JPH02154825A - Vibration suppressor for structure - Google Patents

Vibration suppressor for structure

Info

Publication number
JPH02154825A
JPH02154825A JP30539288A JP30539288A JPH02154825A JP H02154825 A JPH02154825 A JP H02154825A JP 30539288 A JP30539288 A JP 30539288A JP 30539288 A JP30539288 A JP 30539288A JP H02154825 A JPH02154825 A JP H02154825A
Authority
JP
Japan
Prior art keywords
mass body
vibration
building
displacement
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30539288A
Other languages
Japanese (ja)
Other versions
JP2711298B2 (en
Inventor
Hiroshi Yamahara
山原 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP63305392A priority Critical patent/JP2711298B2/en
Publication of JPH02154825A publication Critical patent/JPH02154825A/en
Application granted granted Critical
Publication of JP2711298B2 publication Critical patent/JP2711298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/108Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To save the space and obtain a maintenance-free and low-cost vibration suppressor by providing an inertial mass body supported by multistage laminated rubbers from below and a braking device suppressing the horizontal movement of this inertial mass body. CONSTITUTION:A vibration suppressor 1 is constituted of a mass body 5 supported from below by four horizontal deformation sections 4 arranged at four corners of a square and a braking device 6 suppressing the horizontal movement of the mass body 5 when it is horizontally displaced by a preset quantity or above. Laminated rubbers 41 support the mass body 5 from below via support members 43 made of steel. No excess space is required around the mass body, and the space can be saved. A maintenance-free and low-cost vibration suppressor can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は、構造物に外力が作用した際に生ずる構造物の
振動を抑制する構造物の振動抑制装置に係り、特に、強
風等の中小外力に対し自°効に振動抑制を行いうる構造
物の振動抑制装置に関するものである。
Detailed Description of the Invention "Industrial Application Field J The present invention relates to a structure vibration suppressing device that suppresses vibrations of a structure that occur when an external force acts on the structure, and particularly relates to The present invention relates to a vibration suppression device for structures that can self-effectively suppress vibrations against external forces.

「従来の技術」 最近、米国の高層ビルにおいて、強風時に生ずる建築物
の振動によって窓ガラスが破損する等の事故が発生して
いる。このため、強風時における建築物の振動を抑制す
る装置が開発、適用されている。このような振動抑1I
il+装置の一例としては、η11100圧軸受支持に
よるぜ1性質■方式制振装置があり、一応の効果が確認
されている。
"Prior Art" Recently, accidents have occurred in high-rise buildings in the United States, such as damage to window glass due to vibrations caused by the building during strong winds. For this reason, devices have been developed and applied to suppress vibrations in buildings during strong winds. Such vibration suppression 1I
An example of an il+ device is a vibration damping device based on a η11100 pressure bearing, which has been confirmed to be somewhat effective.

一方、我国の建築物、特に高層ビルは、厳しい一11震
規定によって設計されるため、米国における同規模の建
築物に比べてその剛性が高い。特に、数多くの耐震壁が
建築物内に取り付けられるため、yI期剛性が芹しく高
くなる、という特徴がある。
On the other hand, buildings in Japan, especially high-rise buildings, are designed according to strict 111 earthquake regulations, so they are more rigid than buildings of the same size in the United States. In particular, because many seismic walls are installed inside a building, the yI period stiffness is extremely high.

従って、従来の我国の建築物においては、強風時の建築
物の振動が社会的に問題になったことは皆無に等しい。
Therefore, in conventional Japanese buildings, vibrations caused by strong winds have never been a social problem.

1゛発明が解決しようとする課題」 しかしながら、最近、ホテルや住宅といっな人間が常時
居住又は生活する空間の高層化が進み、既に30階建を
越えるホテルやアパートが次々に總築されている。また
、それまで比較的低層階の建築物が主に建築されていた
軟弱地盤にも、高層ビルが積極的に建築されている。こ
の軟弱地盤は、地震時に長周期成分が卓越するであろう
七考えられるため、通常の耐震設計では防ぎにくい振動
が生起するおそれがある。さらに、建築生産の工業化の
進展に伴い高強度の新材料が開発され、このような新材
料の応用により建築物の軽量化が促進されることで、建
築物はますます風により振動し易(なる。
1. Problems to be solved by the invention Recently, however, spaces such as hotels and residences where people live or live have become increasingly high-rise, and hotels and apartment buildings exceeding 30 stories are already being built one after another. There is. In addition, high-rise buildings are being actively constructed on soft ground, where until then relatively low-rise buildings were mainly constructed. Because this soft ground is likely to have a predominant long-period component during an earthquake, there is a risk that vibrations that are difficult to prevent with normal seismic design may occur. Furthermore, with the progress of industrialization of building production, new high-strength materials have been developed, and the application of these new materials promotes weight reduction of buildings, making buildings increasingly susceptible to wind vibration ( Become.

そのような社会的趨勢から見て、近い将来我国において
も、建築物、特に高層ビルの強風時の振動が社会的な問
題になることが予測される。まず第一に懸念されること
は、高層;トテルや高層アパート等の居住者が、強風時
の建築物の振動によって不快感や恐怖感を抱くことであ
る。実際、すでに高層ビル内の居住者が船酔い症状を訴
尤でいる例もある。従って、今後計画・設計される高層
ビルにおいては、建築物の用途、規模、構造、地盤条件
等を考慮し、強風等による建築物の振動に伴うトラブル
が予想される場合には、これに振動抑制装置を設置する
ことが必要となる。
In view of such social trends, it is predicted that vibrations of buildings, especially high-rise buildings, during strong winds will become a social problem in our country in the near future. The first concern is that residents of high-rise buildings such as Totel and high-rise apartment buildings will feel uncomfortable and fearful due to the vibrations of the buildings during strong winds. In fact, there are already cases of residents in high-rise buildings complaining of seasickness. Therefore, for high-rise buildings that are planned and designed in the future, we will take into consideration the use, scale, structure, ground conditions, etc. of the building, and if troubles due to vibration of the building due to strong winds etc. are expected, we will It will be necessary to install a suppression device.

本発明は、前記事情に鑑みてなされたものであす、省ス
ペース、ローコストを図ることで一般の高層ビルにも適
用可能で、かつ、大地震等における安全性を十分に満足
しつる構造物の振動抑制装置の提供を目的としている。
The present invention has been made in view of the above circumstances, and is applicable to general high-rise buildings by saving space and reducing costs, and is a structure that fully satisfies safety in the event of a major earthquake. The purpose is to provide a vibration suppression device.

[課題を解決するための手段] そこで本発明は、構造物の所定位置に配設され、多段積
層ゴムにより構造物の固有振動周期と同一の振動周期と
なるように下方から支持された慣性’t’xm体と、こ
の慣性質m体が所定量以上水平変位した段階でその水平
移動を抑制する制動装置とからなる構造物の振動抑制装
置を構成することで、前記課題を解決している。
[Means for Solving the Problems] Therefore, the present invention provides an inertia ' The above problem is solved by configuring a vibration suppressing device for a structure consisting of a t'xm body and a braking device that suppresses the horizontal movement when the inertial m body is horizontally displaced by a predetermined amount or more. .

ここで、この振動抑制装置には、前記慣性質量体が所定
量以上水平変位した段階で当接する位置に緩衝体を付設
する。
Here, this vibration suppressing device is provided with a buffer at a position that comes into contact with the inertial mass when the inertial mass is horizontally displaced by a predetermined amount or more.

「実施例」 以下、本発明の実施例について図面を参照して説明する
"Embodiments" Examples of the present invention will be described below with reference to the drawings.

第1図ないし第2図は、本発明の一実施例である構造物
の振動抑制装置を示す図である。図において、符号l全
体で示されるものは、本発明の一実施例である構造物の
振動抑制装置(以下、単に振動抑制装置と称する)であ
り、この振動抑制装置1は、第1図ないし第3図に示す
ように、建築物(構造物)2の屋上付近の床面F上に取
付板3を介して設けられている。
1 and 2 are diagrams showing a vibration suppressing device for a structure, which is an embodiment of the present invention. In the figure, what is indicated by the entire reference numeral 1 is a vibration suppressing device for a structure (hereinafter simply referred to as a vibration suppressing device) which is an embodiment of the present invention, and this vibration suppressing device 1 is shown in FIG. As shown in FIG. 3, it is provided on a floor surface F near the roof of a building (structure) 2 via a mounting plate 3.

この振動抑制装置lは、正方形の四隅に配置された4個
の水平変形部4.4、・・・により下方から支持された
’itm体5と、この質量体5が所定量以上水平変位し
た段階でその水平移動を抑制する制動装置6と、前記質
量体6がさらに所定量以上水平変位した段階で当接する
位置に付設された緩衝体7とから概略構成されている。
This vibration suppression device l consists of an 'itm body 5 supported from below by four horizontally deformable parts 4.4, . It is generally composed of a braking device 6 that suppresses horizontal movement of the mass body 6 in stages, and a buffer body 7 attached to a position where the mass body 6 comes into contact with the mass body 6 when the mass body 6 is further horizontally displaced by a predetermined amount or more.

水平変形部4は、正方形の四隅に配置された積層ゴム4
1.41、・・・が平面視矩形状の鋼板製スタビライザ
ー42を挾んで多層に積層されて構成され、鋼製の支持
部材43を介して前記質量体5をその下面から支持して
いる。この積層ゴム41は、例えば鋼板とシート状のゴ
ムとが多層に積層され、その」二下に取付板が設けられ
たような構成であり、水平方向の荷mに対する変位が許
容され、かつ、垂直方向の荷電に対する変位が拘束され
るものである。この積層ゴム41、・・・の規模及び積
層数は、前記質m体5を含めた系の固有振動周期が建築
物2の一次の固有振動周期と等しくなるように設定され
ている。
The horizontal deformation part 4 is made of laminated rubber 4 arranged at the four corners of a square.
1.41, . . . are stacked in multiple layers with a steel plate stabilizer 42 having a rectangular shape in plan view sandwiched therebetween, and support the mass body 5 from its lower surface via a steel support member 43. This laminated rubber 41 has a structure in which, for example, steel plates and sheet-like rubber are laminated in multiple layers, and a mounting plate is provided below the laminated rubber, and allows displacement with respect to the load m in the horizontal direction. Displacement with respect to vertical charge is restricted. The scale and number of laminated rubber layers 41, .

また、質量体5は、外形箱状の収納体51中に板状の質
量部材52.52、・・・が収納されて構成されている
。この質量部材52には、例えば鋼材、鉛、コンクリー
ト等が用いられ、質量体5全体としてのff[ffiが
、通常、建築物2の総ff1ffiの1/150〜l/
600の範囲内となるように、枚数及び材質が設定され
ている。
Further, the mass body 5 is configured by housing plate-shaped mass members 52, 52, . . . in a box-shaped housing 51. This mass member 52 is made of, for example, steel, lead, concrete, etc., and the ff [ffi of the mass body 5 as a whole is usually 1/150 to 1/1 of the total ff1ffi of the building 2.
The number and material of the sheets are set to be within the range of 600.

さらに、制動装置6は、前記水平変位部3の上端及び下
端のスタビライザー42.42間に挾まれたリミットス
イッチ61,61.・・・と、シリンダ62を介して前
記収納体51下面から突設されたエアブレーキ63と、
このエアブレーキ63に相対向されて配設され、前記取
付板3上面に設けられた摩擦板64と、前記リミットス
イッチ61、・・・の作動により前記エアブレーキ63
にエアホース65を介して圧搾空気を供給する空気供給
機構(図示略)とから構成されている。また、エアブレ
ーキ63は、前記シリンダ62に取り付けられたエアブ
レーキシリンダ6Gと、その軸方向に摺動自在に設けら
れたピストン67と、このピストン67先端に設けられ
た圧接板68と、下方のシリンダ室内に設けられたスプ
リング69とから構成されている。
Furthermore, the braking device 6 includes limit switches 61, 61 . ..., an air brake 63 protruding from the lower surface of the storage body 51 via a cylinder 62,
The air brake 63 is disposed opposite to the air brake 63 by the operation of the friction plate 64 provided on the upper surface of the mounting plate 3 and the limit switch 61.
and an air supply mechanism (not shown) that supplies compressed air to the air hose 65 through an air hose 65. The air brake 63 also includes an air brake cylinder 6G attached to the cylinder 62, a piston 67 slidably provided in the axial direction of the air brake cylinder 6G, a pressure contact plate 68 provided at the tip of the piston 67, and a lower It is composed of a spring 69 provided inside the cylinder chamber.

前記リミットスイッチ61.・・・は、前記質量体5が
所定量以上水平移動した際に作動するように設定されて
いる。このリミットスイッチ61、・・・の作動する際
の質m体5の水平変位(以下、これを制御変位と称する
)は、地盤条件や建築物2の構造等によって決定される
ものであり、−例として、建築物2の固有周期が1秒の
場合に約30cm、5秒の場合に約70c−程度とされ
る。これは、ちょうど震度V(地表面加速度で80ガル
程度)以上の地震が建築物2に作用した場合に相当する
。従って、前記圧接板68は、通常の状態、すなわち霞
度■(東京では数年に一度起こる最大級の地震で、地表
面加速度で80ガル程度)以下の地震では、スプリング
69の弾性力により前記摩擦板64から離間された状態
にあるため、前記gim体5は水平方向に移動自在な状
態にある。しかし、iRV以上の地震が発生して、質量
体5が制御変位以上水平移動した際には、リミットスイ
ッチ61、・・・の作動により圧接板68は摩擦板64
に押圧され、質量体5の水平移動がこれら圧接板68と
摩擦板64との間の摩擦力により制動される。この圧接
板68の押圧力は、前記空気供給機構1こより供給され
る圧搾空気の空気圧により任意に調節可能である。
The limit switch 61. ... are set to operate when the mass body 5 moves horizontally by a predetermined amount or more. The horizontal displacement of the mass body 5 (hereinafter referred to as control displacement) when the limit switches 61, . For example, when the natural period of the building 2 is 1 second, it is about 30 cm, and when it is 5 seconds, it is about 70 cm. This corresponds to the case where an earthquake with a seismic intensity of V (approximately 80 gal in terms of ground surface acceleration) or more acts on the building 2. Therefore, in a normal state, that is, in an earthquake with a degree of haze of less than ■ (one of the largest earthquakes that occurs once every few years in Tokyo, with a ground surface acceleration of about 80 gal), the pressure contact plate 68 is moved by the elastic force of the spring 69. Since it is spaced apart from the friction plate 64, the gim body 5 is in a horizontally movable state. However, when an earthquake larger than iRV occurs and the mass body 5 moves horizontally by more than the control displacement, the pressure contact plate 68 is moved from the friction plate 64 by the operation of the limit switches 61, .
, and the horizontal movement of the mass body 5 is braked by the frictional force between the pressure plate 68 and the friction plate 64. The pressing force of this pressing plate 68 can be arbitrarily adjusted by the air pressure of compressed air supplied from the air supply mechanism 1.

また、緩衝体7は、断面中空矩形状のゴム等の弾性体が
リング状に形成されて構成され、前記取付板3上面に突
設された円筒状の囲繞部材71内面に設けられている。
Further, the buffer body 7 is constituted by a ring-shaped elastic body such as rubber having a hollow rectangular cross section, and is provided on the inner surface of a cylindrical surrounding member 71 that projects from the upper surface of the mounting plate 3.

この緩衝体7は、前記制動装置6のシリンダ62側面に
相対向する位置に設けられ、これらの間の距離は、前記
制御変位の13〜2.0倍程度まで質量体5が水平移動
した場合(以下、これを限界変位と称する)、シリンダ
62側面が緩衝体7側面に当接するような距離に設定さ
れている。この緩衝体7は、前記制動装置6の故障又は
予期しない事態の発生に備えて設けられたもので、質量
体5の振動方向が不定であることから、全方向に均しく
設置されている。
This shock absorber 7 is provided at a position opposite to the side surface of the cylinder 62 of the braking device 6, and the distance between them is approximately 13 to 2.0 times the control displacement when the mass body 5 is horizontally moved. (Hereinafter, this will be referred to as a limit displacement), and is set at a distance such that the side surface of the cylinder 62 comes into contact with the side surface of the buffer body 7. The shock absorbers 7 are provided in case the brake device 6 fails or an unexpected situation occurs, and since the direction of vibration of the mass body 5 is indefinite, they are installed evenly in all directions.

次に、第1図ないし第4図を参照して、本発明の一実施
例である構造物の振動抑制装置の作用について説明する
Next, with reference to FIGS. 1 to 4, the operation of the vibration suppressing device for a structure, which is an embodiment of the present invention, will be described.

振動抑制装置lが屋上付近に設置された建築物2に強風
が作用すると、質量体5は建築物2と半周期遅れで振動
を開始する。従って、第4図に示すように、建築物2と
質m体5の水平移動方向が逆位相となることで、建築物
2の振動が質量体5の振動で打ち消され、これにより、
強風時における建築物2の振動抑制が行われる。この動
作は、建築物2に震度■程度の地震が作用するまで行わ
れており、従って、本振動抑制装置lは、J′tlI震
に対する振動抑制装置としても作用する。
When a strong wind acts on the building 2 in which the vibration suppressing device 1 is installed near the rooftop, the mass body 5 starts to vibrate with a half-cycle delay from the building 2. Therefore, as shown in FIG. 4, the horizontal movement directions of the building 2 and the mass body 5 are in opposite phases, so that the vibration of the building 2 is canceled by the vibration of the mass body 5, and as a result,
Vibration of the building 2 is suppressed during strong winds. This operation is continued until an earthquake of approximately seismic intensity II acts on the building 2, and therefore, the present vibration suppressing device 1 also acts as a vibration suppressing device for the J'tlI earthquake.

次に、itim物2に震度V以上の地震が作用する等し
て、質m体5が制御変位以上に水平移動すると、制動装
置6のり町・ットスイッチ61、・・・が作動して、図
示されない空気供給機構により圧搾空気がエアブレーキ
63に供給されることで、その圧接板68が摩擦板64
に押し付けらる。よって、質m体5の水平移動が制動さ
れ、地震によ、り質量体5が過大振幅で振動することが
抑制される。
Next, when the material 5 moves horizontally by more than the control displacement due to an earthquake having a seismic intensity of V or more acting on the material 2, the braking device 6 and switch 61, . . . By supplying compressed air to the air brake 63 by the air supply mechanism that is not
I'm forced to. Therefore, the horizontal movement of the mass body 5 is damped, and vibration of the mass body 5 with excessive amplitude due to an earthquake is suppressed.

さらに、制動装置6の故障又は予期しない事態の発生に
より、質量体5が限界変位以上に水平移動すると、その
下面にあるシリンダ62側面が緩衝体7側面に当接する
ことで、質量体5の限界変位以上の過大変位を防止する
ことができる。また、この緩衝体7は中空弾性体を構成
要素としており、弾性バネ特性を持っているので、質量
体5が緩衝体7に当接すると質m体5を含めた系の固有
周期が変化し、それによって質量体5の応答変位を抑制
する効果をも兼ね備えている。
Furthermore, if the mass body 5 moves horizontally beyond the limit displacement due to a failure of the braking device 6 or the occurrence of an unexpected situation, the side surface of the cylinder 62 on the lower surface of the cylinder 62 comes into contact with the side surface of the buffer body 7, causing the mass body 5 to reach its limit. Excessive displacement exceeding the displacement can be prevented. In addition, this shock absorber 7 has a hollow elastic body as a component and has elastic spring characteristics, so when the mass body 5 comes into contact with the shock absorber 7, the natural period of the system including the mass body 5 changes. , thereby also having the effect of suppressing the response displacement of the mass body 5.

以上説明した作用により、建築物2の強風時の振動を抑
制することができる。ここで、本実施例の振動抑制装置
lは、質量体5を下方から水平移動可能な水平変位部4
6.4、・・・で支持した倒立振子系をその主要構成要
素としているので、前記従来の油圧式静圧軸受支持によ
る振動抑制装置に比較して、質量体5周辺の余分なスペ
ースが不必要であるため省スペース化を図れ、しかも油
圧のようなメンテナン・スが必要な要素を含んでおらず
、メンテナンスフリー ローコストを図ることができる
。これにより、ホテルや住宅といった、人間が常時居住
又は生活する一般の建築物にも十分に適用可能となる。
Vibrations of the building 2 during strong winds can be suppressed by the effects described above. Here, the vibration suppressing device l of this embodiment has a horizontal displacement unit 4 that can horizontally move the mass body 5 from below.
Since the inverted pendulum system supported by 6.4, . Since it is necessary, space can be saved, and it does not include elements that require maintenance such as hydraulics, making it maintenance-free and low cost. This makes it fully applicable to general buildings such as hotels and residences where people live or live all the time.

しかも、震度Vといった大地震が建築物2に作用しても
、制動装置6の作用により質m体5の過大振幅を抑制す
ることができると共に、万一の場合にも緩衝体7の存在
により實m体5が限界変位以上の小平移動をすることが
なく、従って、地震時の安全対策が万全となり、世界有
数の地震国である我国において大変好ましい装置である
Furthermore, even if a large earthquake with a seismic intensity of V acts on the building 2, the excessive amplitude of the building 5 can be suppressed by the action of the braking device 6, and even in the event of an emergency, the presence of the buffer 7 In fact, the m-body 5 does not move beyond the limit displacement, and therefore, safety measures in the event of an earthquake are ensured, making this a highly desirable device in Japan, one of the world's most earthquake-prone countries.

さらには、水平変位部4、・・・に積層ゴム41、・・
・を使用していることから、質量体5の水平移動はゴム
の剪断変形により行われ、従って、前記従来の油圧式静
圧軸受支持の如く摩擦により慣性質mを支持する方式に
比較しで、質量体5の水平移動時の騒音が少なく、かつ
、風等の小さな振動であっても有効な振動抑制効果を得
ることができる、といった利点もある。特に、本実施例
では、積層ゴム41、・・・を多段に積層して水平変位
部4を構成し°Cいるので、質量体5の大変形が可能で
あり、従って、小形の装置でも大きな振動抑制効果を得
ることができる。
Furthermore, the laminated rubber 41,...
・Since horizontal movement of the mass body 5 is performed by shearing deformation of the rubber, it is therefore easier to move the mass body 5 than the conventional hydraulic hydrostatic bearing support system in which the inertial mass m is supported by friction. Another advantage is that there is less noise when the mass body 5 moves horizontally, and that an effective vibration suppression effect can be obtained even with small vibrations such as those caused by wind. In particular, in this embodiment, since the horizontal displacement part 4 is constructed by laminating the laminated rubber 41, etc. in multiple stages, the mass body 5 can be greatly deformed. A vibration suppressing effect can be obtained.

なお、以下に本発明者が行った本発明の振動抑制装置の
効果確認実験について、第5図ないし第6図を参照して
説明する。
Note that an experiment conducted by the present inventor to confirm the effectiveness of the vibration suppressing device of the present invention will be described below with reference to FIGS. 5 and 6.

第5図は、有効質量比(振動抑制装置の質m体のNTi
mと建築物の有効重量との比)を0.01とした場合、
建築物の自由振動波形について、振動抑制装置がない場
合とある場合との計算値を比較したものである。この図
かられかるように、本発明の振動抑制装置を取り付ける
ことにより、建築物の振動減衰性能が著しく向上し、建
築物の振動が抑制される。
Figure 5 shows the effective mass ratio (the mass of the vibration suppressor)
m to the effective weight of the building) is set to 0.01,
This is a comparison of the calculated values of the free vibration waveform of a building when there is no vibration suppression device and when there is a vibration suppression device. As can be seen from this figure, by installing the vibration suppressing device of the present invention, the vibration damping performance of the building is significantly improved, and the vibration of the building is suppressed.

また、第6図は、変位応答倍率(建築物の基礎に振幅1
.0なる正弦波が入力したときの建築物の応答変位振幅
)について、振動抑制装置がない場合とある場合との3
1算値を比較したものである。
Figure 6 also shows the displacement response magnification (amplitude 1
.. Regarding the response displacement amplitude of the building when a sine wave of 0 is input, there are three cases with and without a vibration suppression device.
This is a comparison of calculated values.

この図から、本発明の振動抑制装置(有効質量比0.0
1)を取り付けることにより、建築物の応答変位振幅が
約115になることが理解できる。
From this figure, it can be seen that the vibration suppression device of the present invention (effective mass ratio 0.0
It can be seen that by installing 1), the response displacement amplitude of the building becomes approximately 115.

一般に、有効質量比を大きくする(振動抑制装置の質m
体を大きくする)はど振動抑制効果は大きくなるが、実
際の建築物では質量体の大きさに限界があり、実用的に
は有効質量比が0.020〜0.005の範囲で用いら
れる。
In general, increase the effective mass ratio (quality of vibration suppressor m
However, in actual buildings, there is a limit to the size of the mass body, and for practical purposes, the effective mass ratio is used in the range of 0.020 to 0.005. .

なお、本発明の構造物の振動抑制装置は、その細部が前
記実施例に限定されず、種々の変形例が可能である。−
例として、第7図に示すように、変形吸収部4を平面視
三角形状に形成し、積層ゴム42.42、・・・をその
三角形のn1点に位置するように配置したような構成で
あってもよい。この場合、振動抑制装置l全体の平面寸
法が前記実施例より小形化できて好ましい。このように
、振動抑制装置1を構成する要素の形状等はf1意であ
り、施工条件等に応じて適宜変更可能である。
Note that the details of the structure vibration suppressing device of the present invention are not limited to the above-mentioned embodiments, and various modifications are possible. −
As an example, as shown in FIG. 7, the deformation absorbing portion 4 is formed into a triangular shape in plan view, and the laminated rubber 42, 42, . . . are arranged so as to be located at the n1 point of the triangle. There may be. In this case, the planar dimensions of the entire vibration suppressing device 1 can be made smaller than in the previous embodiment, which is preferable. In this way, the shapes and the like of the elements constituting the vibration suppressing device 1 are unique and can be changed as appropriate depending on the construction conditions and the like.

「発明の効果」 以上詳細に説明したように本発明によれば、構造物の所
定位置に配設され、多段積層ゴムにより構造物の固有振
動周期と同一の振動周期どなるように下方から支持され
た慣性質m体と、この慣性質m体が所定量以上水平変位
した段階でその水平移動を抑制する制動装置とからなる
構造物の振動抑制装置を構成したので、従来の油圧式静
圧軸受支持による振動抑制装置に比較して、質m体周辺
の余分なスペースが不必要であるため省スペース化を図
れ、しかも油圧のようなメンテナンスが必要な要素を含
んでおらず、メンテナンスフリーローコストを図ること
ができる。これにより、ホチルや住宅といった、人間が
常時居住又は生活する一般の建築物にも十分に適用可能
となる。
"Effects of the Invention" As explained in detail above, according to the present invention, the rubber is disposed at a predetermined position of a structure and is supported from below by multi-layered laminated rubber so that the vibration frequency is the same as the natural vibration period of the structure. The vibration suppressing device for a structure consists of an inertial mass m body and a braking device that suppresses the horizontal movement when the inertial mass m body is horizontally displaced by a predetermined amount or more. Compared to vibration suppression devices that use support, it is possible to save space because no extra space is required around the body, and it does not include elements that require maintenance such as hydraulics, so it is maintenance-free and low-cost. can be achieved. This makes it fully applicable to general buildings such as buildings and houses where people live or live all the time.

しかも、大地震等の大外力が建築物に作用しても、制動
装置の作用により質m体の過大振幅を抑制することがで
き、地震時の安全対策が万全である。特に、緩衝体を取
り付けておけば、万一の場合にも&i!衝体の存在によ
り質量体が限界変位以上の水平移動をすることがなく、
前述した地震時の安全対策が更に万全となる。
Moreover, even if a large external force such as a large earthquake acts on the building, the excessive amplitude of the mass can be suppressed by the action of the braking device, and safety measures in the event of an earthquake are perfect. In particular, if you install a shock absorber, you can use &i! Due to the presence of the impactor, the mass body does not move horizontally beyond the critical displacement,
The aforementioned safety measures in the event of an earthquake will be even more thorough.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は、本発明の一実施例である構造物
の振動抑制装置を示す図であって、第1図は要部を切欠
した状態を示す平面図、第2図は同要部を切欠した状態
を示す正面図、第3図は建築物に設置された状態を示す
概略正面図、第4図は振動抑制装置の作用を示す図、第
5図は振動抑制装置がある場合とない場合との建築物の
自由振動波形を示す図、第6図は振動抑制装置がある場
合とない場合との建築物の変位応答倍率を示す図、第7
図はこの発明の振動抑制装置の他の実施例を示す平面図
である。 l・・・・・・振動抑制装置、2・・・・・・建築物(
構造物)、4・・・・・・水平変位部、5・・・・・・
慣性質量体、6・・・・・・制動装置、7・・・・・・
緩衝体。
1 to 4 are diagrams showing a vibration suppressing device for a structure which is an embodiment of the present invention, in which FIG. 1 is a plan view showing a state in which main parts are cut away, and FIG. 2 is the same. A front view showing the main parts cut away, Figure 3 is a schematic front view showing the state installed in a building, Figure 4 is a diagram showing the action of the vibration suppression device, and Figure 5 shows the vibration suppression device. Figure 6 is a diagram showing the free vibration waveform of a building with and without a vibration suppression device. Figure 7 is a diagram showing the displacement response magnification of a building with and without a vibration suppression device.
The figure is a plan view showing another embodiment of the vibration suppressing device of the present invention. 1...Vibration suppression device, 2...Building (
structure), 4...horizontal displacement part, 5...
Inertial mass body, 6...braking device, 7...
buffer body.

Claims (2)

【特許請求の範囲】[Claims] (1)構造物の所定位置に配設され、多段積層ゴムによ
り構造物の固有振動周期と同一の振動周期となるように
下方から支持された慣性質量体と、この慣性質量体が所
定量以上水平変位した段階でその水平移動を抑制する制
動装置とからなる構造物の振動抑制装置。
(1) An inertial mass body placed at a predetermined position on a structure and supported from below by multi-stage laminated rubber so that the vibration period is the same as the natural vibration period of the structure; A vibration suppression device for a structure comprising a braking device that suppresses horizontal movement at the stage of horizontal displacement.
(2)請求項1記載の構造物の振動抑制装置において、
前記慣性質量体が所定量以上水平変位した段階で当接す
る位置に緩衝体が付設されていることを特徴とする構造
物の振動抑制装置。
(2) In the vibration suppression device for a structure according to claim 1,
A vibration suppressing device for a structure, characterized in that a shock absorber is attached at a position that comes into contact with the inertial mass body when the inertial mass body is horizontally displaced by a predetermined amount or more.
JP63305392A 1988-12-02 1988-12-02 Vibration suppression device for structures Expired - Fee Related JP2711298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305392A JP2711298B2 (en) 1988-12-02 1988-12-02 Vibration suppression device for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305392A JP2711298B2 (en) 1988-12-02 1988-12-02 Vibration suppression device for structures

Publications (2)

Publication Number Publication Date
JPH02154825A true JPH02154825A (en) 1990-06-14
JP2711298B2 JP2711298B2 (en) 1998-02-10

Family

ID=17944571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305392A Expired - Fee Related JP2711298B2 (en) 1988-12-02 1988-12-02 Vibration suppression device for structures

Country Status (1)

Country Link
JP (1) JP2711298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269033A (en) * 1991-02-25 1992-09-25 Sumitomo Electric Ind Ltd Data transmission system
JPH04117943U (en) * 1991-04-03 1992-10-22 カヤバ工業株式会社 Vibration damping device
JPH0571246A (en) * 1991-08-30 1993-03-23 Shimizu Corp Hybrid vibration control apparatus
FR2711765A1 (en) * 1993-10-25 1995-05-05 Metravib Sa Suspension device for a system designed to be placed in a zero-gravity situation
JP2001074088A (en) * 1999-09-03 2001-03-23 Tokai Rubber Ind Ltd Vibration control device for building structure
JP2001116082A (en) * 1999-10-15 2001-04-27 Tokai Rubber Ind Ltd Vibration control device for building structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159036A (en) * 1984-08-29 1986-03-26 Mitsubishi Electric Corp Vibration controller
JPS63114774A (en) * 1986-10-31 1988-05-19 株式会社竹中工務店 Vibration damping apparatus of building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159036A (en) * 1984-08-29 1986-03-26 Mitsubishi Electric Corp Vibration controller
JPS63114774A (en) * 1986-10-31 1988-05-19 株式会社竹中工務店 Vibration damping apparatus of building

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269033A (en) * 1991-02-25 1992-09-25 Sumitomo Electric Ind Ltd Data transmission system
JPH04117943U (en) * 1991-04-03 1992-10-22 カヤバ工業株式会社 Vibration damping device
JPH0571246A (en) * 1991-08-30 1993-03-23 Shimizu Corp Hybrid vibration control apparatus
FR2711765A1 (en) * 1993-10-25 1995-05-05 Metravib Sa Suspension device for a system designed to be placed in a zero-gravity situation
JP2001074088A (en) * 1999-09-03 2001-03-23 Tokai Rubber Ind Ltd Vibration control device for building structure
JP2001116082A (en) * 1999-10-15 2001-04-27 Tokai Rubber Ind Ltd Vibration control device for building structure

Also Published As

Publication number Publication date
JP2711298B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP5079766B2 (en) Isolation platform
Symans et al. Base isolation and supplemental damping systems for seismic protection of wood structures: Literature review
EP0587891A1 (en) Vibration control device for structure
KR101229488B1 (en) Vibration isolation damper for skybridge
Villaverde Aseismic roof isolation system: Feasibility study with 13-story building
JP5621101B1 (en) Seismic foundation for buildings
JPH01322061A (en) Earthquake isolating device
US5161338A (en) Laminated rubber support assembly
JPH02154825A (en) Vibration suppressor for structure
JP2010173860A (en) Device for horizontally supporting mast of tower crane
JPH10169249A (en) Base isolating structure
JP2010275847A (en) Oscillation isolation construction building
JP2010070908A (en) Seismic control structure
JP2002070943A (en) Slip support device for base isolation
JP2005187185A (en) Device for horizontally supporting mast of tower crane
JPH10311162A (en) Base isolated building
JP3114602B2 (en) Seismic isolation device
JP2001082542A (en) Three-dimensional base isolation device
JP3677706B2 (en) Seismic isolation and control structure
JP3463085B2 (en) Seismic building
Patel Study on a Base Isolation System
JP2821649B2 (en) Building damping device with rooftop heliport
JPS6366987B2 (en)
JPH01247633A (en) Damping mechanism for vibrationproof device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees