合は、低中層構造体2においては、せん断耐力とともにひびわれ発生強度については増加させることはできるが、高層構造体3の下層部分の柱については、負担させる鉛直荷重が小さく、柱断面が軸力で決定されることはなく、経済的な柱断面の設計が困難となる。
有効な縁切り高さ範囲の下限値としては、低中層構造体2の高さはM/Mcrが50%以下となる複合建物1の高さが40%程度で、高層構造体3の下層部でも鉛直荷重の相当量を負担させることが好ましい。
よって、縁切り高さ範囲は、複合建物の高さの40〜70%程度が合理的と推定される。
The bending moment ratio in FIG. 5 is the maximum value of each response result from several types of input seismic waves, and the vertical edge height range of the low-middle structure is 12% to 88% with respect to the building height of the composite building. The response result when changed to% is shown.
The range of the edge cutting height on the horizontal axis indicates that the height of the lower middle-layer structure 2 and the height of the vertical edge between the upper-layer structure 3 and the height of the higher-layer structure 3 increase as the number increases. It will increase in the same way.
Specifically, when the edge cutting height range is increased, the height of the low middle layer structure 2 is also increased. As a result, the height portion of the high-rise structure 3 located above the low-middle structure 2 is lowered, and the vertical load of the high-rise structure 3 borne by the low-middle structure 2 is reduced.
Therefore, when the edge cutting height range is high, the vertical load borne by the low middle-layer structure 2 is small, and the bending crack moment proportional to the compressive stress degree is small at the lower surface position of the low-middle layer structure 2, and cracks are generated. It tends to occur. In particular, when the edge cutting height range exceeds about 70% of the height of the composite building 1, M / Mcr is 100% or more at the lower surface position of the low-middle structure 2, and the analysis results indicate that cracking occurs. Is estimated from Therefore, the upper limit of the effective edge cutting height range is about 70% of the height of the composite building 1.
In addition, when the edge cutting height range is lowered and the vertical load borne by the low-middle structure 2 is increased, the degree of compressive stress at the lower surface position of the low-middle structure 2 increases, and cracks are generated. It is estimated from the analysis results that the bending cracking moment becomes large and cracking is difficult to occur.
In particular, it is estimated from the response analysis values that M / Mcr is 50% or less and the occurrence of cracks can be suppressed when the edge cutting height range is reduced to below about 40%.
Therefore, in the case where the lower middle layer structure 2 bears most of the vertical load of the high-rise structure 3 by lowering the edge cutting height range, the crack strength in the low and middle layer structure 2 as well as the shear strength is about Although it can be increased, the column load in the lower layer portion of the high-rise structure 3 is small, and the column section is not determined by the axial force, making it difficult to design an economical column section. .
As the lower limit value of the effective edge cutting height range, the height of the low-rise structure 2 is about 40% of the height of the composite building 1 where M / Mcr is 50% or less. It is preferable to bear a considerable amount of vertical load.
Therefore, it is estimated that the edge cutting height range is reasonable about 40 to 70% of the height of the composite building.

また、本実施形態の複合建物1によれば、低中層構造体2と高層構造体3の間に隙間を設けることで、以下のような効果も得られる。
(1)複合建物1を低中層構造体2と高層構造体3を分離し、双方構造体との間に隙間を設けることで、隙間部分に通路が設置可能である。また、隙間部分は風の通り道となると共に、火災が発生した際には、延焼抑止部分となる。
(2)建物構造を低中層構造体2と高層構造体3に分離することで、各々の構造体を独立して建築することができる。また、建物を部分的に利用しながら、建物のリニューアル工事を実施することができる。
Moreover, according to the composite building 1 of this embodiment, the following effects are acquired by providing a clearance between the low-middle structure 2 and the high-rise structure 3.
(1) By separating the composite building 1 from the low- and middle-rise structure 2 and the high-rise structure 3 and providing a gap between the two structures, a passage can be installed in the gap portion. In addition, the gap portion becomes a passage for the wind, and when a fire occurs, it becomes a fire spread suppression portion.
(2) By separating the building structure into the low-middle structure 2 and the high-rise structure 3, each structure can be constructed independently. In addition, the building can be renewed while partially using the building.

以上、本発明の実施形態について説明した。しかし、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
例えば、制震構造を設置する建物1は、複層階構造であればよく、建物1の使用目的、規模、形状等は限定されるものではない。
また、前記実施形態では、複合建物1の中央部(複合建物1を平面視したときの中央部)に低中層構造体2を配置する場合について説明したが、低中層構造体2の配置はこれに限定されない。例えば、図2の(a)に示すように、複合建物1の左右の側部に低中層構造体2を配置してもよい。この場合には、左右の低中層構造体2の間に高層構造体3の下層部分31を配設する。また、低中層構造体2は、図2の(b)に示すように、複合建物1の前面側または後面側のみに配設してもよい
また、図2の(c)に示すように、高層構造体3に免震装置4(積層ゴム支承41)に鉛直力を負担させるための斜め柱36を設けてもよい。
また、図2の(d)に示すように、高層構造体3の下層部分31について、低中層構造体2の上方(下層部分中央部31a)と側方(下層部分側部31b)とを分離してもよい。このとき、下層部分中央部31aは、下層部分側部31bよりも建物剛性を高くしてもよい。
また、低中層構造体2は、必ずしも全高にわたって高層構造体3と縁切りされている必要はない。例えば、図2の(e)に示すように、低中層構造体2の下部では高層構造体3と接合し、上部において高層構造体3との間に隙間を設けて縁切りしてもよい。
また、高層構造体3に構造壁(耐震壁)を設けてもよい。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.
For example, the building 1 in which the damping structure is installed may be a multi-story structure, and the purpose, scale, shape, etc. of the building 1 are not limited.
Moreover, although the said embodiment demonstrated the case where the low-middle layer structure 2 was arrange | positioned in the center part (center part when the complex building 1 is planarly viewed) of the complex building 1, arrangement | positioning of the low-middle layer structure 2 is this. It is not limited to. For example, as shown to (a) of FIG. 2, you may arrange | position the low-middle-layer structure 2 in the left-right side part of the composite building 1. As shown in FIG. In this case, the lower layer portion 31 of the high-layer structure 3 is disposed between the left and right low- and middle-layer structures 2. Moreover, as shown in FIG.2 (b), the low-middle-layer structure 2 may be arrange | positioned only in the front side or the rear surface side of the composite building 1. Moreover, as shown in (c) of FIG. The high-rise structure 3 may be provided with an oblique column 36 for causing the seismic isolation device 4 (laminated rubber support 41) to bear a vertical force.
Further, as shown in FIG. 2D, for the lower layer portion 31 of the high-layer structure 3, the upper portion (lower layer portion central portion 31a) and the side portion (lower layer portion side portion 31b) of the lower middle layer structure 2 are separated. May be. At this time, the lower layer portion central portion 31a may have higher building rigidity than the lower layer portion side portion 31b.
Further, the low-middle layer structure 2 does not necessarily have to be cut off from the high-layer structure 3 over the entire height. For example, as shown in FIG. 2 (e), the lower middle layer structure 2 may be joined to the higher layer structure 3 at the lower portion, and the upper portion may be bordered by providing a gap with the higher layer structure 3.
Further, a structural wall (seismic wall) may be provided in the high-rise structure 3.

1 複合建物
2 低中層構造体
21 柱
22 壁
3 高層構造体
31 下層部分
32 上層部分
33,34 柱
35 梁
36 斜め柱
4 免震装置
41 積層ゴム支承
42 粘弾性ダンパー(ダンパー)
5 隙間
DESCRIPTION OF SYMBOLS 1 Composite building 2 Low-middle-layer structure 21 Column 22 Wall 3 High-rise structure 31 Lower layer portion 32 Upper layer portion 33, 34 Column 35 Beam 36 Diagonal column 4 Seismic isolation device 41 Laminated rubber bearing 42 Viscoelastic damper (damper)
5 Clearance

Claims (3)

少なくとも一部は壁構造である低中層構造体と、
前記低中層構造体の上側の空間を含んで当該低中層構造体に近接して構築させた高層構造体と、から成る複合建物であって、
前記高層構造体の下層部分の少なくとも一部がラーメン架構構造であり、
前記低中層構造体の剛性は、前記高層構造体の下層部分の構造体剛性より高く、
前記低中層構造体の上面と当該上面に対向する前記高層構造体の下面との間に免震装置を設け、
前記低中層構造体は前記高層構造体の鉛直荷重を支持することを特徴とする複合建物。
A low-middle layer structure that is at least partly a wall structure ;
A high-rise structure including a space above the low-mid structure and constructed close to the low-mid structure,
Ri at least partially rigid frame Frame structure der the lower portion of the high-rise structure,
The rigidity of the low-middle structure is rather high than the structure rigidity of the lower portion of the high-rise structure,
A seismic isolation device is provided between the upper surface of the lower middle layer structure and the lower surface of the high layer structure facing the upper surface,
The low-middle structure supports a vertical load of the high-rise structure.
前記免震装置は、前記低中層構造体の梁の上面または柱の上面と、前記高層構造体の柱の下面との間に設けられていることを特徴とする請求項1に記載の複合建物。   2. The composite building according to claim 1, wherein the seismic isolation device is provided between an upper surface of a beam or a top surface of a column of the low-rise structure and a bottom surface of a column of the high-rise structure. . 前記低中層構造体と、前記高層構造体の対向面間にダンパーが設けられていることを特徴とする、請求項1または請求項2に記載の複合建物。   The composite building according to claim 1, wherein a damper is provided between opposing surfaces of the low-middle structure and the high-rise structure.
JP2014250658A 2014-12-11 2014-12-11 Complex building Active JP6495638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250658A JP6495638B2 (en) 2014-12-11 2014-12-11 Complex building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250658A JP6495638B2 (en) 2014-12-11 2014-12-11 Complex building

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019027274A Division JP2019078166A (en) 2019-02-19 2019-02-19 Composite building

Publications (2)

Publication Number Publication Date
JP2016113748A JP2016113748A (en) 2016-06-23
JP6495638B2 true JP6495638B2 (en) 2019-04-03

Family

ID=56139761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250658A Active JP6495638B2 (en) 2014-12-11 2014-12-11 Complex building

Country Status (1)

Country Link
JP (1) JP6495638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7066944B2 (en) * 2017-04-03 2022-05-16 株式会社竹中工務店 Structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706302B2 (en) * 2005-03-30 2011-06-22 株式会社大林組 Triple tube structure and damping system for triple tube structure

Also Published As

Publication number Publication date
JP2016113748A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP5567094B2 (en) Long-period building
Chaulagain et al. Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal
Flogeras et al. On the seismic response of steel buckling-restrained braced structures including soil-structure interaction
JP6495638B2 (en) Complex building
Avşar et al. Influence of structural walls on the seismic performance of RC buildings during the May 19, 2011 Simav Earthquake in Turkey
JP5918282B2 (en) Long-period building
Javanmardi et al. Seismic pounding mitigation of an existing cable-stayed bridge using metallic dampers
JP7154328B2 (en) damping building
Komur et al. Nonlinear dynamic analysis of isolated and fixed-base reinforced concrete structures
JP6414877B2 (en) Reinforcement structure and building
Farghaly Seismic assessment of slender high rise buildings with different shear walls configurations
JP2019078166A (en) Composite building
Alirezaei et al. Investigation on the seismic behavior of single story concrete frames equipped with metallic yielding dampers
JP5290786B2 (en) Damping structure
JP5946165B2 (en) Seismic reinforcement structure
JP6837865B2 (en) Vibration control building
JP5727690B2 (en) Long-period building
JP2005133443A (en) Compound damper and column-beam structure
Elkholy et al. Increasing Robustness of Reinforced Concrete Structures under Column Losses Scenario
Qu et al. Numerical assessment of seismic performance of continuously buckling restrained braced RC frames
JP5456461B2 (en) Seismic isolation structure
Fanaie et al. Wire-rope bracing system with central cylinder, element based application finite element based application
JP2010189903A (en) Damping frame for building
JP2012233374A5 (en)
AL-Maliki Analytical behavior of multi-storied building with base isolation subjected to earthquake loading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6495638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150