JP3115586B2 - Three-dimensional seismic isolation device for structures using spherical rubber bearings - Google Patents

Three-dimensional seismic isolation device for structures using spherical rubber bearings

Info

Publication number
JP3115586B2
JP3115586B2 JP02293973A JP29397390A JP3115586B2 JP 3115586 B2 JP3115586 B2 JP 3115586B2 JP 02293973 A JP02293973 A JP 02293973A JP 29397390 A JP29397390 A JP 29397390A JP 3115586 B2 JP3115586 B2 JP 3115586B2
Authority
JP
Japan
Prior art keywords
compressed air
upper structure
floor
rubber
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02293973A
Other languages
Japanese (ja)
Other versions
JPH04171338A (en
Inventor
郁夫 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP02293973A priority Critical patent/JP3115586B2/en
Publication of JPH04171338A publication Critical patent/JPH04171338A/en
Application granted granted Critical
Publication of JP3115586B2 publication Critical patent/JP3115586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 イ.発明の目的 〔産業上の利用分野〕 この発明は、水平並びに鉛直方向の3次元的に免震及
び除振を図るいわゆる3次元免震装置に関し、特には、
微振動に敏感なオフィースオートメーション機器(OA機
器)あるいは超精密製造設備等のいわゆる嫌振動機器を
載置し、かつこれらの嫌振動機器を地震等による振動か
ら保護する床構造に適用して好適な構造物用3次元免震
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention [Industrial Application Field] The present invention relates to a so-called three-dimensional seismic isolation device for horizontal and vertical three-dimensional seismic isolation and vibration isolation.
It is suitable for mounting so-called anti-vibration equipment such as office automation equipment (OA equipment) or ultra-precision manufacturing equipment that is sensitive to micro-vibration, and suitable for floor structures that protect these anti-vibration equipment from vibrations caused by earthquakes. The present invention relates to a three-dimensional seismic isolation device for structures.

〔従来の技術〕[Conventional technology]

この種の構造物用3次元免震装置を利用した免震構造
として特開平2−47477号(以下、「公知技術」とい
う)が提案されている。
Japanese Patent Application Laid-Open No. 2-47477 (hereinafter referred to as "known technology") has been proposed as a seismic isolation structure using a three-dimensional seismic isolation device for a structure of this type.

該公知技術の免震構造は、基礎と床下面との間に、積
層ゴム体と空気ばねとからなる三次元緩衝装置を備える
とともに、粘性流体を装入した固定受台を基礎上に設
け、前記固定受台内の粘性流体に浸した水平抵抗板を有
しかつ、該水平抵抗板と一体的に上方に筒状容器を形成
し、該筒状容器内に挿入した垂直部材を前記床に固定し
てなる減衰装置を設けた、ことを特徴とする。
The seismic isolation structure of the prior art includes a three-dimensional shock absorber composed of a laminated rubber body and an air spring between the foundation and the lower surface of the floor, and a fixed cradle charged with a viscous fluid is provided on the foundation, It has a horizontal resistance plate immersed in a viscous fluid in the fixed receiving table, and forms a cylindrical container integrally with the horizontal resistance plate, and a vertical member inserted into the cylindrical container is mounted on the floor. A fixed damping device is provided.

しかして、この公知技術は、積層ゴム体と空気ばねと
からなる3次元緩衝装置を使用しているが、構造が複数
であるばかりでなく、振動を長周期化するためには積層
ゴム体の断面積を小さくするか、丈高を高くするか、も
しくは上部構造(床)の荷重を上げるかする必要があ
る。しかしながら、断面積を小さくすると、上部構造
(床)を支持する上で不安定となり座屈のおそれがあ
り、また、丈高を高くすると、前記同様不安定で座屈の
おそれがあるとともに、床を支持する上で床の位置が高
くなり、居住スペースが減少して好ましくない。更にま
た、上部構造の荷重を上げることは床を支持する場合限
度があり、長周期化は難しい。
According to this known technique, a three-dimensional shock absorber composed of a laminated rubber body and an air spring is used. However, not only a plurality of structures but also a longer period of vibration is required for the laminated rubber body. It is necessary to reduce the cross-sectional area, increase the height, or increase the load on the superstructure (floor). However, if the cross-sectional area is reduced, it becomes unstable in supporting the upper structure (floor), and buckling may occur. If the height is increased, the buckling may become unstable and buckling as described above. This is not preferable because the floor position becomes high in supporting the living room and the living space is reduced. Furthermore, increasing the load of the superstructure has a limit in supporting the floor, and it is difficult to increase the period.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記実情に鑑みなされたものであって、この
種の面震装置において、比較的簡単な構成で、丈高を低
く抑えることができ、かつ、床レベルの変動の調整を容
易にできる構造物用3次元免震装置を提供することを目
的とする。
The present invention has been made in view of the above-described circumstances, and in this type of seismic device, the height can be reduced with a relatively simple configuration, and the fluctuation of the floor level can be easily adjusted. An object of the present invention is to provide a three-dimensional seismic isolation device for a structure.

本発明は更に、この構造物用3次元免震装置を使用し
てなされる免震方法を提供することも他の目的とする。
It is another object of the present invention to provide a seismic isolation method performed by using the three-dimensional seismic isolation device for a structure.

ロ.発明の構成 〔問題点を解決するための手段〕 本発明は上記の目的を達成するために次の構成を採
る。
B. Configuration of the Invention [Means for Solving the Problems] The present invention employs the following configuration to achieve the above object.

第1番目の発明は構造物用3次元免震装置であって、
請求項1に記載のとおり、建造物内において、嫌振動機
器を載置する床構造の上部構造と該床構造を支持する床
体の下部構造との間に、前記上部構造の荷重に対応して
圧縮空気が封入されるとともに内部に封入された圧縮空
気の空気圧作用により該上部構造を水平を維持しつつ転
動支持するゴム球体を主体とする球状ゴム支承が該上部
構造を自立的に支持するように複数箇所にわたって介装
設置されるとともに、前記ゴム球体に接続された空気導
管を介して圧縮空気が圧縮空気源より圧縮空気量を調整
しつつ持続的に供給され、上部構造と下部構造との相対
移動に付き、該相対移動の運動を減衰させる減衰装置
と、コイルばね体のばね作用により移動した上部構造を
元の位置に復帰させる復元装置とを前記球状ゴム支承と
は別位置に配してなることを特徴とする。
The first invention is a three-dimensional seismic isolation device for a structure,
As described in claim 1, in a building, a load corresponding to the load of the upper structure is provided between an upper structure of a floor structure on which the anti-vibration device is mounted and a lower structure of a floor supporting the floor structure. A spherical rubber bearing mainly composed of rubber spheres that rolls and supports the upper structure while maintaining the level of the upper structure by the pneumatic action of the compressed air enclosed therein and independently supports the upper structure. The compressed air is continuously supplied from a compressed air source while adjusting the amount of compressed air through an air conduit connected to the rubber spheres. A damping device for attenuating the movement of the relative movement, and a restoring device for returning the upper structure moved by the spring action of the coil spring body to the original position, at a position different from the spherical rubber bearing. Please arrange It is characterized in.

上記構成において、空気導管の途中に圧縮空気の給
排気の切換えをなす調整弁を介装すること、上記に
加えて上部構造に配されたレベルセンサの信号を受けて
調整弁を自動制御すること、は適宜なされる選択的事項
である。
In the above configuration, an adjusting valve for switching the supply and exhaust of compressed air is interposed in the middle of the air conduit, and in addition to the above, the adjusting valve is automatically controlled in response to a signal from a level sensor disposed on the upper structure. , Are optional choices made as appropriate.

第2番目の発明は同じく構造物用3次元免震装置であ
って、請求項4に記載のとおり、建造物内において、嫌
振動機器を載置する床構造の上部構造と該床構造を支持
する床体の下部構造との間に、前記上部構造の荷重に対
応して圧縮空気が封入されるとともに内部に封入された
圧縮空気の空気圧作用により該上部構造を水平を維持し
つつ転動支持するゴム球体を主体とする球状ゴム支承が
該上部構造を自立的に支持するように複数箇所にわたっ
て介装設置され、前記ゴム球体には空気導管が接続され
るとともに、該空気導管の途中に圧縮空気の給排気の切
換えをなす調整弁が介装され、該空気導管を介して圧縮
空気が圧縮空気源より圧縮空気量を調整しつつ持続的に
供給され、前記調整弁は上部構造に配されたレベルセン
サの信号を受けて前記ゴム球体への圧縮空気の供給量を
調整し、上部構造と下部構造との相対移動に付き、該相
対移動の運動を減衰させる減衰装置と、コイルばね体の
ばね作用により移動した上部構造を元の位置に復帰させ
る復元装置とを前記球状ゴム支承とは別位置に配してな
ることを特徴とする。
The second invention is also a three-dimensional seismic isolation device for a structure, and as described in claim 4, in a building, an upper structure of a floor structure on which anti-vibration equipment is mounted and supports the floor structure. Compressed air corresponding to the load of the upper structure is filled between the lower structure of the floor and the upper structure, and the upper structure is supported horizontally by the air pressure of the compressed air sealed therein. Spherical rubber bearings mainly composed of rubber spheres are interposed and installed at a plurality of locations so as to independently support the upper structure, and an air conduit is connected to the rubber spheres and compressed in the middle of the air conduit. A regulating valve for switching the supply and exhaust of air is interposed, and compressed air is continuously supplied from the compressed air source while regulating the amount of compressed air through the air conduit, and the regulating valve is disposed on the upper structure. Before receiving the level sensor signal A damping device that adjusts the amount of compressed air supplied to the rubber sphere and attenuates the relative movement between the upper structure and the lower structure, and an upper structure that is moved by the spring action of the coil spring body. And a restoring device for returning to the position described above is arranged at a position different from the spherical rubber bearing.

第3番目の発明は第1番目の構造物用3次元免震装置
を使用してなされる免震方法であって、請求項5に記載
のとおり、建造物内において嫌振動機器を載置する床構
造の上部構造と該床構造に支持する床体の下部構造との
間に、前記上部構造の荷重に対応して圧縮空気が封入さ
れるとともに内部に封入された圧縮空気の空気圧作用に
より該上部構造を水平を維持しつつ転動支持するゴム球
体を主体とする球状ゴム支承が該上部構造を自立的に支
持するように複数箇所にわたって介装設置されるととも
に、前記ゴム球体に接続された空気導管を介して圧縮空
気が圧縮空気源より圧縮空気量を調整しつつ持続的に供
給され、上部構造と下部構造との相対移動を減衰させる
減衰装置と、コイルばね体のばね作用により移動した上
部構造を元の位置に復帰させる復元装置とを前記球状ゴ
ム支承とは別位置に配してなる構造物用3次元免震装置
を使用し、振動外力により上部構造物に惹起される3次
元的振動変位を吸収することを特徴とする。
The third invention is a seismic isolation method using the first three-dimensional seismic isolation device for a structure, wherein the anti-vibration device is placed in a building as described in claim 5. Compressed air is filled between the upper structure of the floor structure and the lower structure of the floor body supported by the floor structure in accordance with the load of the upper structure, and the compressed air sealed in the inside of the floor structure acts on the compressed air. Spherical rubber bearings mainly composed of rubber spheres that roll and support the upper structure while maintaining the level are interposed and installed at a plurality of locations so as to independently support the upper structure, and are connected to the rubber spheres. The compressed air is continuously supplied from the compressed air source through the air conduit while adjusting the amount of compressed air, and is moved by a damping device for damping a relative movement between the upper structure and the lower structure, and a spring action of the coil spring body. Superstructure in place Using a three-dimensional seismic isolation device for a structure in which a restoring device to be returned is arranged at a position different from the spherical rubber bearing, and absorbing three-dimensional vibration displacement caused in the upper structure by an external vibration force. It is characterized by.

〔作用〕[Action]

上部構造の荷重は球状ゴム支承のゴム球体によって支
持され、上部構造の水準は該ゴム球体に封入される圧縮
空気圧及びその空気量の調整によって一定に保持され
る。
The load of the superstructure is supported by the rubber sphere of the spherical rubber bearing, and the level of the superstructure is kept constant by adjusting the compressed air pressure and the amount of air to be sealed in the rubber sphere.

地震動あるいは通過交通振動等により上部構造が3次
元的に振動すると、その水平変位成分はゴム球体の転が
りにより許容され、また、その鉛直変位成分はゴム球体
の弾性変位により許容される。
When the upper structure vibrates three-dimensionally due to seismic motion or passing traffic vibration, the horizontal displacement component is allowed by the rolling of the rubber sphere, and the vertical displacement component is allowed by the elastic displacement of the rubber sphere.

一方、減衰装置によりこの3次元的振動は減衰され、
復元装置のばね体の弾性エネルギーにより元の位置に復
する力が働き、上部構造の振動は速やかに吸収される。
更に、ばね体はコイルばねを使用することにより特性が
明確であり、そのばね定数を適宜に定めることにより構
造物系の振動を所望の長周期に設定される。
On the other hand, this three-dimensional vibration is damped by the damping device,
A force for returning to the original position is exerted by the elastic energy of the spring body of the restoring device, and the vibration of the upper structure is quickly absorbed.
Furthermore, the characteristics of the spring body are clear by using a coil spring, and the vibration of the structural system is set to a desired long period by appropriately setting the spring constant.

〔実施例〕〔Example〕

本発明の構造物用3次元免震装置の実施例を図面に基
づいて説明する。
An embodiment of a three-dimensional seismic isolation device for a structure according to the present invention will be described with reference to the drawings.

(実施例の構成) 第1図〜第4図は建物内の床構造に適用したその一実
施例の構造物用3次元免震装置を示す。すなわち、建物
内の一区画内にOA機器等の嫌振動機器を載置する床構造
を設置し、該床構造をこの3次元免震装置により動的に
支持するものであり、第1図は免震装置の全体構成を示
し、第2図はその平面配置を示し、第3図及び第4図は
その部分構造を示す。
(Structure of Embodiment) FIGS. 1 to 4 show a three-dimensional seismic isolation device for a structure according to an embodiment applied to a floor structure in a building. That is, a floor structure for mounting anti-vibration equipment such as OA equipment is installed in one section of a building, and the floor structure is dynamically supported by this three-dimensional seismic isolation device. 2 shows the overall configuration of the seismic isolation device, FIG. 2 shows its plan layout, and FIGS. 3 and 4 show its partial structure.

第1図及び第2図に示すように、本実施例の構造物用
3次元免震装置は、建物の床体Bと床構造Fとの間に介
装され、床構造Fを自立的に支えるように配されてなる
球状ゴム支承1と、粘性せん断抵抗を利用した減衰部2
と復帰ばねを主体とする復元部3との組合わせからなる
減衰・復元装置4と、を主要構成部として含み、更に
は、球状ゴム支承1から配設される空気導管6と、該空
気導管6の端部に配される圧縮空気供給部7とからなる
圧縮空気供給系統を含む。
As shown in FIGS. 1 and 2, the three-dimensional seismic isolator for a structure according to the present embodiment is interposed between a floor B of a building and a floor F, so that the floor F is self-supporting. Spherical rubber bearing 1 arranged to support and damping part 2 using viscous shear resistance
And a damping / restoring device 4 composed of a combination of a restoring portion 3 mainly composed of a return spring, and an air conduit 6 provided from the spherical rubber bearing 1; 6 and a compressed air supply unit 7 arranged at an end of the compressed air supply system.

図における床構造Fはフリーアクセス床を構成し、床
フレーム100と、該床フレーム100上に設置される支持体
102と、該支持体102の頂部に載置される床パネル104
と、からなる。該フリーアクセス床はその上面に種々の
機器が載置されるものであるので、比較的大きな重量性
を有する。
The floor structure F in the figure constitutes a free access floor, and includes a floor frame 100 and a support member installed on the floor frame 100.
102 and a floor panel 104 placed on top of the support 102
And consisting of The free access floor has a relatively large weight because various devices are placed on the upper surface thereof.

床フレーム100は横梁106と縦梁108とから格子状に組
まれ、相隣れる縦梁108相互間には小梁110が横梁106に
平行して架設される。なお支持体102は場合により省略
されるものであり、床パネル104を床フレーム100に直接
載置してもよく、また、床パネル104も大型板を使用し
て差し支えなく、本発明にとって本質的な事項ではな
い。
The floor frame 100 is assembled in a lattice shape from a horizontal beam 106 and a vertical beam 108, and a small beam 110 is installed between the adjacent vertical beams 108 in parallel with the horizontal beam 106. Note that the support 102 is omitted in some cases, and the floor panel 104 may be directly mounted on the floor frame 100, and the floor panel 104 may use a large plate, which is essential to the present invention. Not a matter.

以下、この3次元免震装置の各部の構成について詳述
する。
Hereinafter, the configuration of each part of the three-dimensional seismic isolation device will be described in detail.

球状ゴム支承1は中空のゴム球体10を主体とし、該ゴ
ム球状10が床体Bに固設された下部支承板11と床構造F
の下面に固設された上部支承板12との間に配される。下
部・上部支承板11,12は硬質素材よりなり、その上下面1
1a,12aは平坦面に形成される。
The spherical rubber bearing 1 is mainly composed of a hollow rubber sphere 10, and the rubber sphere 10 has a lower bearing plate 11 fixed to a floor B and a floor structure F.
Between the upper support plate 12 fixed to the lower surface of the base plate. The lower and upper bearing plates 11, 12 are made of hard material,
1a and 12a are formed on a flat surface.

第3図は球状ゴム支承部1の詳細構造を示す。 FIG. 3 shows the detailed structure of the spherical rubber bearing 1.

図に示すように、該ゴム球体10は内部に中空部14を有
して厚肉のゴム弾性部15からなり、ゴム弾性部15には中
空部14に連通するチューブ16が貫通状に挿通されてい
る。ゴム弾性部15は単一のゴム素材か、補強繊維入りゴ
ムから形成される。しかして、このゴム球体10には圧縮
空気が封入される。
As shown in the figure, the rubber sphere 10 has a hollow portion 14 inside and is made up of a thick rubber elastic portion 15, and a tube 16 communicating with the hollow portion 14 is inserted through the rubber elastic portion 15 in a penetrating manner. ing. The rubber elastic portion 15 is formed of a single rubber material or rubber containing reinforcing fibers. Thus, compressed air is sealed in the rubber sphere 10.

ゴム球体10は床構造Fを含む上載荷重を受けて弾性変
形し、完全な球体ではなく支承板11,12との当接部には
平坦部が形成される。該ゴム球体10のころがり移動は、
支承板11,12の水平変位lの2分の1となる。
The rubber sphere 10 is elastically deformed by receiving an overload including the floor structure F, and is not a perfect sphere but a flat portion is formed at a contact portion with the support plates 11 and 12. The rolling movement of the rubber sphere 10
It is one half of the horizontal displacement l of the support plates 11,12.

第1図に戻って、ゴム球体10から突出するチューブ16
に空気導管6の一端が接続され、その他端は圧縮空気供
給部7に接続される。該空気導管部6の途中に調整弁18
が介装される。調整弁18は後述するレベルセンサからの
電気信号に基づいて自動制御がなされる場合、電子信号
の駆動信号を受けて切換え駆動される3方弁が採用され
るが、勿論手動式であってもよい。
Returning to FIG. 1, the tube 16 projecting from the rubber ball 10
Is connected to one end of an air conduit 6, and the other end is connected to a compressed air supply unit 7. In the middle of the air conduit section 6, a regulating valve 18 is provided.
Is interposed. When the control valve 18 is automatically controlled based on an electric signal from a level sensor described later, a three-way valve that is switched and driven by receiving a drive signal of an electronic signal is employed. Good.

圧縮空気供給部7は、いわゆる空気圧縮機すなわちコ
ンプレッサが使用される。該圧縮空気供給部7には適
宜、空気タンク8が介装され、圧縮機からの圧縮空気圧
を一時貯留する。
As the compressed air supply unit 7, a so-called air compressor, that is, a compressor is used. An air tank 8 is appropriately interposed in the compressed air supply unit 7 to temporarily store the compressed air pressure from the compressor.

この球状ゴム支承1・空気導管6・圧縮空気供給部7
の圧縮空気供給系統において、床構造Fのレベルセンサ
(図示せず)により床構造Fのレベルが検知され、この
検知信号に基づき処理装置で各調整弁18の切換え量もし
くは開閉量が計算され、調整弁18を作動し、各ゴム球体
10への圧縮空気量の供給量を調整制御する。
This spherical rubber bearing 1, air conduit 6, compressed air supply 7
In the compressed air supply system, the level of the floor structure F is detected by a level sensor (not shown) of the floor structure F, and the processing device calculates the switching amount or the opening / closing amount of each regulating valve 18 based on the detection signal. Activate the adjustment valve 18 and set each rubber ball
Adjust and control the amount of compressed air supplied to 10.

減衰・復元装置4は減衰部2と復元部3との組合わせ
構造よりなり、第4図にその細部の構成を示す。
The damping / restoring device 4 has a combination structure of the damping unit 2 and the restoring unit 3, and FIG. 4 shows a detailed configuration thereof.

すなわち、減衰部2は、円筒状の囲壁をもって上方に
向けて凹部を有し、その凹部に粘性流体Lが充填され床
体Bに固設される鍋状部材20、該鍋状部材20の囲壁の上
縁に摺動可動に載置される蓋体22と該蓋体22に固定保持
されるとともに内部に粘性流体Lを充填した有底の円筒
体23とからなる中間可動体24、及び床構造Fの下面に固
設され、前記可動体24の円筒体23内にすべり機能を有す
る突起部材26を介して挿入される円柱状の垂直部材27、
の各構成要素からなる。
That is, the damping part 2 has a concave portion facing upward with a cylindrical surrounding wall, the concave portion is filled with the viscous fluid L, and the pot-like member 20 fixed to the floor B, the surrounding wall of the pot-like member 20 An intermediate movable body 24 consisting of a lid 22 slidably mounted on the upper edge of the floor and a bottomed cylindrical body 23 fixed and held by the lid 22 and filled with a viscous fluid L therein; A column-shaped vertical member 27 fixed to the lower surface of the structure F and inserted into the cylindrical body 23 of the movable body 24 through a projection member 26 having a sliding function;
Of each component.

そして、鍋状部材20の凹部の底面と円筒体23の底板23
aの下面とは所定のすき間s1に保持され、また、円筒体2
3の内周面と垂直部材27の外周面とは所定のすき間s2に
保持され、これらのすき間s1,s2に粘性流体Lが介在す
る。
Then, the bottom surface of the concave portion of the pot-like member 20 and the bottom plate 23 of the cylindrical body 23
The lower surface of a is held in a predetermined gap s1, and the cylindrical body 2
The inner peripheral surface of 3 and the outer peripheral surface of the vertical member 27 are held in a predetermined gap s2, and the viscous fluid L is interposed in these gaps s1 and s2.

なお、すき間s1の距離は蓋体22によって、すき間s2の
距離は突起部材27によって決められる。
The distance of the gap s1 is determined by the lid 22, and the distance of the gap s2 is determined by the projection member 27.

この構成により、床構造Fが床体Bに対して水平並び
に上下移動したとき、垂直部材27と中間可動体24とは上
下移動を許容し、中間可動体24と鍋状部材20とは水平移
動を許容し、全体として3次元の移動を許容する。
With this configuration, when the floor structure F moves horizontally and vertically with respect to the floor B, the vertical member 27 and the intermediate movable body 24 allow vertical movement, and the intermediate movable body 24 and the pan-shaped member 20 move horizontally. And three-dimensional movement as a whole is allowed.

復元部3は主体とするばね体29をもってこの減衰部2
に連動して設置される。すなわち、ばね体29はコイルば
ねの態様を採り、この減衰部2の回りに放射状に配され
る。
The restoring section 3 has a spring body 29 as a main body,
It is installed in conjunction with. That is, the spring body 29 takes the form of a coil spring, and is arranged radially around the damping portion 2.

もっと詳しくは、該コイルばね29はその一端を減衰部
2の中間可動体24の円筒体23に固設され、他端を床面B
に固定立設した定着部材30に固設される。
More specifically, the coil spring 29 has one end fixed to the cylindrical body 23 of the intermediate movable body 24 of the damping unit 2 and the other end fixed to the floor surface B.
The fixing member 30 is fixedly provided on the fixing member 30.

このばね体29の配置態様に関して、本実施例の放射型
に配する場合には、90゜の等間隔に限らず、120゜間隔
(すなわち3態様)のもの、あるいは72゜間隔(すなわ
ち5個態様)のもの、等適宜の等間隔の放射態様のもの
が採用されうる。また、これらの等間隔でなくても、非
対称配置であっても合力として、0となればよいもので
ある。
Regarding the arrangement of the spring bodies 29, in the case of arranging them in the radial type of the present embodiment, the arrangement is not limited to 90 ° equal intervals, but 120 ° intervals (that is, 3 modes) or 72 ° intervals (that is, 5 pieces). Aspects), etc., may be employed as appropriate at equal intervals. In addition, even if they are not at equal intervals, even if they are arranged asymmetrically, the resultant force only needs to be 0.

更に、ばね体29の他端部は直接的に床構造Fの下面に
固設してもよい。更にまた、1か所における放射態様を
採らず、個々に独立して分散配置され、全体として合力
が0となるように配されればよいものである。
Further, the other end of the spring body 29 may be directly fixed to the lower surface of the floor structure F. Furthermore, it is only necessary that the radiation mode is not adopted at one place, and that the radiation patterns are individually and independently dispersed and arranged so that the resultant force becomes zero as a whole.

この3次元装置を構成する球状ゴム支承1と減衰・復
元装置4とは、例えば第2図に示すように配される。
The spherical rubber bearing 1 and the damping / restoring device 4 constituting this three-dimensional device are arranged, for example, as shown in FIG.

すなわち、本実施例では、該球状ゴム支承1は床構造
Fの四隅に配され、減衰・復元装置4は床構造Fの中央
に配されてなる。しかしながら、球状ゴム支承1は床構
造Fを自立的に支持し得れば足り、少くとも3か所に配
されるが、勿論それ以上であってもよい。また、減衰・
復元装置2も中央の縦梁108(または中央の横梁106)に
対称的に2か所に配してもよい。
That is, in this embodiment, the spherical rubber bearings 1 are arranged at four corners of the floor structure F, and the damping / restoring device 4 is arranged at the center of the floor structure F. However, it is sufficient that the spherical rubber bearing 1 can independently support the floor structure F, and the spherical rubber bearing 1 is arranged at least at three places. In addition, attenuation
The restoration device 2 may also be disposed at two locations symmetrically with respect to the central vertical beam 108 (or the central horizontal beam 106).

しかして、この3次元免震装置上に載置される床構造
F上にOA機器あるいは超精密製造設備等の嫌振動機器が
設置される。
Thus, anti-vibration equipment such as OA equipment or ultra-precision manufacturing equipment is installed on the floor structure F mounted on the three-dimensional seismic isolation device.

(実施例の作用・効果) このように構成された本実施例の3次元免震装置は以
下の機能を発揮する。
(Operation / Effect of Embodiment) The three-dimensional seismic isolation device of this embodiment configured as described above exhibits the following functions.

通常時において、床構造F及びその上に載置されるOA
機器等の荷重は球状ゴム支承1のゴム球体10によって支
持される。
Normally, the floor structure F and the OA placed thereon
The load of the device and the like is supported by the rubber ball 10 of the spherical rubber bearing 1.

床構造上の機器の移動などにより床構造Fの上下ある
いは傾動などが生じようとしたときは、直ちにレベルセ
ンサが作動し、該センサの検出信号に基づき、コンピユ
ータによる処理装置を介して調整弁18を作動してゴム球
体10に対する圧縮空気の吸排気を行い、床構造Fを常に
水平状態に保持するように自動的に調整される。あるい
はまた、調整弁18の手動操作により床構造Fの水平を調
整する。
When the floor structure F is moved up and down or tilted due to movement of the equipment on the floor structure, the level sensor is immediately activated, and based on the detection signal of the sensor, the adjustment valve 18 is controlled via a processing device by a computer. Is operated to suck and discharge compressed air to and from the rubber spheres 10, and the floor structure F is automatically adjusted so as to always maintain a horizontal state. Alternatively, the level of the floor structure F is adjusted by manually operating the adjustment valve 18.

通過交通振動やあるいは床構造F上に設置された機器
によって生じる微振動及び比較的小さな振動(これらは
縦振動が卓越する)は、ゴム球体10によって効果的に除
振される。すなわち、ゴム球体10はゴム弾性部15自体の
弾性力によるほか、ゴム球体10内の圧縮空気圧も相乗的
作用を発揮して縦振動が吸収される。更には、減衰・復
元装置4の減衰部2における円筒体23と垂直部材27との
間隙に充填された粘性流体Lによる粘性せん断抵抗力も
この縦振動の吸収に協働する。
Micro-vibrations and relatively small vibrations (which are dominated by longitudinal vibrations) caused by passing traffic vibrations and / or devices installed on the floor structure F are effectively removed by the rubber spheres 10. That is, in addition to the elastic force of the rubber elastic portion 15 itself, the compressed air pressure in the rubber sphere 10 exerts a synergistic action on the rubber sphere 10 to absorb longitudinal vibration. Further, the viscous shear resistance force of the viscous fluid L filled in the gap between the cylindrical body 23 and the vertical member 27 in the damping portion 2 of the damping / restoring device 4 cooperates with the absorption of the longitudinal vibration.

次に、地震動等の外部からの強大な強制振動力により
建物が揺れると、建物すなわち床体Bと床構造Fとの間
に3次元的な相対変位が生じ、その水平変位は球状ゴム
支承1のゴム球体10の転がりにより許容され、また、そ
の鉛直変位はゴム球体10の弾性変形により許容され、か
つ、本3次元免震装置においてはこれらの変位を妨げる
要素はないので、3次元移動は円滑に許容される。
Next, when the building shakes due to a strong forced vibration force from the outside such as an earthquake motion, a three-dimensional relative displacement occurs between the building, that is, the floor body B and the floor structure F, and the horizontal displacement is caused by the spherical rubber bearing 1. The vertical displacement of the rubber ball 10 is allowed by the elastic deformation of the rubber ball 10, and the three-dimensional seismic isolation device has no elements that hinder these displacements. Accepted smoothly.

なお、ゴム球体10の転がりは水平方向の全変位の1/2
であるので、さ程大きなものではなく、従って、チュー
ブ16の傾動も大きなものとはならない。
The rolling of the rubber sphere 10 is half of the total displacement in the horizontal direction.
Therefore, the inclination of the tube 16 is not so large, and the inclination of the tube 16 is not so large.

この3次元の変位において、減衰・復元装置4の減衰
部2にあっては、水平変位は鍋状部材20の凹部の底面と
円筒体23の底板23aの下面との相対的変位となってあら
われ、かつ、この間隙部に充填された粘性流体Lの存在
により、この変位を止める方向の力いわゆる粘性せん断
抵抗力が生じ、水平振動を減衰させる。
In this three-dimensional displacement, in the damping portion 2 of the damping / restoring device 4, the horizontal displacement appears as a relative displacement between the bottom surface of the concave portion of the pot-like member 20 and the lower surface of the bottom plate 23a of the cylindrical body 23. In addition, due to the presence of the viscous fluid L filled in the gap, a so-called viscous shear resistance force in a direction for stopping the displacement is generated, and the horizontal vibration is attenuated.

また、垂直変位は円筒体23の内周面と垂直部材27の外
周面との相対的変位となってあらわれ、かつ、この間隙
部に充填された粘性流体Lの存在により、この変位を止
める方向に粘性せん断抵抗力が生じ、垂直振動を減衰さ
せる。
In addition, the vertical displacement appears as a relative displacement between the inner peripheral surface of the cylindrical body 23 and the outer peripheral surface of the vertical member 27, and the direction in which this displacement is stopped due to the presence of the viscous fluid L filled in the gap. Generates a viscous shear resistance force, which attenuates vertical vibration.

そして、減衰・復元装置4の復元部3にあっては、そ
のばね体29により変位した床構造Fをその弾性エネルギ
ーにより元の位置に復帰させる。
Then, in the restoring section 3 of the damping / restoring device 4, the floor structure F displaced by the spring body 29 is returned to the original position by its elastic energy.

以上のように本実施例の3次元面震装置によれば、圧
縮空気を封入したゴム球体10は床構造Fを支持するとと
もに、その3次元変位を許容し、かつ、鉛直方向の微震
銅を吸収するものがあるので、免震装置として効果的に
機能し、かつ、装置全体の小型化に寄与する。
As described above, according to the three-dimensional seismic device of the present embodiment, the rubber sphere 10 filled with compressed air supports the floor structure F, allows its three-dimensional displacement, and removes the vertical microseismic copper. Since there is something that absorbs, it effectively functions as a seismic isolation device, and contributes to downsizing of the entire device.

また、減衰・復元装置4は減衰部2と復元部3とが一
体となっており、小型化され、大きな設置空間を採ら
ず、かつ、減衰部2はその粘性せん断抵抗特性により縦
振動にも有効で、ゴム球体10の縦振動吸収特徴を協働し
て、嫌振動機器に特に有効である。
In addition, the damping / restoring device 4 has the damping unit 2 and the restoring unit 3 integrated with each other, is small in size, does not take up a large installation space, and the damping unit 2 is also resistant to longitudinal vibration due to its viscous shear resistance characteristics. Effective and especially effective for anti-vibration devices, cooperating with the longitudinal vibration absorbing characteristics of the rubber sphere 10.

更に、減衰部2の発揮する粘性せん断抵抗は大きな制
動力を発揮し、床構造Fの振動を速やかに減衰させるこ
とができる。
Further, the viscous shear resistance exerted by the damping portion 2 exerts a large braking force, and the vibration of the floor structure F can be rapidly attenuated.

本発明は叙上の実施例に限定されるものではなく、本
発明の基本的技術思想の範囲内で種々設計変更が可能で
ある。すなわち、以下の態様は本発明の技術的範囲に包
含されるものである。
The present invention is not limited to the embodiments described above, and various design changes can be made within the scope of the basic technical concept of the present invention. That is, the following embodiments are included in the technical scope of the present invention.

叙上の実施例の構成では、減衰部2と復元部3とを一
体とした減衰・復元装置4としたが、減衰部2と復元部
3とを分離別体としてもよい。第5図はそのような例を
示す。図例において、ばね体29と一端は床体Bに固設さ
れ、他端は床構造Fに固設される。
In the configuration of the above-described embodiment, the attenuation / restoration unit 4 is formed by integrating the attenuation unit 2 and the restoration unit 3; however, the attenuation unit 2 and the restoration unit 3 may be separated from each other. FIG. 5 shows such an example. In the illustrated example, the spring body 29 and one end are fixed to the floor B, and the other end is fixed to the floor structure F.

また、減衰部2は実施例の粘性せん断抵抗型に限ら
ず、その他の減衰装置、例えばオイルダンパを使用して
もその機能に変わりはない。
Further, the function of the damping section 2 is not limited to the viscous shear resistance type of the embodiment, and the function does not change even if another damping device such as an oil damper is used.

ハ.発明の効果 本発明の構造物用3次元免震装置によれば、上部構造
はゴム球体で支持し、減衰力及び復元力は別途減衰装置
及びばね体による復元装置を配置したので、圧縮空気を
封入したゴム球体により横振動並びに縦振動の優れた吸
収特性が十分に発揮できるとともに、構造が簡単なゴム
球体により装置を小型化でき、本装置全体の丈高を低く
抑えることができ、かつ、該ばね体のばね定数を適宜に
小さくすることにより、振動の長周期化を容易に達成す
ることができる。更に、積載物の移動などによる床レベ
ルの変動を、ゴム球体への圧縮空気の導入を加減するこ
とにより、容易に調整できる。
C. According to the three-dimensional seismic isolation device for structures of the present invention, the upper structure is supported by rubber spheres, and the damping force and the restoring force are separately provided with a damping device and a restoring device using a spring body. The sealed rubber spheres can sufficiently exhibit excellent horizontal and vertical vibration absorption characteristics, and the rubber spheres with a simple structure can reduce the size of the device, keep the overall height of the device low, and By appropriately reducing the spring constant of the spring body, a longer period of the vibration can be easily achieved. Further, the fluctuation of the floor level due to the movement of the load can be easily adjusted by controlling the introduction of the compressed air into the rubber ball.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の構造物用3次元免震装置の実施例を示
し、第1図はその一実施例の建物内の床構造の断面図、
第2図はその平面配置図、第3図は球状ゴム支承の詳細
構造を示す断面図、第4図は第1図のIV部拡大図、第5
図は減衰部と復元部の他の配置例図である。 F……床構造(上部構造)、B……床体(下部構造)、
1……球状ゴム支承、2……減衰装置、3……復元装
置、4……減衰・復元装置、6……空気導管、7……空
気圧縮機、10……ゴム球体、18……調整弁、29……ばね
The drawings show an embodiment of a three-dimensional seismic isolation device for structures of the present invention, and FIG. 1 is a cross-sectional view of a floor structure in a building of the embodiment.
FIG. 2 is a plan view showing the structure, FIG. 3 is a sectional view showing a detailed structure of the spherical rubber bearing, FIG. 4 is an enlarged view of a part IV in FIG.
The figure is another arrangement example of the attenuation unit and the restoration unit. F: floor structure (upper structure) B: floor body (lower structure)
DESCRIPTION OF SYMBOLS 1 ... Spherical rubber bearing, 2 ... Damping device, 3 ... Restoring device, 4 ... Damping / restoring device, 6 ... Air conduit, 7 ... Air compressor, 10 ... Rubber sphere, 18 ... Adjustment Valve, 29 ... spring body

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−102742(JP,A) 特開 平3−223542(JP,A) 特開 昭63−214533(JP,A) 特開 平2−220427(JP,A) 特開 昭61−10133(JP,A) 実開 昭60−184449(JP,U) 実開 昭58−142975(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16F 15/04 E04H 9/02 331 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-102742 (JP, A) JP-A-3-223542 (JP, A) JP-A-63-214533 (JP, A) JP-A-2- 220427 (JP, A) JP-A-61-10133 (JP, A) JP-A-60-184449 (JP, U) JP-A-58-142975 (JP, U) (58) Fields investigated (Int. 7 , DB name) F16F 15/04 E04H 9/02 331

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】建造物内において、嫌振動機器を載置する
床構造の上部構造と該床構造を支持する床体の下部構造
との間に、前記上部構造の荷重に対応して圧縮空気が封
入されるとともに内部に封入された圧縮空気の空気圧作
用により該上部構造を水平を維持しつつ転動支持するゴ
ム球体を主体とする球状ゴム支承が該上部構造を自立的
に支持するように複数箇所にわたって介装設置されると
ともに、前記ゴム球体に接続された空気導管を介して圧
縮空気が圧縮空気源より圧縮空気量を調整しつつ持続的
に供給され、 上部構造と下部構造との相対移動に付き、該相対移動の
運動を減衰させる減衰装置と、コイルばね体のばね作用
により移動した上部構造を元の位置に復帰させる復元装
置とを前記球状ゴム支承とは別位置に配してなる、 ことを特徴とする構造物用3次元免震装置。
In a building, compressed air corresponding to a load of the upper structure is provided between an upper structure of a floor structure on which the anti-vibration equipment is mounted and a lower structure of a floor supporting the floor structure. The spherical rubber bearing mainly composed of a rubber sphere that rolls and supports the upper structure while maintaining the level of the upper structure by the pneumatic action of the compressed air enclosed therein so as to support the upper structure independently. The compressed air is continuously supplied from a compressed air source while adjusting the amount of compressed air via an air conduit connected to the rubber sphere, and is installed between a plurality of locations. In connection with the movement, a damping device for damping the relative movement and a restoring device for returning the upper structure moved by the spring action of the coil spring body to the original position are arranged at positions different from the spherical rubber bearing. Become 3D seismic isolation system for a structure that the symptoms.
【請求項2】空気導管の途中に圧縮空気の給排気の切換
えをなす調整弁が介装されてなる請求項1に記載の構造
物用3次元免震装置。
2. The three-dimensional seismic isolation device for a structure according to claim 1, further comprising an adjustment valve for switching the supply and exhaust of compressed air in the middle of the air conduit.
【請求項3】前記請求項2において、上部構造に配され
たレベルセンサの信号を受けて調整弁は自動制御されて
なる構造物用3次元免震装置。
3. A three-dimensional seismic isolation device for a structure according to claim 2, wherein the control valve is automatically controlled in response to a signal from a level sensor disposed on the upper structure.
【請求項4】建造物内において、嫌振動機器を載置する
床構造の上部構造と該床構造を支持する床体の下部構造
との間に、前記上部構造の荷重に対応して圧縮空気が封
入されるとともに内部に封入された圧縮空気の空気圧作
用により該上部構造を水平を維持しつつ転動支持するゴ
ム球体を主体とする球状ゴム支承が該上部構造を自立的
に支持するように複数箇所にわたって介装設置され、前
記ゴム球体には空気導管が接続されるとともに、該空気
導管の途中に圧縮空気の給排気の切換えをなす調整弁が
介装され、該空気導管を介して圧縮空気が圧縮空気源よ
り圧縮空気量を調整しつつ持続的に供給され、 前記調整弁は上部構造に配されたレベルセンサの信号を
受けて前記ゴム球体への圧縮空気の供給量を調整し、 上部構造と下部構造との相対移動に付き、該相対移動の
運動を減衰させる減衰装置と、コイルばね体のばね作用
により移動した上部構造を元の位置に復帰させる復元装
置とを前記球状ゴム支承とは別位置に配してなる、 ことを特徴とする構造物用3次元免震装置。
4. In a building, compressed air corresponding to a load of said upper structure is provided between an upper structure of a floor structure on which anti-vibration equipment is mounted and a lower structure of a floor supporting said floor structure. The spherical rubber bearing mainly composed of a rubber sphere that rolls and supports the upper structure while maintaining the level of the upper structure by the pneumatic action of the compressed air enclosed therein so as to support the upper structure independently. An air conduit is connected to the rubber sphere, and a regulating valve for switching the supply and exhaust of compressed air is disposed in the middle of the air conduit, and the rubber sphere is compressed through the air conduit. Air is continuously supplied while adjusting the amount of compressed air from a compressed air source, and the adjusting valve adjusts the amount of compressed air supplied to the rubber sphere by receiving a signal from a level sensor disposed on the upper structure, Phase of superstructure and substructure In connection with the movement, a damping device for damping the relative movement and a restoring device for returning the upper structure moved by the spring action of the coil spring body to the original position are arranged at positions different from the spherical rubber bearing. A three-dimensional seismic isolation device for structures.
【請求項5】構造物内において嫌振動機器を載置する床
構造の上部構造と該床構造に支持する床体の下部構造と
の間に、前記上部構造の荷重に対応して圧縮空気が封入
されるとともに内部に封入された圧縮空気の空気圧作用
により該上部構造を水平を維持しつつ転動支持するゴム
球体を主体とする球状ゴム支承が該上部構造を自立的に
支持するように複数箇所にわたって介装設置されるとと
もに、前記ゴム球体に接続された空気導管を介して圧縮
空気が圧縮空気源より圧縮空気量を調整しつつ持続的に
供給され、上部構造と下部構造との相対移動を減衰させ
る減衰装置と、コイルばね体のばね作用により移動した
上部構造を元の位置に復帰させる復元装置とを前記球状
ゴム支承とは別位置に配してなる構造物用3次元免震装
置を使用し、 振動外力により上部構造物に惹起される3次元的振動変
位を吸収することを特徴とする構造物の免震方法。
5. A compressed air corresponding to a load of the upper structure is provided between an upper structure of a floor structure on which the anti-vibration equipment is mounted and a lower structure of a floor supported by the floor structure in the structure. A plurality of spherical rubber bearings mainly composed of rubber spheres that roll and support the upper structure while maintaining the horizontal level by the pneumatic action of the compressed air enclosed therein so as to independently support the upper structure. The compressed air is continuously supplied from the compressed air source while adjusting the amount of compressed air through the air conduit connected to the rubber sphere, and the relative movement between the upper structure and the lower structure. Three-dimensional seismic isolator for a structure in which a damping device for damping the air and a restoring device for returning the upper structure moved by the spring action of the coil spring body to the original position are arranged at positions different from the spherical rubber bearing. Use the vibration A seismic isolation method for a structure, characterized by absorbing a three-dimensional vibration displacement caused in an upper structure by an external force.
JP02293973A 1990-10-31 1990-10-31 Three-dimensional seismic isolation device for structures using spherical rubber bearings Expired - Fee Related JP3115586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02293973A JP3115586B2 (en) 1990-10-31 1990-10-31 Three-dimensional seismic isolation device for structures using spherical rubber bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02293973A JP3115586B2 (en) 1990-10-31 1990-10-31 Three-dimensional seismic isolation device for structures using spherical rubber bearings

Publications (2)

Publication Number Publication Date
JPH04171338A JPH04171338A (en) 1992-06-18
JP3115586B2 true JP3115586B2 (en) 2000-12-11

Family

ID=17801593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02293973A Expired - Fee Related JP3115586B2 (en) 1990-10-31 1990-10-31 Three-dimensional seismic isolation device for structures using spherical rubber bearings

Country Status (1)

Country Link
JP (1) JP3115586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339406B2 (en) * 2008-05-22 2013-11-13 学校法人君が淵学園 Seismic structure
JP2010037870A (en) * 2008-08-07 2010-02-18 Edoken-Kohsyo Co Ltd Shock-absorbing floor structure and shock-absorbing unit

Also Published As

Publication number Publication date
JPH04171338A (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JP5079766B2 (en) Isolation platform
US5390892A (en) Vibration isolation system
JP6372034B2 (en) Anti-vibration vibration reduction device
JPH0514062B2 (en)
JPH02199338A (en) Quake-resistant supporting device
US5549269A (en) Gas spring assembly
JPH10245968A (en) Base-isolated floor structure
JP3115586B2 (en) Three-dimensional seismic isolation device for structures using spherical rubber bearings
JP2002130370A (en) Seismic isolator
JPS62278335A (en) Vertical vibration isolator
JP2004263430A (en) Semi-fixing device of base isolation structure
JP2709129B2 (en) Floor isolation structure
JP3053604B2 (en) Base-isolated floor structure
JPH0972125A (en) Vibration isolator for box-shaped structure
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JPH02154825A (en) Vibration suppressor for structure
JP3239901B2 (en) Three-dimensional seismic isolation support method and support structure
JP3254919B2 (en) Three-dimensional seismic isolation device
JPH02171463A (en) Earthquake-proof structure
JPH0247477A (en) Earthquake-insulating and vibration eliminating floor
JPH0637435U (en) Floor isolation structure
JP2001041283A (en) Three-dimensional base isolation device
JPH061090B2 (en) Seismic isolation support device
JPH0720284Y2 (en) Seismic isolation device
JP2736435B2 (en) Base-isolated floor structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080929

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees