JP5339406B2 - Seismic structure - Google Patents

Seismic structure Download PDF

Info

Publication number
JP5339406B2
JP5339406B2 JP2008160969A JP2008160969A JP5339406B2 JP 5339406 B2 JP5339406 B2 JP 5339406B2 JP 2008160969 A JP2008160969 A JP 2008160969A JP 2008160969 A JP2008160969 A JP 2008160969A JP 5339406 B2 JP5339406 B2 JP 5339406B2
Authority
JP
Japan
Prior art keywords
end side
floor
side layer
free end
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008160969A
Other languages
Japanese (ja)
Other versions
JP2009281125A (en
Inventor
拓朗 片山
拓也 岡林
敏孝 山尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimigafuchi Gakuen
Original Assignee
Kimigafuchi Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimigafuchi Gakuen filed Critical Kimigafuchi Gakuen
Priority to JP2008160969A priority Critical patent/JP5339406B2/en
Priority to PCT/JP2009/053775 priority patent/WO2009142040A1/en
Publication of JP2009281125A publication Critical patent/JP2009281125A/en
Application granted granted Critical
Publication of JP5339406B2 publication Critical patent/JP5339406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices

Abstract

This aims to improve the earthquake resistance of a mainly shear-deformable structure such as a high-rise building. Provided is an earthquake-proof structure having an upper structure supported on a lower structure and resisting a main vertical load and a horizontal load mainly with a framed structure. The upper structure is made of an integral cantilever shearing structure including a fixed end floor portion having a plurality of floors, of which the lowermost floor to become the fixed end side is fixed on the lower structure, a folded portion forming floor for forming the upper floor of the fixed end floor portion, and a free end floor portion composed of a plurality of floors to the upper floor formed by the folded portion forming floor and supporting the lowermost floor to become the free end side horizontally movably on the lower structure. As compared with the shearing structure of the prior art having the fixed lower end, therefore, the folded cantilever shearing structure has twice dynamic orders in connection with an nature period, as large as the orders in the height direction. The nature period of the shearing structure increases in proportion to the orders, so that the nature period of the folded cantilever shearing structure is about two times as long as that of the shearing structure of the prior art.

Description

高層ビルディング等のせん断変形が主となる構造物の耐震性能を向上させることができる耐震性構造物に関する。  The present invention relates to an earthquake-resistant structure capable of improving the earthquake-resistant performance of a structure mainly composed of shear deformation such as a high-rise building.

地震動によって構造物に作用する地震力の大きさは、地震動の周期・振幅特性と構造物の固有周期と減衰定数などの振動特性に関係するが、特に地震動の周期特性を考慮して構造物の固有周期と減衰定数を適切に設計することは、耐震設計を経済的に行う上で重要であると考えられる(例えば、非特許文献1参照)。  The magnitude of the seismic force acting on the structure due to the ground motion is related to the period / amplitude characteristics of the ground motion and the vibration characteristics such as the natural period and damping constant of the structure. Appropriate design of the natural period and damping constant is considered important for economical seismic design (see, for example, Non-Patent Document 1).

非特許文献1においては、構造物の耐震性能の照査に用いる設計地震動は、標準加速度応答スペクトルと減衰定数別補正係数および地域別補正係数によって規定される。非特許文献1のレベル1・レベル2地震動の標準加速度応答スペクトルによれば、約1秒を超える固有周期においては、固有周期の長周期化に応じて加速度が低減される。  In Non-Patent Document 1, the design ground motion used for checking the seismic performance of a structure is defined by a standard acceleration response spectrum, a correction coefficient for each attenuation constant, and a correction coefficient for each region. According to the standard acceleration response spectrum of Level 1 and Level 2 ground motions of Non-Patent Document 1, in the natural period exceeding about 1 second, the acceleration is reduced according to the longer natural period.

また、非特許文献2においては、地震力は固定荷重と積載荷重の和に地震層せん断力係数を乗じて計算するように規定されている。地震層せん断力係数を固有周期の関数として整理すると、約1秒を超える固有周期においては固有周期の長周期化に応じて地震層せん断力係数が低減される。  Non-Patent Document 2 stipulates that the seismic force is calculated by multiplying the sum of the fixed load and the loaded load by the seismic layer shear force coefficient. If the seismic layer shear force coefficient is arranged as a function of the natural period, the seismic layer shear force coefficient is reduced in response to the longer natural period in the natural period exceeding about 1 second.

固有周期の長周期化は構造物に作用する地震力を低減する一方で、水平方向の剛性低下による変位振幅の増加を招くので、減衰増加などの制震対策を必要とする。長周期化と高減衰化を積極的に耐震設計に取り入れた構造物は、アイソレーターとダンパーを用いた免震建築物(非特許文献3参照)として実用化されている。
日本道路橋会:道路橋示方書・同解説V耐震設計編、pp.12−29、平成14年3月 建築基準法施工令:昭和25年政令第三百三十八号:建築基準法施行令、第88条、最終改正平成17年11月7日政令第三百三十四号 日本建築学会:免震構造設計指針、pp.26−56、1989年9月20日
Increasing the natural period reduces the seismic force acting on the structure, while causing an increase in displacement amplitude due to a decrease in the rigidity in the horizontal direction. A structure in which a long period and high damping are positively incorporated into an earthquake-resistant design has been put into practical use as a base-isolated building using an isolator and a damper (see Non-Patent Document 3).
Japan Highway Bridge Association: Road Bridge Specification / Explanation V Seismic Design, pp. 12-29, March 2002 Building Standard Act Construction Order: 1958 Decree No. 338: Building Standard Act Enforcement Order, Article 88, Final Revision November 7, 2005 Decree No. 334 Architectural Institute of Japan: Seismic isolation design guidelines, pp. 26-56, September 20, 1989

アイソレーターとダンパーを用いた免震建築物は一般に高価であり、その適用範囲は高度な耐震性を要求される医療施設や公共施設などの低層ビルディングに限定されており、一般の高層ビルディングに適用可能な安価な耐震構造が求められている。  Isolation buildings using isolators and dampers are generally expensive, and their scope of application is limited to low-rise buildings such as medical facilities and public facilities that require high earthquake resistance, and can be applied to general high-rise buildings. An inexpensive earthquake-resistant structure is required.

また、固有周期が1秒を超える領域での長周期化は、海溝型巨大地震によって引き起こされると予想されるやや長周期の地震動との共振を引き起こす可能性が高いので、減衰装置などを用いた効果的な制震対策の重要性が高まっている(非特許文献4参照)。
土木学会社、日本建築学会:海溝型巨大地震による長周期地震動と土木・建築構造物の耐震性向上に関する共同提言、2006年11月20日
In addition, a long period in the region where the natural period exceeds 1 second is expected to be caused by a huge trench-type earthquake, and is likely to cause resonance with a long-period ground motion. The importance of effective seismic control is increasing (see Non-Patent Document 4).
Civil engineering company, Architectural Institute of Japan: Joint proposal on long-period ground motions caused by huge subduction earthquakes and improvement of earthquake resistance of civil engineering and building structures, November 20, 2006

そこで、本発明では、高層ビルディング等のせん断変形が主となる構造体の耐震性能を向上させることを目的として、従来のせん断構造体と比較して長周期である固有振動モードを持つせん断構造体と、その構造体に適用する効率的な減衰装置の配設構造を提供するものである。  Therefore, in the present invention, a shear structure having a natural vibration mode having a longer period than that of a conventional shear structure for the purpose of improving the seismic performance of a structure mainly composed of shear deformation such as a high-rise building. And the arrangement | positioning structure of the efficient damping device applied to the structure is provided.

ここで、従来のせん断構造体とは、固定端となる最下層階を下部構造に固定し、最上層階を自由端とする複数の階層からなる片持ちせん断構造体であり、水平方向の層間復元力をせん断バネで表した振動モデルにより、耐震設計に必要な構造体の固有周期と固有振動モードを工学的に十分な精度で算出できる構造体とする。  Here, the conventional shearing structure is a cantilevered shearing structure consisting of a plurality of layers with the lowermost floor as the fixed end fixed to the lower structure and the uppermost floor as the free end. By using a vibration model in which the restoring force is represented by a shear spring, the natural period and natural vibration mode of the structure necessary for seismic design can be calculated with sufficient engineering accuracy.

請求項1に係る本発明の耐震性構造物は、下部構造の上に上部構造を支持させると共に、同上部構造は、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する構造物であって、上部構造は、固定端側となる最下層階を下部構造に固定させた複数の階層からなる固定端側階層部と、同固定端側階層部の上層階を形成する折曲部形成階層と、同折曲部形成階層が上層階を形成すると共に自由端側となる最下層階を下部構造に水平可動支持装置を用いて水平移動自在に支持させた複数の階層からなる自由端側階層部とから、上方に突状に折り曲げた一体の折り曲がり片持ちせん断構造体となし、少なくとも一対の折り曲がり片持ちせん断構造体を、固定端側階層部が外方に且つ自由端側階層部が内方に位置するように配設すると共に、自由端側階層部同士を一体となしたことを特徴とする。 The earthquake-resistant structure of the present invention according to claim 1 supports the upper structure on the lower structure, and the upper structure is a structure that mainly resists vertical and horizontal loads mainly in a frame structure. The upper structure is composed of a fixed end side layer portion composed of a plurality of layers in which the lowermost floor on the fixed end side is fixed to the lower structure, and a bent portion forming layer forming the uppermost floor of the fixed end side layer portion. And the bent portion forming layer forms the uppermost floor, and the lowermost floor, which is the free end side, is supported by the lower structure so that it can be moved horizontally using a horizontally movable support device. An integral folded cantilever shear structure that is bent upwardly from the layer portion, and at least a pair of bent cantilever shear structures is formed with the fixed end layer portion outward and the free end layer With the part positioned inward and the free end Characterized in that none To integrally hierarchical portions.

ここで、折曲部形成階層は、少なくとも、固定端側階層部の上層階が具備する梁部と自由端側階層部の上層階が具備する梁部とを共通に構成している。  Here, the bending part formation hierarchy comprises at least the beam part provided in the upper floor of the fixed end side hierarchical part and the beam part provided in the upper floor of the free end side hierarchical part in common.

請求項2に係る本発明の耐震性構造物は、請求項1に係る耐震性構造物であって、折り曲がり片持ちせん断構造体を放射状に配設すると共に、周方向に隣接する固定端側階層部同士を一体に連設して、自由端側階層部を囲繞する筒状となして構成したことを特徴とするThe seismic structure of the present invention according to claim 2 is the seismic structure according to claim 1, wherein the bent cantilever shear structures are arranged radially, and the fixed end side adjacent in the circumferential direction is provided. The present invention is characterized in that the layer portions are integrally connected to form a cylindrical shape surrounding the free end side layer portion .

請求項に係る本発明の耐震性構造物は、請求項1又は2記載の耐震性構造物であって、自由端側階層部の最下層階と下部構造との間に減衰装置を介設したことを特徴とする。 The earthquake-resistant structure of the present invention according to claim 3 is the earthquake-resistant structure according to claim 1 or 2 , wherein an attenuation device is interposed between the lowermost floor and the lower structure of the free end side layer. It is characterized by that.

請求項に係る本発明の耐震性構造物は、請求項1〜のいずれか1項記載の耐震性構造物であって、固定端側階層部と自由端側階層部との対向する階層の内、少なくとも一組の対向する階層同士間又は対向する片持ち梁部(もしく片持ち床部)同士間に減衰装置を介設して、同減衰装置により固定端側階層部と自由端側階層部を水平方向に連結したことを特徴とする。 The earthquake-resistant structure of the present invention according to claim 4 is the earthquake-resistant structure according to any one of claims 1 to 3 , wherein the fixed end side layer portion and the free end side layer portion are opposed to each other. Among them, an attenuation device is interposed between at least one pair of opposing layers or between opposing cantilever portions (or cantilever floor portions), and the fixed end side layer portion and the free end are provided by the attenuation device. The side layer portions are connected in the horizontal direction.

請求項に係る本発明の耐震性構造物は、請求項1〜のいずれか1項記載の耐震性構造物であって、固定端側階層部と自由端側階層部との対向する階層の内、少なくとも一組の対向する階層同士の梁部(もしくは床部)から片持ち梁部(もしくは片持ち床部)を延伸させ、対向する片持ち梁部(もしくは片持ち床部)同士間に床用伸縮装置を介設して、同床用伸縮装置により固定端側階層部と自由端側階層部との水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞したことを特徴とする。 The earthquake-resistant structure of the present invention according to claim 5 is the earthquake-resistant structure according to any one of claims 1 to 4 , wherein the fixed end layer portion and the free end layer portion are opposed to each other. Of these, at least one pair of opposing cantilever portions (or cantilever floor portions) is extended by extending cantilever portions (or cantilever floor portions) from the beam portions (or floor portions) of the opposite levels. The floor expansion / contraction device is interposed between the fixed end side layer portion and the free end side layer portion so as to be horizontally expandable / contractible. To do.

請求項に係る本発明の耐震性構造物は、請求項1〜のいずれか1項記載の耐震性構造物であって、固定端側階層部と自由端側階層部との対向する側面外壁部または側面外壁を取り付ける下地骨組部を水平方向に延伸させ、対向する側面外壁部同士間、対向する下地骨組部同士間、又は、対向する側面外壁部と下地骨組部の間に外壁用伸縮装置を介設して、同外壁用伸縮装置により固定端側階層部と自由端側階層部の水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞したことを特徴とする。 The earthquake-resistant structure of the present invention according to claim 6 is the earthquake-resistant structure according to any one of claims 1 to 5 , wherein the side surfaces of the fixed end side layer portion and the free end side layer portion facing each other. Stretch the base frame that attaches the outer wall or the side outer wall in the horizontal direction, and expand and contract the outer wall between the facing side outer wall parts, between the facing base frame parts, or between the facing side outer wall part and the base frame part. The apparatus is characterized in that a gap for absorbing horizontal relative displacement between the fixed end side layer portion and the free end side layer portion is closed in a horizontal direction so as to be expandable and contractable by the outer wall expansion / contraction device.

なお、本発明は、従来のせん断構造体の支持形式とせん断構造体を構成する骨組の配置を見直すことにより、せん断構造体の水平方向の固有周期の長周期化を実現し、且つ減衰装置による減衰増加に有利となる形状を持った固有振動モードの発現を実現するものである。  The present invention realizes a longer natural period in the horizontal direction of the shear structure by reviewing the conventional support structure of the shear structure and the arrangement of the frames constituting the shear structure, and is based on the damping device. This realizes the expression of the natural vibration mode having a shape that is advantageous for increasing damping.

(1)請求項1記載の本発明では、下部構造の上に上部構造を支持させると共に、同上部構造は、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する構造物であって、上部構造は、固定端側となる最下層階を下部構造に固定させた複数の階層からなる固定端側階層部と、同固定端側階層部の上層階を形成する折曲部形成階層と、同折曲部形成階層が上層階を形成すると共に自由端側となる最下層階を下部構造に水平可動支持装置を用いて水平移動自在に支持させた複数の階層からなる自由端側階層部とから、上方に突状に折り曲げた一体の折り曲がり片持ちせん断構造体となし、少なくとも一対の折り曲がり片持ちせん断構造体を、固定端側階層部が外方に且つ自由端側階層部が内方に位置するように配設すると共に、自由端側階層部同士を一体となしている(1) In the present invention described in claim 1, the upper structure is supported on the lower structure, and the upper structure is a structure that is mainly a frame structure and resists vertical and horizontal loads. The structure is composed of a plurality of layers in which the lowermost floor on the fixed end side is fixed to the lower structure, a fixed end side layered portion, a bent portion forming layer forming the uppermost floor of the fixed end side layered portion, and The bent portion forming layer forms the uppermost floor, and the lower end floor which is the free end side is supported by a lower structure in a freely movable manner using a horizontal movable support device. And an integral bent cantilever shear structure bent upwardly in a projecting manner , and at least a pair of bent cantilever shear structures are formed with the fixed end side layer portion outward and the free end side layer portion Arranged so as to be located inward and free end side layer Forms To integrally with each other.

このように構成して、上方へ突状に折り曲げた折り曲がり片持ちせん断構造体となした本発明に係る耐震性構造物は、従来のせん断構造体の上端すなわち自由端が地面を向くように構造体を高さ方向の略1/2点で折り曲げ、自由端を水平移動自在となした構造に相当する。そのため、下端を固定した従来のせん断構造体に比べると、本発明の折り曲がり片持ちせん断構造体の固有周期に関係する力学上の階数は、高さ方向の階数の約2倍となる。そして、せん断構造体の固有周期は階数に比例して増加するので、本発明の折り曲がり片持ちせん断構造体の固有周期は、従来のせん断構造体の固有周期の約2倍に長周期化する。 The seismic structure according to the present invention configured as described above and formed into a bent cantilevered shear structure that is bent upwardly in a projecting manner is such that the upper end of the conventional shear structure, that is, the free end faces the ground. This corresponds to a structure in which the structure is bent at approximately a half point in the height direction and the free end can be moved horizontally. Therefore, as compared with a conventional shear structure with a fixed lower end, the mechanical rank related to the natural period of the bent cantilever shear structure of the present invention is about twice the rank in the height direction. Since the natural period of the shearing structure increases in proportion to the rank, the natural period of the bent cantilever shear structure of the present invention, you about twice the length period of the natural period of the conventional shearing structure .

また、本発明の折り曲がり片持ちせん断構造体は、固定端側階層部と自由端側階層部の対向する階層間の大きな水平相対変位を特徴とする固有振動モードを発現する。耐震設計上最も重要な1次固有振動モードにおいては、上記の水平相対変位は上層階から下層階へ向かうにしたがって徐々に大きくなり、最下層階で最大となる。1次固有振動モードとは固有周期が最も長い固有振動モードである。  In addition, the folded cantilever shear structure of the present invention exhibits a natural vibration mode characterized by a large horizontal relative displacement between the opposed layers of the fixed end side layer portion and the free end side layer portion. In the primary natural vibration mode that is most important for seismic design, the horizontal relative displacement is gradually increased from the upper floor to the lower floor, and is maximized at the lower floor. The primary natural vibration mode is a natural vibration mode having the longest natural period.

一般的に、構造体の減衰を効率良く増加させるためには、大きな相対変位が発生する部位にクーロン摩擦力や粘性力などを作用させると良い。自由端側階層部の最下層階は下部構造に水平移動自在に支持されているので、水平移動時には当該箇所の動摩擦係数と自由端側階層部の鉛直反力との積に比例するクーロン摩擦力が自由端側階層部の最下層階と下部構造との間に発生する。1次固有振動モードの水平相対変位が最も大きな部位に鉛直反力に起因するクーロン摩擦力が作用するので、本発明の折り曲がり片持ちせん断構造体は大きな摩擦減衰を潜在的に有する。従来のせん断構造体では、このような鉛直反力に起因するクーロン摩擦力は発生しない。  In general, in order to efficiently increase the damping of the structure, it is preferable to apply a Coulomb friction force, a viscous force, or the like to a site where a large relative displacement occurs. Since the lowermost floor of the free end side layer is supported by the lower structure so that it can move horizontally, the Coulomb friction force proportional to the product of the dynamic friction coefficient of that location and the vertical reaction force of the free end side layer during horizontal movement Occurs between the lowest floor of the free end side layer and the lower structure. Since the Coulomb friction force caused by the vertical reaction force acts on the portion where the horizontal relative displacement in the primary natural vibration mode is the largest, the folded cantilever shear structure of the present invention potentially has a large friction damping. In the conventional shear structure, the Coulomb friction force caused by such a vertical reaction force is not generated.

従って、請求項1記載の本発明では、従来のせん断構造体と比較して、長周期である固有振動モードを持つせん断構造体となすことができるため、固有周期の長周期化により構造体に作用する地震力を低減させることが可能であること、且つ自由端側階層部の最下層階に発生するクーロン摩擦力による大きな摩擦減衰を潜在的に有しているため、地震時の構造体の振動振幅を低減させることが可能であることから、高層ビルディング等のせん断変形が主となる構造体の耐震性能を向上させることができる。  Therefore, in the present invention described in claim 1, since it can be a shear structure having a natural vibration mode having a long period as compared with a conventional shear structure, the structure is obtained by increasing the natural period. It is possible to reduce the acting seismic force, and because it has a large friction damping due to the Coulomb friction force generated at the lowest floor of the free end side layer, Since it is possible to reduce the vibration amplitude, it is possible to improve the seismic performance of a structure that mainly undergoes shear deformation such as a high-rise building.

(2)請求項2記載の本発明では、折り曲がり片持ちせん断構造体を放射状に配設すると共に、周方向に隣接する固定端側階層部同士を一体に連設して、自由端側階層部を囲繞する筒状となして構成している(2) In the present invention described in claim 2, the bent cantilever shear structures are arranged radially, and the fixed end side layer portions adjacent to each other in the circumferential direction are integrally connected to each other to form a free end layer. It has a cylindrical shape surrounding the part .

このように構成した場合にも、長周期で高減衰の耐震性構造物となすことができる。Even in such a configuration, it is possible to provide an earthquake-resistant structure having a long period and a high attenuation.

)請求項記載の本発明では、自由端側階層部の最下層階と下部構造との間に減衰装置を介設している。 ( 3 ) In the present invention described in claim 3 , an attenuation device is interposed between the lowermost floor of the free end side layer and the lower structure.

自由端側階層部の最下層階と下部構造との間で発生するクーロン摩擦力によって消費される振動エネルギーは、最下層階と下部構造の水平相対振幅に比例して増減する。これに対して構造体の持つ振動エネルギーは当該箇所の水平相対振幅の二乗に比例して増減する。従って、当該箇所の水平相対振幅が大きくなるとつまりせん断構造体の振動振幅が大きくなると、クーロン摩擦力による摩擦減衰の効果は減少する。  The vibrational energy consumed by the Coulomb friction generated between the lowermost floor and the lower structure of the free end side layer portion increases and decreases in proportion to the horizontal relative amplitude of the lowermost floor and the lower structure. On the other hand, the vibration energy of the structure increases or decreases in proportion to the square of the horizontal relative amplitude of the relevant part. Accordingly, when the horizontal relative amplitude of the portion increases, that is, when the vibration amplitude of the shear structure increases, the effect of friction damping by the Coulomb friction force decreases.

振動振幅の増加に伴う摩擦減衰の効果の減少を補うための方法として、例えば、振幅の二乗に比例して振動エネルギーが消費される粘性減衰装置を装着することが考えられる。粘性減衰装置の能力を最大限に発揮するためには、相対速度が最も大きくなる部位に粘性減衰装置を装着する必要がある。相対速度が最大となる部位と相対変位が最大となる部位は一致する。  As a method for compensating for a decrease in the effect of frictional damping accompanying an increase in vibration amplitude, for example, it is conceivable to install a viscous damping device that consumes vibration energy in proportion to the square of the amplitude. In order to maximize the capability of the viscous damping device, it is necessary to attach the viscous damping device to a portion where the relative speed is maximized. The part where the relative velocity is maximum coincides with the part where the relative displacement is maximum.

本発明の折り曲がり片持ちせん断構造体においては、耐震設計上最も重要な1次固有振動モードの水平相対変位は、自由端側階層部の最下層階で最大となる。よって、自由端側階層部の最下層階と下部構造との間に減衰装置を介設することにより、せん断構造体の減衰性能を最も効率的に向上させることが可能である。  In the bent cantilever shear structure of the present invention, the horizontal relative displacement in the primary natural vibration mode, which is the most important for seismic design, is maximized on the lowest floor of the free end side layer. Therefore, it is possible to improve the damping performance of the shear structure most efficiently by interposing the damping device between the lowermost floor of the free end side layer and the lower structure.

)請求項記載の本発明では、固定端側階層部と自由端側階層部との対向する階層の内、少なくとも一組の対向する階層同士間又は対向する片持ち梁部(もしく片持ち床部)同士間に減衰装置を介設して、同減衰装置により固定端側階層部と自由端側階層部を水平方向に連結している。 ( 4 ) In the present invention described in claim 4 , at least one pair of opposing hierarchies or opposing cantilever portions (or maybe) among the opposing hierarchies of the fixed end side hierarchies and the free end side hierarchies. An attenuation device is interposed between the cantilever floor portions), and the fixed end side layer portion and the free end side layer portion are connected in the horizontal direction by the attenuation device.

ここで、本発明の折り曲がり片持ちせん断構造体は、固定端側階層部と自由端側階層部の対向する階層間の大きな水平相対変位を特徴とする固有振動モードを発現する。この水平相対変位は、1次固有振動モードでは上層階から下層階に向かって徐々に大きくなり自由端側階層部の最下層階で最大となるが、2次以降の固有振動モードにおいては上層階と下層階の中間である中層階あるいは上層階付近又は下層階付近で最大となる。  Here, the bent cantilever shear structure of the present invention exhibits a natural vibration mode characterized by a large horizontal relative displacement between the opposing layers of the fixed end side layer portion and the free end side layer portion. This horizontal relative displacement gradually increases from the upper floor to the lower floor in the primary natural vibration mode and becomes the maximum in the lowermost floor of the free end side layer, but in the secondary and subsequent natural vibration modes, the upper floor Between the lower floor and the middle floor, near the upper floor, or near the lower floor.

一方、階層が多数となる超高層ビルディングにおいては、階層の増加に比例して固有周期が長くなるので、1次固有振動モードに加えて2次以降の固有振動モードの振動を制御することが耐震設計上重要となる場合がある。  On the other hand, in a high-rise building with a large number of floors, the natural period becomes longer in proportion to the increase in floors, so controlling vibrations in the second and subsequent natural vibration modes in addition to the primary natural vibration mode is earthquake resistant. May be important in design.

1次固有振動モードに加えて2次以降の固有振動モードを対象として最も効率良く減衰を増加させるためには、減衰増加の対象とする次数の固有振動モードにおいて、固定端側階層部と自由端側階層部の対向する階層間の水平相対変位が最大となる階層同士間を減衰装置により水平方向に連結すれば良い。  In order to increase the damping most efficiently for the secondary and subsequent natural vibration modes in addition to the primary natural vibration mode, in the natural vibration mode of the order of the attenuation increase target, the fixed end side layer portion and the free end What is necessary is just to connect between the hierarchy where horizontal relative displacement between the hierarchies which a side hierarchy part opposes becomes the horizontal direction with an attenuation device.

よって、本発明の減衰装置の介設方法は、減衰装置の性能を最大限に発揮できて、1次に加えて2次以降の固有振動モードを対象として効率的にせん断構造体の減衰性能を向上させることが可能である。  Accordingly, the damping device interposing method of the present invention can maximize the performance of the damping device, and effectively reduces the damping performance of the shear structure for the natural vibration modes of the second and subsequent orders in addition to the primary. It is possible to improve.

なお、請求項6と7に記載する減衰装置は、流体の粘性抵抗を利用する粘性減衰装置、流体の乱流による圧力降下を利用するオイルダンパー、金属の塑性変形を利用した履歴型ダンパー、クーロン摩擦を利用する摩擦型減衰装置などの振動エネルギーを消費することのできる装置である。さらに、磁性流体を利用した減衰係数をリアルタイムで制御できる可変型オイルダンパーなどを使用して、振動振幅の大きさに応じて可変型オイルダンパーの減衰係数を変化させることによりせん断構造体の減衰性能をリアルタイムで制御する方法を取り入れることも可能である。  It is to be noted that the damping device according to claims 6 and 7 includes a viscous damping device that utilizes the viscous resistance of fluid, an oil damper that utilizes pressure drop due to fluid turbulence, a hysteretic damper that utilizes plastic deformation of metal, and coulomb. It is a device that can consume vibration energy, such as a frictional damping device that uses friction. In addition, using a variable oil damper that can control the damping coefficient using magnetic fluid in real time, the damping performance of the shear structure is changed by changing the damping coefficient of the variable oil damper according to the magnitude of the vibration amplitude. It is also possible to incorporate a method for controlling in real time.

)請求項に記載の発明では、固定端側階層部と自由端側階層部との対向する階層の内、少なくとも一組の対向する階層同士の梁部(もしくは床部)からそれぞれ片持ち梁部(もしくは片持ち床部)を延伸させ、対向する片持ち梁部(もしくは片持ち床部)同士間に床用伸縮装置を介設して、同床用伸縮装置により固定端側階層部と自由端側階層部との水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞している。 ( 5 ) According to the invention described in claim 5 , at least one set of the beam portions (or floor portions) facing each other from the facing layers of the fixed-end-side layer portion and the free-end-side layer portion is separated from each other. Extending the cantilever part (or cantilevered floor part), interposing a floor expansion / contraction device between the opposing cantilever parts (or cantilevered floor part), and using the same floor expansion / contraction device, the fixed end side layer The gap for absorbing the horizontal relative displacement between the portion and the free end side layer portion is closed so as to be extendable in the horizontal direction.

本発明の対象とする高層ビルディングを建設する目的は、安全且つ快適且つ安価な居住空間および収納空間を提供することである。よって、限られた空間の中で居住空間および収納空間を最大限に確保することは、安価な空間を提供する上で重要である。  The purpose of constructing a high-rise building that is the subject of the present invention is to provide a safe, comfortable and inexpensive living space and storage space. Therefore, securing the living space and the storage space to the maximum in the limited space is important in providing an inexpensive space.

本発明のせん断構造体においては、固定端側階層部と自由端側階層部との対向する空間に、居住空間および収納空間に利用するための床部を設置することとした。この床部を設置するために、固定端側階層部と自由端側階層部の梁部から片持ち梁部を延伸すると共に同片持ち梁部を利用して片持ち床部を構成することとした。ただし、互いに相対する固定端側階層部と自由端側階層部には水平相対変位が発生するので、相対する片持ち梁部および片持ち床部には同水平相対変位を吸収する隙間を設けるものとした。さらに、片持ち床部の同隙間は安全管理上適当でないので、同間隙を容易に変形する床用伸縮装置で塞ぐことにより、片持ち床部を居住空間および収納空間として利用できるようにした。  In the shear structure of the present invention, a floor for use in a living space and a storage space is installed in the space between the fixed end side layer portion and the free end side layer portion. In order to install this floor portion, the cantilever portion is extended from the beam portion of the fixed end side layer portion and the free end side layer portion, and the cantilever floor portion is configured using the cantilever portion. did. However, since a horizontal relative displacement occurs in the fixed end side layer portion and the free end side layer portion facing each other, a gap for absorbing the horizontal relative displacement is provided in the opposite cantilever portion and the cantilever floor portion. It was. Further, since the same gap in the cantilever floor is not suitable for safety management, the cantilever floor can be used as a living space and a storage space by closing the gap with a floor expansion device that easily deforms the gap.

また、互いに相対する固定端側階層部と自由端側階層部の水平相対変位により生じる床用伸縮装置の復元力は、せん断構造体の固有周期に影響を及ぼさない程度の小さなものとする。  In addition, the restoring force of the floor expansion and contraction device generated by the horizontal relative displacement of the fixed end side layer portion and the free end side layer portion facing each other is assumed to be small enough not to affect the natural period of the shear structure.

なお、片持ち床部は、片持ち床部の中間や端部を必要に応じて床梁などにより補強を行うこととする。また、床用伸縮装置で発生する摩擦力などが経年的に一定で且つ定量的である場合は、同摩擦力をせん断構造体の摩擦減衰として考慮しても良い。  It should be noted that the cantilever floor is reinforced with a floor beam or the like at the middle or end of the cantilever floor as required. Moreover, when the frictional force etc. which generate | occur | produce with the expansion-contraction apparatus for floors are constant and quantitative over time, you may consider the frictional force as a frictional damping of a shearing structure.

)請求項に記載の発明では、固定端側階層部と自由端側階層部との対向する側面外壁部または側面外壁を取り付ける下地骨組部を水平方向に延伸させ、対向する側面外壁部同士間、対向する下地骨組部同士間、又は、対向する側面外壁部と下地骨組部の間に外壁用伸縮装置を介設して、同外壁用伸縮装置により固定端側階層部と自由端側階層部の水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞している。 ( 6 ) In the invention described in claim 6 , the opposing side surface outer wall portion of the fixed end side layer portion and the free end side layer portion or the base frame portion to which the side surface outer wall is attached is extended in the horizontal direction to oppose the side surface outer wall portion. Between the opposing frame parts between each other, or between the opposing lateral outer wall part and the underlying frame part, an expansion device for the outer wall is interposed, and the fixed end side layer part and the free end side by the expansion device for the outer wall The gap that absorbs the horizontal relative displacement of the layer portion is closed in such a manner that it can expand and contract in the horizontal direction.

本発明の対象とする高層ビルディングを建設する目的は、安全且つ快適且つ安価な居住空間および収納空間を提供することである。よって、安全且つ快適な空間を提供することは重要である。  The purpose of constructing a high-rise building that is the subject of the present invention is to provide a safe, comfortable and inexpensive living space and storage space. Therefore, it is important to provide a safe and comfortable space.

本発明のせん断構造体では、固定端側階層部と自由端側階層部に水平相対変位が発生するので、互いに相対する固定端側階層部と自由端側階層部の境界では、互いの階層部に設置した側面外壁の端部同士間に同水平相対変位を吸収する隙間を設けるものとした。この隙間は、風雨の侵入などの原因となるので快適な空間を提供する目的に適当でないので、同隙間を容易に変形する外壁用伸縮装置で塞ぐこととした。  In the shear structure of the present invention, since horizontal relative displacement occurs in the fixed end side layer portion and the free end side layer portion, at the boundary between the fixed end side layer portion and the free end side layer portion facing each other, each layer portion A gap for absorbing the same horizontal relative displacement is provided between the end portions of the side outer wall installed on the side. Since this gap is not suitable for the purpose of providing a comfortable space because it causes intrusion of wind and rain, it was decided to close the gap with an expansion device for an outer wall that easily deforms.

同隙間の寸法を最小限にすると共に外壁用伸縮装置を取り付けるために、固定端側階層部と自由端側階層部の側面外壁部または側面外壁を取り付ける下地骨組を水平方向に延伸し、側面外壁の端部同士間の隙間を容易に変形する外壁用伸縮装置で塞ぐこととした。ここで、下地骨組とは、外壁などを取り付けるために設置される一般的に間柱や胴縁と呼称されるようなものである。  In order to minimize the size of the gap and to attach the expansion device for the outer wall, the base frame that attaches the side outer wall or the side outer wall of the fixed end layer and the free end layer is stretched in the horizontal direction, and the side outer wall It was decided to close the gap between the ends of the outer wall with an expansion device for an outer wall that easily deforms. Here, the foundation frame is generally called a stud or a trunk edge that is installed to attach an outer wall or the like.

また、互いに相対する固定端側階層部と自由端側階層部の水平相対変位により生じる外壁用伸縮装置の復元力は、せん断構造体の固有周期に影響を及ぼさない程度の小さなものとする。同水平相対変位により発生する外壁用伸縮装置の塑性変形などに起因する振動エネルギー消費が、経年的に一定且つ定量的であるときは、同振動エネルギー消費をせん断構造体の減衰として考慮しても良い。  In addition, the restoring force of the outer wall expansion / contraction device generated by the horizontal relative displacement of the fixed end side layer portion and the free end side layer portion facing each other is assumed to be small enough not to affect the natural period of the shear structure. When vibration energy consumption caused by plastic deformation of the external wall expansion and contraction device generated by the horizontal relative displacement is constant and quantitative over time, the vibration energy consumption can be considered as attenuation of the shear structure. good.

本実施形態では、先ず、本発明に係るせん断構造体の骨組と下部構造としての基礎による支持形式の特徴を述べ、同せん断構造体の運動方程式と非減衰系の固有値問題を定式化し、固有振動モードの固有周期と形状および減衰定数を理論的に解明する。次に振動理論により得られた固有振動モードの形状に着目した粘性減衰装置の効率的な配置について述べ、粘性減衰装置の設置による減衰定数の増加を理論的に明らかにする。振動理論により得られた固有振動モードの固有周期と形状および減衰定数は縮小模型を用いた振動実験により具体的に検証する。最後に、振動理論と振動実験によって明らかになった本発明に係るせん断構造体の特徴をまとめる。  In this embodiment, first, the characteristics of the support structure based on the framework and the substructure of the shear structure according to the present invention are described, the equation of motion of the shear structure and the eigenvalue problem of the non-damped system are formulated, and the natural vibration Elucidate the natural period and shape of the mode and the damping constant theoretically. Next, the efficient arrangement of the viscous damping device focusing on the shape of the natural vibration mode obtained by the vibration theory is described, and the increase in the damping constant due to the installation of the viscous damping device is clarified theoretically. The natural period, shape and damping constant of the natural vibration mode obtained by the vibration theory are specifically verified by vibration experiments using a reduced model. Finally, the characteristics of the shear structure according to the present invention, which are clarified by vibration theory and vibration experiment, are summarized.

[本発明に係る折り曲がりせん断構造体の振動理論]  [Vibration theory of a bending shear structure according to the present invention]

(1)従来の片持ちせん断構造体
図1に高層ビルディングの平面振動モデルの一つである下端が基部に固定されたせん断構造体を示す。この振動モデルはn個の梁とそれらに剛結された等断面の2本の柱とn個のダッシュポットで構成され,各層の動力学特性が全て等しいn層のせん断振動体をする。この振動モデルをSystem−CSと呼ぶ。
(1) Conventional Cantilever Shear Structure FIG. 1 shows a shear structure in which the lower end, which is one of the plane vibration models of a high-rise building, is fixed to the base. This vibration model is composed of n beams, two pillars of equal cross section rigidly connected to them, and n dashpots, and forms an n-layer shear vibrator with the same dynamic characteristics of each layer. This vibration model is referred to as System-CS.

各層の高さはhとし,構造体の高さはhtotal=nhとする。よって、層数を表すnは構造体の幾何学的高さを表すパラメーターを兼ねる。柱は弾性体とし、梁は剛体とする。柱と梁の質量は各層の梁に集中させる。図1中の記号kとmおよびcは各層のせん断バネ定数と質量およびダッシュポットの粘性減衰係数とする。ダッシュポットは構造体の構造減衰または従来の上下の梁を連結する(以後、鉛直面配置と略す。)粘性減衰装置による減衰を表すものとする。基部が水平変位z(t)を生じたときの梁の水平変位を図1のごとくx,x,…,xと定義する。ここに、tは時間を表す。なお、図1は変形時のイメージであり、変形前の柱は真っ直ぐである。The height of each layer is h, and the height of the structure is h total = nh. Therefore, n representing the number of layers also serves as a parameter representing the geometric height of the structure. Columns are elastic and beams are rigid. The mass of the columns and beams is concentrated on the beams in each layer. The symbols k, m, and c in FIG. 1 are the shear spring constant and mass of each layer and the viscous damping coefficient of the dashpot. The dashpot represents the structural attenuation of the structure or the attenuation by the viscous damping device that connects the conventional upper and lower beams (hereinafter abbreviated as a vertical plane arrangement). The horizontal displacement of the beam when the base portion causes the horizontal displacement z (t) is defined as x 1 , x 2 ,..., X n as shown in FIG. Here, t represents time. FIG. 1 is an image at the time of deformation, and the column before the deformation is straight.

図2に片持ちせん断構造体としてのSystem−CSの各層の動力学特性を定義する振動モデルを示す。図のごとく梁に水平力pが作用したときの梁の水平変位をxとするとき、せん断バネ定数kについてはp=kxの関係があるものとする。質量を梁に集中させると、この振動系はせん断バネ定数kと粘性減衰係数cおよび質量mからなる1自由度振動モデルとなる。よって、この振動モデルの非減衰系の固有円振動数ωと固有周期Tおよび粘性減衰定数ζはそれぞれ次式で表される。

Figure 0005339406
Figure 0005339406
本実施形態では、T、ωおよびζをそれぞれ層固有周期、層固有円振動数、および層粘性減衰定数と呼ぶ。FIG. 2 shows a vibration model that defines the dynamic characteristics of each layer of System-CS as a cantilever shear structure. When the horizontal displacement of the beam when the horizontal force p h acts on the beam as in FIG. And x, for the shear spring constant k is assumed that there is relationship between p h = kx. When the mass is concentrated on the beam, the vibration system becomes a one-degree-of-freedom vibration model including a shear spring constant k, a viscous damping coefficient c, and a mass m. Therefore, the natural circular frequency ω 0 , natural period T 0, and viscous damping constant ζ 0 of the non-damped system of this vibration model are expressed by the following equations, respectively.
Figure 0005339406
Figure 0005339406
In the present embodiment, T 0 , ω 0 and ζ 0 are referred to as a layer natural period, a layer natural circular frequency, and a layer viscous damping constant, respectively.

System−CSにおいて基部が水平変位z(t)を生じる時の運動方程式は次式で示される。

Figure 0005339406
The equation of motion when the base produces a horizontal displacement z (t) in System-CS is expressed by the following equation.
Figure 0005339406

Figure 0005339406
ルとする。
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Let's say.
Figure 0005339406
Figure 0005339406
Figure 0005339406

ベクトルの上付・括弧付添え字(n)はベクトルまたは正方行列のサイズがnであることを示す。上付き添え字Tは行列の転置を示す。  A vector superscript / bracketed subscript (n) indicates that the size of the vector or square matrix is n. The superscript T indicates the transpose of the matrix.

数2のK(n)とC(n)およびM(n)はそれぞれ次式で示す剛性行列と減衰行列および質量行列とする。

Figure 0005339406
Figure 0005339406
Figure 0005339406
In Equation 2, K (n) , C (n), and M (n) are a stiffness matrix, an attenuation matrix, and a mass matrix, respectively, represented by the following equations.
Figure 0005339406
Figure 0005339406
Figure 0005339406

ここに、I(n)は単位行列、A(n)は次式の三重対角行列とする。

Figure 0005339406
Here, I (n) is a unit matrix, and A (n) is a tridiagonal matrix of the following equation.
Figure 0005339406

System−CSの非減衰系の固有値問題は次式となる。

Figure 0005339406
The eigenvalue problem of the non-attenuating system of System-CS is as follows.
Figure 0005339406

ここに、ωとψ(n)は固有円振動数とそれに対応する固有ベクトルである。数(4a)と数(4c)を用いると数(6)は次式の標準固有値問題に変形される。

Figure 0005339406
Here, ω and ψ (n) are the natural circular frequencies and the corresponding eigenvectors. Using the number (4a) and the number (4c), the number (6) is transformed into the standard eigenvalue problem of the following equation.
Figure 0005339406

ここにλは固有値である。固有円振動数ωと層固有円振動数ωの比、固有周期Tと層固有周期Tの比、および固有値λには次式の関係がある。

Figure 0005339406
Here, λ is an eigenvalue. The ratio between the natural circular frequency ω i and the layer natural circular frequency ω 0 , the ratio between the natural period T i and the layer natural period T 0 , and the natural value λ i have the following relationship.
Figure 0005339406

Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406

Figure 0005339406
する。
Figure 0005339406
Figure 0005339406
Figure 0005339406
To do.
Figure 0005339406
Figure 0005339406

数8と数9より、固有周期Tと層固有周期Tの比は次式で表される。

Figure 0005339406
From Equations 8 and 9, the ratio between the natural period T i and the layer natural period T 0 is expressed by the following equation.
Figure 0005339406

数12より片持ちせん断構造体、System−CSの固有周期は層固有周期Tと層数nによって決まり、層固有周期を一定として層数を増加させると固有周期は増加することが分かる。Number 12 from cantilever shear structure, the natural period of the System-CS is determined by the layer specific period T 0 and the number of layers n, increasing the number of layers the layer specific period as a predetermined specific period can be seen to increase.

Figure 0005339406
交条件より、ζとζの比は次式で表される。
Figure 0005339406
Figure 0005339406
From the intersection condition, the ratio between ζ i and ζ 0 is expressed by the following equation.
Figure 0005339406

数13より、System−CSの粘性減衰定数は層粘性減衰定数ζと層数nによって決まり、層粘性減衰定数を一定として層数を増加させると粘性減衰定数は減少することが分かる。From Equation 13, it can be seen that the viscous damping constant of System-CS is determined by the layer viscous damping constant ζ 0 and the number n of layers, and the viscosity damping constant decreases when the number of layers is increased with the layer viscous damping constant being constant.

(2)折り曲がり片持ちせん断構造体
a)固有周期と固有振動モード
ここではせん断構造体の高さhtotalを変えることなく、数12に基づいて固有周期に関係するところの層数nを2倍にすることにより、構造体の1次固有周期を約2倍にすることを考える。図3に示す振動モデルは、下端を基部に固定したせん断構造体Fと、下端を基部上のローラーで鉛直方向に支持したせん断構造体Rを、互いに上端で結合した折り曲がり片持ちせん断構造体である。せん断構造体Rは、せん断構造体Fの下端を基部から切り離し、その下端にローラーで鉛直方向に支持され且つ水平方向に移動が可能な梁を追加したものである。なお、図3は変形時のイメージであり、変形前の柱は真っ直ぐである。
(2) Bending cantilevered shear structure a) Natural period and natural vibration mode Here, the number of layers n related to the natural period is set to 2 based on Equation 12 without changing the height h total of the shear structure. Consider doubling the primary natural period of the structure by doubling. The vibration model shown in FIG. 3 is a bent cantilever shear structure in which a shear structure F having a lower end fixed to a base and a shear structure R having a lower end supported by a roller on the base in a vertical direction are coupled to each other at the upper end. It is. The shear structure R is obtained by cutting the lower end of the shear structure F from the base, and adding a beam supported by a roller in the vertical direction and movable in the horizontal direction at the lower end. Note that FIG. 3 is an image at the time of deformation, and the column before the deformation is straight.

せん断構造体Fの梁の番号を下端から上端に向かって1,2,…,nとし、せん断構造体Rの梁の番号を上端から下端に向かってn,n+1,…,2nとする。梁nはせん断構造体FとRに共通な梁であり、梁2nはローラーで鉛直方向に支持された梁である。柱と梁の質量は各層の梁に集中させ、梁1から梁(n−1)および梁(n+1)から梁(2n−1)の質量をmとする。梁nと梁2nの質量はそれぞれ、(1+α)mと(1+β)mとする。αとβはそれぞれせん断構造体FとRの上端の梁nを結合するための質量の増加およびローラー上の梁2nを可動とするための質量の増加を表す質量係数とする。各層のダッシュポットの粘性減衰係数とせん断バネ定数は全て等しく、それぞれcとkする。梁iの水平変位を図3に示すようにxとする。The number of the beam of the shear structure F is 1, 2,..., N from the lower end to the upper end, and the number of the beam of the shear structure R is n, n + 1,. The beam n is a beam common to the shear structures F and R, and the beam 2n is a beam supported in the vertical direction by a roller. Mass of columns and beams can be concentrated into a beam in each layer, the mass of the beam (2n-1) from the beam 1 from the beam (n-1) and beams (n + 1) and m A. Each mass beam n and beam 2n, and (1 + α) m A and (1 + β) m A. α and β are mass coefficients representing an increase in mass for connecting the beams n at the upper ends of the shear structures F and R and an increase in mass for moving the beam 2n on the roller, respectively. The viscous damping coefficient and the shear spring constant of the dash pots in each layer are all equal, and are c A and k A , respectively. And x i the horizontal displacement of the beam i, as shown in FIG.

図3の振動モデルをSystem−FRと呼ぶ。System−FRの単層の動力学特性はSystem−CSと相似であり、数1aと数1bが成り立つものとして、mとkおよびcには次数の関係があるものとする。

Figure 0005339406
ここに、σは比例定数とする。The vibration model in FIG. 3 is referred to as System-FR. The dynamic characteristics of a single layer of System-FR are similar to those of System-CS, and it is assumed that equations 1a and 1b hold, and m A and k A and c A have an order relationship.
Figure 0005339406
Here, σ is a proportionality constant.

System−FRにおいて基部が水平変位z(t)を生じるときの運動方程式は次式で示される。

Figure 0005339406
The equation of motion when the base produces a horizontal displacement z (t) in System-FR is shown by the following equation.
Figure 0005339406

ここに、fは梁2nの水平移動に対するローラーの転がり抵抗力をモデル化したクーロン

Figure 0005339406
質量行列とする。
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
ここで、数16dの行列B(2n)はn番目と2n番目の対角要素の値がそれぞれαとβであり、他の要素の値が全てゼロである2n次の行列とする。Where f is a Coulomb that models the rolling resistance of the roller against the horizontal movement of the beam 2n.
Figure 0005339406
Let it be a mass matrix.
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Here, the matrix B (2n) of Expression 16d is a 2n-order matrix in which the values of the n-th and 2n-th diagonal elements are α and β, respectively, and the values of the other elements are all zero.

System−FRにおいてクーロン摩擦力と粘性減衰力を無視した非減衰系の固有値問題は次式となる。

Figure 0005339406
In the System-FR, the eigenvalue problem of the non-damped system ignoring the Coulomb friction force and the viscous damping force is as follows.
Figure 0005339406

Figure 0005339406
である。数16aと数16cを用いると数17は次式に変形される。
Figure 0005339406
Figure 0005339406
It is. Using Equations 16a and 16c, Equation 17 is transformed into the following equation.
Figure 0005339406

Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406

また、固有円振動数ωFR,iと層固有円振動数ωの比、固有周期TFR,iと層固有周期Tの比、および固有値λFR,iには次式の関係がある。

Figure 0005339406
Further, the ratio between the natural circular frequency ω FR, i and the layer natural circular frequency ω 0 , the ratio between the natural period T FR, i and the layer natural period T 0 , and the natural value λ FR, i have the following relationship. .
Figure 0005339406

なお、数14で示した構造体の質量とせん断バネ定数および粘性減衰定数の大きさを表す比例定数σは数21で表す固有周期と層固有周期の比に影響を及ぼさない。
α=β=0の条件では、数18の固有値と固有ベクトルはそれぞれ数9と数10bにおいてnを2nに置き換えたものに等しいので、System−FRの固有周期はSystem−CSの固有周期の約2倍となることが分かる。
Note that the proportionality constant σ representing the mass of the structure, the shear spring constant, and the viscosity damping constant shown in Expression 14 does not affect the ratio between the natural period and the layer natural period expressed in Expression 21.
Under the condition of α = β = 0, the eigenvalues and eigenvectors of Equation 18 are equal to those obtained by replacing n with 2n in Equations 9 and 10b, respectively. Therefore, the natural period of System-FR is about 2 of the natural period of System-CS. It turns out that it becomes double.

図4はSystem−CSとSystem−FRにおける1次から3次までの固有周期と層数nの関係を数8と数21で調べたものである。ここでの層数nは構造体の幾何学的な高さhtotalも表している。System−FRはα=β=0とα=2,β=1の二つの条件で計算した固有周期の比を示している。前者の条件の固有周期は数8と数9を用いて計算し、後者の条件では固有値λFRを数値計算により数18から求めて数21で整理したものである。固有値問題の数値解法にはハウスホルダー法とQR法を併用した解法を用いた。図4より層固有周期Tが一定であれば、System−FRの固有周期はSystem−CSの固有周期の約2倍となり、層数nに比例して増加することが分かる。System−FRにおけるα=2,β=1の条件では固有周期はα=β=0に比べて若干大きくなることが分かる。FIG. 4 shows the relationship between the natural period from the first order to the third order and the number of layers n in the System-CS and the System-FR, as shown in Expressions 8 and 21. The number n of layers here also represents the geometric height h total of the structure. System-FR indicates a ratio of natural periods calculated under two conditions of α = β = 0 and α = 2, β = 1. The natural period of the former condition is calculated using Equations 8 and 9. Under the latter condition, the eigenvalue λ FR is obtained from Equation 18 by numerical calculation and organized by Equation 21. The numerical method for the eigenvalue problem was a solution that combined the Householder method and the QR method. From FIG. 4, it can be seen that if the layer natural period T 0 is constant, the natural period of System-FR is about twice the natural period of System-CS and increases in proportion to the number of layers n. It can be seen that the natural period is slightly larger than α = β = 0 under the conditions of α = 2 and β = 1 in System-FR.

図5はα=β=0とn=10の条件のSystem−FRの1次から4次までの非減衰系の固有ベク

Figure 0005339406
ため、固定側のせん断構造体Fの梁を●印で、ローラー側のせん断構造体Rの梁を○印で表示する。1次モードは梁2nと梁nが同方向に変位する逆V字形、2次モードは梁2nと梁nが反対方向に変位する細長い0字形、3次モードはl字形、4次モードは「く」の字に曲がった8字形の振動モードとなることが分かる。FIG. 5 shows the eigenvectors of the non-damped system from the first order to the fourth order of the System-FR under the conditions of α = β = 0 and n = 10.
Figure 0005339406
Therefore, the beam of the shear structure F on the fixed side is indicated by ● and the beam of the shear structure R on the roller side is indicated by ○. The primary mode is an inverted V shape in which the beam 2n and the beam n are displaced in the same direction, the secondary mode is an elongated 0 character in which the beam 2n and the beam n are displaced in the opposite direction, the third mode is an l shape, and the fourth mode is “ It turns out that it becomes the vibration mode of the 8-character shape bent to the character of "ku".

b)粘性減衰定数

Figure 0005339406
る粘性減衰定数ζFR−c,iとクーロン摩擦力fによる減衰を評価する等価粘性減衰定数ζFR−f,iに分けて考える。数20aと数20bの固有ベクトルの直交条件より、ζFR−c,iと層粘性層粘性減衰定数ζの比は数22で表される。
Figure 0005339406
なお、数14で示した構造体の質量とせん断バネ定数および減衰定数の大きさを表す比例定数σは数22の関係に影響を及ぼさない。b) Viscosity damping constant
Figure 0005339406
The viscous damping constant ζ FR-c, i and the equivalent viscous damping constant ζ FR-f, i for evaluating the damping due to the Coulomb friction force f are considered. From the orthogonal condition of the eigenvectors of Equations 20a and 20b, the ratio between ζ FR-c, i and the layer viscous layer viscous damping constant ζ 0 is expressed by Equation 22.
Figure 0005339406
Note that the proportionality constant σ representing the magnitude of the structure, the shear spring constant, and the damping constant shown in Equation 14 does not affect the relationship in Equation 22.

図6はSystem−CSとSystem−FRの1次から3次までの粘性減衰定数と層数の関係を数22で調べたものである。System−FRの条件は図4の条件と同じである。層粘性減衰定数ζが一定であれば、System−FRの減衰定数はSystem−CSの減衰定数の約1/2となり、層数の増加に反比例して減少することが分かる。

Figure 0005339406
ベて若干小さくなるものの、>10においては大きな違いは見られない。FIG. 6 shows the relationship between the first-order to third-order viscous damping constants of the System-CS and System-FR and the number n of layers, which is obtained by Equation 22. System-FR conditions are the same as those in FIG. It can be seen that if the layer viscous damping constant ζ 0 is constant, the damping constant of the System-FR is about ½ of the damping constant of the System-CS and decreases in inverse proportion to the increase in the number of layers n .
Figure 0005339406
Although it is slightly smaller, there is no significant difference when n > 10.

c)クーロン摩擦力と等価粘性減衰定数
クーロン摩擦力fが作用する振動系の1周期の間に消滅するエネルギーの量が等価粘性減衰係数を持つ減衰振動系の1周期の間に消滅するエネルギーの量に等しいと仮定し、固

Figure 0005339406
e,iは次式で表される。
Figure 0005339406
Figure 0005339406
であり、着目する梁jの振幅をaとすると、次式で近似できる。
Figure 0005339406
c) Coulomb friction force and equivalent viscous damping constant The amount of energy that disappears during one cycle of the vibration system in which the Coulomb friction force f acts disappears during one cycle of the damping vibration system with an equivalent viscous damping coefficient. Assuming
Figure 0005339406
c e, i is expressed by the following equation.
Figure 0005339406
Figure 0005339406
If the amplitude of the beam j of interest is a j , it can be approximated by the following equation.
Figure 0005339406

Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406

Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406

数(26a)に数(23)と数(24)を適用すると次式を得る。

Figure 0005339406
When the number (23) and the number (24) are applied to the number (26a), the following equation is obtained.
Figure 0005339406

ローラーに制動機能を持たせるとクーロン摩擦力fを任意の大きさに調整できるが、本実施形態では、fをローラーに作用する鉛直力に比例する力と考える。すなわちSystem−FRのローラーに作用する鉛直力をpν、ローラーの動摩擦係数をμとすると、fは次式で表される。

Figure 0005339406
If the roller has a braking function, the Coulomb friction force f can be adjusted to an arbitrary magnitude, but in the present embodiment, f is considered to be a force proportional to the vertical force acting on the roller. That is, if the vertical force acting on the roller of the System-FR is p ν and the dynamic friction coefficient of the roller is μ, f is expressed by the following equation.
Figure 0005339406

鉛直力pνは、梁nの質量の1/2および梁n+1から梁2nの質量の和に重力加速度gを掛けたものとし、次式で表す。

Figure 0005339406
Figure 0005339406
ここに、γはローラーに作用する鉛直力の大きさを表す係数である。ローラーの動摩擦係数が与えられれば、数26bによりクーロン摩擦力による減衰を等価粘性減衰定数として評価することが可能と考えられる。The vertical force p ν is obtained by multiplying the sum of the mass of the beam n by 1/2 and the mass of the beam n + 1 to the beam 2n by the gravitational acceleration g, and is expressed by the following equation.
Figure 0005339406
Figure 0005339406
Here, γ is a coefficient representing the magnitude of the vertical force acting on the roller. If the dynamic friction coefficient of the roller is given, it is considered that the attenuation due to the Coulomb friction force can be evaluated as an equivalent viscous damping constant according to Equation 26b.

Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406

(3)ダッシュポットの水平面配置による減衰増加対策
前節では自由端をローラーで鉛直方向に支持された折り曲がり片持ちせん断構造体の固有周期は通常の片持ちせん断構造体の固有周期の約2倍になるものの、粘性減衰定数は約1/2となることを示した。約1秒を超える領域での固有周期の長周期化は地震力の低減をもたらす一方で、水平方向の剛性低下による変位振幅の増加をもたらす。また、粘性減衰定数の減少は変位振幅の増加につながるので、変位振幅を減少させる対策が必要である。
(3) Countermeasure against increased attenuation by horizontal arrangement of dashpot In the previous section, the natural period of a bent cantilever shear structure whose free end is supported by a roller in the vertical direction is approximately twice the natural period of a normal cantilever shear structure. However, the viscosity damping constant was about ½. Increasing the natural period in a region exceeding about 1 second results in a decrease in seismic force, while an increase in displacement amplitude due to a decrease in rigidity in the horizontal direction. In addition, since a decrease in the viscous damping constant leads to an increase in the displacement amplitude, a measure for reducing the displacement amplitude is necessary.

一般に低次の固有振動モードは変位への寄与が大きいので、低次の固有振動モードに着目して、減衰装置としてのダッシュポットの設置による減衰増加を考える。ダッシュポットの性能を最大限に発揮させるためには、相対変位が大きい箇所にダッシュポットを設置する必要がある。図5のSystem−FRの1次・2次固有振動モードの形状より、高さが等しい箇所の構造体Fの梁と構造体Rの梁では大きな相対変位が生じるので、図7に示すように左右の隣接する梁をダッシュポットcで連結することにより減衰を増加させることが可能と考えられる。この減衰装置の配置を水平面配置と呼ぶ。cはダッシュポットの粘性減衰係数とし、既に存在するダッシュポットの粘性減衰係数cと次の関係があるものとする。

Figure 0005339406
In general, since the low-order natural vibration mode greatly contributes to the displacement, attention is paid to the low-order natural vibration mode, and an increase in attenuation due to the installation of a dashpot as a damping device is considered. In order to maximize the performance of the dashpot, it is necessary to install the dashpot where the relative displacement is large. As shown in FIG. 7, a large relative displacement occurs between the beam of the structure F and the beam of the structure R at the same height from the shape of the primary and secondary natural vibration modes of the System-FR in FIG. It is considered possible to increase the attenuation by connecting the left and right adjacent beam by a dash pot c B. This arrangement of the attenuation device is called a horizontal arrangement. It is assumed that c B is a dash pot viscous damping coefficient and has the following relationship with the existing dash pot viscous damping coefficient c A.
Figure 0005339406

ここに、τは比例定数である。図7の振動モデルをSystem−DFRと呼ぶ。System−DFRにおいて基部が水平変位z(t)を生じる時の運動方程式は次式で示される。

Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406
Here, τ is a proportionality constant. The vibration model in FIG. 7 is referred to as System-DFR. The equation of motion when the base produces a horizontal displacement z (t) in the System-DFR is expressed by the following equation.
Figure 0005339406
Figure 0005339406
Figure 0005339406
Figure 0005339406

数32bの行列D(2n)の配列特性により、System−DFRは非比例減衰振動系となるので、

Figure 0005339406
有値解析5)により評価できるが、System−DFRではクーロン摩擦力が非線形項として作用するので、複素固有値解析においてもこの非線形項の影響は考慮できない。本実施形態で
Figure 0005339406
Figure 0005339406
数33には、減衰係数cの大きさを表す比例係数σは影響を及ぼさない。Since the system-DFR is a non-proportional damped oscillation system due to the arrangement characteristics of the matrix D (2n) of Equation 32b,
Figure 0005339406
Although it can be evaluated by the value analysis 5) , since Coulomb frictional force acts as a nonlinear term in the System-DFR, the influence of this nonlinear term cannot be taken into account even in the complex eigenvalue analysis. In this embodiment
Figure 0005339406
Figure 0005339406
In the equation 33, the proportionality coefficient σ representing the magnitude of the attenuation coefficient c B has no effect.

図8は、System−DFRの粘性減衰定数ζFR−d,iと層数nの関係を、α=β=0、τ=1の条件で調べたものである。比較のために図6で示したSystem−FRのζFR−c,i(α=β=0)とSystem−CSのζも併記している。層粘性減衰定数ζを一定とすると、ζFR−c,iとζは層数nの増加に反比例して減少するのに対して、ζFR−d,iは層数nの増加に比例して増加することが分かる。τ=1の条件は粘性減衰係数がcのダッシュポットを設置することを意味しているので、ダッシュポットcの鉛直面配置に比べてダッシュポットcの水平面配置は効率的に減衰を増加させると考えられる。FIG. 8 shows the relationship between the viscosity damping constant ζ FR-d, i of the System-DFR and the number n of layers under the conditions of α = β = 0 and τ = 1. For comparison, ζ FR-c, i (α = β = 0) of System- FR and ζ i of System-CS shown in FIG. 6 are also shown. When the layer viscous damping constant ζ 0 is constant, ζ FR-c, i and ζ i decrease in inverse proportion to the increase in the number of layers n, whereas ζ FR-d, i increases in the number of layers n. It can be seen that it increases in proportion. Since tau = 1 condition means that the viscous damping coefficient is placed dashpot c A, horizontal arrangement of the dashpot c B as compared with the vertical surface disposed dashpot c A is efficiently damped It is thought to increase.

Figure 0005339406
ζDFR,i=ζDF,i+ζDF−d,iとなるので、数29より次式で評価する。
Figure 0005339406
Figure 0005339406
Since ζ DFR, i = ζ DF, i + ζ DF−d, i , the following equation is evaluated from Equation 29.
Figure 0005339406

以下に、本発明に係る実施例について、図面を参照しながら説明する。図9は、本実施例にかかる耐震性構造物STの模式的正面説明図、図10(a)(b)(c)は、それぞれ同9図のI−I線断面説明図、II−II線断面説明図、III−III線断面説明図である。  Embodiments according to the present invention will be described below with reference to the drawings. 9 is a schematic front explanatory view of the earthquake-resistant structure ST according to the present embodiment, and FIGS. 10A, 10B, and 10C are cross-sectional explanatory views taken along the line II of FIG. 9, and II-II. It is line sectional explanatory drawing and III-III line sectional explanatory drawing.

耐震性構造物STは、図9に示すように、基礎又は地下構造物等の下部構造10の上に、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する上部構造11を支持させて構成した構造物である。そして、上部構造11は、図10に示すように、固定端側せん断構造体F(以下、単に「せん断構造体F」と称する場合がある。)と自由端側せん断構造体R(以下、単に「せん断構造体R」と称する場合がある。)とから、上方へ突状に折り曲げた一体の折り曲がり片持ちせん断構造体DFR(以下、単に「片持ちせん断構造体DFR」と称することがある。)となしており、本実施例では、左右一対の片持ちせん断構造体DFR,DFRを左右対称位置に配設して、一対の固定端側せん断構造体F,Fを配設し、両せん断構造体F,Fの間に両自由端側せん断構造体R,Rを配設すると共に、両自由端側せん断構造体R,Rを一体となして構成している。  As shown in FIG. 9, the earthquake-resistant structure ST is configured by supporting an upper structure 11 which is mainly a frame structure and resists vertical and horizontal loads mainly on a lower structure 10 such as a foundation or an underground structure. It is a structure. Then, as shown in FIG. 10, the upper structure 11 includes a fixed end side shear structure F (hereinafter sometimes simply referred to as “shear structure F”) and a free end side shear structure R (hereinafter simply referred to as “shear structure F”). May be referred to as “shear structure R”), and may be referred to simply as “cantilever shear structure DFR” (hereinafter simply referred to as “cantilever shear structure DFR”). In this embodiment, a pair of left and right cantilever shear structures DFR and DFR are disposed at left and right symmetrical positions, and a pair of fixed end side shear structures F and F are disposed. Both free end-side shear structures R, R are disposed between the shear structures F, F, and the free end-side shear structures R, R are integrally formed.

すなわち、片持ちせん断構造体DFRは、図9及び図10に示すように、固定端側となる最下層階を下部構造10に固定させた複数の階層(本実施例では10階層)からなる固定端側階層部12と、同固定端側階層部12の上層階(本実施例では最上層階)を形成する折曲部形成階層13とで固定端側せん断構造体Fを形成し、上層階を形成すると折曲部形成階層13と、自由端側となる最下層階を下部構造10に水平移動自在に支持させた複数の階層(本実施例では10階層)からなる自由端側階層部14とで自由端側せん断構造体Rを形成している。  That is, as shown in FIGS. 9 and 10, the cantilever shear structure DFR has a fixed structure composed of a plurality of layers (10 layers in this embodiment) in which the lowermost floor on the fixed end side is fixed to the lower structure 10. A fixed-end-side shear structure F is formed by the end-side layer portion 12 and the bent portion forming layer 13 that forms the upper floor (in this embodiment, the uppermost floor) of the fixed-end-side layer portion 12, Is formed, and a free end side layer portion 14 composed of a plurality of layers (10 layers in this embodiment) in which the lowermost floor on the free end side is supported by the lower structure 10 so as to be horizontally movable. And the free end side shearing structure R is formed.

そして、固定端側階層部12は、上下方向(図10に示すZ方向)に伸延する柱部15と、左右及び前後方向(図10に示すX方向及びY方向)に伸延する梁部(もしくは床部)16とを組み立てて形成する各階層部を、上下方向に積層状態に構築して構成している。同様に、自由端側階層部14は、上下方向に伸延する柱部17と、左右及び前後方向に伸延する梁部(もしくは床部)18とを組み立てて形成する各階層部を、上下方向に積層状態に構築して構成している。折曲部形成階層13は、固定端側階層部12の最上階層を形成する柱部15と、自由端側階層部14の最上階層を形成する柱部17との間に、梁部(もしくは床部)19を介設して構成している。  And the fixed end side hierarchy part 12 is the pillar part 15 extended to an up-down direction (Z direction shown in FIG. 10), and the beam part (or X direction and Y direction shown in FIG. 10) extended to the left-right and front-back direction (or X direction). Each layer portion formed by assembling the (floor portion) 16 is constructed in a stacked state in the vertical direction. Similarly, the free end side layer portion 14 is formed by assembling each layer portion formed by assembling a column portion 17 extending in the up-down direction and a beam portion (or floor portion) 18 extending in the left-right and front-back directions in the up-down direction. It is constructed in a stacked state. The bent portion forming layer 13 includes a beam portion (or floor) between a column portion 15 that forms the uppermost layer of the fixed end side layer portion 12 and a column portion 17 that forms the uppermost layer of the free end side layer portion 14. Part) 19 is provided.

しかも、本実施例では、自由端側階層部14を、固定端側階層部12よりも質量が大となるように形成して、片持ちせん断構造体DFRの固有周期が長周期化するようにしている。具体的には、固有周期に関係する自由端側階層部14の質量は、自由端側階層部14の床面積を大きくすることにより増加させている。そして、床面積は、部屋を大きくすることにより、また、部屋の数を多くすることにより増加させている。また、自由端側階層部14の階数を増加させることによっても床面積を大きくすることができる。  Moreover, in the present embodiment, the free end side layer portion 14 is formed so as to have a larger mass than the fixed end side layer portion 12 so that the natural period of the cantilever shear structure DFR becomes longer. ing. Specifically, the mass of the free end side layer portion 14 related to the natural period is increased by increasing the floor area of the free end side layer portion 14. The floor area is increased by enlarging the room and increasing the number of rooms. Further, the floor area can be increased by increasing the number of floors of the free end side layer portion 14.

ここで、自由端側階層部14の質量を大きくすると、逆に固定端側階層部12の地震力の負担が増えることにもなるが、固定端側階層部12が負担する水平方向質量(固定側の地震力の増加)を適宜増大させることで、また、大きく減衰を増やすことなどで、より大きな地震力を低減させるようにしている。本実施例では、基本的な構造形態が、片持ちせん断構造体DFRであることから、その一部を形成する固定端側階層部12と自由端側階層部14を上記したように適宜調整することができる。その結果、大きな地震力を堅実に低減させることができる。  Here, when the mass of the free end side layer portion 14 is increased, the load of the seismic force of the fixed end side layer portion 12 is also increased, but the horizontal mass (fixed) that the fixed end side layer portion 12 bears is fixed. The seismic force on the side is increased as appropriate, and the attenuation is greatly increased to reduce the greater seismic force. In the present embodiment, since the basic structural form is the cantilever shear structure DFR, the fixed end side layer portion 12 and the free end side layer portion 14 forming a part thereof are appropriately adjusted as described above. be able to. As a result, a large seismic force can be reduced steadily.

さらに、本実施例では、下部構造10に自由端側階層部14の下層階を収容する収容凹部29を段付き凹状に形成して設け、同収容凹部29にて自由端側階層部14の最下層階の床部28を水平移動自在に支持させると共に、固定端側階層部12と自由端側階層部14との各階層の梁部16,18の地上高レベルを整合させている。  Furthermore, in the present embodiment, the lower structure 10 is provided with an accommodation recess 29 that accommodates the lower floor of the free end side layer portion 14 in a stepped recess shape, and the accommodation recess 29 is provided with the uppermost portion of the free end side layer portion 14. The floor portion 28 of the lower floor is supported so as to be horizontally movable, and the ground height levels of the beam portions 16 and 18 of each layer of the fixed end side layer portion 12 and the free end side layer portion 14 are matched.

また、かかる収容凹部29は、その内部の空間を有効に利用することができるものであり、適宜、自由端側階層部14の最下層階を収容凹部29内に収容して、同最下層階の地上高を、固定端側階層部12の最下層階の地上高より下げることができる。従って、自由端側階層部14の最下層階から最上層階までの階数と高さを、固定端側階層部12の最下層階から最上層階までの階数と高さに比べて、大きくすることもできる。  In addition, the accommodation recess 29 can effectively use the space inside the accommodation recess 29, and appropriately accommodates the lowermost floor of the free end side layer portion 14 in the accommodation recess 29, so that the lowermost floor The ground height can be lowered from the ground height of the lowest floor of the fixed end side layer portion 12. Therefore, the number of floors and the height from the lowest floor to the top floor of the free end side hierarchy part 14 is made larger than the number of floors and the height from the bottom floor to the top floor of the fixed end side hierarchy part 12. You can also.

この点からも、本実施例に係る片持ちせん断構造体DFRでは、固定端側階層部12の階数と自由端側階層部14の階数を合計した階数を増加させることにより、又は、前記したように自由端側階層部14の質量を増加させることによっても、固有周期を増加させることができる。よって、固定端側階層部12の階数と高さに拘ることなく、自由端側階層部14の階数を増加させることにより、固有周期に関係する階数および質量を増加させて、片持ちせん断構造体DFRの固有周期を長周期化することができる。  Also from this point, in the cantilever shear structure DFR according to the present embodiment, by increasing the total number of floors of the fixed end side layer portion 12 and the free end side layer portion 14 or as described above. The natural period can also be increased by increasing the mass of the free end side layer 14. Therefore, by increasing the number of floors of the free end side layer part 14 regardless of the number of floors and the height of the fixed end side layer part 12, the number of floors and mass related to the natural period are increased, and the cantilever shear structure The natural period of the DFR can be lengthened.

自由端側階層部14の最下層階には、複数の水平可動支持装置Mを設けて、下部構造10に設けた前記収容凹部29に、これらの水平可動支持装置Mを介して自由端側階層部14を図10に示すX方向及びY方向に水平移動自在に支持させている。ここで、水平可動支持装置Mは、図11に示すように、下部構造10上に配置する水平板状の下沓部20の上に、多数の炭素鋼製の球状ローラー21aを具備するローラー部21を左右及び前後方向(図10に示すX方向及びY方向)に転動自在に載置し、同ローラー部21の上に上沓部22を載設して、同上沓部22を自由端側階層部14の最下層階の床部28に連設して構成している。  A plurality of horizontal movable support devices M are provided on the lowermost floor of the free end side layer portion 14, and the receiving recesses 29 provided in the lower structure 10 are connected to the free end side layer via these horizontal movable support devices M. The part 14 is supported so as to be horizontally movable in the X and Y directions shown in FIG. Here, as shown in FIG. 11, the horizontal movable support device M is a roller unit including a large number of carbon steel spherical rollers 21 a on a horizontal plate-like lower collar portion 20 disposed on the lower structure 10. 21 is placed so as to be able to roll in the left and right and front and rear directions (X direction and Y direction shown in FIG. 10), and an upper collar part 22 is placed on the roller part 21 so that the upper collar part 22 is a free end. It is configured to be connected to the floor portion 28 of the lowest floor of the side layer portion 14.

また、片持ちせん断構造体DFRの摩擦減衰を調整するために、一部の水平可動支持装置Mを、図12に示すような、すべり摩擦型水平可動支持装置Lに置き換えることも可能である。  Further, in order to adjust the friction damping of the cantilever shear structure DFR, a part of the horizontal movable support device M can be replaced with a sliding friction type horizontal movable support device L as shown in FIG.

すべり摩擦型水平可動支持装置Lは、図12に示すように、摺動板53aが固着又は固定された下沓部53を下部構造10に固定し、上沓部55を自由端側階層部14の最下層階に固定し、摺動板54aが固着又は固定された中沓部54を摺動板53aと摺動板54aが接し且つ上沓部55と中沓部54の中心が一致するように載設する。  As shown in FIG. 12, the sliding friction type horizontal movable support device L fixes the lower collar part 53 to which the sliding plate 53a is fixed or fixed to the lower structure 10 and the upper collar part 55 to the free end side layer part 14. Is fixed to the lowermost floor, and the sliding plate 54a is fixed or fixed so that the sliding plate 53a and the sliding plate 54a are in contact with each other, and the centers of the upper flange portion 55 and the middle flange portion 54 are aligned. To be placed.

クーロン摩擦力は摺動板55aと摺動板56aの接触面で発生するので、ころがり摩擦型である水平可動支持装置Mに比べてすべり摩擦型水平可動支持装置Lの摩擦係数は大きい。これより、摩擦係数の異なる種類の水平可動支持装置MとLを併用することにより、片持ちせん断構造体DFRの摩擦減衰を調整することができる。  Since the Coulomb friction force is generated at the contact surface between the sliding plate 55a and the sliding plate 56a, the sliding friction type horizontal movable support device L has a larger coefficient of friction than the rolling movable type horizontal movable support device M. Accordingly, the friction damping of the cantilevered shear structure DFR can be adjusted by using the horizontal movable support devices M and L of different types having different friction coefficients.

下部構造10に形成した前記収容凹部29内には、水平可動支持装置Mを水平移動自在に収容している。また、自由端側階層部14の最下層階の床部28と下部構造10の収容凹部29との間には複数の減衰装置Naを介設している。  A horizontally movable support device M is accommodated in the accommodation recess 29 formed in the lower structure 10 so as to be movable horizontally. A plurality of damping devices Na are interposed between the floor 28 on the lowest floor of the free end side layer 14 and the accommodating recess 29 of the lower structure 10.

ここで、減衰装置Naは、平面視的には互いに隣接する水平可動支持装置Mの中間に配置され、すなわち最下層階の床部28の全面に減衰力が作用するように配置されている。(図9および図10(c)参照)よって、減衰装置Naとしては、床部28と下部構造10の間の未利用の空間を有効に利用できる大型の減衰装置を使用できる。また、1次固有振動モードの水平相対変位は床部28と下部構造10の間で最大となるので、減衰装置Naは最も効率良く1次固有振動モードの減衰定数を増加させる。また、床部28は図10に示すX方向とY方向の各方向に変位するので、減衰装置NaはX方向とY方向の各方向の変位に有効である必要がある。  Here, the damping device Na is arranged in the middle of the horizontal movable support devices M adjacent to each other in plan view, that is, arranged so that the damping force acts on the entire surface of the floor portion 28 on the lowest floor. (See FIG. 9 and FIG. 10C.) Therefore, as the attenuation device Na, a large attenuation device that can effectively use the unused space between the floor portion 28 and the lower structure 10 can be used. Further, since the horizontal relative displacement in the primary natural vibration mode is maximized between the floor portion 28 and the lower structure 10, the damping device Na increases the damping constant of the primary natural vibration mode most efficiently. Further, since the floor portion 28 is displaced in each direction of the X direction and the Y direction shown in FIG. 10, the attenuation device Na needs to be effective for displacement in each direction of the X direction and the Y direction.

具体的には、減衰装置Naは、図13(a)(b)に平面説明図と側面説明図を示すように、平面視円形で上面を開口させて扁平円筒型に形成して側端部に連結部25aを有する粘性流体ケース25と、同粘性流体ケース25内に収容した粘性流体(図示せず)と、同粘性流体ケース25内の水平面上を図10に示すX方向とY方向に上記オイルを介してスライド自在に収容したスライド体26を具備している。スライド体26は上端に連結部26aを具備している。そして、減衰装置Naを配設する際には、下部構造10又は高さ調整のために下部構造10上に設けた台座10aの減衰対象物の一方に粘性流体ケース25の連結部25aを連結し、梁部や床部等の減衰対象物の他方に連結部26aを連結するようにしている。25b,26bはそれぞれ連結孔である。粘性流体としては、所要の粘度のある流体であるオイル等を使用することができ、流体の粘度およびスライド体26と流体ケース25の流体を介在する間隔を適宜設定することにより、せん断構造体の減衰の増加に必要な粘性減衰係数を得ることができる。よって、減衰装置Naは床部28の全ての水平変位に対して有効な減衰力を発生できるようにしている。  Specifically, as shown in FIGS. 13 (a) and 13 (b), the damping device Na is formed in a flat cylindrical shape with a circular top view and an open top surface as shown in FIGS. A viscous fluid case 25 having a connecting portion 25a, a viscous fluid (not shown) accommodated in the viscous fluid case 25, and a horizontal plane in the viscous fluid case 25 in the X and Y directions shown in FIG. A slide body 26 is slidably accommodated through the oil. The slide body 26 has a connecting portion 26a at the upper end. When the damping device Na is provided, the connecting portion 25a of the viscous fluid case 25 is connected to one of the lower structure 10 or the object to be attenuated of the pedestal 10a provided on the lower structure 10 for height adjustment. The connecting portion 26a is connected to the other of the attenuation objects such as the beam portion and the floor portion. Reference numerals 25b and 26b denote connecting holes. As the viscous fluid, oil that is a fluid having a required viscosity can be used. By appropriately setting the fluid viscosity and the interval between the fluid of the slide body 26 and the fluid case 25, the shear structure A viscous damping coefficient necessary for increasing damping can be obtained. Therefore, the damping device Na can generate an effective damping force for all horizontal displacements of the floor portion 28.

固定端側階層部12と自由端側階層部14との対向する階層の内、少なくとも一組の対向する階層(本実施例では1階層〜8階層まで)同士間には、図9及び図10に示すように、複数の減衰装置Nbを介設して階層同士を水平方向に連結している。すなわち、固定端側階層部12の梁部16から片持ち梁部23を自由端側階層部14側に張り出し状に伸延させて形成する一方、自由端側階層部14の梁部18から片持ち梁部24を固定端側階層部12側に張り出し状に伸延させて形成して、両片持ち梁部23,24を略同一水平面上にて対向状態に配置すると共に、両片持ち梁部23,24間に減衰装置Nbと床用伸縮装置FEを介設している。かかる床用伸縮装置FEは、図9における符号FEが示すところの片持ち梁部23,24の間隙を塞ぐ装置であり、図では符号FEのみを記載している。  9 and FIG. 10 between at least one pair of opposing layers (in the present embodiment, 1 to 8 layers) among the opposing layers of the fixed end side layer unit 12 and the free end side layer unit 14. As shown in FIG. 2, the layers are connected in the horizontal direction with a plurality of attenuation devices Nb interposed therebetween. That is, the cantilever portion 23 is formed to extend from the beam portion 16 of the fixed end side layer portion 12 to the free end side layer portion 14 side while being cantilevered from the beam portion 18 of the free end side layer portion 14. The beam portion 24 is formed so as to extend to the fixed end side layer portion 12 side, and both the cantilever beam portions 23 and 24 are arranged in an opposed state on substantially the same horizontal plane. , 24 is provided with an attenuation device Nb and a floor extension device FE. The floor extension device FE is a device that closes the gap between the cantilever portions 23 and 24 indicated by the symbol FE in FIG. 9, and only the symbol FE is shown in the drawing.

両片持ち梁部23,24を形成する目的は、図15に示すように、それらの片持ち梁部を利用して固定側階層部12と自由端階層部14の間に床部61,63を形成することにより、居住空間と収容空間を増加させることにある。同床部61,63は、片持ち梁部23または片持ち梁部24の上に床を増設し、必要に応じてその床の端部や中間部を、床梁などを用いて補強することにより、既往の技術にて簡単に設置することができる。よって、同床部61,63の形成法の詳細は説明を省略する。先ず、減衰装置Nbの型式と配置および取りつけ方法を図14を参照しながら説明し、床用伸縮装置FEの構造について図15を参照しながら説明する。  The purpose of forming both cantilever portions 23 and 24 is to use floor portions 61 and 63 between the fixed side layer portion 12 and the free end layer portion 14 using these cantilever portions as shown in FIG. It is to increase living space and accommodation space by forming. The floor portions 61 and 63 are obtained by adding a floor on the cantilever portion 23 or the cantilever portion 24 and reinforcing the ends and intermediate portions of the floor with floor beams or the like as necessary. Therefore, it can be easily installed with the existing technology. Therefore, the details of the method for forming the floor portions 61 and 63 are omitted. First, the type, arrangement, and mounting method of the damping device Nb will be described with reference to FIG. 14, and the structure of the floor expansion / contraction device FE will be described with reference to FIG.

減衰装置Nbを設置する目的は、1次固有振動モードに加えて2次以降の固有振動モードの減衰定数を効率的に増加させることである。減衰装置Nbは、床部61,63の下面とその下の天井の間の空間に設置することが望ましいので、外形がコンパクトな減衰装置の使用が便利である。また、固定端側階層部12と自由端側階層部14は、それぞれ図10に示すX方向とY方向の各方向に変位するので、減衰装置Nbは全ての水平相対変位に対して有効でなければならない。  The purpose of installing the damping device Nb is to efficiently increase the damping constant of the secondary and subsequent natural vibration modes in addition to the primary natural vibration mode. Since it is desirable to install the attenuation device Nb in a space between the lower surfaces of the floor portions 61 and 63 and the ceiling below the floor devices 61 and 63, it is convenient to use an attenuation device having a compact outer shape. Further, since the fixed end side layer portion 12 and the free end side layer portion 14 are displaced in the X direction and the Y direction shown in FIG. 10, respectively, the attenuation device Nb must be effective for all horizontal relative displacements. I must.

ここで、減衰装置Nbは、流体の乱流による圧力低下を利用する高性能で且つ形状がコンパクトなオイルダンパーを使用するものとして、その配置を、図14の断面側面説明図(a)と底面説明図(b)に示す。底面説明図(b)は減衰装置Nbが取り付けられる床部61,63下面を下から見上げたときの減衰装置Nbの配置を示す。減衰装置Nbは、両端に連結部64aと64bを具備する2個の本体64で構成する。連結部64aはブラケット65aを介設して床部61に設置された床梁60に連結され、連結部64bはブラケット65bを介設して床部63に設置された床梁62に連結される。床部61は、片持ち梁部23または片持ち梁部24のいずれか一方に設置された床部であり、床部63は残りの一方の片持ち梁部に設置された床部とする。また、床梁60,62の断面形状は、充実断面、薄肉断面、開断面、閉断面等の任意形状の断面で良い。ブラケット65a,65bは床梁60,62ではなく、床部61,63に直接取り付けても良い。なお、減衰装置本体の構造、減衰装置の連結部とブラケットの連結方法、ブラケットと床梁の固定方法の説明は省略する。  Here, it is assumed that the damping device Nb uses a high-performance and compact-shaped oil damper that utilizes pressure drop due to turbulent fluid flow, and the arrangement thereof is shown in cross-sectional side view (a) in FIG. This is shown in the explanatory diagram (b). The bottom view (b) shows the arrangement of the attenuation device Nb when the bottom surfaces of the floor portions 61 and 63 to which the attenuation device Nb is attached are viewed from below. The attenuation device Nb is composed of two main bodies 64 having connecting portions 64a and 64b at both ends. The connecting portion 64a is connected to a floor beam 60 installed on the floor portion 61 via a bracket 65a, and the connecting portion 64b is connected to a floor beam 62 installed on the floor portion 63 via a bracket 65b. . The floor portion 61 is a floor portion installed on either the cantilever portion 23 or the cantilever portion 24, and the floor portion 63 is a floor portion installed on the remaining one cantilever portion. The cross-sectional shape of the floor beams 60 and 62 may be a cross-section having an arbitrary shape such as a solid cross-section, a thin cross-section, an open cross-section, or a closed cross-section. The brackets 65a and 65b may be directly attached to the floor portions 61 and 63 instead of the floor beams 60 and 62. The description of the structure of the damping device main body, the coupling method of the damping device and the bracket, and the fixing method of the bracket and the floor beam will be omitted.

また、図中のX方向とY方向の各変位に対応するために、隣り合う2本の本体64と床梁60の一部は、2個のブラケット65aとブラケット65bを頂点とする三角形の各辺となるように配置する。減衰装置Nbの本体64の作動方向は連結部64aと連結部64bを結ぶ方向であり、その方向は図中のX方向とY方向の何れとも交差しているので、あらゆる方向の変位に対して減衰装置Nbは有効に作動する。X方向とY方向の所要減衰性能が異なる場合には、二つの本体64の角度を調整する。  Further, in order to correspond to the respective displacements in the X direction and the Y direction in the figure, the two adjacent main bodies 64 and a part of the floor beam 60 are each of a triangular shape having two brackets 65a and 65b as vertices. Arrange them to be on the sides. The operating direction of the main body 64 of the damping device Nb is a direction connecting the connecting portion 64a and the connecting portion 64b, and the direction intersects both the X direction and the Y direction in the drawing, so The damping device Nb operates effectively. When the required attenuation performances in the X direction and the Y direction are different, the angles of the two main bodies 64 are adjusted.

三角形の二辺となる二つの本体64を一組として、減衰増加に必要な組数を設置する。必要組数が少数の場合は、減衰力をY方向に分散させ且つ効率的に作用させるために、少なくとも二組を使用すると共に互いの組はブラケットを共有せずにつまりY方向に対して離して設置するのが良い。  The two main bodies 64 that form two sides of the triangle are set as one set, and the number of sets necessary for increasing attenuation is set. When the required number of sets is small, at least two sets are used in order to distribute the damping force in the Y direction and to act efficiently, and the sets do not share a bracket, that is, they are separated from each other in the Y direction. It is good to install.

ここで、減衰装置Naと減衰装置Nbの型式と配置は、この実施例で示したような粘性減衰装置とオイルダンパーおよびそれらの配置に限定する必要はなく、他の型式の減衰装置とその性能を最大限に発揮できる配置とすることもできる。  Here, the types and arrangements of the damping device Na and the damping device Nb are not limited to the viscous damping device, the oil damper, and their arrangement as shown in this embodiment, but other types of damping devices and their performance. It can also be arranged to maximize the performance.

床用伸縮装置FEを設置する目的は、図15に示すように、固定端側階層部12の片持ち梁部23と自由端側階層部14の片持ち梁部24の間隙Gaを塞ぐことにより、片持ち梁部23,24に設置された床部61,63を居住空間または収納空間として支障がないようにすることである。また、床用伸縮装置FEには、固定端側階層部12と自由端側階層部14との間の水平相対変位に対してせん断構造体の固有周期を短くするような復元力を固定端側階層部12と自由端側階層部14に作用させないことが求められる。  The purpose of installing the floor extension device FE is to close the gap Ga between the cantilever portion 23 of the fixed end side layer portion 12 and the cantilever portion 24 of the free end side layer portion 14 as shown in FIG. In other words, the floor portions 61 and 63 installed in the cantilever portions 23 and 24 should not be hindered as a living space or a storage space. In addition, the floor expansion and contraction device FE has a restoring force that shortens the natural period of the shear structure with respect to the horizontal relative displacement between the fixed end side layer portion 12 and the free end side layer portion 14 on the fixed end side. It is required not to act on the layer portion 12 and the free end side layer portion 14.

床用伸縮装置FEは、図15の平面説明図(a)と断面側面説明図(b)に示すように、床部61に容易に変形する粘弾性材71と連結板70を収納し且つ摺動材72を固定する収納凹部61aを設け、床部61と相対する床部63に連結板70を固定する収納凹部63aを設け、連結板70を収納凹部63aに固定し、連結板70の先端部70bを、収納凹部61aに固定された摺動材72上に乗せ掛けた構造であり、且つ連結板の先端部70bの前方と側方の収納凹部61に容易に変形する粘弾性材71を充填したものである。床部61と床部63の水平相対変位に応じて連結板の先端部70bの前方および側方の粘弾性材71は変形するので、例えば粘弾性材71としてシリコン系シール材などを用いることにより、粘弾性材71の変形により生じる復元力をせん断構造体の固有周期に影響しない程度に小さくすることができる。  As shown in the plan explanatory view (a) and the sectional side view (b) of FIG. A storage recess 61 a for fixing the moving material 72 is provided, a storage recess 63 a for fixing the connecting plate 70 is provided on the floor 63 facing the floor 61, the connecting plate 70 is fixed to the storing recess 63 a, and the tip of the connecting plate 70 A viscoelastic material 71 having a structure in which the portion 70b is placed on a sliding member 72 fixed to the housing recess 61a and easily deformed into the housing recess 61 on the front and side of the front end portion 70b of the connecting plate. Filled. Since the viscoelastic material 71 in front and side of the front end portion 70b of the connecting plate is deformed in accordance with the horizontal relative displacement between the floor portion 61 and the floor portion 63, for example, by using a silicon-based sealing material or the like as the viscoelastic material 71 The restoring force generated by the deformation of the viscoelastic material 71 can be reduced to such an extent that it does not affect the natural period of the shear structure.

摺動材72と連結板70の材料の組み合わせは、例えばふっ素樹脂板とステンレス板とすることができる。あるいは連結板の材料費を縮減するために、摺動材72と接する連結板70の表面のみに摺動材72と適合する別の摺動材を固着または固定しても良い。なお、摺動材72と連結板70との間の摩擦係数が経年的に一定で且つ定量的であれば、摺動材72と連結板70で発生するクーロン摩擦力を、せん断構造体の減衰として考慮しても良い。  The combination of the material of the sliding material 72 and the connection plate 70 can be, for example, a fluororesin plate and a stainless plate. Alternatively, in order to reduce the material cost of the coupling plate, another sliding material that matches the sliding material 72 may be fixed or fixed only on the surface of the coupling plate 70 that contacts the sliding material 72. If the friction coefficient between the sliding member 72 and the connecting plate 70 is constant and quantitative over time, the Coulomb friction force generated by the sliding member 72 and the connecting plate 70 is reduced by the damping of the shear structure. May be considered.

次に、本発明のせん断構造体を覆う外壁の構造について説明する。図9に示す断面II−IIから下方の相対する片持ち梁部23と片持ち梁部24の間隙Gaすなわち符号FEが示す間隙では、固定端側階層部12と自由端側階層部14の水平相対変位に起因する大きな間隙Gaの変化が生じ、また、図9の骨組面と平行なせん断構造体の側面全体は風雨の浸入等を防ぐために側面外壁で覆わなければならないので、断面II−II付近とそれより下方の同側面外壁においては、固定端側階層部12に設置する側面壁面と、この側面外壁に相対する自由端側階層部14に設置する側面外壁との間に、固定端側階層部12と自由端側階層部14の水平相対変位を吸収する間隙Gaを設けると共に、同間隙Gaを図16に示す外壁用伸縮装置WEで塞ぐものとした。  Next, the structure of the outer wall that covers the shear structure of the present invention will be described. In the gap Ga between the cantilever part 23 and the cantilever part 24 opposite to each other below the section II-II shown in FIG. 9, that is, the gap indicated by the symbol FE, the fixed end side layer part 12 and the free end side layer part 14 are horizontally Since a large gap Ga change due to relative displacement occurs, and the entire side surface of the shear structure parallel to the frame surface in FIG. 9 must be covered with a side outer wall in order to prevent intrusion of wind and rain, etc., section II-II On the same side outer wall in the vicinity and below it, the fixed end side is between the side wall surface installed on the fixed end side layer portion 12 and the side surface outer wall installed on the free end side layer portion 14 opposite to the side surface outer wall. A gap Ga that absorbs the horizontal relative displacement between the layer portion 12 and the free end side layer portion 14 is provided, and the gap Ga is closed by the outer wall expansion and contraction device WE shown in FIG.

外壁用伸縮装置WEは、図16の内側から外側を見た側面説明図(a)と断面底面説明図(b)に示すように、相対する固定端側階層部と自由端側階層部から互いの側面外壁82を水平方向に延伸させると共に、水平相対変位を吸収する間隙Gaを設け、または相対する固定端側階層部と自由端側階層部から側面外壁81を取り付ける互いの下地骨組83を水平方向に延伸させると共に、水平相対変位を吸収する間隙Gaを設け、延伸させた側面外壁82同士または延伸させた下地骨組83同士を、容易に変形できるように形成した伸縮材80を介設して連結するものである。  As shown in the side explanatory view (a) and the cross-sectional bottom explanatory view (b) as seen from the inside to the outside in FIG. 16, the outer wall expansion and contraction device WE is connected to each other from the opposite fixed end side layer portion and free end side layer portion. The lateral outer wall 82 is extended in the horizontal direction, a gap Ga for absorbing horizontal relative displacement is provided, or the base frame 83 to which the side outer wall 81 is attached from the opposite fixed end side layer portion and free end side layer portion is horizontally disposed. A gap Ga that absorbs horizontal relative displacement is provided, and stretched side outer walls 82 or stretched base frames 83 are interposed with an elastic member 80 formed so as to be easily deformable. To be connected.

また、図16は下地骨組83と側面外壁82を連結する例を取り上げて、下地骨組83との連結方法と側面外壁82との連結の方法を同時に説明したものである。下地骨組83と伸縮材80との連結は、下地骨組83に上下に延伸して取りつけたブラケット83aに固定された袋ナット83bと伸縮材80の連結孔80aを、押さえ板84とボルト等(図省略)などを介設して連結する。袋ナット83aではなくスタッドボルトなどを用いて連結することも可能である。側面外壁82と伸縮材80との連結は、側面外壁82に埋め込まれた袋ナット82aと伸縮材80の連結孔80aを押さえ板84とボルト等(図省略)を介設して連結する。袋ナット82aではなく埋め込みボルトなどを用いて連結することも可能である。  FIG. 16 shows an example in which the base frame 83 and the side outer wall 82 are connected, and the method for connecting the base frame 83 and the method for connecting the side outer wall 82 are simultaneously described. The base frame 83 and the elastic member 80 are connected to each other by connecting the cap nut 83b fixed to the bracket 83a attached to the base frame 83 by extending vertically and the connecting hole 80a of the elastic member 80, a holding plate 84, a bolt, etc. (Omitted). It is also possible to connect using a stud bolt or the like instead of the cap nut 83a. The side outer wall 82 and the expansion / contraction material 80 are connected by connecting the cap nut 82a embedded in the side outer wall 82 and the connection hole 80a of the expansion / contraction material 80 with a pressing plate 84 and bolts (not shown). It is also possible to connect using embedded bolts instead of the cap nut 82a.

伸縮材80は弾性係数が小さな弾性材料または粘弾性材料を用いると共に容易に変形することが可能な断面形状例えば図16(b)に示す断面形状のように形成する。よって、伸縮材80の材料と断面形状を適宜選択することにより、伸縮材80の図中のX方向とY方向の変形によって生じる復元力は、せん断構造体の固有周期に影響しない程度に小さくすることができる。  The elastic member 80 is formed as a cross-sectional shape that can be easily deformed, for example, a cross-sectional shape shown in FIG. Therefore, by appropriately selecting the material and the cross-sectional shape of the stretchable material 80, the restoring force generated by the deformation of the stretchable material 80 in the X direction and the Y direction in the drawing is reduced to an extent that does not affect the natural period of the shear structure. be able to.

なお、水平相対変位に伴い発生する伸縮材80の塑性変形などに起因する振動エネルギー吸収が経年的に一定で且つ定量的であれば、これによる減衰をせん断構造体の減衰として考慮しても良い。  In addition, if the vibration energy absorption resulting from plastic deformation of the stretchable material 80 generated due to the horizontal relative displacement is constant and quantitative over time, the attenuation due to this may be considered as the attenuation of the shear structure. .

以上に説明してきた本実施例のように、左右一対の折り曲がり片持ちせん断構造体DFR,DFRを、固定端側階層部12が外方で、自由端側階層部14が内方に位置するように、左右対称に配設した構成に限らず、折り曲がり片持ちせん断構造体DFRを前方及び又は後方に増設して構成することもできる。また、多数の折り曲がり片持ちせん断構造体DFRを、固定端側階層部12が外方で、自由端側階層部14が内方に位置するように、放射状に配設して構成することもできる。この際、周方向に隣接する固定端側階層部12同士を一体に連設して、自由端側階層部14を囲繞する筒状となして構成することもできる。このように構成した場合にも、長周期で高減衰の耐震性構造物となすことができる。  As in the present embodiment described above, the pair of left and right bent cantilever shear structures DFR, DFR are positioned such that the fixed end side layer portion 12 is outward and the free end side layer portion 14 is inward. As described above, the configuration is not limited to the symmetrical arrangement, and a bent cantilever shear structure DFR may be added forward and / or backward. In addition, a large number of bent cantilever shear structures DFR may be arranged and arranged radially such that the fixed end side layer portion 12 is located outward and the free end side layer portion 14 is located inward. it can. At this time, the fixed end side layer portions 12 adjacent to each other in the circumferential direction may be integrally connected to form a cylindrical shape surrounding the free end side layer portion 14. Even in such a configuration, it is possible to provide an earthquake-resistant structure having a long period and a high attenuation.

なお、上部構造11は、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する構造物であって、局所的な大きなせん断力に抵抗するためのせん断壁51または斜材52を部分的に有しても良い(図9参照)。  The upper structure 11 is a frame structure that is resistant to main vertical loads and horizontal loads, and has partially a shear wall 51 or diagonal members 52 for resisting a large local shear force. You may do it (refer FIG. 9).

[実験例]
以下に、本実施例としての耐震性構造物STの縮小模型を用いて行った振動実験の結果について説明する。
[Experimental example]
Below, the result of the vibration experiment performed using the reduced model of the earthquake-resistant structure ST as a present Example is demonstrated.

(1)実験の目的
本実施例としての構造体DFRで実現しようとする固有振動モードの長周期化と、その構造体DFRに適用する粘性減衰装置Bの水平面配置による減衰の増加を検証するために、縮小模型を用いて振動実験を行った。振動実験では、振動理論により得られた固有周期と減衰定数の算定式を検証する自由振動実験と固有振動モードの形状を検証する振動台加震実験を実施した。自由振動実験では、手で加振した後の縮小模型の自由振動を観測し、その観測された自由振動の波形から固有周期と粘性減衰定数を算出し、振動理論による計算値と比較した。振動台加震実験では、振動台の正弦波加震による縮小模型の定常振動を観測し、その定常振動の記録から固有振動モードの形状と位相のずれを算出し、振動理論の形状と比較した。ただし、位相のずれについては理論式を示していないので、実験により得られた定性的な性状を説明する。
(1) Purpose of the experiment To verify the increase in attenuation due to the long period of the natural vibration mode to be realized by the structure DFR as the embodiment and the horizontal arrangement of the viscous damping device B applied to the structure DFR. In addition, a vibration experiment was performed using a reduced model. In the vibration experiment, we conducted a free vibration experiment to verify the calculation formula of natural period and damping constant obtained by vibration theory and a shaking table shaking experiment to verify the shape of natural vibration mode. In the free vibration experiment, we observed the free vibration of the reduced model after hand vibration, calculated the natural period and viscosity damping constant from the observed free vibration waveform, and compared them with the calculated values by vibration theory. In the shaking table shaking experiment, the steady vibration of the reduced model due to the sinusoidal shaking of the shaking table was observed, and the shape and phase shift of the natural vibration mode were calculated from the steady-state vibration records and compared with the shape of the vibration theory. . However, a theoretical formula is not shown for the phase shift, so qualitative properties obtained through experiments will be described.

なお、振動計測にはレーザー変位計(測定範囲±10mm、分解能0.002mm)を用い、振動台実験には熊本大学の導電式振動発生機を用いた。  A laser displacement meter (measurement range ± 10 mm, resolution 0.002 mm) was used for vibration measurement, and a conductive vibration generator from Kumamoto University was used for the vibration table experiment.

(2)縮小模型の諸元
a)折り曲がりせん断構造体模型の諸元
図17は、折り曲がり片持ちせん断構造体DFRの外観説明図であり、同構造体DFRは、基板30上に左右一対のせん断構造体F,Fを立設し、両せん断構造体F,F間にせん断構造体Rを配置して、二つのせん断構造体F,Fの上端の梁部31,31をせん断構造体Rの上端の梁部32を、左右方向に伸延するボルト33により連結している。この模型は、水平荷重の矢印の方向の剛性が矢印と直角方向の剛性に比べて小さく、矢印の方向に振動する平面振動模型である。せん断構造体Rの下端にはローラー43を具備する水平可動支持装置34を設けている。水平可動支持装置34の詳細は後述する。
(2) Specifications of Reduced Model a) Specifications of Bending Shear Structure Model FIG. 17 is an explanatory view of the appearance of a bent cantilever shear structure DFR. The shear structures F and F are erected, the shear structure R is arranged between the two shear structures F and F, and the beam portions 31 and 31 at the upper ends of the two shear structures F and F are connected to the shear structure. The beam portion 32 at the upper end of R is connected by a bolt 33 extending in the left-right direction. This model is a plane vibration model in which the rigidity in the direction of the arrow of the horizontal load is smaller than the rigidity in the direction perpendicular to the arrow and vibrates in the direction of the arrow. At the lower end of the shear structure R, a horizontal movable support device 34 having a roller 43 is provided. Details of the horizontal movable support device 34 will be described later.

図17は、折り曲がり片持ちせん断構造体DFRの自由端に水平荷重を作用させた時の変形の様子を誇張して描写したものである。せん断構造体Fとせん断構造体Rの位置関係と変形の方向を分かり易くするために、梁部31,32と柱部35,36およびローラー43を強調し、他の部材は省略して描いている。この図では、固定端を基準として、せん断構造体FとRの上端の梁部31,31,32の水平変位xと、せん断構造体Rの下端の梁部37すなわち自由端の水平変位x10を図示している。この変形は図5に示す1次固有振動モードに良く似たものとなる。この図の水平変位の方向が模型の振動方向となることに注意が必要である。FIG. 17 is an exaggerated depiction of the state of deformation when a horizontal load is applied to the free end of the bent cantilever shear structure DFR. In order to facilitate understanding of the positional relationship between the shear structure F and the shear structure R and the direction of deformation, the beam portions 31 and 32, the column portions 35 and 36, and the roller 43 are emphasized, and other members are omitted. Yes. In this figure, reference to the fixed end, the shear structure F and the horizontal displacement x 5 of the upper end of the beam portion 31,31,32 of R, the horizontal displacement of the beam portion 37 or free end of the lower end of the shear structure R x 10 is illustrated. This deformation is very similar to the primary natural vibration mode shown in FIG. It should be noted that the horizontal displacement direction in this figure is the vibration direction of the model.

模型の柱部35,36にはアルミニューム合金製平角棒FB20×2×894mm(A6063)を、梁部31,32にはみがき平角鋼FB44×19×240mm(SS400)を用いた。模型の柱部35,36は一箇所当たり2本のボルト(M8、強度区分10.9)を用いて梁部31,32の端面に固定した。図18及び19に示す粘性減衰装置Aと粘性減衰装置Bの詳細は後述する。  Aluminum column FB20 × 2 × 894 mm (A6063) made of aluminum alloy was used for the column portions 35 and 36 of the model, and polished flat steel FB44 × 19 × 240 mm (SS400) was used for the beam portions 31 and 32. The column portions 35 and 36 of the model were fixed to the end faces of the beam portions 31 and 32 by using two bolts (M8, strength category 10.9) per place. Details of the viscous damping device A and the viscous damping device B shown in FIGS. 18 and 19 will be described later.

表1に、主に固有周期に関係する構造体模型の諸元を示す。表1に記載するせん断バネ定数と層固有周期は、模型の静的載荷試験により求めた値である。詳細については次節で詳述する。  Table 1 shows the specifications of the structure model mainly related to the natural period. The shear spring constant and the layer natural period described in Table 1 are values obtained by a static loading test of the model. Details will be described in the next section.

b)水平可動支持装置の諸元
水平可動支持装置34は、図20に示すように、下レール38とローラー車体39と上レール40とを具備している。上・下レール40,38はみがき平角鋼50×16(SS400)とした。ローラー車体39は、アルミニューム合金製フレーム41にシャフト42を介して4個の直径20mmのフランジ付きローラー43を取り付けている。シャフト42とローラー43の材質は炭素鋼(SC450)である。シャフト間隔は180mm、レール幅は50mmである。上レール40はボルト(図示せず)でせん断構造体Rの下端の梁部37に固定する。

Figure 0005339406
b) Specifications of Horizontal Movable Support Device The horizontal movable support device 34 includes a lower rail 38, a roller vehicle body 39, and an upper rail 40 as shown in FIG. 20. The upper and lower rails 40 and 38 were made of polished flat steel 50 × 16 (SS400). The roller body 39 has four flanged rollers 43 with a diameter of 20 mm attached to an aluminum alloy frame 41 via a shaft 42. The material of the shaft 42 and the roller 43 is carbon steel (SC450). The shaft interval is 180 mm and the rail width is 50 mm. The upper rail 40 is fixed to the beam portion 37 at the lower end of the shearing structure R with bolts (not shown).
Figure 0005339406

図21は傾斜法によって求めたローラー車体39の動摩擦係数の頻度分布図である。これは、表1に示すせん断構造体Fの自重すなわち鉛直力pν=259Nに相当する重りを載せたローラー車体39が僅かに傾斜させた斜面を運動する様子を、レーザー変位計で計測し、その運動の軌跡から動摩擦係数を推定したものである。実験で得られた動摩擦係数は0.1〜0.3×10−3に分布し、その分布は概ね正規分布に近い形状であった。動摩擦係数の平均値は0.2×10−3である。なお、静止摩擦係数は0.4〜0.5×10−3に分布し、平均値は4.5×10−3である。FIG. 21 is a frequency distribution diagram of the dynamic friction coefficient of the roller vehicle body 39 obtained by the tilt method. This is measured by a laser displacement meter while the roller vehicle body 39 carrying a weight corresponding to the self-weight of the shear structure F shown in Table 1, that is, the vertical force p ν = 259N, moves slightly on the slope. The dynamic friction coefficient is estimated from the trajectory of the motion. The coefficient of dynamic friction obtained in the experiment was distributed in the range of 0.1 to 0.3 × 10 −3 , and the distribution was almost a normal distribution. The average value of the dynamic friction coefficient is 0.2 × 10 −3 . Incidentally, the coefficient of static friction is distributed in 0.4 to 0.5 × 10 -3, the average value is 4.5 × 10 -3.

c)粘性減衰装置の諸元    c) Specifications of the viscous damping device

図3で示すSystem−FRのダッシュポットcに相当する粘性減衰装置Aの外観を図22に示す。粘性減衰装置Aは透明アクリル板製の粘性流体ケースとしてのオイルケーシング44とスライド体としての平行板45とを具備している。The appearance of the viscous damping device A corresponding to dashpot c A of System-FR shown in FIG. 3 shown in FIG. 22. The viscous damping device A includes an oil casing 44 as a viscous fluid case made of a transparent acrylic plate and a parallel plate 45 as a slide body.

図7で示したSystem−DFRのダッシュポットcに相当する粘性減衰装置Bの外観を図23に示す。粘性減衰装置Bは、アルミニューム合金製(A6063)の粘性流体ケースとしてのオイルケーシング46とスライド体としての平行板47と連結体48とを具備している。これらの二つの粘性減衰装置A,Bは共にオイルケーシング44,46内に充填したジメチルシリコーンオイルのせん断変形を利用する粘性型・平行板方式の減衰装置である。The appearance of the viscous damping device B corresponding to the dashpot c B of System-DFR shown in FIG. 7 is shown in FIG. 23. The viscosity damping device B includes an oil casing 46 as a viscous fluid case made of aluminum alloy (A6063), a parallel plate 47 as a slide body, and a connecting body 48. These two viscous damping devices A and B are both viscous and parallel plate type damping devices that utilize shear deformation of dimethyl silicone oil filled in oil casings 44 and 46.

図18は、模型の振動方向と垂直な横断面における粘性減衰装置AとBの配置図である。この図では減衰装置の配置を分かり易く説明するために、せん断構造体Rとせん断構造体Fは切り離して表している。実際の構造ではせん断構造体Rの基準線CLとせん断構造体Fの基準線CLは重なる。粘性減衰装置Aは、せん断構造体Fの上下方向に隣接する梁部31,31の間に介設すると共に、せん断構造体Fの外側に設置する。粘性減衰装置Bは、せん断構造体Fとせん断構造体Rの左右方向に隣接する梁部31,32同士の間に介設する。  FIG. 18 is a layout diagram of the viscous damping devices A and B in a cross section perpendicular to the vibration direction of the model. In this figure, the shear structure R and the shear structure F are separated from each other for easy understanding of the arrangement of the damping device. In the actual structure, the reference line CL of the shear structure R and the reference line CL of the shear structure F overlap. The viscous damping device A is interposed between the beam portions 31 and 31 adjacent to each other in the vertical direction of the shear structure F and is installed outside the shear structure F. The viscous damping device B is interposed between the beam portions 31 and 32 adjacent to each other in the left-right direction of the shear structure F and the shear structure R.

図19は、図18のa部の拡大図であり、この図を用いて粘性減衰装置A,Bの配置を詳細に説明する。粘性減衰装置Aはせん断構造体Fの上下の梁部31,31の相対速度を利用するので、スライド体45の上端は上側の梁部31に固定された連結板49に固定し、スライド体45の下端を下側の梁部31の外面に固定したケーシングオイル44内に挿入する。この構造を全ての階層で繰り返す。ただし、System−FRのダッシュポットcの配置を再現するためにはせん断構造体Rに粘性減衰装置Aを設置する必要があるが、構造体模型内に設置スペースが足りないため、せん断構造体Rには粘性減衰装置Aを設置できなかった。FIG. 19 is an enlarged view of part a in FIG. 18, and the arrangement of the viscous damping devices A and B will be described in detail with reference to FIG. Since the viscous damping device A uses the relative speeds of the upper and lower beam portions 31, 31 of the shear structure F, the upper end of the slide body 45 is fixed to a connecting plate 49 fixed to the upper beam portion 31, and the slide body 45. Is inserted into the casing oil 44 fixed to the outer surface of the lower beam portion 31. This structure is repeated at all levels. However, although in order to reproduce the arrangement of the dashpot c A of System-FR should be installed viscous damping device A shear structure R, since the installation space in the structure in the model is insufficient, the shearing structure R could not install the viscous damping device A.

粘性減衰装置Bはせん断構造体Rの梁部32とせん断構造体Fの梁部31の相対速度を利用するので、平行板47に取り付けた連結体48を、せん断構造体Fの左右方向に隣接する梁部31,31同士の間に横架状に架設した横連結フレーム50の中途部に固定し、平行板47の下端をせん断構造体Rの左右一対の梁部32,32間に配設したオイルケーシング46内に挿入する。横連結フレーム50と連結体48は、両方共にアルミニューム合金製(A6063)である。  Since the viscous damping device B uses the relative speed of the beam portion 32 of the shear structure R and the beam portion 31 of the shear structure F, the connecting body 48 attached to the parallel plate 47 is adjacent to the shear structure F in the left-right direction. The lower end of the parallel plate 47 is disposed between the pair of left and right beam portions 32, 32 of the shear structure R. The oil casing 46 is inserted. Both the lateral connection frame 50 and the connection body 48 are made of aluminum alloy (A6063).

粘性減衰装置A,Bの粘性減衰係数は、次式により算定する。

Figure 0005339406
The viscous damping coefficient of the viscous damping devices A and B is calculated by the following equation.
Figure 0005339406

ここに、εは粘性流体の粘度であり、lとwおよびsはそれぞれ図24に示す平行板47の長さと流体の接触深さおよび平行板47とオイルケーシング46の側壁との隙間である。粘性減衰装置Aの粘性減衰係数cdeviceに一層あたりの粘性減衰装置Aの設置個数を掛けたものがSystem−FRのダッシュポットcの粘粘性減衰係数となる。同様に、粘性減衰装置Bの粘性減衰係数cdeviceに一層あたりの粘性減衰装置Bの設置個数を掛けたものがSystem−FRDのダッシュポットcの粘性減衰係数となる。Here, ε is the viscosity of the viscous fluid, and l, w, and s are the length of the parallel plate 47 and the contact depth of the fluid and the gap between the parallel plate 47 and the side wall of the oil casing 46 shown in FIG. The product obtained by multiplying the viscous damping coefficient c device of the viscous damping apparatus A by the number of installed viscous damping apparatuses A per layer is the viscous damping coefficient of the dashpot c A of the System-FR. Similarly, the product obtained by multiplying the viscosity damping coefficient c device of the viscosity damping device B by the number of installed viscosity damping devices B per layer is the viscosity damping coefficient of the dashpot c B of the System-FRD.

実験に使用したジメチルシリコーンオイルの標準温度25℃における設計粘度は9.75N/m・sであるが、実験時の振動模型の温度30〜38℃とシリコーンオイルの製造メーカーが公表している粘度−温度曲線を考慮して、粘性減衰係数は温度34℃における粘度8.3N/m・sを用いて計算を行った。粘性減衰装置A,Bの粘性減衰係数とダッシュポットの粘性減衰係数を表2にまとめる。

Figure 0005339406
The design viscosity of the dimethyl silicone oil used in the experiment at a standard temperature of 25 ° C. is 9.75 N / m 2 · s, but the temperature of the vibration model at the time of the experiment is 30 to 38 ° C., which is announced by the manufacturer of silicone oil. Considering the viscosity-temperature curve, the viscosity damping coefficient was calculated using a viscosity of 8.3 N / m 2 · s at a temperature of 34 ° C. Table 2 summarizes the viscous damping coefficients of the viscous damping devices A and B and the viscous damping coefficient of the dashpot.
Figure 0005339406

d)縮小模型における振動系の定義
自由振動実験と振動台加震実験は、折り曲がりせん断構造体模型に粘性減衰装置AとBおよびローラーガイドを装着したSystem−DFR、System−DFRの減衰装置Bを無効にしたSystem−FR、System−FRからローラー車体を取り外した振動系であるSystem−Fについて行う。また、構造体模型の構造減衰を計測するために、System−Fの粘性減衰装置Aを無効にした振動系であるSystem−F0の自由振動実験を行う。
d) Definition of the vibration system in the reduced model The free vibration experiment and the shaking table vibration test were performed in the system-DFR and the system-DFR damping device B in which viscous damping devices A and B and a roller guide were attached to the bending shear structure model. This is performed for System-F, which is a vibration system in which the roller vehicle body is removed from System-FR and System-FR in which is invalidated. Further, in order to measure the structural damping of the structure model, a free vibration experiment of System-F0, which is a vibration system in which the viscous damping device A of System-F is disabled, is performed.

(3)静的載荷試験
構造体模型のせん断バネ定数を計測するために、図17に示す自由端に作用する水平荷重と模型の上端および自由端の水平変位の関係を静的載荷試験により調べた。
(3) Static loading test In order to measure the shear spring constant of the structural model, the relationship between the horizontal load acting on the free end shown in Fig. 17 and the horizontal displacement of the upper end and free end of the model is examined by a static loading test. It was.

図25は、Syatem−FRとSyatem−Fの1サイクルの荷重−変位曲線の一例である。図25(a)のSyatem−FRの履歴には、クーロン摩擦力が作用する構造系の特徴すなわち載荷と除荷時の荷重のギャップが顕著に現れている。通常、ギャップの大きさは静止摩擦力の2倍となるので、ローラーガイドの静止摩擦係数0.45×10−3とローラーに作用する鉛直力pν=259Nによりギャップの大きさを計算すると0.23Nとなり、図中のギャップの大きさに概ね一致する。上端(x)と自由端(x10)の履歴曲線の傾きはそれぞれ2700N/mと1360N/mであるので、これよりせん断バネ定数kを計算するとそれぞれ13.5kN/mと13.6kN/mとなる。FIG. 25 is an example of a load-displacement curve for one cycle of Syatem-FR and Syatem-F. In the history of Syatem-FR in FIG. 25 (a), a characteristic of the structural system in which the Coulomb friction force acts, that is, a gap between loading and unloading appears remarkably. Normally, the size of the gap is twice the static friction force, and therefore, when the size of the gap is calculated from the static friction coefficient 0.45 × 10 −3 of the roller guide and the vertical force p ν = 259N acting on the roller, 0 is obtained. .23N, which roughly matches the size of the gap in the figure. Since the slopes of the hysteresis curves at the upper end (x 5 ) and the free end (x 10 ) are 2700 N / m and 1360 N / m, respectively, the shear spring constant k A is calculated from these values to be 13.5 kN / m and 13.6 kN, respectively. / M.

一方、図25(b)のSyatem−Fの履歴には、載荷と除荷時の荷重のギャップは見られず、荷重と変位の関係は線形である。上端(x)と自由端(x10)の履歴曲線の傾きはそれぞれ2200N/mと1260N/mであるので、これらよりせん断バネ定数kを計算するとそれぞれ11.0kN/mと12.6kN/mとなる。Syatem−Fに比べてSyatem−FRのせん断バネ定数が大きい理由は、Syatem−FRではローラーが柱の軸方向変形を拘束するためと考えられる。表1のせん断バネ定数k=13.5kN/mは、Syatem−FRの上端(x)の履歴曲線から計算したものである。On the other hand, in the history of Syatem-F in FIG. 25B, there is no gap between loading and unloading, and the relationship between load and displacement is linear. Since the slopes of the hysteresis curves at the upper end (x 5 ) and the free end (x 10 ) are 2200 N / m and 1260 N / m, respectively, the shear spring constant k A is calculated from these values to be 11.0 kN / m and 12.6 kN, respectively. / M. The reason why the shear spring constant of Syatem-FR is larger than that of Syatem-F is considered that the roller restrains the axial deformation of the column in Syatem-FR. The shear spring constant k A = 13.5 kN / m in Table 1 is calculated from the hysteresis curve at the upper end (x 5 ) of Syatem-FR.

(4)固有周期と粘性減衰定数に着目した自由振動実験
a)構造体模型の構造減衰
折り曲がりせん断構造体模型の構造減衰を計測するためにSystem−F0の自由振動記録から算出した1次固有振動の1波形の粘性減衰定数と振幅の関係および1波形の固有周期と振幅の関係を図26に示す。着目点は模型の上端の梁5である。ここでの1波形の粘性減衰定数と固有周期とはそれぞれ変位応答時刻歴の隣り合うピークの振幅とピークの発生時刻から算出した粘性減衰定数と周期である。図では、煩雑さを避けるために波形の10個のピーク毎に実験値を示す。System−F0の減衰定数は振幅に関わらず一定であり、構造減衰は約0.2%であることが分かる。
(4) Free vibration experiment focusing on the natural period and viscous damping constant a) Structural damping of the structural model First-order natural characteristic calculated from the system-F0 free vibration recording to measure the structural damping of the bending shear structural model FIG. 26 shows the relationship between the viscosity damping constant and amplitude of one waveform of vibration and the relationship between the natural period and amplitude of one waveform. The point of interest is the beam 5 at the upper end of the model. The viscous damping constant and the natural period of one waveform here are a viscous damping constant and a period calculated from the amplitude of the adjacent peak and the occurrence time of the peak in the displacement response time history, respectively. In the figure, experimental values are shown for every 10 peaks of the waveform in order to avoid complexity. It can be seen that the attenuation constant of System-F0 is constant regardless of the amplitude, and the structural attenuation is about 0.2%.

また、固有周期は振幅に関わらず一定であり、模型は弾性体として振動することが確認される。前節よりSyatem−F0とSyatem−Fのせん断バネ定数として11.0kN/mを採用すると、この二つの振動系の層固有周期はT=0.123sと計算される。この層固有周期とSystem−FRの固有値λFR,1=0.01949を用いると、System−F0とSystem−Fの1次固有周期はTF,1=0.88sと計算される。この固有周期は図26の実験結果とよく一致する。固有周期の計算に必要な縮小模型System−FRの1次と2次の固有値とそれに対応する固有ベクトルを表3に示す。

Figure 0005339406
In addition, the natural period is constant regardless of the amplitude, and it is confirmed that the model vibrates as an elastic body. If 11.0 kN / m is adopted as the shear spring constant of Syatem-F0 and Syatem-F from the previous section, the layer natural period of these two vibration systems is calculated as T 0 = 0.123 s. Using this layer natural period and the natural value λ FR, 1 = 0.01949 of System-FR, the primary natural period of System-F0 and System-F is calculated as T F, 1 = 0.88 s. This natural period agrees well with the experimental result of FIG. Table 3 shows the first and second order eigenvalues and the corresponding eigenvectors of the reduced model System-FR necessary for calculating the natural period.
Figure 0005339406

b)固有周期
図27は、System−DFRとSystem−FRおよびSysem−Fの自由振動記録から算出した1次固有振動モードの1波形の固有周期と振幅の関係を比較したものである。着目点は模型の上端の梁5とローラー上の梁10である。表1の層固有周期T=0.111sと表4の固有値λFR,1=0.01949を用いると、数21によりSystem−DFRとSystem−FRの1次固有周期はTFR,1=0.795sと計算される。前項で示したようにSystem−Fの1次固有周期はTF,1=0.88sと計算される。図より、これらの2つの固有周期は実験結果を良く一致することが分かる。
b) Natural Period FIG. 27 shows a comparison of the relationship between the natural period and amplitude of one waveform of the primary natural vibration mode calculated from the free vibration records of System-DFR, System-FR, and System-F. The points of interest are the beam 5 at the upper end of the model and the beam 10 on the roller. Using the layer natural period T 0 = 0.111 s of Table 1 and the natural value λ FR, 1 = 0.01949 of Table 4, the primary natural period of System-DFR and System-FR is expressed as T FR, 1 = It is calculated as 0.795 s. As shown in the previous section, the primary natural period of System-F is calculated as T F, 1 = 0.88 s. From the figure, it can be seen that these two natural periods agree well with the experimental results.

c)ダッシュポットによる粘性減衰定数
前節の粘性減衰装置の諸元で述べたが、模型のせん断構造体Fには粘性減衰装置Aを設置できるが、せん断構造体Rには減衰装置Aを設置できないので、模型においてはSystem−DFRとSystem−FRのダッシュポットcの配置を再現できない。模型のダッシュ

Figure 0005339406
Figure 0005339406
Figure 0005339406
c) Viscosity damping constant by dashpot As described in the specifications of the viscous damping device in the previous section, the viscous damping device A can be installed in the model shear structure F, but the damping device A cannot be installed in the shear structure R. so it can not reproduce the arrangement of the dashpot c a of System-DFR and System-FR in the model. Model dash
Figure 0005339406
Figure 0005339406
Figure 0005339406

Figure 0005339406
の粘性減衰定数ζFR−c,iと層粘性減衰定数ζの比を次式で近似する。
Figure 0005339406
Figure 0005339406
Figure 0005339406
The ratio of the viscous damping constant ζ FR-c, i to the layer viscous damping constant ζ 0 is approximated by the following equation.
Figure 0005339406
Figure 0005339406

表4は縮小模型におけるSystem−FRとSystem−DFRの粘性減衰定数を振動理論に基づいて計算するために必要な諸量と計算結果をまとめたものである。

Figure 0005339406
Table 4 summarizes various quantities and calculation results necessary for calculating the viscous damping constants of System-FR and System-DFR in the reduced model based on the vibration theory.
Figure 0005339406

層粘性減衰定数ζはm=4.2kgとk=13.5kN/mおよびc=50.4Ns/mの条件で計算した。粘

Figure 0005339406
と梁の接合部で失われるエネルギー起因する構造減衰は含まれていない。よって、図26で示したSystem−F0の振動実験により得られた粘性減衰定数ζFO,1=0.002を構造減衰として考慮し、これを表4に併記する。The layer viscous damping constant ζ 0 was calculated under the conditions of m A = 4.2 kg, k A = 13.5 kN / m and c A = 50.4 Ns / m. Sticky
Figure 0005339406
It does not include structural damping due to energy lost at the beam joint. Therefore, the viscous damping constant ζ FO, 1 = 0.002 obtained by the vibration experiment of System-F0 shown in FIG. 26 is considered as structural damping, and this is also shown in Table 4.

図28は、System−DFRとSystem−FRおよびSystem−Fについて、振動模型の自由振動記録から算出した1波形毎の粘性減衰定数と振幅の関係を、模型の構造減衰を考慮した理論値と比較したものである。着目点は模型の上端の梁5とローラー上の梁10である。System−Fの粘性減衰定数は振幅に関わらず約1.9%である。構造減衰は約0.2%なので、ダッシュポットcによる粘性減衰定数は約1.7%である。System−FRの減衰定数は無次元振幅が1/100程度において約2%であり、振幅が小さくなるに従い徐々に減衰定数が大きくなる。これはクーロン摩擦力を含む振動系の特徴が現れたものである。理論値と実験値は一致しているので、本実施形態のせん断構造体においては、ローラーの転がり抵抗による減衰は、クーロン摩擦力を用いた数26bによる等価粘性減衰として評価することが可能であると考えられる。ただし、実験で用いたローラーガイドの動摩擦係数は非常に小さいので、動摩擦係数が大きくなる場合には検討が必要と考えられる。System−DFRの減衰定数は10%から7%に分布しているが、振幅が小さいところでは減衰が大きく、振幅が大きくなると減衰が小さくなる傾向が見られる。実験値は理論値に比べて約10〜15%小さいものの、減衰定数と振幅の関係は定性的に一致している。理論値が実験値を下回る理由は、非比例減衰を対角近似により比例減衰とする粘性減衰定数の評価法にあると考えられる。FIG. 28 shows the relationship between the viscous damping constant and the amplitude of each waveform calculated from the free vibration recording of the vibration model for System-DFR, System-FR, and System-F with the theoretical value considering the structural damping of the model. It is a thing. The points of interest are the beam 5 at the upper end of the model and the beam 10 on the roller. The viscosity damping constant of System-F is about 1.9% regardless of the amplitude. Structural damping is because about 0.2%, viscous damping constant by dashpot c A is about 1.7%. The attenuation constant of System-FR is about 2% when the dimensionless amplitude is about 1/100, and the attenuation constant gradually increases as the amplitude decreases. This is a manifestation of the characteristics of the vibration system including the Coulomb friction force. Since the theoretical value and the experimental value agree with each other, in the shearing structure of the present embodiment, the attenuation due to the rolling resistance of the roller can be evaluated as the equivalent viscous damping due to Equation 26b using the Coulomb friction force. it is conceivable that. However, since the dynamic friction coefficient of the roller guide used in the experiment is very small, it is considered that examination is necessary when the dynamic friction coefficient becomes large. The attenuation constant of System-DFR is distributed from 10% to 7%, but the attenuation is large where the amplitude is small, and the attenuation tends to decrease as the amplitude increases. Although the experimental value is about 10 to 15% smaller than the theoretical value, the relationship between the attenuation constant and the amplitude is qualitatively consistent. The reason why the theoretical value is lower than the experimental value is considered to be the evaluation method of the viscous damping constant in which the non-proportional damping is proportional to the diagonal approximation.

図28において、System−DFRとSystem−FRの減衰定数の差は約5%であり、これはダッシュポットcの水平面配置により増加した減衰である。System−DFRのダッシュポットcとSystem−FRのダッシュポットcの粘性減衰係数の比はτ=0.223であるが、減衰定数の増

Figure 0005339406
の比は約13となる。これは図8で示したダッシュポットcとダッシュポットcによる粘性減衰定数の差にほぼ等しい。また、模型実験におけるダッシュポットcとcの設置数は等しいことから、ダッシュポットに関する提案の水平面配置は、従来の鉛直面配置に比べて、効率的にせん断構造体の減衰を増加させられると考えられる。In Figure 28, the difference between the attenuation constant of System-DFR and System-FR is about 5%, which is the attenuation increased by horizontal arrangement of the dashpot c B. Although the ratio of the viscous damping coefficient of the dashpot c A dashpot c B and System-FR of System-DFR is tau = 0.223, increasing the attenuation constant
Figure 0005339406
The ratio is about 13. Which is approximately equal to the difference between the viscous damping constant by dashpot c B and dashpot c A shown in FIG. Moreover, since the number of installed dashpots c A and c B in the model experiment is the same, the proposed horizontal plane arrangement for the dashpot can increase the attenuation of the shear structure more efficiently than the conventional vertical plane arrangement. it is conceivable that.

(5)固有振動モードに着目した振動台加震実験
図29と図30および図31は、それぞれSystem−DFRとSystem−FRおよびSystem−Fの各々の振動系について、振動台による正弦波加震時の振動模型の定常振動を計測して得られた1次と2次の固有振動モードを、表4の非減衰系の固有ベクトルと比較したものである。この3つの振動系は共に非比例減衰振動系であるため、梁の振幅aで表される振動モードの形状に加えて、振動台の動きを基準とした位相のずれも示している。正の角度が位相の遅れを表し、負の角度が位相の進みを表す。振動台による正弦波加震時

Figure 0005339406
(5) Shaking table shaking experiment focusing on natural vibration mode FIG. 29, FIG. 30 and FIG. 31 show sinusoidal shaking by shaking table for each of the vibration systems of System-DFR, System-FR and System-F, respectively. The first-order and second-order natural vibration modes obtained by measuring the steady-state vibration of the time vibration model are compared with the eigenvectors of the non-damped system shown in Table 4. Since these three vibration systems are non-proportional damped vibration systems, in addition to the shape of the vibration mode represented by the amplitude a i of the beam, a phase shift based on the movement of the vibration table is also shown. A positive angle represents a phase lag and a negative angle represents a phase advance. During sine wave excitation by shaking table
Figure 0005339406

1次固有撮動モードの形状を比較すると、何れの振動系も理論値と良く一致する。表4の固有ベクトルは非減衰振動系であるから、理論上は、粘性減衰装置Bとローラーの影響が無いSystem−Fが表4に示すところの理論値に近くなるものと考えられるが、実験結果はSystem−DFR、System−FR、System−Fの順に理論値との差が大きくなった。1次固有振動モードの位相を比較すると、System−DFRが65〜80°、System−FRが57〜70°、Syetem−Fが169〜175°の位相の遅れを示した。  Comparing the shapes of the primary eigenmotion modes, all vibration systems agree well with the theoretical values. Since the eigenvectors in Table 4 are non-damped vibration systems, it is theoretically considered that System-F without the influence of the viscous damping device B and the roller is close to the theoretical values shown in Table 4, but the experimental results The difference from the theoretical value increased in the order of System-DFR, System-FR, and System-F. Comparing the phases of the primary natural vibration mode, the phase lag was 65 to 80 ° for System-DFR, 57 to 70 ° for System-FR, and 169 to 175 ° for System-F.

2次固有振動モードの振幅を比較すると、何れの振動系も理論値と概ね一致するが、System−Fでは理論値との差が大きい。2次モードの位相は梁の位置により複雑な位相のずれを示し、構造体の固定端から自由端すなわちローラー車体上の梁部に近づくにつれて位相のずれが大きくなる傾向が見られる。しかし、振動系の違いと位相のずれの違いには明確な関係は見出せなかった。なお、2次固有振動モードの固有周期の理論値はTFR,2=0.27sec.である。Comparing the amplitudes of the secondary natural vibration modes, all the vibration systems almost agree with the theoretical values, but the difference from the theoretical values is large in System-F. The phase of the secondary mode shows a complicated phase shift depending on the position of the beam, and the phase shift tends to increase as the beam approaches the free end, that is, the beam portion on the roller vehicle body, from the fixed end of the structure. However, no clear relationship was found between the difference in the vibration system and the difference in phase shift. The theoretical value of the natural period of the secondary natural vibration mode is T FR, 2 = 0.27 sec. It is.

[まとめ]
高層ビルディング等のせん断変形が主となる構造体の耐震性能を向上させるために、下端を基礎に固定した片持ちせん断構造体と下端を基礎上の水平可動支持装置で支持したせん断構造体を互いに上端で結合した長周期の固有振動モードを持つ折り曲がり片持ちせん断構造体と、これを構成する二つのせん断構造体の隣り合う梁・床を互いに水平方向に連結する粘性減衰装置の水平面配置とした。粘性減衰装置を水平面に配置した提案の折り曲がり片持ちせん断構造体の運動方程式と非減衰系の固有値問題を定式化し、非減衰系の固有振動モードの固有周期と形状および粘性減衰定数を理論的に導いた。また、これらの自由振動特性は、小規模で限られた条件の実験の範囲であるが、具体的に模型を用いた振動実験により検証した。その結果、本実施形態のせん断構造体と粘性減衰装置の水平面配置について以下の知見が得られた。
[Summary]
In order to improve the seismic performance of structures such as high-rise buildings where shear deformation is the main, a cantilever shear structure fixed to the lower end and a shear structure supported at the lower end by a horizontally movable support device Bending cantilever shear structure with long-period natural vibration mode coupled at the upper end and horizontal plane arrangement of the viscous damping device that connects the adjacent beams and floors of the two shear structures constituting this horizontally did. Formulate the equation of motion of the proposed bent cantilever shear structure with the viscous damping device in the horizontal plane and the eigenvalue problem of the non-damped system, and theoretically calculate the natural period and shape of the natural vibration mode of the non-damped system and the viscous damping constant. Led to. In addition, these free vibration characteristics are in a small-scale and limited range of experiments, but were specifically verified by vibration experiments using a model. As a result, the following knowledge about the horizontal arrangement of the shear structure and the viscous damping device of the present embodiment was obtained.

(a)本折り曲がり片持ちせん断構造体の1次固有振動モードの固有周期は、同じ階数の下端を固定した従来の片持ちせん断構造体の固有周期の約2倍となる。
(b)粘性減衰装置の水平面配置により、1次固有振動モードの粘性減衰定数は、粘性減衰装置の従来の鉛直面配置に比べて、約13倍に増加した。
(c)模型実験で確認された粘性減衰装置の水平面配置による1次固有振動モードの減衰定数は、対角近似による粘性減衰定数に比べて約10〜15%小さい。
(d)ローラーの転がり抵抗が小さい場合は、これによる減衰をクーロン摩擦力による等価粘性減衰として評価できる。
(A) The natural period of the primary natural vibration mode of the bent cantilever shear structure is about twice the natural period of the conventional cantilever shear structure with the same lower end fixed.
(B) Due to the horizontal plane arrangement of the viscous damping device, the viscous damping constant of the first natural vibration mode increased about 13 times compared to the conventional vertical plane arrangement of the viscous damping device.
(C) The damping constant of the first-order natural vibration mode by the horizontal arrangement of the viscous damping device confirmed in the model experiment is about 10 to 15% smaller than the viscous damping constant by the diagonal approximation.
(D) When the rolling resistance of the roller is small, the damping caused by this can be evaluated as equivalent viscous damping due to Coulomb friction force.

本折り曲がりせん断構造体では、せん断構造体の骨組と基礎による支持形式の変更により固有振動モードの長周期化を達成できるが、水平方向の剛性低下よる変位振幅の増加を伴なう。変位振幅は粘性減衰装置の設置による減衰定数の増加により低減が可能であり、提案の粘性減衰装置の水平面配置は従来の鉛直面配置に比べて効率良く減衰定数を増加することができる。  In this bending shear structure, the natural vibration mode can be lengthened by changing the support structure of the frame and foundation of the shear structure. However, this is accompanied by an increase in displacement amplitude due to a decrease in horizontal rigidity. The displacement amplitude can be reduced by increasing the damping constant by installing the viscous damping device, and the horizontal arrangement of the proposed viscous damping device can increase the damping constant more efficiently than the conventional vertical plane arrangement.

よって、本実施形態の構造体を用いた長周期化による地震力の低減と粘性減衰装置の水平面配置を用いた高減衰化を適切に耐震設計に取り入れることにより、耐震性能の高い構造物を構築することができる。  Therefore, constructing a structure with high seismic performance by properly incorporating seismic force reduction by long period using the structure of this embodiment and high attenuation using horizontal arrangement of the viscous damping device into the seismic design can do.

片持ちせん断構造体(System−CS)の概念説明図。The conceptual explanatory drawing of a cantilever shearing structure (System-CS). 層の動力学特性を定義する振動モデル。A vibration model that defines the dynamic properties of a layer. 由端をローラーで支持された折り曲がり片持ちせん断構造体(System−FR)の概念説明図。The conceptual explanatory drawing of the bending cantilever shear structure (System-FR) by which the end was supported with the roller. System−CSとSystem−FRにおける非減衰系の固有周期と層数nの関係を示す図。The figure which shows the relationship between the natural period of the non-attenuation system in System-CS and System-FR, and the number n of layers. System−FRの非減衰系固有振動モードの一例(α=β=0,n=10)。An example of a non-damped natural vibration mode of System-FR (α = β = 0, n = 10). System−CSとSystem−FRにおける粘性減衰定数と層数nの関係を示す図。The figure which shows the relationship between the viscous damping constant and the number of layers n in System-CS and System-FR. ダッシュポットを水平面に配置する折り曲がり片持ちせん断構造体(System−DFR)の概念説明図。The conceptual explanatory drawing of the bending cantilever shear structure (System-DFR) which arrange | positions a dashpot on a horizontal surface. System−DFRにおける粘性減衰定数と層数nの関係(α=β=0,τ=1)説明図。FIG. 5 is an explanatory diagram of the relationship between the viscosity damping constant and the number of layers n (α = β = 0, τ = 1) in System-DFR. 本実施例に係る耐震性構造物の概念的正面説明図。The conceptual front explanatory drawing of the earthquake-resistant structure which concerns on a present Example. 図9のI−I線断面説明図(a)、図9のII−II線断面説明図(b)、図9のIII−III線断面説明図(c)。9 is a sectional view taken along line II in FIG. 9 (a), a sectional view taken along line II-II in FIG. 9, and a sectional view taken along line III-III in FIG. 9 (c). 水平可動支持装置の平面説明図(a)、同装置の側面説明図(b)。Plane explanatory drawing (a) of a horizontal movable support apparatus, Side explanatory drawing (b) of the apparatus. 減衰装置の平面説明図(a)、同装置の側面説明図(b)。Plane explanatory drawing (a) of an attenuation device, Side explanatory drawing (b) of the same device. すべり摩擦型水平可動支持装置の平面説明図(a)、同装置の側面説明図(b)。Plan explanatory drawing (a) of a sliding friction type horizontal movable support apparatus, Side explanatory drawing (b) of the apparatus. 減衰装置の断面側面説明図(a)、同装置の底面説明図(b)。Cross-sectional side view (a) of the damping device, bottom view (b) of the device. 床用伸縮装置の平面説明図(a)、同装置の断面側面説明図(b)。Plane explanatory drawing (a) of the expansion-contraction apparatus for floors, and sectional side surface explanatory drawing (b) of the same apparatus. 外壁用伸縮装置の内側から外側を見た側面説明図(a)、同装置の断面底面説明図(b)。Side surface explanatory drawing (a) which looked at the outer side from the inner side of the expansion device for outer walls, and cross-sectional bottom surface explanatory drawing (b) of the same apparatus. 折り曲がり片持ちせん断構造体模型の外観説明図(自由端に水平荷重が作用する時の変形の様子を示す)。External appearance explanatory drawing of a bending cantilever shear structure model (showing the deformation when a horizontal load acts on the free end). 粘性減衰装置の横断面配置説明図。Cross-sectional arrangement explanatory drawing of a viscous damping device. 図14のa部拡大説明図。The a section expansion explanatory drawing of FIG. 水平可動支持装置の分解説明図。Exploded view of the horizontal movable support device. ローラー車体の動摩擦係数のグラフ。A graph of the dynamic friction coefficient of a roller body. 粘性減衰装置Aの拡大説明図。Expansion explanatory drawing of the viscosity damping device A. FIG. 粘性減衰装置Bの拡大説明図。Expansion explanatory drawing of the viscosity damping device B. FIG. 粘性減衰装置の基本寸法説明図。Basic dimension explanatory drawing of a viscous damping device. 自由端に作用する水平荷重と水平変位の関係を示す図。The figure which shows the relationship between the horizontal load and horizontal displacement which act on a free end. System−F0の1次固有周期と粘性減衰定数の関係を示す図。The figure which shows the relationship between the primary natural period of System-F0, and a viscous damping constant. ダッシュポットとローラーに着目した固有周期の比較。Comparison of natural periods focusing on dashpots and rollers. ダッシュポットとローラーに着目した粘性減衰定数の比較。Comparison of viscous damping constant focusing on dashpot and roller. System−DFRの固有振動モード。System-DFR natural vibration mode. System−FRの固有振動モード。The natural vibration mode of System-FR. System−Fの固有振動モード。System-F natural vibration mode.

符号の説明Explanation of symbols

ST 耐震性構造物
DFR 折り曲がり片持ちせん断構造体
F 固定端側せん断構造体
R 自由端側せん断構造体
L すべり摩擦型水平可動支持装置
M 水平可動支持装置
Na 減衰装置(粘性減衰装置)
Nb 減衰装置(オイルダンパー)
FE 床用伸縮装置
WE 外壁用伸縮装置
A,B 粘性減衰装置
10 下部構造
11 上部構造
12 固定端側階層部
13 折曲部形成階層
14 自由端側階層部
15 柱部
16 梁部(もしくは床部)
17 柱部
18 梁部(もしくは床部)
19 梁部(もしくは床部)
ST Seismic structure DFR Bending cantilever shear structure F Fixed end side shear structure R Free end side shear structure L Sliding friction type horizontal movable support device M Horizontal movable support device Na Damping device (viscous damping device)
Nb damping device (oil damper)
FE Floor expansion device WE External wall expansion device A, B Viscous damping device 10 Lower structure 11 Upper structure 12 Fixed end side layer portion 13 Bent portion formation layer 14 Free end side layer portion 15 Column portion 16 Beam portion (or floor portion) )
17 Column 18 Beam (or floor)
19 Beam (or floor)

Claims (6)

下部構造の上に上部構造を支持させると共に、同上部構造は、主に骨組み構造で主たる鉛直荷重と水平荷重に抵抗する構造物であって、
上部構造は、固定端側となる最下層階を下部構造に固定させた複数の階層からなる固定端側階層部と、同固定端側階層部の上層階を形成する折曲部形成階層と、同折曲部形成階層が上層階を形成すると共に自由端側となる最下層階を下部構造に水平可動支持装置を用いて水平移動自在に支持させた複数の階層からなる自由端側階層部とから、上方に突状に折り曲げた一体の折り曲がり片持ちせん断構造体となし
少なくとも一対の折り曲がり片持ちせん断構造体を、固定端側階層部が外方に且つ自由端側階層部が内方に位置するように配設すると共に、自由端側階層部同士を一体となしたことを特徴とする耐震性構造物。
The upper structure is supported on the lower structure, and the upper structure is a structure that mainly resists vertical and horizontal loads mainly in a framework structure,
The upper structure is composed of a fixed end side hierarchical portion composed of a plurality of layers in which the lowermost floor on the fixed end side is fixed to the lower structure, and a bent portion forming layer forming the uppermost floor of the fixed end side hierarchical portion. The free end side layer composed of a plurality of layers in which the bent portion forming layer forms the uppermost floor and the lowermost floor which is the free end side is supported by the lower structure so as to be horizontally movable using a horizontal movable support device. And an integral bent cantilever shear structure that is bent upward and protruding upward ,
At least a pair of bent cantilever shear structures are arranged such that the fixed end side layer portion is located outward and the free end side layer portion is located inward, and the free end side layer portions are integrated with each other. earthquake resistance structure, characterized in that the.
折り曲がり片持ちせん断構造体を放射状に配設すると共に、周方向に隣接する固定端側階層部同士を一体に連設して、自由端側階層部を囲繞する筒状となして構成したことを特徴とする請求項1記載の耐震性構造物。 The bent cantilever shear structure is arranged radially, and the fixed-end side layer portions adjacent in the circumferential direction are integrally connected to form a cylindrical shape surrounding the free-end side layer portion. The earthquake-resistant structure according to claim 1. 自由端側階層部の最下層階と下部構造との間に減衰装置を介設したことを特徴とする請求項1又は2記載の耐震性構造物 The earthquake-resistant structure according to claim 1 or 2 , wherein a damping device is interposed between the lowest floor of the free end side layer and the lower structure. 固定端側階層部と自由端側階層部との対向する階層の内、少なくとも一組の対向する階層同士間又は対向する片持ち梁部(もしくは片持ち床部)同士間に減衰装置を介設して、同減衰装置により固定端側階層部と自由端側階層部を水平に連結したことを特徴とする請求項1〜3のいずれか1項記載の耐震性構造物 Attenuator is interposed between at least one pair of facing layers or between facing cantilever portions (or cantilever floor portions) of the facing layers of the fixed end side layer portion and the free end side layer portion. The earthquake resistant structure according to any one of claims 1 to 3, wherein the fixed end side layer portion and the free end side layer portion are horizontally connected by the damping device . 固定端側階層部と自由端側階層部との対向する階層の内、少なくとも一組の対向する階層同士の梁部(もしくは床部)からそれぞれ片持ち梁部(もしくは片持ち床部)を延伸させ、対向する片持ち梁部(もしくは片持ち床部)同士間に床用伸縮装置を介設して、同床用伸縮装置により固定端側階層部と自由端側階層部との水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞したことを特徴とする請求項1〜4のいずれか1項記載の耐震性構造物。 Extending the cantilever part (or cantilever floor part) from the beam part (or floor part) of at least one pair of opposing layers among the opposing layers of the fixed end side layer part and the free end side layer part. The floor extension device is interposed between the opposing cantilever portions (or cantilever floor portions), and the horizontal relative displacement between the fixed end side layer portion and the free end side layer portion by the floor extension device. The earthquake-resistant structure according to any one of claims 1 to 4, wherein a gap that absorbs water is closed in a horizontally stretchable manner. 固定端側階層部と自由端側階層部との対向する側面外壁部または側面外壁を取り付ける下地骨組部を水平方向に延伸させ、対向する側面外壁部同士間、対向する下地骨組部同士間、又は、対向する側面外壁部と下地骨組部の間に外壁用伸縮装置を介設して、同外壁用伸縮装置により固定端側階層部と自由端側階層部の水平相対変位を吸収する間隙を水平方向に伸縮自在に閉塞したことを特徴とする請求項1〜5のいずれか1項記載の耐震性構造物。 The base frame part to which the side outer wall part or the side outer wall facing the fixed end side layer part and the free end side layer part is attached is extended in the horizontal direction, between the facing side wall parts, between the facing base frame parts, or The outer wall expansion / contraction device is interposed between the opposing side wall and base frame, and the outer wall expansion / contraction device absorbs the horizontal relative displacement between the fixed end side layer portion and the free end side layer portion horizontally. The earthquake-resistant structure according to any one of claims 1 to 5, wherein the earthquake-resistant structure is closed so as to be stretchable in a direction .
JP2008160969A 2008-05-22 2008-05-22 Seismic structure Expired - Fee Related JP5339406B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008160969A JP5339406B2 (en) 2008-05-22 2008-05-22 Seismic structure
PCT/JP2009/053775 WO2009142040A1 (en) 2008-05-22 2009-02-20 Earthquake-proof structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160969A JP5339406B2 (en) 2008-05-22 2008-05-22 Seismic structure

Publications (2)

Publication Number Publication Date
JP2009281125A JP2009281125A (en) 2009-12-03
JP5339406B2 true JP5339406B2 (en) 2013-11-13

Family

ID=41339979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160969A Expired - Fee Related JP5339406B2 (en) 2008-05-22 2008-05-22 Seismic structure

Country Status (2)

Country Link
JP (1) JP5339406B2 (en)
WO (1) WO2009142040A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015552B (en) * 2011-09-22 2014-11-05 同济大学 Shock and breakage preventive deformation recording type buckling restrained brace and manufacturing method thereof
JP6391359B2 (en) * 2014-08-19 2018-09-19 三菱重工機械システム株式会社 Seismic performance verification test method for seismic control tower structure
JP6689002B2 (en) * 2016-01-13 2020-04-28 清水建設株式会社 Mass / rigidity distribution setting method for building soundness determination and mass / rigidity distribution setting system for building soundness determination

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3115586B2 (en) * 1990-10-31 2000-12-11 オイレス工業株式会社 Three-dimensional seismic isolation device for structures using spherical rubber bearings
JP3425609B2 (en) * 1995-10-20 2003-07-14 株式会社竹中工務店 Seismic isolation method for structures and seismic isolation structures
JP3677712B2 (en) * 1998-02-23 2005-08-03 清水建設株式会社 Seismic isolation and control building
JP3381066B2 (en) * 2000-10-18 2003-02-24 清水建設株式会社 Existing building seismic isolation method and seismic isolation building
JP4836340B2 (en) * 2001-03-06 2011-12-14 株式会社竹中工務店 Seismic isolation structure using a connected seismic control device
JP4706958B2 (en) * 2005-04-12 2011-06-22 清水建設株式会社 Seismic isolation structure

Also Published As

Publication number Publication date
WO2009142040A1 (en) 2009-11-26
JP2009281125A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Anajafi et al. Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations
Zhu et al. Optimum connecting dampers to reduce the seismic responses of parallel structures
Hochrainer et al. Control of tall building vibrations by sealed tuned liquid column dampers
Jangid Stochastic seismic response of structures isolated by rolling rods
Mazza et al. Sensitivity to modelling and design of curved surface sliding bearings in the nonlinear seismic analysis of base-isolated rc framed buildings
Ismail et al. An innovative isolation bearing for motion-sensitive equipment
Zhang et al. Theoretical analysis and experimental research on toggle-brace-damper system considering different installation modes
JP5339406B2 (en) Seismic structure
Villaverde Aseismic roof isolation system: Feasibility study with 13-story building
Reiterer et al. Bi-axial seismic activation of civil engineering structures equipped with tuned liquid column dampers
Wang et al. Controllable outrigger damping system for high rise building with MR dampers
Dong et al. Development of a long-period vertical base isolation device with variable stiffness for steel frame structures
Rama Raju et al. Experimental studies on seismic performance of three‐storey steel moment resisting frame model with scissor‐jack‐magnetorheological damper energy dissipation systems
JP4491533B1 (en) Swing-isolated building
Symans Seismic protective systems: seismic isolation
Mazza et al. Effects of site condition in near-fault area on the nonlinear response of fire-damaged base-isolated structures
Tornello et al. Base-isolated building with high-damping spring system subjected to near fault earthquakes
Mishra Application of tuned mass damper for vibration control of frame structures under seismic excitations
Hussain et al. Analysis and Comparison of High Rise Structure with Base Isolation and Dampers
Pasala Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices
Villaverde Implementation study of aseismic roof isolation system in 13-story building
JP5088617B2 (en) Vibration reduction mechanism
Hidayaty et al. Numerical analysis of viscous wall dampers on steel frame
Wijaya et al. Earthquake Response Of Modified Folded Cantilever Shear Structure With Fixed-Movable-Fixedsub-Frames
JPH0478785B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees