JP2004263430A - Semi-fixing device of base isolation structure - Google Patents

Semi-fixing device of base isolation structure Download PDF

Info

Publication number
JP2004263430A
JP2004263430A JP2003054429A JP2003054429A JP2004263430A JP 2004263430 A JP2004263430 A JP 2004263430A JP 2003054429 A JP2003054429 A JP 2003054429A JP 2003054429 A JP2003054429 A JP 2003054429A JP 2004263430 A JP2004263430 A JP 2004263430A
Authority
JP
Japan
Prior art keywords
seismic isolation
semi
fixed
friction plate
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054429A
Other languages
Japanese (ja)
Other versions
JP4138534B2 (en
Inventor
Akio Suzuki
明雄 鈴木
Shinji Sato
新治 佐藤
Yoshiko Furukawa
美子 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2003054429A priority Critical patent/JP4138534B2/en
Publication of JP2004263430A publication Critical patent/JP2004263430A/en
Application granted granted Critical
Publication of JP4138534B2 publication Critical patent/JP4138534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semi-fixing device of a base isolation structure capable of semi-fixing an upper part structure supported on a lower part structure by a base isolation device in the horizontal direction by friction force to suppress large displacement and vibration by wind and damp the vibration early, being easily adjusted and set to such friction force that does not impair original base isolation function of the base isolation device, controlling friction force as required, and reducing cost for maintenance. <P>SOLUTION: This semi-fixing device 6 is provided with a vertical direction force generation device 21 fixed to a foundation 3 to generate force in the vertical direction V based on liquid pressure, a friction plate 22 moved in the vertical direction V by force in the vertical direction V from the vertical direction force generation device 21 and fixed with respect to the horizontal direction, and a friction plate 23 fixed to the upper part structure 4 by a bolt with respect to the horizontal direction to come into friction-contact with the friction plate 22. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、下部構造物と上部構造物との間に介在された免震装置により下部構造物に対して水平方向に免震支持される上部構造物(例えば免震層)の台風等の強風による風圧での揺れを制御抑制する半固定装置に関する。
【0002】
【従来の技術】
上部構造物を地震から保護するために、下部構造物としての例えば基礎と上部構造物との間に介在させ上部構造物を免震化する免震装置としては、ゴム板と鋼板とを積層した積層ゴム、この積層ゴムに鉛支柱を埋設した鉛プラグ入り積層ゴム、滑りを用いた滑り支承、ころの転がりを用いた転がり支承等の種々のものがある。
【0003】
上記のいずれの免震装置も、振動方向である水平方向に対して剛性を低くして、上部構造物を含む振動系の水平方向の固有振動周期を地震の水平振動の周期よりも長くして地震による上部構造物の振動を抑えるようにしている。
【0004】
【特許文献1】
特開平9−310532号公報
【0005】
【発明が解決しようとする課題】
ところで、水平剛性の低い免震装置は小さい水平方向の力でも応答するため、これに免震支持される上部構造物は、少しの風圧が加わっても水平方向に揺らされることになり、構造物がマンション等の集合住宅、事務所ビル、戸建住宅等の場合には、上部構造物である免震層の風圧による横揺れで居住者等に極めて大きな不快感を与える虞がある。特に、超高層の免震層の場合には、強風による水平方向の力が地震によるそれと同等又はそれ以上になり、強風時に地震と同等の振動が発生する虞がある。
【0006】
また、免震装置に対しては、鉛支柱、鋼棒ダンパ及び粘性ダンパ等のエネルギ熱変換型ダンパが振動減衰のために併設されるのであるが、風による上部構造物の振動は一般に地震と比較してその継続時間が長い上にその発生頻度が高いために、斯かるエネルギ熱変換型ダンパでは、風振動に起因する度々の発熱や疲労により早期にその性能が低下する虞がある。
【0007】
そこで、従来では摩擦力により上部構造物の水平方向の移動を防止するようにした装置が提案されているが、斯かる装置では摩擦面をコイルスプリングを介して上部構造物に押し付けているために、押し付け力の調節、制御が困難である上に、経年変化でもってコイルスプリングの弾性力が小さくなると、コイルスプリング自体を交換しなければならず、保守に多大の費用が掛かることになる。
【0008】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、下部構造物上に免震装置を介して支持された上部構造物の風による大きな変位及び振動を抑制又は斯かる振動を早期に減衰させるように摩擦力によって水平方向に関して半固定でき、しかも、免震装置の本来の免震機能を阻害しないような摩擦力に容易に調節、設定できる上に、必要に応じて摩擦力を制御することができ、加えて、保守費用を大幅に低減できる免震構造物の半固定装置を提供することにある。
【0009】
【課題を解決するための手段】
下部構造物と上部構造物との間に介在された免震装置により下部構造物に対して水平方向に免震支持される上部構造物を下部構造物に対して水平方向に関して解除自在に固定するための本発明の第一の態様の免震構造物の半固定装置は、下部構造物及び上部構造物のうちの一方に固定されると共に液圧に基づいて鉛直方向の力を発生する鉛直方向力発生装置と、この鉛直方向力発生装置からの鉛直方向の力によって鉛直方向に移動されると共に水平方向に関して固定された一方の摩擦板と、この一方の摩擦板に摩擦接触するように下部構造物及び上部構造物のうちの他方に水平方向に関して固定される他方の摩擦板とを具備している。
【0010】
第一の態様の半固定装置によれば、一方の摩擦板と他方の摩擦板との摩擦力により上部構造物を下部構造物に対して水平方向に関して半固定できて、上部構造物を風により移動されないように又は風により大きく振動されないようにすると共に斯かる振動を早期に減衰させることができ、しかも、鉛直方向力発生装置により免震装置の本来の免震機能を阻害しないような摩擦力に容易に調節、設定できる上に、必要に応じて摩擦力を制御することができ、加えて、液圧の加減を行うだけで摩擦力を長期に亘って所望の値に維持できるために保守費用を大幅に低減できる。
【0011】
本発明において、下部構造物は、通常、上部構造物が設置される基礎、橋脚等であるが、マンション等の集合住宅、事務所ビル、戸建住宅等、特に高層のマンション等の集合住宅、事務所ビル等の構造物において上階、例えば二階と下階、例えば一階との間に免震装置が設置される場合には、斯かる下階以下が下部構造物となり、上階以上が上部構造物であって免震層となる。
【0012】
好ましい例では、本発明の第二の態様の半固定装置のように、鉛直方向力発生装置は、液圧により一方の摩擦板を昇降させる摩擦板昇降装置を具備しており、この摩擦板昇降装置は、液体を収容すると共に下部構造物及び上部構造物のうちの一方に固定される液体収容体と、液体に生じる液圧により鉛直方向に移動されるように液体収容体に配されていると共に一方の摩擦板が固着されている昇降部材とを具備しており、摩擦板昇降装置は、昇降部材を介して一方の摩擦板を昇降させるようになっている。
【0013】
摩擦板昇降装置は、本発明の第三の態様の半固定装置のように、油圧ジャッキからなっていても、本発明の第四の態様の半固定装置のように、フラットジャッキからなっていてもよい。また、摩擦板昇降装置は、本発明の第五の態様の半固定装置のように、液体と昇降部材との間に介在される弾性体を更に具備しており、ここで、昇降部材は、弾性体を介して液圧を受けるようになっていてもよい。
【0014】
第五の態様の半固定装置のように弾性体を具備していると、一方の摩擦板を他方の摩擦板へ弾性的に摩擦接触させることができ、多少の液圧の変動を補償することができる。
【0015】
弾性体としては、本発明の第六の態様の半固定装置のように、ゴム部材を好ましい例として挙げることができるが、空気ばね、コイルばね、板ばね等であってもよく、弾性体として空気ばね、コイルばね、板ばね等を用いる場合には、液体と昇降部材との間に更にばね受を設けて、昇降部材とばね受との間に斯かる空気ばね、コイルばね、板ばね等を配置するとよい。
【0016】
非圧縮性の液体を用いる場合には、上記のように弾性体を具備して摩擦板昇降装置を構成するのが好ましいが、ビンガム流体のように圧縮性の液体を用いる場合には、弾性体を省いて摩擦板昇降装置を構成してもよく、更には、両摩擦板のうちの少なくとも一方を鉛直方向に移動できるように弾性的に支持するようにしてもよい。
【0017】
鉛直方向力発生装置は、本発明の第七の態様の半固定装置のように、制御された液圧を発生する液圧発生装置を具備しており、摩擦板昇降装置は、液圧発生装置からの制御された液圧を受けるようになっている。
【0018】
液圧は、上部構造物に吹き付ける風の速度(風速)、風圧等に基づいて制御されるようになっていても、これに代えて、下部構造物の地震による加速度に基づいて制御されるようになっていてもよく、前者では、風のない場合には、他方の摩擦板に対する一方の摩擦板の摩擦接触を解除し、一定以上の風速、風圧等を検知すると、液圧により一方の摩擦板を他方の摩擦板に向かって移動させて一方の摩擦板を他方の摩擦板に摩擦接触させるようにしてもよく、また、風速、風圧に比例して接触圧を変化させるようにしてもよく、後者では、風の有無に拘わらず常時、一方の摩擦板を他方の摩擦板に摩擦接触させておき、一定以上の地震加速度を検知すると、液圧により一方の摩擦板を他方の摩擦板から離反させて他方の摩擦板に対する一方の摩擦板の摩擦接触を解除するようにしてもよい。
【0019】
昇降部材は、本発明の第八の態様の半固定装置のように、鉛直軸の回りで回転自在となるように液体収容体に配されているとよく、斯かる昇降部材であると、一方の摩擦板に鉛直軸の回りでの回転が付与されても、無理なくこれに対応できる。
【0020】
両摩擦板は、好ましくは本発明の第九の態様の半固定装置のように、高摩擦面同士で摩擦接触する高摩擦鋼鈑からなる。
【0021】
高摩擦鋼鈑を用いる場合には、両摩擦板は単に接触させてもよいのであるが、好ましくは本発明の第十の態様の半固定装置のように、高摩擦鋼鈑を用いるか否かに拘わらず、一方の摩擦板は、摩擦接触においては鉛直方向力発生装置で発生された鉛直方向の力により他方の摩擦板を押圧するようになっている。
【0022】
本発明の半固定装置では、鉛直方向力発生装置を下部構造物及び上部構造物のうちの一方に固定し、他方の摩擦板を下部構造物及び上部構造物のうちの他方に水平方向に関して固定してもよいのであるが、好ましくは本発明の第十一の態様の半固定装置のように、鉛直方向力発生装置は下部構造物に固定されるようになっており、他方の摩擦板は上部構造物に水平方向に関して固定されるようになっており、本発明の第十二の態様の半固定装置のように、鉛直方向力発生装置は上部構造物に固定されるようになっており、他方の摩擦板は下部構造物に水平方向に関して固定されるようになっている。
【0023】
本発明の半固定装置と共に用いられる免震装置は、ゴム板と鋼板とを積層してなる積層ゴムであっても、滑りを用いた滑り支承又は転がり支承等のいずれであってもよいのであるが、好ましくは原点復帰機能を有する積層ゴムであって、積層ゴムを用いる場合には、免震装置は、減衰機能を付与するために、積層ゴムに埋設された鉛支柱を具備しているとよい。免震装置として滑り支承又は転がり支承等を用いる場合には、鋼棒ダンパ、粘性ダンパ等の適宜の減衰装置を併用するとよい。
【0024】
本発明の半固定装置は、減衰装置として機能させることもできるので、鉛支柱、鋼棒ダンパ、粘性ダンパ等の減衰装置を省いて免震構造物を構成してもよい。
【0025】
本発明における上部構造物としては、マンション等の集合住宅、事務所ビル、戸建住宅等、特に高層のマンション等の集合住宅、事務所ビル等を好ましい例としてあげることができるが、その他の物、例えば橋梁等であってもよい。
【0026】
次に本発明及びその実施の形態を、図に示す好ましい例を参照して更に詳細に説明する。なお、本発明はこの例に何等限定されないのである。
【0027】
【発明の実施の形態】
図1から図4において、免震構造物1は、地盤2に形成された下部構造物としての基礎3と、高層のビル等の上部構造物4と、基礎3及び上部構造物4間に介在されていると共に上部構造物4を基礎3に対して水平方向Hに免震支持する複数の免震装置5と、上部構造物4を基礎3に対して水平方向Hに関して解除自在に固定するための半固定装置6とを具備している。
【0028】
上部構造物4の鉛直方向Vの荷重を受けるようになっている各免震装置5は、ゴム板11と鋼板12とを積層した積層ゴム13と、積層ゴム13に埋設された鉛支柱14と、積層ゴム13の上面に固着された上取付板15と、積層ゴム13の下面に固着された下取付板16とを具備しており、上取付板15がボルト等を介して上部構造物4の下面17に、下取付板16がアンカーボルト等を介して基礎3の上面18に夫々固着されており、基礎3と上部構造物4との間に介在されて上部構造物4を基礎3に対して水平方向Hに免震支持している。
【0029】
半固定装置6は、基礎3及び上部構造物4のうちの一方、本例では基礎3に固定されていると共に液圧に基づいて鉛直方向Vの力を発生する鉛直方向力発生装置21と、鉛直方向力発生装置21からの鉛直方向Vの力によって鉛直方向Vに移動されると共に水平方向に関して固定された摩擦板22と、摩擦板22に摩擦接触するように基礎3及び上部構造物4のうちの他方、本例では上部構造物4にボルト等により水平方向に関して固定された摩擦板23とを具備している。
【0030】
鉛直方向力発生装置21は、制御された液圧を発生する液圧発生装置31と、液圧発生装置31からの制御された液圧を受けるようになっていると共に受容した液圧により摩擦板22を昇降させる摩擦板昇降装置32とを具備している。
【0031】
液圧発生装置31は本例では油圧ポンプ及び制御弁等を具備しており、摩擦板昇降装置32は、液体としての作動油34を収容すると共に基礎3にボルト等により固定された液体収容体35と、作動油34に生じる液圧としての油圧により鉛直方向Vに移動されるように液体収容体35に鉛直方向Vに移動自在に配されていると共に摩擦板22が上面36にボルト等により固着されている昇降部材37と、円板状部38で作動油34と昇降部材37との間に介在した袋状の弾性体39と、弾性体39に囲繞された補強部材40とを具備したフラットジャッキからなる。
【0032】
液体収容体35は、円筒部45と、円筒部45に一体的に形成された円板状の基部46とを具備しており、基部46において基礎3にボルト等により固定されており、円筒部45及び基部46には、作動油34を補強部材40の円板部47と弾性体39の円板状部38との間に対して給排する通路48が形成されている。
【0033】
昇降部材37は、鉛直軸Oの回りでA方向に回転自在であって鉛直方向Vに移動自在となるように液体収容体35の円筒部45に支持されて配されており、ゴム部材からなる弾性体39は、円板状部38に加えて、円板状部38に一体的に形成された円筒部51と、円筒部51に一体的に形成された円環板状部52とを具備しており、補強部材40は、円板部47に加えて、円板部47に一体的に形成された口金部55を具備しており、円板部47及び口金部55には、円板部47と円板状部38との間を通路48に連通させる貫通孔56が形成されており、補強部材40は、口金部55において基部46に嵌着されていると共に円板部47において弾性体39に包み込まれている。
【0034】
摩擦板昇降装置32は、液圧発生装置31からの作動油34が通路48及び貫通孔56を介して円板部47と円板状部38との間に供給されることにより、供給された作動油34の油圧により弾性体39を弾性的に膨らませて円板状部38を上昇させて、円板状部38の上昇でもって昇降部材37を介して摩擦板22を上昇させる一方、液圧発生装置31への作動油34の通路48及び貫通孔56を介する円板部47と円板状部38との間からの排出に起因する油圧により弾性体39を縮まらせて円板状部38を下降させ、円板状部38の下降でもって昇降部材37を介して摩擦板22を下降させるようになっており、而して、摩擦板昇降装置32は、昇降部材37を介して摩擦板22を昇降させるようになっており、昇降部材37は、弾性体39の円板状部38を介して作動油34の油圧を受けるようになっている。
【0035】
摩擦板22は、その上面61に凹凸62をもった高摩擦面を有した高摩擦鋼鈑からなり、摩擦板23もまた、その下面63に凹凸64をもった高摩擦面を有した高摩擦鋼鈑からなり、両摩擦板22及び23は、円板状部38の上昇でもって昇降部材37を介して摩擦板22が上昇されると、その高摩擦面同士で摩擦接触するようになっており、しかも、摩擦板22は、摩擦接触においては鉛直方向力発生装置21で発生された鉛直方向Vの力により摩擦板23を押圧するようになっている。
【0036】
凹凸62及び64は、振動に対する摩擦力の大小に関して方向性を有しないように、換言すれば水平方向におけるいずれの方向に関しても同等の高摩擦力が生じるように上面61及び下面63の夫々に形成されていることが好ましく、また、その高さhが1mmであって、そのピッチpが2mm程度のものを一例として挙げることができる。
【0037】
免震構造物1では、通常、円板状部38の上昇でもって昇降部材37を介して摩擦板22が上昇され、両摩擦板22及び23は、その高摩擦面同士で摩擦接触しており、しかも、摩擦板22は、摩擦接触においては鉛直方向力発生装置21で発生された鉛直方向Vの力により摩擦板23を押圧している。この状態で、上部構造物4に風圧が加わった場合に、それが比較的小さいと、両摩擦板22及び23の高摩擦面同士での摩擦接触により、上部構造物4は、水平方向Hに移動しないように半固定装置6を介して基礎3に固定される一方、風圧が比較的大きい場合には、両摩擦板22及び23の高摩擦面での滑りが生じて上部構造物4が水平方向Hに移動されるが、両摩擦板22及び23の高摩擦面同士での摩擦抵抗及び免震装置5の減衰機能により、上部構造物4の水平方向Hの移動が大きく抑制されると共に、強風により上部構造物4の水平方向Hの振動が生じてもそれが早期に減衰されることになる。
【0038】
両摩擦板22及び23の高摩擦面同士での摩擦接触状態で、地震が発生すると、最初は、上部構造物4が半固定装置6を介して基礎3に固定されているために基礎3の横揺れと共に上部構造物4も水平方向Hに横揺れするが、この地震により一定以上の加速度が基礎3に加わると、両摩擦板22及び23の高摩擦面での滑りが生じて上部構造物4が水平方向Hに移動され、上部構造物4の半固定装置6を介する基礎3への固定が解除されることになり、免震装置5を介して基礎3に支持された上部構造物4は免震装置5の免震機能及び減衰機能並びに半固定装置6の減衰機能により、その横揺れが低減されて速やかに減衰される。
【0039】
強風が止んだ場合又は地震が発生した場合に、図5に示すように、液圧発生装置31を作動させて、円板部47と円板状部38との間から通路48及び貫通孔56を介して作動油34を排出し、この排出に起因する円板部47と円板状部38との間での油圧減少により弾性体39をその弾性力でもって縮まらせて円板状部38を下降させて、円板状部38の下降でもって昇降部材37を介して摩擦板22を下降させ、これにより摩擦板23から摩擦板22を離反させて摩擦板23と摩擦板22との間に隙間を形成し、両摩擦板22及び23の摩擦接触を介する上部構造物4の基礎3への水平方向に関する固定を解除してもよく、この場合には、地震による上部構造物4の水平方向の振動は、専ら免震装置5の減衰機能により減衰されることになる。
【0040】
以上のように半固定装置6では、摩擦板22と摩擦板23との摩擦力により、風により移動しないように又は風により大きく振動しないようにすると共に風による振動を早期に減衰させることができるように上部構造物4を基礎3に対して水平方向に関して半固定でき、しかも、鉛直方向力発生装置21により免震装置5の本来の免震機能を阻害しないような摩擦力に容易に調節、設定できる上に、必要に応じて摩擦力を制御することができ、加えて、油圧の加減を行うだけで摩擦力を長期に亘って所望の値に維持できるために保守費用を大幅に低減できる。
【0041】
半固定装置6においては、弾性体39を具備しているために、摩擦板22を摩擦板23へ弾性的に摩擦接触させる結果、多少の油圧の変動を補償することができる。
【0042】
半固定装置6は、一個でもよいが、上部構造物4に加わる風圧との関係で二個以上設けてもよい。
【0043】
摩擦板昇降装置32としては、上記のようなフラットジャッキに代えて、図6及び図7に示すようなフラットジャッキを用いてもよい。図6及び図7に示す摩擦板昇降装置32は、基礎3にボルト等により固定された基台71と、基台71に載置されていると共に内部73に供給される作動油34に生じる液圧としての油圧で膨らむ中空の円板状の可撓体72と、可撓体72の膨らみにより鉛直方向Vに移動されるように可撓体72に載置されていると共に摩擦板22が上面36にボルト等により固着されている昇降部材37とを具備している。フラットジャッキ本体である袋状の可撓体72は、可撓性の中空扁平円盤状部75と、中空扁平円盤状部75の周りに一体的に形成されていると共に内部が中空扁平円盤状部75の内部に連通した中空環状部76とを具備しており、中空環状部76の内部に液圧発生装置31から導管77を介して供給された作動油34の油圧により中空扁平円盤状部75を膨らませて昇降部材37を上昇させて、昇降部材37を介して摩擦板22を上昇させる一方、液圧発生装置31への作動油34の導管77を介する中空環状部76の内部からの排出に起因する油圧により中空扁平円盤状部75を縮まらせて昇降部材37を下降させ、昇降部材37を介して摩擦板22を下降させるようになっている。
【0044】
斯かる可撓体72を具備した摩擦板昇降装置32を用いると、構成を極めて簡単にできてコスト削減を計り得る。
【0045】
【発明の効果】
本発明によれば、下部構造物上に免震装置を介して支持された上部構造物を、風により振動しない又は風により大きく振動しないようにすると共に風による振動を早期に減衰させることができるように摩擦力によって水平方向に関して半固定でき、しかも、免震装置の本来の免震機能を阻害しないような摩擦力に容易に調節、設定できる上に、必要に応じて摩擦力を制御することができ、加えて、保守費用を大幅に低減できる免震構造物の半固定装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の好ましい実施の形態の一例の正面図である。
【図2】図1に示す例の半固定装置の断面説明図である。
【図3】図1の例の半固定装置の平面説明図である。
【図4】図1の例の半固定装置の一部拡大説明図である。
【図5】図1の例の半固定装置の動作説明図である。
【図6】本発明の好ましい実施の形態の他の例の断面説明図である。
【図7】図6に示す可撓体の平面図である。
【符号の説明】
3 基礎
4 上部構造物
6 半固定装置
21 鉛直方向力発生装置
22、23 摩擦板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a strong wind such as a typhoon of an upper structure (for example, a seismic isolation layer) which is supported in a horizontal direction with respect to the lower structure by a seismic isolation device interposed between the lower structure and the upper structure. The present invention relates to a semi-fixed device that controls and suppresses a swing caused by wind pressure caused by wind.
[0002]
[Prior art]
In order to protect the upper structure from earthquakes, as a seismic isolation device that intervenes between the foundation and the upper structure as a lower structure, for example, the upper structure is made seismic isolation, a rubber plate and a steel plate are laminated. There are various types such as laminated rubber, laminated rubber containing lead plugs in which lead pillars are embedded in the laminated rubber, sliding bearings using sliding, rolling bearings using roller rolling, and the like.
[0003]
In any of the above seismic isolation devices, the rigidity is reduced in the horizontal direction, which is the vibration direction, and the horizontal natural vibration period of the vibration system including the upper structure is made longer than the horizontal vibration period of the earthquake. Vibration of the upper structure caused by the earthquake is suppressed.
[0004]
[Patent Document 1]
JP-A-9-310532
[Problems to be solved by the invention]
By the way, since the seismic isolation device with low horizontal rigidity responds even with a small horizontal force, the upper structure supported by the seismic isolation will swing horizontally even if a little wind pressure is applied. Is an apartment building, an office building, a detached house or the like, there is a possibility that the occupants or the like may feel extremely discomfort due to the rolling of the seismic isolation layer which is the upper structure due to the wind pressure. In particular, in the case of a super-high-rise seismic isolation layer, the horizontal force due to a strong wind becomes equal to or greater than that due to an earthquake, and there is a possibility that vibration equivalent to an earthquake occurs when a strong wind occurs.
[0006]
For seismic isolation devices, energy-to-heat conversion type dampers such as lead columns, steel rod dampers, and viscous dampers are installed to dampen vibrations. Since the duration is longer and the frequency of occurrence is high, the performance of such an energy-heat conversion type damper may be deteriorated early due to frequent heat generation and fatigue caused by wind vibration.
[0007]
Therefore, in the related art, a device that prevents the upper structure from moving in the horizontal direction by frictional force has been proposed.However, in such a device, a friction surface is pressed against the upper structure via a coil spring. If it is difficult to adjust and control the pressing force, and if the elastic force of the coil spring is reduced due to aging, the coil spring itself must be replaced, resulting in high maintenance costs.
[0008]
The present invention has been made in view of the above points, and an object thereof is to suppress or suppress large displacement and vibration of an upper structure supported on a lower structure via a seismic isolation device by wind. It can be semi-fixed in the horizontal direction by frictional force to attenuate such vibrations early, and can be easily adjusted and set to a frictional force that does not hinder the original seismic isolation function of the seismic isolation device. It is an object of the present invention to provide a semi-fixed device for a seismic isolation structure that can control the frictional force in response thereto and can significantly reduce maintenance costs.
[0009]
[Means for Solving the Problems]
An upper structure which is supported in a horizontal direction with respect to the lower structure by a seismic isolation device interposed between the lower structure and the upper structure is releasably fixed in a horizontal direction with respect to the lower structure. The semi-fixing device for a base-isolated structure according to the first aspect of the present invention is fixed to one of a lower structure and an upper structure, and generates a vertical force based on hydraulic pressure. A force generator, one friction plate which is moved in the vertical direction by the vertical force from the vertical force generator and is fixed in the horizontal direction, and a lower structure so as to frictionally contact the one friction plate. A friction plate fixed to the other of the object and the upper structure in the horizontal direction.
[0010]
According to the semi-fixing device of the first aspect, the upper structure can be semi-fixed in the horizontal direction with respect to the lower structure by the frictional force between the one friction plate and the other friction plate, and the upper structure is moved by the wind. A frictional force that can be prevented from being moved or vibrated largely by the wind and can be attenuated at an early stage, and that does not hinder the original seismic isolation function of the seismic isolation device by the vertical force generator. In addition to being able to adjust and set easily, the frictional force can be controlled as needed, and maintenance can be performed to maintain the frictional force at a desired value over a long period of time just by adjusting the hydraulic pressure. Costs can be significantly reduced.
[0011]
In the present invention, the lower structure is usually a foundation on which the upper structure is installed, a pier or the like, but an apartment house such as an apartment, an office building, a detached house, and the like, especially an apartment house such as a high-rise apartment, In the case of a structure such as an office building, when a seismic isolation device is installed between the upper floor, for example, the second floor and the lower floor, for example, the first floor, the lower floor and lower floors serve as lower structures, and the upper floor and higher floors. It is the upper structure and becomes the seismic isolation layer.
[0012]
In a preferred example, like the semi-fixed device according to the second aspect of the present invention, the vertical force generating device includes a friction plate lifting device that raises and lowers one of the friction plates by hydraulic pressure. The device is arranged in a liquid container that contains a liquid and is fixed to one of the lower structure and the upper structure, and is moved in a vertical direction by a liquid pressure generated in the liquid. And a lifting member to which one friction plate is fixed, and the friction plate lifting device raises and lowers one friction plate via the lifting member.
[0013]
The friction plate lifting / lowering device may be formed of a hydraulic jack, as in the semi-fixed device of the third embodiment of the present invention, or may be formed of a flat jack, as in the semi-fixed device of the fourth embodiment of the present invention. Is also good. Further, the friction plate elevating device further includes an elastic body interposed between the liquid and the elevating member, like the semi-fixed device according to the fifth aspect of the present invention, wherein the elevating member is The fluid pressure may be received via the elastic body.
[0014]
When an elastic body is provided as in the semi-fixed device of the fifth aspect, one friction plate can be brought into frictional contact with the other friction plate elastically, thereby compensating for some fluctuations in hydraulic pressure. Can be.
[0015]
As the elastic body, a rubber member can be mentioned as a preferable example, as in the semi-fixing device according to the sixth aspect of the present invention, but an air spring, a coil spring, a leaf spring, or the like may be used. When an air spring, a coil spring, a leaf spring, or the like is used, a spring support is further provided between the liquid and the elevating member, and the air spring, coil spring, leaf spring, or the like is provided between the elevating member and the spring receiver. Should be placed.
[0016]
When an incompressible liquid is used, it is preferable to configure the friction plate elevating device by providing an elastic body as described above, but when using a compressible liquid such as a Bingham fluid, the elastic body May be omitted to constitute the friction plate lifting device, and at least one of the two friction plates may be elastically supported so as to be movable in the vertical direction.
[0017]
The vertical force generating device includes a hydraulic pressure generating device that generates a controlled hydraulic pressure like the semi-fixed device according to the seventh aspect of the present invention, and the friction plate elevating device includes a hydraulic pressure generating device. To receive a controlled hydraulic pressure from
[0018]
Even if the hydraulic pressure is controlled based on the speed (wind speed) of the wind blown to the upper structure, the wind pressure, or the like, the hydraulic pressure may be controlled based on the acceleration of the lower structure due to the earthquake. In the former case, when there is no wind, the frictional contact of one friction plate with the other friction plate is released, and when a wind speed, wind pressure, etc. exceeding a certain level are detected, one friction plate is detected by hydraulic pressure. The plate may be moved toward the other friction plate so that one friction plate comes into frictional contact with the other friction plate, and the contact pressure may be changed in proportion to the wind speed and wind pressure. In the latter case, one friction plate is always kept in frictional contact with the other friction plate regardless of the presence or absence of wind, and when a certain level of seismic acceleration is detected, one friction plate is separated from the other friction plate by hydraulic pressure. Separate and move one friction plate to the other It may be canceled frictional contact Kosuita.
[0019]
The elevating member may be arranged in the liquid container so as to be rotatable about a vertical axis, as in the semi-fixing device according to the eighth aspect of the present invention. Even if the rotation about the vertical axis is given to the friction plate, it is possible to cope with it.
[0020]
The two friction plates are preferably made of a high friction steel plate that comes into frictional contact between the high friction surfaces as in the semi-fixing device according to the ninth aspect of the present invention.
[0021]
When using a high-friction steel plate, the two friction plates may be simply brought into contact with each other, but preferably, whether or not a high-friction steel plate is used as in the semi-fixing device according to the tenth aspect of the present invention. Regardless of the above, one of the friction plates presses the other friction plate by the vertical force generated by the vertical force generator in the frictional contact.
[0022]
In the semi-fixed device of the present invention, the vertical force generator is fixed to one of the lower structure and the upper structure, and the other friction plate is fixed to the other of the lower structure and the upper structure in the horizontal direction. However, preferably, as in the semi-fixed device of the eleventh aspect of the present invention, the vertical force generator is fixed to the lower structure, and the other friction plate is It is adapted to be fixed to the upper structure in the horizontal direction, and like the semi-fixed device of the twelfth aspect of the present invention, the vertical force generator is fixed to the upper structure. The other friction plate is fixed to the lower structure in the horizontal direction.
[0023]
The seismic isolation device used with the semi-fixed device of the present invention may be a laminated rubber obtained by laminating a rubber plate and a steel plate, or may be any of a sliding bearing using a slide or a rolling bearing. However, it is preferably a laminated rubber having a return-to-origin function, and when using a laminated rubber, the seismic isolation device is provided with a lead post embedded in the laminated rubber in order to impart a damping function. Good. When a sliding bearing or a rolling bearing is used as the seismic isolation device, an appropriate damping device such as a steel rod damper or a viscous damper may be used together.
[0024]
Since the semi-fixed device of the present invention can also function as a damping device, a seismic isolation structure may be configured by omitting damping devices such as a lead support, a steel rod damper, and a viscous damper.
[0025]
Preferred examples of the superstructure according to the present invention include apartment buildings such as condominiums, office buildings, detached houses, etc., and particularly high-rise apartment buildings such as condominiums, office buildings, and the like. For example, a bridge may be used.
[0026]
Next, the present invention and its embodiments will be described in more detail with reference to preferred examples shown in the drawings. The present invention is not limited to this example.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4, a base-isolated structure 1 includes a foundation 3 as a lower structure formed on a ground 2, an upper structure 4 such as a high-rise building, and an intervening space between the foundation 3 and the upper structure 4. And a plurality of seismic isolation devices 5 that support the upper structure 4 in the horizontal direction H with respect to the foundation 3 and releasably fix the upper structure 4 to the foundation 3 in the horizontal direction H. And a semi-fixing device 6.
[0028]
Each seismic isolation device 5, which receives a load in the vertical direction V of the upper structure 4, includes a laminated rubber 13 in which a rubber plate 11 and a steel plate 12 are laminated, and a lead column 14 buried in the laminated rubber 13. And an upper mounting plate 15 fixed to the upper surface of the laminated rubber 13 and a lower mounting plate 16 fixed to the lower surface of the laminated rubber 13. The upper mounting plate 15 is connected to the upper structure 4 via bolts or the like. The lower mounting plate 16 is fixed to the upper surface 18 of the foundation 3 via anchor bolts or the like on the lower surface 17 of the base 3, and is interposed between the foundation 3 and the upper structure 4 so that the upper structure 4 is attached to the foundation 3. On the other hand, seismic isolation is supported in the horizontal direction H.
[0029]
The semi-fixing device 6 is a vertical force generator 21 that is fixed to the base 3 in the present embodiment, and that generates a force in the vertical direction V based on hydraulic pressure. A friction plate 22 that is moved in the vertical direction V by the force in the vertical direction V from the vertical force generator 21 and is fixed in the horizontal direction, and the base 3 and the upper structure 4 that are in frictional contact with the friction plate 22. On the other hand, in the present embodiment, a friction plate 23 fixed to the upper structure 4 in the horizontal direction by bolts or the like is provided in the present embodiment.
[0030]
The vertical force generator 21 is configured to receive a controlled hydraulic pressure from the hydraulic pressure generator 31 and a friction pressure plate based on the received hydraulic pressure. And a friction plate lifting / lowering device 32 for lifting / lowering the 22.
[0031]
In this example, the hydraulic pressure generating device 31 includes a hydraulic pump, a control valve, and the like. The friction plate elevating device 32 stores a hydraulic oil 34 as a liquid and a liquid container fixed to the base 3 with bolts or the like. 35, the liquid container 35 is disposed movably in the vertical direction V so as to be moved in the vertical direction V by hydraulic pressure as a hydraulic pressure generated in the hydraulic oil 34, and the friction plate 22 is provided on the upper surface 36 with bolts or the like. An elevating member 37 fixed thereto, a bag-shaped elastic body 39 interposed between the hydraulic oil 34 and the elevating member 37 at the disc-shaped portion 38, and a reinforcing member 40 surrounded by the elastic body 39 are provided. Consists of a flat jack.
[0032]
The liquid container 35 includes a cylindrical portion 45 and a disk-shaped base 46 formed integrally with the cylindrical portion 45. The liquid container 35 is fixed to the foundation 3 at the base 46 with bolts or the like. A passage 48 is formed in the base 45 and the base 46 for supplying and discharging the hydraulic oil 34 between the disc 47 of the reinforcing member 40 and the disc 38 of the elastic body 39.
[0033]
The elevating member 37 is supported by the cylindrical portion 45 of the liquid container 35 so as to be rotatable in the direction A about the vertical axis O and movable in the vertical direction V, and is made of a rubber member. The elastic body 39 includes, in addition to the disc-shaped portion 38, a cylindrical portion 51 formed integrally with the disc-shaped portion 38, and an annular plate-shaped portion 52 formed integrally with the cylindrical portion 51. The reinforcing member 40 includes, in addition to the disk part 47, a base part 55 formed integrally with the disk part 47, and the disk part 47 and the base part 55 A through-hole 56 is formed to communicate between the portion 47 and the disc-shaped portion 38 with the passage 48. The reinforcing member 40 is fitted to the base 46 at the base 55 and elastically formed at the disc portion 47. It is wrapped in the body 39.
[0034]
The friction plate elevating device 32 was supplied by supplying the hydraulic oil 34 from the hydraulic pressure generating device 31 between the disk portion 47 and the disk portion 38 via the passage 48 and the through hole 56. The elastic body 39 is elastically inflated by the hydraulic pressure of the hydraulic oil 34 to raise the disk-shaped portion 38, and the raised disk-shaped portion 38 raises the friction plate 22 via the lifting / lowering member 37. The elastic body 39 is contracted by the hydraulic pressure caused by the discharge of the hydraulic oil 34 from the space between the disk 47 and the disk 38 through the passage 48 and the through hole 56 to the generator 31, and the disk 38 is compressed. Is lowered, and the friction plate 22 is lowered via the elevating member 37 by the lowering of the disc-shaped portion 38. Thus, the friction plate elevating device 32 is provided with the friction plate via the elevating member 37. 22 is raised and lowered, and the lifting member 37 is elastic. It adapted to receive a hydraulic pressure of the hydraulic fluid 34 through the disc-shaped portion 38 of 39.
[0035]
The friction plate 22 is made of a high friction steel plate having a high friction surface having irregularities 62 on an upper surface 61 thereof, and the friction plate 23 also has a high friction surface having a high friction surface having irregularities 64 on a lower surface 63 thereof. When the friction plate 22 is raised via the elevating member 37 by the rise of the disc-shaped portion 38, the friction plates 22 and 23 come into frictional contact with each other on the high friction surfaces. In addition, the friction plate 22 presses the friction plate 23 by the force in the vertical direction V generated by the vertical force generator 21 in the frictional contact.
[0036]
The irregularities 62 and 64 are formed on each of the upper surface 61 and the lower surface 63 so that they have no directionality with respect to the magnitude of the frictional force against vibration, in other words, the same high frictional force is generated in any horizontal direction. It is preferable that the height h is 1 mm and the pitch p is about 2 mm.
[0037]
In the seismic isolation structure 1, the friction plate 22 is normally raised via the elevating member 37 by raising the disk-shaped portion 38, and the friction plates 22 and 23 are in frictional contact with each other at their high friction surfaces. Moreover, the friction plate 22 presses the friction plate 23 by the force in the vertical direction V generated by the vertical force generator 21 in the frictional contact. In this state, when wind pressure is applied to the upper structure 4 and the wind pressure is relatively small, the upper structure 4 moves in the horizontal direction H due to frictional contact between the high friction surfaces of the friction plates 22 and 23. While being fixed to the foundation 3 via the semi-fixing device 6 so as not to move, when the wind pressure is relatively large, the two friction plates 22 and 23 slide on the high friction surface, and the upper structure 4 becomes horizontal. Although it is moved in the direction H, the movement of the upper structure 4 in the horizontal direction H is greatly suppressed by the frictional resistance between the high friction surfaces of the two friction plates 22 and 23 and the damping function of the seismic isolation device 5, and Even if a strong wind causes vibration of the upper structure 4 in the horizontal direction H, the vibration is attenuated early.
[0038]
When an earthquake occurs in the state of frictional contact between the high friction surfaces of both friction plates 22 and 23, first, since the upper structure 4 is fixed to the foundation 3 via the semi-fixing device 6, the foundation 3 The upper structure 4 also rolls in the horizontal direction H along with the roll. However, when an acceleration exceeding a certain level is applied to the foundation 3 due to the earthquake, the two friction plates 22 and 23 slide on the high friction surface to cause the upper structure 4 to slide. The upper structure 4 is moved in the horizontal direction H, and the fixing of the upper structure 4 to the foundation 3 via the semi-fixing device 6 is released, and the upper structure 4 supported on the foundation 3 via the seismic isolation device 5. Due to the seismic isolation function and the damping function of the seismic isolation device 5 and the damping function of the semi-fixed device 6, the lateral vibration is reduced and is quickly attenuated.
[0039]
When the strong wind stops or an earthquake occurs, as shown in FIG. 5, the hydraulic pressure generator 31 is operated to allow the passage 48 and the through hole 56 from between the disc 47 and the disc 38. The hydraulic oil 34 is discharged via the slab, and the elastic body 39 is contracted by its elastic force due to a decrease in oil pressure between the disk portion 47 and the disk-shaped portion 38 due to the discharge. Is lowered, and the friction plate 22 is lowered via the elevating member 37 by the lowering of the disc-shaped portion 38, thereby separating the friction plate 22 from the friction plate 23 and causing the friction plate 23 to move between the friction plate 23 and the friction plate 22. A gap may be formed in the upper structure 4 to release the horizontal fixation of the upper structure 4 to the foundation 3 through the frictional contact between the two friction plates 22 and 23. The vibration in the direction is attenuated exclusively by the damping function of the seismic isolation device 5. That.
[0040]
As described above, in the semi-fixed device 6, the frictional force between the friction plate 22 and the friction plate 23 prevents the movement due to the wind or the large vibration due to the wind, and can attenuate the vibration due to the wind at an early stage. As described above, the upper structure 4 can be semi-fixed to the foundation 3 in the horizontal direction, and the vertical force generator 21 can easily adjust the frictional force so as not to hinder the original seismic isolation function of the seismic isolation device 5. In addition to being able to be set, the frictional force can be controlled as needed, and the maintenance cost can be greatly reduced because the frictional force can be maintained at a desired value for a long time only by adjusting the hydraulic pressure. .
[0041]
Since the semi-fixing device 6 includes the elastic body 39, the friction plate 22 is elastically brought into frictional contact with the friction plate 23, so that a slight change in hydraulic pressure can be compensated.
[0042]
The number of the semi-fixing devices 6 may be one, but two or more may be provided in relation to the wind pressure applied to the upper structure 4.
[0043]
As the friction plate lifting / lowering device 32, a flat jack as shown in FIGS. 6 and 7 may be used instead of the flat jack as described above. The friction plate lifting / lowering device 32 shown in FIGS. 6 and 7 includes a base 71 fixed to the base 3 by bolts and the like, and a liquid generated in the hydraulic oil 34 placed on the base 71 and supplied to the inside 73. A hollow disk-shaped flexible body 72 swelled by hydraulic pressure as pressure and a flexible plate 72 mounted on the flexible body 72 so as to be moved in the vertical direction V by the swelling of the flexible body 72 and the friction plate 22 has an upper surface. And a lifting member 37 fixed to the mounting member 36 by bolts or the like. The bag-shaped flexible body 72, which is a flat jack body, has a flexible hollow flat disc-shaped part 75 and a hollow flat disc-shaped part formed integrally with the hollow flat disc-shaped part 75. And a hollow annular portion 76 communicated with the inside of the hollow annular portion 76. The hollow flat disk-shaped portion 75 is provided inside the hollow annular portion 76 by the hydraulic pressure of the hydraulic oil 34 supplied from the hydraulic pressure generator 31 via the conduit 77. To raise the friction member 22 via the elevating member 37 while discharging the hydraulic oil 34 to the hydraulic pressure generator 31 from the inside of the hollow annular portion 76 via the conduit 77. The raised and lowered member 37 is lowered by contracting the hollow flat disk-shaped portion 75 by the hydraulic pressure that is caused, and the friction plate 22 is lowered via the raised and lowered member 37.
[0044]
The use of the friction plate lifting / lowering device 32 having such a flexible body 72 can greatly simplify the configuration and reduce the cost.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the upper structure supported on the lower structure via the seismic isolation device can be prevented from vibrating by the wind or not largely vibrating by the wind, and the vibration by the wind can be attenuated at an early stage. In addition to being able to be semi-fixed in the horizontal direction by frictional force as well as being able to easily adjust and set the frictional force so as not to impair the original seismic isolation function of the seismic isolation device, control the frictional force as necessary In addition, it is possible to provide a semi-fixing device for a seismic isolation structure that can significantly reduce maintenance costs.
[Brief description of the drawings]
FIG. 1 is a front view of an example of a preferred embodiment of the present invention.
FIG. 2 is an explanatory cross-sectional view of the semi-fixed device of the example shown in FIG.
FIG. 3 is an explanatory plan view of the semi-fixed device of the example of FIG. 1;
FIG. 4 is a partially enlarged explanatory view of the semi-fixed device of the example of FIG. 1;
FIG. 5 is an operation explanatory view of the semi-fixed device of the example of FIG. 1;
FIG. 6 is an explanatory sectional view of another example of the preferred embodiment of the present invention.
FIG. 7 is a plan view of the flexible body shown in FIG.
[Explanation of symbols]
Reference Signs List 3 foundation 4 superstructure 6 semi-fixed device 21 vertical force generator 22, 23 friction plate

Claims (15)

下部構造物と上部構造物との間に介在された免震装置により下部構造物に対して水平方向に免震支持される上部構造物を下部構造物に対して水平方向に関して解除自在に固定するための半固定装置であって、下部構造物及び上部構造物のうちの一方に固定されると共に液圧に基づいて鉛直方向の力を発生する鉛直方向力発生装置と、この鉛直方向力発生装置からの鉛直方向の力によって鉛直方向に移動されると共に水平方向に関して固定された一方の摩擦板と、この一方の摩擦板に摩擦接触するように下部構造物及び上部構造物のうちの他方に水平方向に関して固定される他方の摩擦板とを具備した免震構造物の半固定装置。An upper structure which is supported in a horizontal direction with respect to the lower structure by a seismic isolation device interposed between the lower structure and the upper structure is releasably fixed in a horizontal direction with respect to the lower structure. Vertical force generator fixed to one of a lower structure and an upper structure for generating a vertical force based on hydraulic pressure, and a vertical force generator One of the friction plates, which is moved in the vertical direction by the vertical force from and fixed in the horizontal direction, and is horizontally moved to the other of the lower structure and the upper structure so as to make frictional contact with the one friction plate. A semi-fixing device for a seismic isolation structure, comprising: a second friction plate fixed in a direction. 鉛直方向力発生装置は、液圧により一方の摩擦板を昇降させる摩擦板昇降装置を具備しており、この摩擦板昇降装置は、液体を収容すると共に下部構造物及び上部構造物のうちの一方に固定される液体収容体と、液体に生じる液圧により鉛直方向に移動されるように液体収容体に配されていると共に一方の摩擦板が固着されている昇降部材とを具備しており、摩擦板昇降装置は、昇降部材を介して一方の摩擦板を昇降させるようになっている請求項1に記載の免震構造物の半固定装置。The vertical force generating device includes a friction plate elevating device that raises and lowers one of the friction plates by hydraulic pressure. The friction plate elevating device accommodates a liquid and has one of a lower structure and an upper structure. A liquid container that is fixed to the liquid container, and an elevating member that is arranged in the liquid container so as to be moved in a vertical direction by a liquid pressure generated in the liquid and has one friction plate fixed thereto, 2. The semi-fixing device for a seismic isolation structure according to claim 1, wherein the friction plate lifting device raises and lowers one of the friction plates via a lifting member. 摩擦板昇降装置は、油圧ジャッキからなる請求項2に記載の免震構造物の半固定装置。3. The semi-fixing device for a seismic isolation structure according to claim 2, wherein the friction plate lifting device comprises a hydraulic jack. 摩擦板昇降装置は、フラットジャッキからなる請求項2又は3に記載の免震構造物の半固定装置。The semi-fixing device for a seismic isolation structure according to claim 2, wherein the friction plate lifting device comprises a flat jack. 摩擦板昇降装置は、液体と昇降部材との間に介在される弾性体を更に具備しており、昇降部材は、弾性体を介して液圧を受けるようになっている請求項2から4のいずれか一項に記載の免震構造物の半固定装置。The friction plate lifting device further comprises an elastic body interposed between the liquid and the lifting member, wherein the lifting member receives the liquid pressure via the elastic body. A semi-fixed device for a seismic isolation structure according to any one of the preceding claims. 弾性体は、ゴム部材からなる請求項5に記載の免震構造物の半固定装置。The semi-fixing device for a seismic isolation structure according to claim 5, wherein the elastic body is made of a rubber member. 鉛直方向力発生装置は、制御された液圧を発生する液圧発生装置を具備しており、摩擦板昇降装置は、液圧発生装置からの制御された液圧を受けるようになっている請求項2から6のいずれか一項に記載の免震構造物の半固定装置を具備した免震構造物。The vertical force generator includes a hydraulic pressure generator for generating a controlled hydraulic pressure, and the friction plate elevating device receives a controlled hydraulic pressure from the hydraulic pressure generator. Item 7. A seismic isolation structure provided with the semi-fixed device for a seismic isolation structure according to any one of Items 2 to 6. 昇降部材は、鉛直軸の回りで回転自在となるように液体収容体に配されている請求項2から7のいずれか一項に記載の免震構造物の半固定装置。The semi-fixing device for a seismic isolation structure according to any one of claims 2 to 7, wherein the lifting member is disposed in the liquid container so as to be rotatable around a vertical axis. 両摩擦板は、高摩擦面同士で摩擦接触する高摩擦鋼鈑からなる請求項1から8のいずれか一項に記載の免震構造物の半固定装置。The semi-fixing device for a seismic isolation structure according to any one of claims 1 to 8, wherein the two friction plates are made of a high friction steel plate that makes frictional contact between the high friction surfaces. 一方の摩擦板は、摩擦接触において鉛直方向力発生装置で発生された鉛直方向の力により他方の摩擦板を押圧するようになっている請求項1から9のいずれか一項に記載の免震構造物の半固定装置。The seismic isolation device according to any one of claims 1 to 9, wherein one of the friction plates is configured to press the other friction plate by a vertical force generated by a vertical force generator in frictional contact. Semi-fixed device for structures. 鉛直方向力発生装置は下部構造物に固定されるようになっており、他方の摩擦板は上部構造物に水平方向に関して固定されるようになっている請求項1から10のいずれか一項に記載の免震構造物の半固定装置。The vertical force generator is adapted to be fixed to an undercarriage, and the other friction plate is adapted to be fixed to an superstructure in a horizontal direction. Semi-fixed device for seismic isolation structure as described. 鉛直方向力発生装置は上部構造物に固定されるようになっており、他方の摩擦板は下部構造物に水平方向に関して固定されるようになっている請求項1から10のいずれか一項に記載の免震構造物の半固定装置。The vertical force generator is adapted to be fixed to an upper structure, and the other friction plate is adapted to be fixed to a lower structure in a horizontal direction. Semi-fixed device for seismic isolation structure as described. 下部構造物と、上部構造物と、下部構造物及び上部構造物間に介在されていると共に上部構造物を下部構造物に対して水平方向に免震支持する免震装置と、請求項1から12のいずれか一項に記載の半固定装置とを具備した免震構造物。The seismic isolation device interposed between the lower structure, the upper structure, the lower structure and the upper structure, and supporting the upper structure in a horizontal direction with respect to the lower structure. A seismic isolation structure provided with the semi-fixed device according to any one of claims 12 to 12. 免震装置は、ゴム板と鋼板とを積層してなる積層ゴムを具備している請求項13に記載の免震構造物。The seismic isolation structure according to claim 13, wherein the seismic isolation device includes a laminated rubber obtained by laminating a rubber plate and a steel plate. 免震装置は、積層ゴムに埋設された鉛支柱を具備している請求項14に記載の免震構造物。The seismic isolation structure according to claim 14, wherein the seismic isolation device includes a lead strut embedded in the laminated rubber.
JP2003054429A 2003-02-28 2003-02-28 Semi-fixing device for seismic isolation structure Expired - Lifetime JP4138534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054429A JP4138534B2 (en) 2003-02-28 2003-02-28 Semi-fixing device for seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054429A JP4138534B2 (en) 2003-02-28 2003-02-28 Semi-fixing device for seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2004263430A true JP2004263430A (en) 2004-09-24
JP4138534B2 JP4138534B2 (en) 2008-08-27

Family

ID=33118772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054429A Expired - Lifetime JP4138534B2 (en) 2003-02-28 2003-02-28 Semi-fixing device for seismic isolation structure

Country Status (1)

Country Link
JP (1) JP4138534B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121096A (en) * 2007-11-13 2009-06-04 Takenaka Komuten Co Ltd Base-isolated building
JP2010175053A (en) * 2009-02-02 2010-08-12 Ihi Infrastructure Systems Co Ltd Sliding bearing device
JP2015222097A (en) * 2014-05-22 2015-12-10 株式会社免制震ディバイス Base isolation system using pneumatic levitation mechanism
JP2016148449A (en) * 2015-02-09 2016-08-18 株式会社免制震ディバイス Vibration suppression device of structure
CN112065914A (en) * 2020-09-07 2020-12-11 德清博发智能科技有限公司 Mechanical buffer structure
JP6932280B1 (en) * 2021-03-26 2021-09-08 日鉄エンジニアリング株式会社 Windproof device
KR102601957B1 (en) * 2022-08-01 2023-11-15 해강물산 주식회사 Tableting device for solid seasoning
KR102619216B1 (en) * 2022-08-01 2024-01-02 해강물산 주식회사 Tableting device of coin type solid seasoning

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192941A (en) * 1985-02-20 1986-08-27 Toshiba Corp Vibration avoiding device for structure
JPH09273163A (en) * 1996-04-05 1997-10-21 Sumitomo Constr Co Ltd Earthquake resistant reinforcing method of existing building
JPH10131517A (en) * 1996-10-28 1998-05-19 Okumura Corp Base isolation structure of existing building and base isolation method of existing building
JPH1122208A (en) * 1997-07-04 1999-01-26 Hazama Gumi Ltd Installation method for base-isolating lamination rubber
JP2000192687A (en) * 1998-12-24 2000-07-11 Kinugawa Rubber Ind Co Ltd Seismic base isolator
JP2000220320A (en) * 1999-02-03 2000-08-08 Ichijyo Home Building Co Ltd Wind shaking-preventive structure for base isolation dwelling
JP2000283215A (en) * 1999-03-29 2000-10-13 Freebear Corp Base isolation structure and base isolation auxiliary device
JP2001343040A (en) * 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2004052893A (en) * 2002-07-19 2004-02-19 Bridgestone Corp Base isolation device for lightweight structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192941A (en) * 1985-02-20 1986-08-27 Toshiba Corp Vibration avoiding device for structure
JPH09273163A (en) * 1996-04-05 1997-10-21 Sumitomo Constr Co Ltd Earthquake resistant reinforcing method of existing building
JPH10131517A (en) * 1996-10-28 1998-05-19 Okumura Corp Base isolation structure of existing building and base isolation method of existing building
JPH1122208A (en) * 1997-07-04 1999-01-26 Hazama Gumi Ltd Installation method for base-isolating lamination rubber
JP2000192687A (en) * 1998-12-24 2000-07-11 Kinugawa Rubber Ind Co Ltd Seismic base isolator
JP2000220320A (en) * 1999-02-03 2000-08-08 Ichijyo Home Building Co Ltd Wind shaking-preventive structure for base isolation dwelling
JP2000283215A (en) * 1999-03-29 2000-10-13 Freebear Corp Base isolation structure and base isolation auxiliary device
JP2001343040A (en) * 2000-06-01 2001-12-14 Oiles Ind Co Ltd Manufacturing method of laminated rubber supporting body with lead column and building structure base- isolated with laminated rubber supporting body produced by the same manufacturing method
JP2004052893A (en) * 2002-07-19 2004-02-19 Bridgestone Corp Base isolation device for lightweight structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121096A (en) * 2007-11-13 2009-06-04 Takenaka Komuten Co Ltd Base-isolated building
JP2010175053A (en) * 2009-02-02 2010-08-12 Ihi Infrastructure Systems Co Ltd Sliding bearing device
JP2015222097A (en) * 2014-05-22 2015-12-10 株式会社免制震ディバイス Base isolation system using pneumatic levitation mechanism
JP2016148449A (en) * 2015-02-09 2016-08-18 株式会社免制震ディバイス Vibration suppression device of structure
CN112065914A (en) * 2020-09-07 2020-12-11 德清博发智能科技有限公司 Mechanical buffer structure
JP6932280B1 (en) * 2021-03-26 2021-09-08 日鉄エンジニアリング株式会社 Windproof device
WO2022201990A1 (en) * 2021-03-26 2022-09-29 日鉄エンジニアリング株式会社 Wind-proofing device
TWI794023B (en) * 2021-03-26 2023-02-21 日商日鐵技術股份有限公司 Anti-wind device
KR102601957B1 (en) * 2022-08-01 2023-11-15 해강물산 주식회사 Tableting device for solid seasoning
KR102619216B1 (en) * 2022-08-01 2024-01-02 해강물산 주식회사 Tableting device of coin type solid seasoning

Also Published As

Publication number Publication date
JP4138534B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
US8511004B2 (en) Seismically stable flooring
US5261200A (en) Vibration-proofing device
JP3216607U (en) Air floating vibration control system
JP2009541626A5 (en)
JP2010007859A (en) Isolation platform
JP6372033B2 (en) Anti-vibration vibration reduction device
JP2004263430A (en) Semi-fixing device of base isolation structure
JP2019015310A (en) Vibration damping device for structure
NZ236812A (en) Vibration-proofing device comprising rollers to be interposed between an upper and lower structure
JP2006291588A (en) Base-isolated structure
JPH10280660A (en) Base isolation device and friction damper for base isolation device
JP2000304089A (en) Falling preventive device for building and slip-out preventive device for laminate rubber isolator
JPH09144810A (en) Three-dimensional base isolation device for structure
CN116163574A (en) Friction sliding self-resetting three-dimensional shock insulation and vibration reduction support
JP2015222097A (en) Base isolation system using pneumatic levitation mechanism
JP2001074093A (en) Base isolation device
JP2000266116A (en) Swinging bearing type base isolation device
JP2009121096A (en) Base-isolated building
JPH08233029A (en) Base isolation and damper device by bag
JP2011184950A (en) Slide foundation structure
JP2915210B2 (en) Vibration isolation device
JP4029685B2 (en) Damping type seismic isolation building and vibration damping device used therefor
NL2017646B1 (en) Machine support frame and method for mounting a vibration sensitive machine
JPH09144375A (en) Base isolation device
JP2907310B2 (en) Vibration isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Ref document number: 4138534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term