JP2006241783A - Damping structure for building - Google Patents

Damping structure for building Download PDF

Info

Publication number
JP2006241783A
JP2006241783A JP2005057467A JP2005057467A JP2006241783A JP 2006241783 A JP2006241783 A JP 2006241783A JP 2005057467 A JP2005057467 A JP 2005057467A JP 2005057467 A JP2005057467 A JP 2005057467A JP 2006241783 A JP2006241783 A JP 2006241783A
Authority
JP
Japan
Prior art keywords
building
frame
rigid frame
vibration control
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005057467A
Other languages
Japanese (ja)
Other versions
JP4706281B2 (en
Inventor
Katsuhisa Nishimura
勝尚 西村
Yoshiyuki Fukumoto
義之 福本
Yoshiisa Yamada
能功 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2005057467A priority Critical patent/JP4706281B2/en
Publication of JP2006241783A publication Critical patent/JP2006241783A/en
Application granted granted Critical
Publication of JP4706281B2 publication Critical patent/JP4706281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping structure for a building which can suppress costs by sufficiently securing a freedom degree of a floor plan of a building and by reducing the number of members constituting the building, and also, can secure sufficient damping performance. <P>SOLUTION: The building 1 is provided with a rigid frame structure 10 constituting the building 1 and a continuous-layer earthquake resisting wall 20 provided in the rigid frame structure 10 independently from the rigid frame structure 10. The rigid frame structure 10 and the continuous-layer earthquake resisting wall 20 each have different vibration characteristics and are coupled with each other at one part or a plurality of parts via a damping device 50. The continuous-layer earthquake resisting wall 20 is provided with a vertically extended body part 21 and a projection part 22 projected from the body part 21 to the outer periphery. The lower face of the projection part 22 and the upper face on the outer peripheral side of the rigid frame structure 10 are coupled with each other by a rolling bearing 60 allowing both of them to relatively move in the horizontal direction and constraining the relative movement in the vertical direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建物の制震構造に関し、特に、十分な耐震性能を確保できる建物の制震構造に関する。   The present invention relates to a building vibration control structure, and more particularly to a building vibration control structure capable of ensuring sufficient earthquake resistance.

従来、高層建物では、地震力や風荷重による大きな水平力が入力されると、水平方向へ大きな変形が生じるため、柱や梁の本数を多くしたり、これらの断面を大きくする構成や、耐震要素としての連層耐震壁を架構内に設ける構成を採用することにより、水平力を負担している。しかしながら、このように柱や梁の本数を増やしたり、断面を大きくしたりすると、建物内の居室空間等が狭小となって、建物の平面計画や断面計画の障害になるという問題がある。また、大きな力を負担する連層の耐震壁を採用したとしても、耐震壁の断面が大きくなることにより、前述同様に、建物の平面計画や断面計画の障害となる。   Conventionally, in a high-rise building, when a large horizontal force due to seismic force or wind load is input, a large deformation occurs in the horizontal direction. Therefore, the number of columns and beams is increased, the cross section is enlarged, The horizontal force is borne by adopting the structure in which the multistory shear walls as elements are provided in the frame. However, if the number of pillars and beams is increased or the section is increased in this way, there is a problem that the room space in the building becomes narrow, which obstructs the plan and section plans of the building. In addition, even if a multi-layer earthquake resistant wall that bears a large force is adopted, the cross section of the earthquake resistant wall becomes large, which becomes an obstacle to the plan and sectional plans of the building as described above.

これに対して、例えば特許文献1には、連層耐震壁を有するコアの頂部に連層耐震壁の曲げ変形を誘起するトップガーダーと呼ばれる巨大な梁を形成し、このトップガーダーの端部とコアの周囲に配置される外周壁の頂部とを制震装置を介して連結する構造が開示されている。このような構造によれば、地震等の外力が入力された際に、トップガーダーを含むコアが下層階では入力外力を負担しつつ、上層階では曲げ変形するものの、この上層階の曲げ変形を制震装置が吸収することにより建物の耐震性能を十分に確保できる上、コアが外力の多くを吸収するため、外周部分の柱や梁を比較的小さくできて、建物の平面計画の自由度を増すことができる。
特開平7−26786号公報
On the other hand, for example, in Patent Document 1, a giant beam called a top girder that induces bending deformation of a multi-layer earthquake-resistant wall is formed at the top of a core having a multi-layer earthquake-resistant wall. A structure is disclosed in which a top portion of an outer peripheral wall disposed around a core is connected via a vibration control device. According to such a structure, when an external force such as an earthquake is input, the core including the top girder bears the input external force on the lower floor, but bends and deforms on the upper floor. The seismic control device can absorb the building's seismic performance sufficiently, and the core absorbs much of the external force. Can be increased.
Japanese Unexamined Patent Publication No. 7-26786

しかしながら、このような構造では、コアを構成するトップガーダーや連層耐震壁の断面をかなり大きなものとしなければならず、コストが高くなるという問題がある。これに対して、本願発明者は、振動特性の異なる、架構と連層耐震壁とを備える建物において、架構と連層耐震壁とを制震装置を介して連結することを提案している(特願2003−424525号)。このような建物によれば、架構と連層耐震壁とが互いに異なる変形モードを示すため、例えば、変形差が大きな箇所に制震装置を配置することにより、効率的に、建物の水平方向の変形を小さく抑えることができて、架構を構成する梁や柱等の寸法や本数を小さくできコストを抑えることができる。しかしながら、例えば、建物の高さが非常に大きくなる場合には、架構と連層耐震壁とがともに同等の変形モードで曲げ変形を生じる可能性があるため、架構と連層耐震壁の間での減衰効果が必ずしも十分ではない。   However, in such a structure, there is a problem that the top girder and the multistory earthquake-resistant wall constituting the core have to be considerably large in cross section, which increases the cost. On the other hand, the inventor of the present application proposes to connect a frame and a multi-layer earthquake-resistant wall via a vibration control device in a building having a frame and a multi-layer earthquake-resistant wall having different vibration characteristics ( Japanese Patent Application No. 2003-424525). According to such a building, since the frame and the multistory shear wall show different deformation modes, for example, by installing a vibration control device at a location where the deformation difference is large, the horizontal direction of the building can be efficiently Deformation can be suppressed to a small size, and the size and number of beams and columns constituting the frame can be reduced, thereby reducing the cost. However, for example, when the height of the building becomes very large, both the frame and the multistory shear wall may be bent in the same deformation mode. The damping effect is not always sufficient.

本発明の目的は、建物の平面計画の自由度を十分に確保し、建物を構成する部材の点数を減少させてコストを抑えることができるとともに、十分な制震性能を確保できる建物の制震構造を提供することにある。   The object of the present invention is to secure a sufficient degree of freedom in the floor plan of a building, to reduce the number of members constituting the building, to suppress the cost, and to suppress the vibration of the building that can secure sufficient vibration control performance. To provide a structure.

本発明は、建物の制震構造であって、前記建物は、当該建物を構成する架構と、前記架構内に当該架構から独立して設けられた独立部材要素とを備え、前記架構と前記独立部材要素とは、異なる振動特性を有するとともに、1又は複数箇所で制震装置を介して連結され、前記独立部材要素は、鉛直方向に延びる本体部と、前記本体部から外周へ張り出した張出部とを備え、 前記張出部の下面と前記架構の上面とは、両者の水平方向への相対移動を許容し、かつ鉛直方向への相対移動を拘束する支持装置により連結されていることを特徴とする。   The present invention provides a vibration control structure for a building, and the building includes a frame that constitutes the building, and an independent member element that is provided in the frame independently from the frame, and is independent from the frame. The member element has different vibration characteristics and is connected through a vibration control device at one or a plurality of locations, and the independent member element includes a main body portion extending in a vertical direction and an overhang projecting from the main body portion to the outer periphery. The lower surface of the overhanging portion and the upper surface of the frame are connected by a support device that allows relative movement in the horizontal direction and restrains relative movement in the vertical direction. Features.

ここで、振動特性の異なる架構と独立部材要素には、例えば、以下の組み合わせが考えられる。すなわち、ラーメン架構と連層耐震壁との組み合わせ、鉄骨造と鉄筋コンクリート造または鉄骨鉄筋コンクリート造との組み合わせ、剛性の異なるラーメン架構同士の組み合わせ等である。また、鉄骨造とブレース架構または鋼板耐震壁架構との組み合わせも考えられる。また、制震装置としては、粘性ダンパ、粘弾性ダンパ、摩擦ダンパ、履歴型ダンパ等の制震装置を採用できる。また、これらの制震装置を組み合わせたものとしてもよい。また、前記支持装置としては、例えば、転がり支承(ローラー)を適用できる。   Here, for the frame and independent member elements having different vibration characteristics, for example, the following combinations are conceivable. That is, a combination of a rigid frame and a multistory earthquake resistant wall, a combination of a steel structure and a reinforced concrete structure or a steel reinforced concrete structure, a combination of rigid frame structures having different rigidity, and the like. Moreover, the combination of a steel frame and a brace frame or a steel plate earthquake-resistant wall frame is also conceivable. In addition, as the vibration control device, a vibration control device such as a viscous damper, a viscoelastic damper, a friction damper, or a hysteretic damper can be used. Moreover, it is good also as what combined these damping devices. Moreover, as said support apparatus, a rolling bearing (roller) is applicable, for example.

本発明によれば、本体部から外周へ張り出した張出部の下面と架構の上面との間を、水平方向への相対移動を許容し、かつ鉛直方向への相対移動を拘束する支持装置により連結したので、架構と、独立部材要素の振動モードを確実に異なるものとすることができる。このため、例えば、架構と独立部材要素との変形差が比較的大きくなる箇所に制震装置を配置して連結するだけで、制震装置の数が少なくても効率的に制震効果を発揮でき、建物の水平方向の変形を小さく抑えることができる。このように比較的簡単な構成で十分な耐震性能を確保できるので、架構を構成する梁や柱等の寸法や本数を小さくでき、建物の平面計画の自由度を十分に確保できるとともに、コストを抑えることができる。   According to the present invention, the support device that allows relative movement in the horizontal direction and restrains relative movement in the vertical direction between the lower surface of the projecting portion that projects from the main body portion to the outer periphery and the upper surface of the frame. Since they are connected, the vibration mode of the frame and the independent member element can be surely different. For this reason, for example, even if the number of seismic control devices is small, the seismic control effect can be efficiently achieved simply by placing and connecting seismic control devices at locations where the deformation difference between the frame and the independent member element is relatively large. It is possible to suppress the horizontal deformation of the building. In this way, sufficient seismic performance can be ensured with a relatively simple structure, so the dimensions and number of beams and pillars that make up the frame can be reduced, the degree of freedom in planning the building can be secured sufficiently, and the cost can be reduced. Can be suppressed.

ここで、前記張出部は、前記本体部の頂部に設けられていてもよい。また、前記支持装置は、前記張出部の外周側端部の下面と、前記架構の外周側の上面との間に配置されていることとしてもよい。また、前記制震装置は、外力が入力された際に前記架構と前記独立部材要素との変形差が大きくなる箇所に設置されていてもよい。このような構成によれば、建物の水平方向の変形を効率的に減衰できる。   Here, the overhang portion may be provided on the top portion of the main body portion. Moreover, the said support apparatus is good also as arrange | positioning between the lower surface of the outer peripheral side edge part of the said overhang | projection part, and the upper surface of the outer peripheral side of the said frame. Moreover, the said vibration control apparatus may be installed in the location where the deformation | transformation difference of the said frame and the said independent member element becomes large when external force is input. According to such a configuration, the horizontal deformation of the building can be efficiently attenuated.

本発明の建物の制震構造によれば、建物の平面計画の自由度を十分に確保できた上で、建物を構成する部材の点数を減少させてコストを抑えることができるとともに、十分な制震性能を確保できるという効果がある。   According to the vibration control structure of a building of the present invention, it is possible to reduce costs by reducing the number of members constituting the building while ensuring a sufficient degree of freedom in building plan planning. There is an effect that seismic performance can be secured.

以下、本発明の一実施形態に係る建物の制震構造を図面に基づいて説明する。
図1は、本実施形態に係る建物の制震構造を模式的に示す縦断面図である。図2は、図1のII−IIの横断面図である。図3は、前記建物を上方から見た平面図である。図4は、図2のA部を拡大して示す横断面図である。図1に示すように、建物1は、柱11および梁12で構成される架構としてのラーメン架構10と、ラーメン架構10内に設けられ、ラーメン架構10から独立した独立部材要素としての連層耐震壁20とを備えている。
Hereinafter, a building vibration control structure according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a vertical cross-sectional view schematically showing a vibration control structure of a building according to the present embodiment. 2 is a cross-sectional view taken along the line II-II in FIG. FIG. 3 is a plan view of the building as viewed from above. 4 is an enlarged cross-sectional view showing a portion A of FIG. As shown in FIG. 1, a building 1 includes a ramen frame 10 as a frame composed of columns 11 and beams 12, and a multi-layer earthquake resistance as an independent member element provided in the ramen frame 10 and independent of the ramen frame 10. And a wall 20.

図2に示すように、ラーメン架構10は、柱11と、梁12とを備えており、隣接する柱11および梁12により形成される矩形平面10A内には、床板13が設けられている。ラーメン架構10は、従来の一般的なラーメン架構に比べて、柱11や梁12の寸法が小さく形成されるとともに、これらの柱11および梁12の点数が少なくなっている。このため、ラーメン架構10内に設けられる居室空間等を十分に確保でき、空間設計の自由度が向上する。また、ラーメン架構10は、連層耐震壁20よりも低剛性となるように構築され、ラーメン架構10と連層耐震壁20とは、外力に対して異なる振動特性を有している。   As shown in FIG. 2, the frame structure 10 includes a column 11 and a beam 12, and a floor plate 13 is provided in a rectangular plane 10 </ b> A formed by the adjacent column 11 and beam 12. The ramen frame 10 is formed such that the dimensions of the columns 11 and the beams 12 are smaller than those of a conventional general frame structure, and the number of the columns 11 and the beams 12 is reduced. For this reason, the room space etc. which are provided in the ramen frame 10 can be sufficiently secured, and the degree of freedom in space design is improved. The rigid frame 10 is constructed so as to be less rigid than the multi-layer seismic wall 20, and the rigid frame 10 and multi-layer seismic wall 20 have different vibration characteristics with respect to external forces.

図1,図3に示すように、連層耐震壁20は、鉛直方向に延びる本体部21と、本体部21の頂部において外周へと張り出した張出部22とを備えている。また、図1に示すように、本体部21とラーメン架構10とは、結合箇所40において互いに直接結合されている。結合箇所40は、建物1を建設する建設地で発生する可能性が高い地震動の周期に対して建物1が共振しないように、建物1の固有周期を調整する目的で設けられている。また、図4に示すように、ラーメン架構10と本体部21との間には、制震装置50が取り付けられている。制震装置50は、結合箇所40による固有周期の調整を考慮し、固有周期調整後の建物1において、ラーメン架構10と本体部21との変形差が最大となる箇所に設置されている。   As shown in FIGS. 1 and 3, the multistory seismic wall 20 includes a main body portion 21 extending in the vertical direction and an overhang portion 22 projecting to the outer periphery at the top of the main body portion 21. Further, as shown in FIG. 1, the main body 21 and the rigid frame 10 are directly coupled to each other at a coupling point 40. The coupling point 40 is provided for the purpose of adjusting the natural period of the building 1 so that the building 1 does not resonate with the period of earthquake motion that is likely to occur in the construction site where the building 1 is constructed. In addition, as shown in FIG. 4, a vibration control device 50 is attached between the rigid frame 10 and the main body 21. The seismic control device 50 is installed at a location where the deformation difference between the rigid frame 10 and the main body portion 21 is maximized in the building 1 after the natural period adjustment in consideration of the natural period adjustment by the coupling point 40.

図5は、ラーメン架構10と本体部21とが制震装置50を介して結合された部分を拡大して示す縦断面図である。図5に示すように、ラーメン架構10と本体部21との間には、結合されずに互いに独立した非結合箇所Aと、制震装置50を介して互いに結合された結合箇所Bとが設けられている。非結合箇所Aにおいて、本体部21には、その表裏面21A,21Bからそれぞれ突出するような梁部21Xが形成され、床板13Aは、梁部21Xと離間した状態で、隣接する梁12,12間に架け渡された2本の小梁14,14によって支持されている。また、結合箇所Bにおいて、床板13Bには、梁部15が一体的に形成されている。   FIG. 5 is an enlarged longitudinal sectional view showing a portion where the rigid frame 10 and the main body 21 are coupled via the vibration control device 50. As shown in FIG. 5, between the rigid frame 10 and the main body portion 21, there are provided a non-bonded portion A that is independent of each other and is connected to each other via a vibration control device 50. It has been. In the unbonded portion A, the main body portion 21 is formed with beam portions 21X that protrude from the front and back surfaces 21A and 21B, and the floor plate 13A is adjacent to the beam portions 12 and 12 that are separated from the beam portion 21X. It is supported by two small beams 14 and 14 which are bridged between them. In addition, in the joint portion B, the beam portion 15 is integrally formed on the floor plate 13B.

制震装置50は、上側の床板13Bに設けられた梁部15と本体部21の梁部21Xとの間に配置されるオイルダンパ51と、本体部21を介して、隣接する上側の床板13B同士を連結するように設置される滑り支承52と、本体部21の表裏面21A,21Bと梁部15との間にそれぞれ配置される転がり支承53とを備えている。   The vibration control device 50 includes an oil damper 51 disposed between the beam portion 15 provided on the upper floor plate 13B and the beam portion 21X of the main body portion 21 and the adjacent upper floor plate 13B via the main body portion 21. A sliding bearing 52 is provided so as to connect them together, and rolling bearings 53 are disposed between the front and back surfaces 21A, 21B of the main body 21 and the beam section 15, respectively.

オイルダンパ51は、鉛直方向に伸縮可能に構成され、地震力や風荷重等による振動を減衰させる機能を有している。滑り支承52は、隣接する床板13Bの上面にそれぞれ取り付けられるアングル材521と、アングル材521の垂直部521Aと本体部21との間に配置される滑り材522と、本体部21に形成された長孔を介して、本体部21を挟んでアングル材521および滑り材522を締め付ける皿ばね523とを備えている。なお、長孔は図5の紙面に直交する方向に延びるように形成されている。皿ばね523は、締め付け力を適宜変更することにより、滑り材522での滑り耐力を適宜決定することができる。転がり支承53は、本体部21の表裏面21A,21Bに沿って摺動可能であるとともに、表裏面21A,21Bと直交する方向、すなわち、図5中の左右方向へは摺動せず、この方向に力を伝達できるように構成されている。   The oil damper 51 is configured to be extendable and contractible in the vertical direction, and has a function of attenuating vibrations caused by seismic force or wind load. The sliding support 52 is formed on the main body 21, an angle member 521 attached to the upper surface of the adjacent floor plate 13 </ b> B, a sliding member 522 disposed between the vertical portion 521 </ b> A of the angle member 521 and the main body 21. A disc spring 523 that tightens the angle member 521 and the sliding member 522 across the main body 21 via the long hole is provided. The long hole is formed so as to extend in a direction orthogonal to the paper surface of FIG. The disc spring 523 can appropriately determine the slip strength of the sliding member 522 by appropriately changing the tightening force. The rolling support 53 is slidable along the front and back surfaces 21A and 21B of the main body 21, and does not slide in the direction orthogonal to the front and back surfaces 21A and 21B, that is, in the left-right direction in FIG. It is configured to transmit force in the direction.

また、図1に示すように、張出部22の下面と、ラーメン架構10の外周部の上面との間には、例えば前述した転がり支承53と同様の構成を有する支持装置としての転がり支承60が設けられている。転がり支承60は、水平方向にのみ自由に摺動できて、鉛直方向へは摺動しないように構成されている。このため、鉛直方向への力を伝達できるように構成されている。   Further, as shown in FIG. 1, between the lower surface of the overhanging portion 22 and the upper surface of the outer peripheral portion of the rigid frame 10, for example, a rolling bearing 60 as a supporting device having the same configuration as the rolling bearing 53 described above. Is provided. The rolling bearing 60 can be freely slid only in the horizontal direction and is not slid in the vertical direction. For this reason, it is comprised so that the force to a perpendicular direction can be transmitted.

このような建物1に対して、風荷重等の小さな水平力が作用した場合には、予め皿ばね523による締め付け力を所望の通り設定しておくことにより、この設定した滑り耐力までの大きさの風荷重であれば、滑り材522が滑らず、ラーメン架構10と連層耐震壁20とが一体化して建物1の剛性が向上するため、建物1には微少な振動等がなく十分な居住性を確保できる。一方、強風や地震力等の、皿ばね523による滑り耐力よりも大きな水平力が作用した場合には、滑り材522が滑りだすことにより、ラーメン架構10と連層耐震壁20とが独立して互いに異なる変形モード(振動特性)で振動することとなる。この際、本体部21と床板13Bの梁部15との間にそれぞれ転がり支承53を設置して、本体部21を介して隣接する左右の床板13Bを連結するように構成したので水平方向への力を確実に伝達できる。このため、滑り材522に作用する押し付け力を安定させることができる。   When a small horizontal force such as a wind load is applied to such a building 1, the clamping force by the disc spring 523 is set in advance as desired, so that the magnitude up to the set slip resistance is set. Because the sliding member 522 does not slip and the rigid frame 10 and the multistory seismic wall 20 are integrated to improve the rigidity of the building 1, the building 1 does not have minute vibrations and has sufficient housing. Can be secured. On the other hand, when a horizontal force such as strong wind or seismic force greater than the slip resistance by the disc spring 523 is applied, the sliding member 522 starts to slide, so that the ramen frame 10 and the multi-layer earthquake resistant wall 20 are independent. It vibrates in different deformation modes (vibration characteristics). At this time, since the rolling support 53 is installed between the main body portion 21 and the beam portion 15 of the floor plate 13B, and the left and right floor plates 13B adjacent to each other are connected via the main body portion 21, the horizontal direction is set. Power can be transmitted reliably. For this reason, the pressing force which acts on the sliding material 522 can be stabilized.

図6は、建物に対して地震力が作用した際の、連層耐震壁20の変形モードを模式的に示す図であり、(A)は、転がり支承60による鉛直方向への摺動を拘束していない場合を示し、(B)は、転がり支承60による鉛直方向への摺動を拘束した場合を示している。図6(A)に示すように、転がり支承60を設けない場合には、建物1に対して地震力等の大きな水平力が作用すると、連層耐震壁20は、曲げ変形が大きく卓越した変形モードとなる。一方、図6(B)に示すように、転がり支承60を設けて鉛直方向への変動を拘束した場合には、連層耐震壁20は、高さ方向の中間部分に反極点を有する変形モードとなる。一方、ラーメン架構10は、曲げ変形が大きく卓越した変形モードを示す。このため、建物1に地震力等の水平力が作用すると、ラーメン架構10と連層耐震壁20とが互いに異なる変形モードを示すこととなり、これにより、変形差の最も大きくなる箇所に設置された制震装置50が制震機能を効率的に発揮でき、建物1に十分な制震性を付与できる。   FIG. 6 is a diagram schematically showing a deformation mode of the multistory shear wall 20 when an earthquake force acts on the building. FIG. 6A restricts sliding in the vertical direction by the rolling bearing 60. (B) has shown the case where the sliding to the vertical direction by the rolling bearing 60 is restrained. As shown in FIG. 6 (A), when the rolling bearing 60 is not provided, the multi-layer seismic wall 20 is deformed with great bending deformation when a large horizontal force such as seismic force acts on the building 1. It becomes a mode. On the other hand, as shown in FIG. 6B, when the rolling bearing 60 is provided to restrain the fluctuation in the vertical direction, the multi-layer seismic wall 20 has a deformation mode having an antipolar point in the middle portion in the height direction. It becomes. On the other hand, the ramen frame 10 exhibits a deformation mode in which bending deformation is large and excellent. For this reason, when a horizontal force such as seismic force acts on the building 1, the frame structure 10 and the multistory seismic wall 20 show different deformation modes, so that they are installed at locations where the deformation difference is the largest. The vibration control device 50 can effectively exert the vibration control function and can impart sufficient vibration control to the building 1.

図7は、建物に対して地震力が作用した際に、各階における水平方向への変位(cm)を示す図であり、(A)は建物1を示し、(B)は建物1から滑り支承60を取り外した比較対象を示している。図7に示すように、建物1は、前記比較対象に比べて、ほぼすべての階で変位量が小さくなっており、十分な制震性能を発揮できることが分かる。   FIG. 7 is a diagram showing horizontal displacement (cm) on each floor when seismic force is applied to the building. (A) shows the building 1 and (B) shows the sliding support from the building 1. A comparison target with 60 removed is shown. As shown in FIG. 7, it can be seen that the building 1 has a small amount of displacement on almost all floors as compared with the comparison object, and can exhibit sufficient seismic control performance.

また、図8は、建物に対して風荷重が作用した際における、風方向と水平な方向または垂直な方向への振動数(Hz)および加速度(gal)を示す図であり、図中の(□)が建物1の場合を示し、図中の(○)が建物1から滑り支承52を取り外した比較対象の場合を示している。図8に示すように、風方向と垂直な方向への風荷重では、建物1は、3.1galで居住性評価がH2なのに対し、比較対象が4.5galで居住性評価がH3となっている。また、風方向と平行な方向への風荷重では、建物1は、2.15galで居住性評価がH1なのに対し、比較対象が3.2galで居住性評価がH2となっている。このため、いずれの方向の風荷重に対しても、建物1は十分な居住性を確保できることが分かる。   FIG. 8 is a diagram showing the frequency (Hz) and acceleration (gal) in the direction horizontal to or perpendicular to the wind direction when a wind load is applied to the building. □) shows the case of the building 1, and (◯) in the figure shows the case of the comparison target with the sliding bearing 52 removed from the building 1. As shown in FIG. 8, in the wind load in the direction perpendicular to the wind direction, the building 1 is 3.1 gal and the habitability evaluation is H2, whereas the comparison target is 4.5 gal and the habitability evaluation is H3. Yes. Moreover, in the wind load in the direction parallel to the wind direction, the building 1 is 2.15 gal and the habitability evaluation is H1, while the comparison target is 3.2 gal and the habitability evaluation is H2. For this reason, it turns out that the building 1 can ensure sufficient amenity with respect to the wind load of any direction.

本実施形態によれば、以下のような効果がある。
(1)ラーメン架構10と連層耐震壁20とを振動特性が異なるように構成した上で、連層耐震壁20に外周へと張り出した張出部22を形成し、張出部22の下面とラーメン架構10の外周部の上面との間に転がり支承60を設置して、水平方向への摺動を可能としつつ、鉛直方向への摺動を拘束する構成としたので、ラーメン架構10と連層耐震壁20の変形モードを確実に異ならせることができる。この際、ラーメン架構10と連層耐震壁20との変形差が大きくなる箇所に制震装置50を設置したので、少ない制震装置50でも効率的な制震効果を発揮でき、建物1の変形を小さく抑えることができる。このように比較的簡単な構成で十分な耐震性能を確保できるので、ラーメン架構10および連層耐震壁20を構成する部材の使用点数や寸法を小さくできて、建物1の平面計画の自由度を十分に確保できるとともに、建物1の建設に掛かるコストを抑えることができる。
According to this embodiment, there are the following effects.
(1) After the ramen frame 10 and the multistory earthquake-resistant wall 20 are configured to have different vibration characteristics, an overhanging part 22 projecting to the outer periphery is formed on the multistory earthquake-resistant wall 20, and the bottom surface of the overhanging part 22 The rolling support 60 is installed between the outer frame and the upper surface of the outer frame of the rigid frame 10 so that the horizontal frame is allowed to slide while the vertical frame is restrained. The deformation mode of the multistory seismic wall 20 can be made different. At this time, since the vibration control device 50 is installed at a location where the deformation difference between the rigid frame 10 and the multistory shear wall 20 becomes large, even with a small number of vibration control devices 50, an effective vibration control effect can be exhibited, and the deformation of the building 1 Can be kept small. In this way, sufficient seismic performance can be ensured with a relatively simple configuration, so that the number of use points and dimensions of the members constituting the ramen frame 10 and the multistory seismic wall 20 can be reduced, and the degree of freedom in plan planning of the building 1 can be reduced. Sufficiently secured and cost for construction of the building 1 can be suppressed.

(2)張出部22の外周側端部の下面と、ラーメン架構10の外周側の上面との間に転がり支承60を設置したので、ラーメン架構10と連層耐震壁20とが最も変形差の大きくなる箇所で連結されるため、建物1の水平方向の変形を効率的に減衰できる。   (2) Since the rolling support 60 is installed between the lower surface of the outer peripheral side end portion of the overhanging portion 22 and the upper surface of the outer peripheral side of the rigid frame structure 10, the deformation difference between the rigid frame structure 10 and the multi-layer earthquake resistant wall 20 is the greatest. Therefore, the horizontal deformation of the building 1 can be efficiently attenuated.

(3)ラーメン架構10と連層耐震壁20との間に、滑り支承52とオイルダンパ51とを並列的に設置したので、風荷重等の小さな水平力に対しては滑り支承52が作用し、地震力等の大きな水平力に対してはオイルダンパ51が作用する。このため、風荷重に対する建物1の居住性を向上できるとともに、ラーメン架構10に入力される地震力を十分に低減できる。   (3) Since the sliding bearing 52 and the oil damper 51 are installed in parallel between the rigid frame 10 and the multistory shear wall 20, the sliding bearing 52 acts on a small horizontal force such as wind load. The oil damper 51 acts on a large horizontal force such as an earthquake force. For this reason, while the habitability of the building 1 with respect to a wind load can be improved, the seismic force input into the ramen frame 10 can fully be reduced.

(4)連層耐震壁20を構成する本体部21の表裏面21A,21Bと各床板13Bとの間に転がり支承53を設置したので、滑り支承52に導入される力を略一定とすることができ、これにより、建物1の制震性能を設計通りに機能させることができる。   (4) Since the rolling bearings 53 are installed between the front and back surfaces 21A, 21B of the main body 21 constituting the multi-layer earthquake-resistant wall 20 and the floor boards 13B, the force introduced into the sliding bearings 52 is made substantially constant. As a result, the vibration control performance of the building 1 can function as designed.

(5)建設地に発生する可能性が高い地震動の周期に対して建物1が共振しないように、ラーメン架構10と連層耐震壁20との間に結合箇所40を適宜形成して接合したので、建物1に入力される外力を小さくできる。また、結合箇所40を適宜設定することにより、ラーメン架構10および連層耐震壁20が負担する水平力の割合を自由に変更できるため、建物1の設計の自由度を向上できる。   (5) Since the joint 40 is appropriately formed and joined between the rigid frame 10 and the multistory earthquake-resistant wall 20 so that the building 1 does not resonate with the period of earthquake motion that is likely to occur in the construction site. The external force input to the building 1 can be reduced. Moreover, since the ratio of the horizontal force which the frame structure 10 and the multistory earthquake-resistant wall 20 bear can be changed freely by setting the coupling | bond part 40 suitably, the freedom degree of design of the building 1 can be improved.

なお、本発明は、前記実施形態に限定されない。例えば、前記実施形態では、制震装置50にオイルダンパと滑り支承とを採用したが、これに限らず、例えば、オイルダンパ以外の粘性ダンパや、粘弾性ダンパ、履歴型ダンパ、またはこれらを組み合わせたもの等の制震装置を採用できる。   In addition, this invention is not limited to the said embodiment. For example, in the above-described embodiment, the oil damper and the sliding bearing are employed in the vibration control device 50. However, the present invention is not limited to this, for example, a viscous damper other than the oil damper, a viscoelastic damper, a hysteretic damper, or a combination thereof. A seismic control device such as a bowl can be used.

また、前記実施形態では、架構と独立部材要素とをラーメン架構10と連層耐震壁20としたが、これには限定らず、例えば、鉄骨造と鉄筋コンクリート造もしくは鉄骨鉄筋コンクリート造とした構成や、低剛性のラーメン架構と高剛性のラーメン架構とした構成を採用できる。また、鉄骨造とブレース架構もしくは鋼板耐震壁架構とした構成としてもよい。   Further, in the embodiment, the frame and the independent member element are the ramen frame 10 and the multistory earthquake-resistant wall 20, but not limited thereto, for example, a structure of steel structure and reinforced concrete structure or steel reinforced concrete structure, Low rigid frame structure and high rigid frame structure can be adopted. Moreover, it is good also as a structure made into a steel frame and a brace frame or a steel plate earthquake-resistant wall frame.

また、図9に示すように、制震装置50から転がり支承53を取り除いたような構成の制震装置100を採用してもよい。この制震装置100は、オイルダンパ51と、滑り支承110とを備えている。滑り支承110は、隣接する床板13Bの上面にそれぞれ取り付けられるアングル材521と、アングル材521の水平部521Bと床板13Bの上面との間に配置される滑り材522と、床板13Bに形成された長孔を介して、アングル材521および滑り材522を締め付ける皿ばね523とを備えている。なお、長孔は図9の紙面に直交する方向に延びるように形成されている。皿ばね523は、締め付け力を適宜変更することにより、滑り材522での滑り耐力を適宜決定することができる。このような構成とすることにより、ラーメン架構10と連層耐震壁20との間に、オイルダンパ51と滑り支承110とを並列的に設置できるため、前記実施形態の(3)と同様の効果を奏することができる。   Moreover, as shown in FIG. 9, you may employ | adopt the damping device 100 of the structure which removed the rolling support 53 from the damping device 50. FIG. The vibration control device 100 includes an oil damper 51 and a sliding bearing 110. The sliding support 110 is formed on the floor plate 13B, the angle member 521 attached to the upper surface of the adjacent floor plate 13B, the sliding member 522 disposed between the horizontal portion 521B of the angle member 521 and the upper surface of the floor plate 13B. A disc spring 523 that tightens the angle member 521 and the sliding member 522 through a long hole is provided. The long hole is formed so as to extend in a direction perpendicular to the paper surface of FIG. The disc spring 523 can appropriately determine the slip strength of the sliding member 522 by appropriately changing the tightening force. By adopting such a configuration, the oil damper 51 and the sliding bearing 110 can be installed in parallel between the rigid frame 10 and the multistory earthquake-resistant wall 20, and therefore the same effect as (3) of the above embodiment. Can be played.

なお、前記実施形態等において、風荷重等に対応するために制震装置50に滑り支承52,110を設けたが、特に設けなくてもよい。また、前記実施形態において、ラーメン架構10の底部に免震装置を設置してもよい。   In addition, in the said embodiment etc., in order to respond | correspond to a wind load etc., the slip support 52,110 was provided in the damping device 50, However It does not need to provide in particular. Moreover, in the said embodiment, you may install a seismic isolation apparatus in the bottom part of the ramen frame 10. FIG.

本発明の実施形態に係る建物の制震構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the vibration control structure of the building which concerns on embodiment of this invention. 図1のII−IIの横断面図である。It is a cross-sectional view of II-II in FIG. 前記建物を上方から見た平面図である。It is the top view which looked at the said building from the upper part. 図2のA部を拡大して示す横断面図である。It is a cross-sectional view which expands and shows the A section of FIG. ラーメン架構と本体部とが制震装置を介して結合された状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state with which the ramen frame and the main-body part were couple | bonded via the damping device. 建物に対して地震力が作用した際の、連層耐震壁の変形モードを模式的に示す図であり、(A)は、転がり支承による鉛直方向への摺動を拘束していない場合を示し、(B)は、転がり支承による鉛直方向への摺動を拘束した場合を示している。It is the figure which shows typically the deformation mode of the multistory shear wall when the seismic force acts on the building, (A) shows the case where the sliding to the vertical direction by the rolling bearing is not restrained (B) has shown the case where the sliding to the vertical direction by a rolling bearing is restrained. 建物に対して地震力が作用した際に、各階における水平方向への変位を示す図であり、(A)は建物を示し、(B)は建物から滑り支承を取り外した比較対象を示している。When a seismic force acts on a building, it is a figure which shows the displacement to the horizontal direction in each floor, (A) shows a building, (B) has shown the comparison object which removed the sliding bearing from the building. . 建物に対して風荷重が作用した際における、風方向と水平な方向または垂直な方向への振動数および加速度を示す図である。It is a figure which shows the frequency and acceleration to a direction horizontal or perpendicular | vertical to a wind direction when a wind load acts on a building. 本発明の変形例に係る制震装置を介して、ラーメン架構と本体部とが結合された状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state with which the rigid frame and the main-body part were couple | bonded through the damping device which concerns on the modification of this invention.

符号の説明Explanation of symbols

1 建物
10 ラーメン架構 10A 矩形平面
11 柱 12 梁
13(13A,13B) 床板 14 小梁
15,21X 梁部 20 連層耐震壁
21 本体部 21A,21B 表裏面
22 張出部 40 結合箇所
50,100 制震装置 51 オイルダンパ
52 滑り支承 53 転がり支承
60,110 転がり支承(支持装置)
521 アングル材
521A 垂直部 521B 水平部
522 滑り材 523 皿ばね
A 非結合箇所 B 結合箇所
DESCRIPTION OF SYMBOLS 1 Building 10 Ramen frame 10A Rectangular plane 11 Column 12 Beam 13 (13A, 13B) Floor board 14 Small beam 15, 21X Beam part 20 Multistory earthquake-resistant wall 21 Main body part 21A, 21B Front and back surface 22 Overhang part 40 Joint 50,100 Damping device 51 Oil damper 52 Sliding bearing 53 Rolling bearing 60,110 Rolling bearing (supporting device)
521 Angle material 521A Vertical portion 521B Horizontal portion 522 Sliding material 523 Belleville spring A Non-bonded portion B Combined portion

Claims (4)

建物の制震構造であって、
前記建物は、当該建物を構成する架構と、前記架構内に当該架構から独立して設けられた独立部材要素とを備え、
前記架構と前記独立部材要素とは、異なる振動特性を有するとともに、1箇所又は複数箇所で制震装置を介して連結され、
前記独立部材要素は、鉛直方向に延びる本体部と、前記本体部から外周へ張り出した張出部とを備え、
前記張出部の下面と前記架構の上面とは、両者の水平方向への相対移動を許容し、かつ鉛直方向への相対移動を拘束する支持装置により連結されていることを特徴とする建物の制震構造。
The building's seismic control structure,
The building includes a frame constituting the building, and an independent member element provided in the frame independently from the frame,
The frame and the independent member element have different vibration characteristics and are connected via a vibration control device at one place or a plurality of places,
The independent member element includes a main body portion extending in a vertical direction, and a projecting portion projecting from the main body portion to the outer periphery,
The lower surface of the overhanging portion and the upper surface of the frame are connected by a support device that allows relative movement in the horizontal direction and restrains relative movement in the vertical direction. Damping structure.
請求項1に記載の建物の制震構造において、
前記張出部は、前記本体部の頂部に設けられていることを特徴とする建物の制震構造。
In the building vibration control structure according to claim 1,
The overhanging portion is provided at the top of the main body, and is a building vibration control structure.
請求項1または2に記載の建物の制震構造において、
前記支持装置は、前記張出部の外周側端部の下面と、前記架構の外周側の上面との間に配置されていることを特徴とする建物の制震構造。
In the building vibration control structure according to claim 1 or 2,
The building control system according to claim 1, wherein the support device is arranged between a lower surface of an outer peripheral side end portion of the overhang portion and an upper surface of the outer peripheral side of the frame.
請求項1〜3のいずれかに記載の建物の制震構造において、
前記制震装置は、外力が入力された際に前記架構と前記独立部材要素との変形差が大きくなる箇所に設置されていることを特徴とする建物の制震構造。

In the earthquake-damping structure of the building according to any one of claims 1 to 3,
The building damping system according to claim 1, wherein the damping device is installed at a location where a deformation difference between the frame and the independent member element increases when an external force is input.

JP2005057467A 2005-03-02 2005-03-02 Building seismic control structure Expired - Fee Related JP4706281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057467A JP4706281B2 (en) 2005-03-02 2005-03-02 Building seismic control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057467A JP4706281B2 (en) 2005-03-02 2005-03-02 Building seismic control structure

Publications (2)

Publication Number Publication Date
JP2006241783A true JP2006241783A (en) 2006-09-14
JP4706281B2 JP4706281B2 (en) 2011-06-22

Family

ID=37048466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057467A Expired - Fee Related JP4706281B2 (en) 2005-03-02 2005-03-02 Building seismic control structure

Country Status (1)

Country Link
JP (1) JP4706281B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211506A (en) * 2007-06-12 2012-11-01 Ohbayashi Corp Vibration control building, vibration control method
CN110847362A (en) * 2019-12-10 2020-02-28 中冶京诚工程技术有限公司 Steel structure stiffening device with damping effect

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726786A (en) * 1993-07-08 1995-01-27 Kajima Corp Bending deformation control type vibration suppressing structure
JPH11200661A (en) * 1998-01-14 1999-07-27 Ohbayashi Corp Vibration control method for connected structure
JPH11270175A (en) * 1998-03-19 1999-10-05 Ohbayashi Corp Vibration damping method of connected structure
JP2000145193A (en) * 1998-11-09 2000-05-26 Ohbayashi Corp Vibration damper for reinforced-concrete structure
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726786A (en) * 1993-07-08 1995-01-27 Kajima Corp Bending deformation control type vibration suppressing structure
JPH11200661A (en) * 1998-01-14 1999-07-27 Ohbayashi Corp Vibration control method for connected structure
JPH11270175A (en) * 1998-03-19 1999-10-05 Ohbayashi Corp Vibration damping method of connected structure
JP2000145193A (en) * 1998-11-09 2000-05-26 Ohbayashi Corp Vibration damper for reinforced-concrete structure
JP2002213099A (en) * 2001-01-17 2002-07-31 Takenaka Komuten Co Ltd Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211506A (en) * 2007-06-12 2012-11-01 Ohbayashi Corp Vibration control building, vibration control method
CN110847362A (en) * 2019-12-10 2020-02-28 中冶京诚工程技术有限公司 Steel structure stiffening device with damping effect

Also Published As

Publication number Publication date
JP4706281B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP2010037905A (en) Connected seismic control structure and building
JP5338050B2 (en) Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP4070117B2 (en) Vibration control device
JP4706281B2 (en) Building seismic control structure
JP5147007B2 (en) Damper device and structure
JP3677712B2 (en) Seismic isolation and control building
JP4812463B2 (en) Base-isolated floor structure
JP4802516B2 (en) Building seismic control structure
JP2005220714A (en) Vibration control device for building
JP6277234B2 (en) Damping device and building
JP2011174298A (en) Connecting vibration control structure of structural body
JP2008240289A (en) Vibration control device and building equipped with the same
JP2010185260A (en) Vibration controlled building and method for controlling vibration of building
JP5240273B2 (en) Building seismic control structure
JP2006307537A (en) Vibration control system for building
JP5586566B2 (en) Damping structure
JP4572535B2 (en) Building seismic control structure
JP5682035B2 (en) Vibration control structure
JP2007056623A (en) Unit type building
JP4023547B2 (en) Damping structure
JP2014156707A (en) Vibration control structure
JP2011132690A (en) Vibration control structure
JP2019065635A (en) Vibration controlled building
JP2010242450A (en) Vibration control method, vibration control structure, and aseismatic reinforcing method
JP7037351B2 (en) building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees