JP2005220714A - Vibration control device for building - Google Patents

Vibration control device for building Download PDF

Info

Publication number
JP2005220714A
JP2005220714A JP2004048054A JP2004048054A JP2005220714A JP 2005220714 A JP2005220714 A JP 2005220714A JP 2004048054 A JP2004048054 A JP 2004048054A JP 2004048054 A JP2004048054 A JP 2004048054A JP 2005220714 A JP2005220714 A JP 2005220714A
Authority
JP
Japan
Prior art keywords
stub
building
deformation
pendulum member
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004048054A
Other languages
Japanese (ja)
Other versions
JP3848656B2 (en
Inventor
Kenichiro Yamamoto
憲一郎 山本
Tomoyuki Watanabe
朋之 渡辺
Yasutake Fujinami
健剛 藤波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2004048054A priority Critical patent/JP3848656B2/en
Publication of JP2005220714A publication Critical patent/JP2005220714A/en
Application granted granted Critical
Publication of JP3848656B2 publication Critical patent/JP3848656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration control device for a building capable of absorbing energy even when the inter-layer deformation of the building by earthquake is small, capable of developing large damping force, easily installable in an existing or newly built building since its size is compact. <P>SOLUTION: This vibration control device for the building installed in the existing or the newly built building comprises upper and lower stubs 11 and 12, upper and lower damping materials 13 and 13, and a pendulum member 14 formed by connecting its upper and lower end parts to the upper and lower damping materials 13. The pendulum member 14 is formed to be connected to the upper and lower stubs when the projections 11a and 12a of the upper and lower stubs are inserted into opening holes 14a and 14a. Accordingly, the deformation of the damping material 13 can be amplified, for example, to 1.2 to 2.5 times by transferring the inter-layer deformation of the building to a relative deformation between the projections 11a and 12a and amplifying the relative deformation by the pendulum member 14. As a result, since the vibration control device 10 is allowed to act effectively from a time when the deformation of the building is small and can absorb the energy efficiently, it can develop the large damping force. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、既設または新築の建物に取り付けられる建物の制振装置に関する。   The present invention relates to a vibration control device for a building attached to an existing or new building.

従来、建物の制振装置としては、架構のブレースを制振部材とするもの(例えば特許文献1)や、間柱の中間に制振材を取り付けて制振部材とするもの等が知られている。
前者は、例えば図10に示すように、柱1と梁2とに囲まれた架構の内部空間に取付用ガセット3等を介して設置されるブレース4の途中に、ダンパ(制振材料)5を介在させて、このダンパ5によって、地震等の際の振動エネルギーを吸収するものであり、ブレース型制振装置と称されている。
後者は、例えば図11に示すように、上下の梁2,2間に、取付スタブ6,6を有する間柱7を配置するとともに、取付スタブ6,6をそれぞれ上下の梁2,2に取り付け、さらに、この間柱7の一部(例えば中央部)にダンパ(制振材料)8を介在させ、このダンパ8によって、地震等の際の振動エネルギーを吸収するものであり、間柱型制振装置と称されている。
特開2003−49557号公報
Conventionally, as a vibration control device for a building, a device using a brace of a frame as a vibration control member (for example, Patent Document 1), a device using a vibration control material attached in the middle of a stud, and the like are known. .
For example, as shown in FIG. 10, the former includes a damper (damping material) 5 in the middle of a brace 4 installed via a mounting gusset 3 or the like in an internal space of a frame surrounded by columns 1 and beams 2. The damper 5 absorbs vibration energy in the event of an earthquake or the like, and is called a brace-type vibration damping device.
The latter, for example, as shown in FIG. 11, arranges the stud 7 having the mounting stubs 6 and 6 between the upper and lower beams 2 and 2, and attaches the mounting stubs 6 and 6 to the upper and lower beams 2 and 2, respectively. Further, a damper (damping material) 8 is interposed in a part (for example, the central portion) of the stud 7 and the damper 8 absorbs vibration energy in the event of an earthquake or the like. It is called.
JP 2003-49557 A

しかし、従来の技術では以下のような問題があった。
すなわちまず、前記従来のブレース型制振装置および間柱型制振装置のいずれにおいても、地震などによる建物の層間変形が小さい場合には制振材料(エネルギー吸収材料)に伝えられる変形も小さいため、制振材料のエネルギー吸収量が小さく、建物の振動を減衰する減衰力も小さくなり、制振装置があまり有効に働かない。
また、従来の制振装置は大型であるため、例えば、鉄骨造建物等に多く採用されるブレース型制振装置の場合は、柱梁で囲まれた架構内に1個の制振装置しか設置できない。一方、鉄筋コンクリート造建物などに多く採用される間柱型制振装置の場合は、取付スタブの大きさの制限などにより、スパン中央に1個の制振装置しか設置できない。このように、従来の制振装置は、かなり大型であるため設置する場所が限られ、必要な数を設置することが難しいとともに、既存建物の耐震補強で強く求められている「居ながら施工」、つまり建物を通常通り使用しながらの施工への対応も難しい。
However, the conventional technology has the following problems.
That is, first, in both of the conventional brace type vibration damping device and the stud type vibration damping device, when the interlayer deformation of the building due to an earthquake or the like is small, the deformation transmitted to the vibration damping material (energy absorbing material) is also small. The energy absorption amount of the damping material is small, the damping force that attenuates the vibration of the building is also small, and the damping device does not work very effectively.
In addition, since the conventional vibration damping device is large, for example, in the case of a brace-type vibration damping device that is often used in steel buildings, etc., only one vibration damping device is installed in a frame surrounded by column beams. Can not. On the other hand, in the case of a stud-type vibration control device that is often used in reinforced concrete buildings, etc., only one vibration control device can be installed at the center of the span due to the limitation of the size of the mounting stub. In this way, conventional vibration control devices are quite large, so there are limited places to install them, and it is difficult to install the required number, and `` construction while living '' is strongly required for seismic reinforcement of existing buildings In other words, it is difficult to respond to construction while using the building as usual.

本発明は上記事情に鑑みてなされたものであり、地震などによる建物の層間変形が小さい場合にも大きなエネルギー吸収を可能とし、大きな減衰力を発揮し、さらに、形状がコンパクトで既設または新築の建物に容易に設置できる建物の制振装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and can absorb a large amount of energy even when the interlayer deformation of a building due to an earthquake or the like is small, exhibits a large damping force, and has a compact shape that is already installed or newly built. An object of the present invention is to provide a building vibration control device that can be easily installed in a building.

上記目的を達成するために、請求項1に記載の発明は、例えば図1〜図4に示すように、既設または新築の建物に取り付けられる建物の制振装置10であって、
建物の各階において、柱頭または上部梁に取り付けられる板状の上部スタブ11と、柱脚または下部梁に取り付けられる板状の下部スタブ12と、
前記上部スタブ11の上部と下部スタブ12の下部とにそれぞれ設けられた上下の制振材料13,13と、
上下端部がそれぞれ前記上下の制振材料13,13に接合され、建物の層間変形を前記上下の制振材料13,13に増幅して伝達する板状の振り子部材14とを備え、
前記振り子部材14は、その中央部に上下に離間して形成されたそれぞれの開孔14a,14aに、前記上部スタブ11の下端部および下部スタブ12の上端部にそれぞれ設けられた突起11a,12aがそれぞれ挿入されることによって、前記上部スタブ11および下部スタブ12に連結されていることを特徴とする。
In order to achieve the above object, the invention described in claim 1 is a building vibration damping device 10 attached to an existing or new building, for example, as shown in FIGS.
On each floor of the building, a plate-like upper stub 11 attached to the column head or the upper beam, and a plate-like lower stub 12 attached to the column base or the lower beam,
Upper and lower vibration damping materials 13 and 13 respectively provided on the upper part of the upper stub 11 and the lower part of the lower stub 12;
A plate-like pendulum member 14 having upper and lower ends joined to the upper and lower vibration damping materials 13 and 13, respectively, and amplifying and transmitting interlayer deformation of the building to the upper and lower vibration damping materials 13 and 13;
The pendulum member 14 has projections 11a and 12a provided at the lower end portion of the upper stub 11 and the upper end portion of the lower stub 12, respectively, in openings 14a and 14a formed in the central portion of the pendulum member 14 so as to be spaced apart vertically. Are inserted into the upper stub 11 and the lower stub 12, respectively.

ここで柱頭とは建物のある階に設けられた柱の上端部である頭部のことであり、柱脚とは建物のある階に設けられた柱の下端部である脚部のことである。   Here, the stigma is the head that is the upper end of the pillar provided on the floor with the building, and the pedestal is the leg that is the lower end of the pillar provided on the floor with the building. .

請求項1に記載の発明によれば、建物の小さな変形から制振装置を有効に働かせるために、てこ機構を用いて建物の層間変形を増幅して制振材料に伝達している。
すなわち、建物に層間変形が生じると、上部スタブと下部スタブとがそれぞれ左右に移動し、これによって、建物の層間変形を、上部スタブの下端部に設けられた突起と下部スタブの上端部に設けられた突起との間の相対変形に移行する。上部スタブと下部スタブにそれぞれ設けられた突起は、振り子部材に形成された開孔にそれぞれ挿入されているので、この振り子部材は開孔間の中央部を回転中心として振り子のように振れ、この振り子部材の上下端部は振れが増幅され、これによって、前記突起間の相対変形が増幅される。したがって、振り子部材の上下端部に接合されている制振材料の変形を増幅できるので、建物の小さな変形から制振装置を有効に働かせることができる。また、制振材料の変形速度も建物の層間変形速度より増幅することができるため、エネルギー吸収性能が変形速度に比例する制振材料(例えば粘弾性材料など)を用いる場合には、より効率的にエネルギーを吸収でき、大きな減衰力を発揮できる。
According to the first aspect of the present invention, in order to effectively operate the vibration damping device from a small deformation of the building, the interlayer deformation of the building is amplified and transmitted to the vibration damping material using a lever mechanism.
That is, when an interlayer deformation occurs in the building, the upper stub and the lower stub move to the left and right, respectively, so that the interlayer deformation of the building is provided at the protrusion provided at the lower end of the upper stub and the upper end of the lower stub. It shifts to relative deformation between the projected protrusions. Since the protrusions provided on the upper stub and the lower stub are respectively inserted into the openings formed in the pendulum member, the pendulum member swings like a pendulum around the center between the openings. The upper and lower ends of the pendulum member are amplified in vibration, and thereby the relative deformation between the protrusions is amplified. Therefore, since the deformation of the damping material joined to the upper and lower ends of the pendulum member can be amplified, the damping device can be effectively operated from a small deformation of the building. In addition, since the deformation speed of the damping material can be amplified by the interlayer deformation speed of the building, it is more efficient when using a damping material whose energy absorption performance is proportional to the deformation speed (for example, viscoelastic material). Can absorb energy and exert a great damping force.

また、振り子部材が振り子のように振れ、建物の層間変形を増幅しながら振り子部材の上下部の2個の制振材料に変形を伝達するので、建物の変形を2ヵ所に分散、伝達できる。したがって1ヶ所当りの制振材料および振り子部材の負担応力は小さくなり、これによって制振材料および振り子部材をコンパクトにでき、しかも、上部スタブ、下部スタブおよび振り子部材はそれぞれ板状であるので、これらをコンパクトにできる。したがって、装置全体をコンパクトにできる。特に、制振材料に板状の粘弾性材料を用いる場合は、制振装置の厚さを非常に薄くできる。
したがって、従来の制振装置に比して、装置全体を大幅に小さくできるので、設置場所の制限が少なく、必要な個数を比較的容易に設置でき、しかも既設または新築の建物の双方に容易に設置できる。
Further, the pendulum member swings like a pendulum, and the deformation is transmitted to the two damping materials at the upper and lower parts of the pendulum member while amplifying the interlayer deformation of the building, so that the deformation of the building can be distributed and transmitted to two places. Therefore, the stress applied to the damping material and the pendulum member per location is reduced, and the damping material and the pendulum member can be made compact, and the upper stub, the lower stub and the pendulum member are each plate-shaped. Can be made compact. Therefore, the entire apparatus can be made compact. In particular, when a plate-like viscoelastic material is used as the damping material, the thickness of the damping device can be made very thin.
Therefore, compared to conventional vibration control devices, the overall device can be made significantly smaller, so there are fewer restrictions on the installation location, the required number of units can be installed relatively easily, and easily in both existing and new buildings. Can be installed.

請求項2に記載の発明は、請求項1に記載の建物の制振装置において、
前記振り子部材14に形成された2つの開孔14a,14aのうちの少なくとも一方は、前記突起11a,12aが前記振り子部材14の軸方向にスライド可能となるように構成されていることを特徴とする。
The invention according to claim 2 is the vibration damping device for a building according to claim 1,
At least one of the two openings 14a and 14a formed in the pendulum member 14 is configured such that the protrusions 11a and 12a are slidable in the axial direction of the pendulum member 14. To do.

開孔を突起が前記振り子部材の軸方向にスライド可能となるように構成する場合、例えば、開孔を振り子部材の軸方向に長い長穴に形成すればよい。   When the opening is configured such that the protrusion is slidable in the axial direction of the pendulum member, for example, the opening may be formed as a long hole extending in the axial direction of the pendulum member.

請求項2に記載の発明によれば、建物に層間変形が生じる際に、振り子部材が開孔間の中央部を回転中心として振り子のように振れるので、振り子部材に形成されている2つの開孔の上下間の距離が若干変動するが、2つの開孔のうちの少なくとも一方は、前記突起が振り子部材の軸方向にスライド可能となるように構成されているので、振り子部材の振れに伴って2つの開孔の上下間の距離が若干変動しても、突起が開孔内でスライドするので、振り子部材をスムーズに振れさすことができ、制振装置をスムーズに働かせることができる。   According to the second aspect of the present invention, when interlayer deformation occurs in the building, the pendulum member swings like a pendulum around the center between the openings as the center of rotation. Although the distance between the top and bottom of the hole varies slightly, at least one of the two openings is configured so that the projection can slide in the axial direction of the pendulum member. Even if the distance between the top and bottom of the two openings varies slightly, the projection slides in the opening, so that the pendulum member can be smoothly shaken and the vibration damping device can be operated smoothly.

請求項3に記載の発明は、請求項1または2に記載の建物の制振装置において、
前記開孔14a,14aにはベアリング17,17が取り付けられており、このベアリング17,17に前記突起11a,12aが挿入されていることを特徴とする。
The invention according to claim 3 is the vibration damping device for a building according to claim 1 or 2,
Bearings 17 and 17 are attached to the openings 14a and 14a, and the protrusions 11a and 12a are inserted into the bearings 17 and 17, respectively.

請求項3に記載の発明によれば、建物に層間変形が生じる際に、振り子部材が開孔間の中央部を回転中心として振り子のように振れるので、振り子部材に形成されている2つの開孔も若干回転し、開孔と突起との間で摩擦が生じるが、この開孔に取り付けられたベアリングに突起が挿入されているので、前記摩擦を低減できる。したがって、振り子部材をスムーズに振れさすことができ、制振装置をスムーズに働かせることができる。   According to the third aspect of the present invention, when an interlayer deformation occurs in the building, the pendulum member swings like a pendulum around the central portion between the openings as the center of rotation. The hole also rotates slightly, and friction is generated between the opening and the protrusion. Since the protrusion is inserted into the bearing attached to the opening, the friction can be reduced. Therefore, the pendulum member can be shaken smoothly, and the vibration damping device can be operated smoothly.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の建物の制振装置において、
前記上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12a間の間隔Aと、前記振り子部材14に形成された開孔14aと前記制振材料13との間隔Bとの比が、1:1.2〜2.5に設定されていることを特徴とする。
The invention according to claim 4 is the vibration damping device for a building according to any one of claims 1 to 3,
The ratio of the distance A between the protrusions 11a and 12a provided on the upper stub 11 and the lower stub 12 to the distance B between the opening 14a formed in the pendulum member 14 and the damping material 13 is 1 : It is set to 1.2-2.5.

請求項4に記載の発明によれば、建物の層間変形を、上部スタブの下端部に設けられた突起と下部スタブの上端部に設けられた突起との間の相対変形に移行するが、上部スタブと下部スタブにそれぞれ設けられた突起間の間隔と、前記振り子部材に形成された開孔と前記制振材料との間隔との比が、1:1.2〜2.5に設定されているので、振り子部材の上下端部に接合されている制振材料の変形を、てこの原理により建物の層間変形の1.2〜2.5倍に増幅でき、よって、建物の小さな変形から制振装置をより有効に働かせることができる。また、制振材料の変形速度も建物の層間変形速度の1.2〜2.5倍に増幅することができるため、エネルギー吸収性能が変形速度に比例する制振材料(例えば粘弾性材料など)を用いる場合には、より効率的にエネルギーを吸収でき、大きな減衰力を発揮できる。   According to the invention described in claim 4, the interlayer deformation of the building shifts to a relative deformation between the protrusion provided at the lower end portion of the upper stub and the protrusion provided at the upper end portion of the lower stub. The ratio between the distance between the protrusions provided on the stub and the lower stub and the distance between the opening formed in the pendulum member and the damping material is set to 1: 1.2 to 2.5. Therefore, the deformation of the damping material joined to the upper and lower ends of the pendulum member can be amplified by 1.2 to 2.5 times the interlayer deformation of the building by the lever principle, so that the deformation from the small deformation of the building can be controlled. The vibration device can work more effectively. In addition, since the deformation speed of the damping material can be amplified to 1.2 to 2.5 times the interlayer deformation speed of the building, the damping material whose energy absorption performance is proportional to the deformation speed (for example, viscoelastic material) When is used, energy can be absorbed more efficiently and a large damping force can be exhibited.

請求項5に記載の発明は、例えば図7〜図9に示すように、請求項1〜3のいずれか一項に記載の建物の制振装置において、
前記上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12a間の間隔と、前記振り子部材14に形成された2つの開孔14a,14aのうち上の開孔14aと前記上部スタブ11に設けられた制振材料13との間隔との比を、A:Bとし、
前記上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12a間の間隔と、前記振り子部材14に形成された2つの開孔14a,14aのうち下の開孔14aと前記下部スタブ12に設けられた制振材料13との間隔との比を、A:Cとすると、
B>AかつC>AかつB≠Cに設定したことを特徴とする。
The invention according to claim 5 is the building vibration control device according to any one of claims 1 to 3, for example, as shown in FIGS.
The distance between the protrusions 11a, 12a provided on the upper stub 11 and the lower stub 12, respectively, and the upper opening 14a and the upper stub 11 of the two openings 14a, 14a formed in the pendulum member 14 The ratio of the distance to the provided damping material 13 is A: B,
The distance between the projections 11a and 12a provided on the upper stub 11 and the lower stub 12 respectively, and the lower opening 14a and the lower stub 12 of the two openings 14a and 14a formed on the pendulum member 14 If the ratio of the distance to the provided damping material 13 is A: C,
B> A and C> A and B ≠ C are set.

ここで、前記BとCの関係は、B>Cであってもよいし、C>Bであってもよい。
また、例えばA=1とすると、B=1.2程度、C=2.4程度にするのが望ましい。
Here, the relationship between B and C may be B> C or C> B.
For example, when A = 1, it is desirable that B = about 1.2 and C = about 2.4.

請求項5に記載の発明によれば、建物の層間変形を、上部スタブの下端部に設けられた突起と下部スタブの上端部に設けられた突起との間の相対変形に移行するが、上部スタブと下部スタブにそれぞれ設けられた突起間の間隔と、前記振り子部材に形成された2つの開孔のうち上の開孔と前記上部スタブに設けられた制振材料との間隔との比を、A:Bとしているので、てこの原理により上部スタブに設けられた制振材料の変形量および変形速度を建物の層間変形量および層間変形速度のB/A倍に増幅でる。また、上部スタブと下部スタブにそれぞれ設けられた突起間の間隔と、前記振り子部材に形成された2つの開孔のうち下の開孔と前記下部スタブに設けられた制振材料との間隔との比を、A:Cとしているので、下部スタブに設けられた制振材料の変形量および変形速度を建物の層間変形量および層間変形速度のC/A倍に増幅できる。
このように建物の層間変形量および層間変形速度をB/A倍あるいはC/A倍に増幅できるので、建物の小さな変形から大きな変形まで制振装置を有効に働かせることができるとともに、エネルギー吸収性能が変形速度に比例する制振材料(例えば粘弾性材料など)を用いる場合には、より効果的にエネルギーを吸収できる。
According to the invention described in claim 5, the interlayer deformation of the building shifts to a relative deformation between the protrusion provided at the lower end portion of the upper stub and the protrusion provided at the upper end portion of the lower stub. The ratio between the distance between the protrusions provided on each of the stub and the lower stub and the distance between the upper opening and the damping material provided on the upper stub among the two openings formed in the pendulum member. Since A: B, the deformation amount and deformation speed of the damping material provided on the upper stub can be amplified to B / A times the interlayer deformation amount and interlayer deformation speed of the building by the lever principle. Further, an interval between the protrusions provided on the upper stub and the lower stub, and an interval between the lower opening of the two openings formed in the pendulum member and the damping material provided on the lower stub, Therefore, the deformation amount and deformation speed of the damping material provided in the lower stub can be amplified to C / A times the interlayer deformation amount and interlayer deformation speed of the building.
In this way, the amount of interlayer deformation and the interlayer deformation speed of the building can be amplified to B / A times or C / A times, so that the vibration control device can be effectively operated from small deformations to large deformations of the building, and energy absorption performance. When a vibration damping material (for example, a viscoelastic material) that is proportional to the deformation speed is used, energy can be absorbed more effectively.

また、制振材料に板状の粘弾性材料を用いる場合には、粘弾性材料のエネルギー吸収性能は粘弾性材料の歪み量に依存する性質があることが知られているが、粘弾性材料の歪み量が200%を越えるとそのエネルギー吸収性能は低下する。てこ比を大きくして建物の変形を粘弾性材料に伝達するのは、風や小地震により建物の層間変形が小さい場合には非常に有効であるが、大地震により建物の層間変形が大きい場合は、粘弾性材料の前記の性状により不利となる。そこで、本発明では、振り子部材の上下でてこ比を変えることにより、層間変形の増幅率を変えることを可能としている。これにより、建物の層間変形が小さい場合から大きい場合まで、本発明の制振装置は、ほぼ一定のエネルギー吸収性能を保持することができる。   In addition, when a plate-like viscoelastic material is used as the damping material, it is known that the energy absorption performance of the viscoelastic material has a property that depends on the strain amount of the viscoelastic material. When the amount of strain exceeds 200%, the energy absorption performance decreases. Increasing the leverage to transmit the building deformation to the viscoelastic material is very effective when the building interlayer deformation is small due to wind or small earthquake, but when the building interlayer deformation is large due to a large earthquake Is disadvantageous due to the aforementioned properties of the viscoelastic material. Therefore, in the present invention, it is possible to change the amplification factor of the interlayer deformation by changing the lever ratio above and below the pendulum member. Thereby, from the case where the interlayer deformation of a building is small to the case where it is large, the vibration damping device of the present invention can maintain almost constant energy absorption performance.

本発明によれば、上部スタブおよび下部スタブと、上部スタブの上部と下部スタブの下部とにそれぞれ設けられた上下の制振材料と、上下端部がそれぞれ前記上下の制振材料に接合された振り子部材とを備え、この振り子部材は、その中央部に上下に離間して形成されたそれぞれの開孔に、上部スタブの下端部および下部スタブの上端部にそれぞれ設けられた突起がそれぞれ挿入されることによって、前記上部スタブおよび下部スタブに連結されているので、建物の層間変形を、突起間の相対変形に移行し、この突起間の相対変形を振り子部材によって増幅して、制振材料の変形をてこの原理により例えば1.2〜2.5倍程度に増幅できる。したがって、建物の小さな変形から制振装置を有効に働かせることができる。
また、制振材料の変形速度も建物の層間変形速度より例えば1.2〜2.5倍に増幅することができるため、エネルギー吸収性能が変形速度に比例する制振材料を用いることによって、より効率的にエネルギーを吸収でき、大きな減衰力を発揮できる。
According to the present invention, the upper stub and the lower stub, the upper and lower vibration damping materials respectively provided on the upper part of the upper stub and the lower part of the lower stub, and the upper and lower ends are respectively joined to the upper and lower vibration damping materials. A pendulum member, and the pendulum member has projections provided respectively at the lower end portion of the upper stub and the upper end portion of the lower stub inserted in respective openings formed in the central portion of the pendulum member so as to be spaced apart from each other. By connecting to the upper stub and the lower stub, the interlayer deformation of the building is transferred to the relative deformation between the protrusions, and the relative deformation between the protrusions is amplified by the pendulum member, so that the damping material The deformation can be amplified to about 1.2 to 2.5 times by this principle. Therefore, the vibration control device can be effectively operated from a small deformation of the building.
Moreover, since the deformation speed of the vibration damping material can be amplified to 1.2 to 2.5 times the interlayer deformation speed of the building, for example, by using the vibration damping material whose energy absorption performance is proportional to the deformation speed, It can absorb energy efficiently and exert a great damping force.

また、振り子部材が振り子のように振れ、建物の層間変形を増幅しながら振り子部材の上下端部の2ヵ所の制振材料に変形を伝達する構成としている。したがって、建物の変形を2ヵ所に分散、伝達できるため、1ヶ所当りの制振材料および振り子部材の負担応力は小さくなり、制振材料および振り子部材をコンパクトにできるため、制振装置を従来の制振装置に比して、大幅に小さくできる。これにより、設置場所の制限が少なく、必要な個数を比較的容易に設置することができる。特に装置の厚さを薄くできるため、バルコニーや廊下の有効性をあまり損なわないことから柱の外面に取り付けることもできる。このため、新築建物だけでなく、既設建物の居ながら耐震補強にも容易に適用できる。
さらに、装置がコンパクトであり、部品点数が少なく、部品の大きさも比較的小さいため、装置を設置する場合に大型の重機を必要としない。このため、施工が容易であり、施工コストを低減できる。
加えて、建物の層間変形量および層間変形速度をB/A倍あるいはC/A倍に増幅できるので、建物の小さな変形から大きな変形まで制振装置を有効に働かせることができるとともに、エネルギー吸収性能が変形速度に比例する制振材料(例えば粘弾性材料など)を用いる場合には、より効果的にエネルギーを吸収できる。
Further, the pendulum member swings like a pendulum, and the deformation is transmitted to two damping materials at the upper and lower end portions of the pendulum member while amplifying the interlayer deformation of the building. Therefore, since the deformation of the building can be distributed and transmitted to two locations, the stress on the damping material and the pendulum member per location is reduced, and the damping material and the pendulum member can be made compact. Compared to the vibration control device, it can be significantly reduced. Thereby, there are few restrictions on an installation place and the required number can be installed comparatively easily. In particular, since the thickness of the device can be reduced, the effectiveness of the balcony or corridor is not significantly impaired, so that it can be attached to the outer surface of the column. For this reason, it can be easily applied not only to newly built buildings but also to seismic reinforcement while existing buildings are in place.
Furthermore, since the apparatus is compact, the number of parts is small, and the size of the parts is relatively small, a large heavy machine is not required when installing the apparatus. For this reason, construction is easy and construction cost can be reduced.
In addition, the amount of inter-layer deformation and the inter-layer deformation speed of the building can be amplified to B / A times or C / A times, so that the vibration control device can work effectively from small deformations to large deformations of the building and energy absorption performance. When a damping material (for example, a viscoelastic material) that is proportional to the deformation speed is used, energy can be absorbed more effectively.

以下、図面を参照して本発明の実施の形態について説明する。
(第1の実施の形態)
図1〜図4は、本発明の建物の制振装置の一例を示すもので、図1はその正面図、図2は側面図、図3は制振装置の振り子部材の変形状態を示す正面図、図4は柱に制振装置を取り付けた状態を示す正面図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
1 to 4 show an example of a vibration damping device for a building according to the present invention. FIG. 1 is a front view thereof, FIG. 2 is a side view, and FIG. 3 is a front view showing a deformed state of a pendulum member of the vibration damping device. 4 and 4 are front views showing a state in which the vibration damping device is attached to the pillar.

図1〜図4に示すように、本実施の形態の建物の制振装置(以下、制振装置と略称する。)10は、上部スタブ11と、下部スタブ12と、上下の制振材料13,13と、振り子部材14とを備えている。
上部スタブ11および下部スタブ12はそれぞれ鋼板で形成された薄板状のものであり、上部スタブ11は柱1の柱頭にアンカーボルト等の止着部材Sによって取り付け固定されており、下部スタブ12は柱1の脚部に止着部材Sによって取り付け固定されている。 なお、柱1とは、建物のある階に設けられた柱のことであり、建物の1階から屋上まで延びる柱全体を意味するものではない。但し、本実施の形態では、1階から屋上まで延びる柱全体の一部、つまりある階に位置する部分を柱1としている。
As shown in FIGS. 1 to 4, a building vibration damping device (hereinafter abbreviated as a vibration damping device) 10 according to the present embodiment includes an upper stub 11, a lower stub 12, and upper and lower vibration damping materials 13. , 13 and a pendulum member 14.
Each of the upper stub 11 and the lower stub 12 is a thin plate formed of a steel plate, and the upper stub 11 is attached and fixed to the head of the pillar 1 by a fastening member S such as an anchor bolt, and the lower stub 12 is a pillar. The fixing member S is attached and fixed to the leg portion of 1. In addition, the pillar 1 is a pillar provided in the floor with a building, and does not mean the whole pillar extended from the 1st floor of a building to a rooftop. However, in this embodiment, a part of the entire pillar extending from the first floor to the roof, that is, a part located on a certain floor is used as the pillar 1.

また、上部スタブ11および下部スタブ12は、柱1の中央部近傍まで延設された縦長の薄板であり、上部スタブ11の下端と、下部スタブ11の上端との間には所定の隙間が形成されている。
上部スタブ11の下端部には円柱状の突起11aが上部スタブ11に対して直角に設けられており、下部スタブ12の上端部には円柱状の突起12aが下部スタブ12に対して直角に設けられている。
The upper stub 11 and the lower stub 12 are vertically long thin plates extending to the vicinity of the center of the column 1, and a predetermined gap is formed between the lower end of the upper stub 11 and the upper end of the lower stub 11. Has been.
A columnar protrusion 11 a is provided at a right angle to the upper stub 11 at the lower end of the upper stub 11, and a columnar protrusion 12 a is provided at a right angle to the lower stub 12 at the upper end of the lower stub 12. It has been.

前記上部スタブ11の上端部には、プレート15が上部スタブ11に対して直角に設けられており、このプレート15の下面にプレート16,16が互いに平行に垂下されている。このプレート16,16には上側の制振材料13が設けられている。この制振材料13は、2枚の板状の粘弾性材料13a,13aによって構成されており、この粘弾性材料13a,13aは、それぞれ前記プレート16,16に取り付けられている。
また、前記下部スタブ12の下端部には、プレート15が下部スタブ12に対して直角に設けられており、このプレート15の上面にプレート16,16が互いに平行に立設されている。このプレート16,16には下側の制振材料13が設けられている。この制振材料13は、2枚の板状の粘弾性材料13a,13aによって構成されており、この粘弾性材料13a,13aは、それぞれ前記プレート16,16に取り付けられている。
At the upper end of the upper stub 11, a plate 15 is provided at a right angle to the upper stub 11, and the plates 16 and 16 are suspended from the lower surface of the plate 15 in parallel with each other. An upper damping material 13 is provided on the plates 16 and 16. The damping material 13 is composed of two plate-like viscoelastic materials 13a and 13a, and the viscoelastic materials 13a and 13a are attached to the plates 16 and 16, respectively.
Further, a plate 15 is provided at a lower end portion of the lower stub 12 at a right angle to the lower stub 12, and plates 16, 16 are erected in parallel on the upper surface of the plate 15. The plates 16 and 16 are provided with a lower damping material 13. The damping material 13 is composed of two plate-like viscoelastic materials 13a and 13a, and the viscoelastic materials 13a and 13a are attached to the plates 16 and 16, respectively.

前記振り子部材14は、建物の層間変形を上下の制振材料13,13に増幅して伝達するものであり、縦長の薄板状の鋼板で形成されている。
振り子部材14の上端部は、上側の制振材料13に接合されている。すなわち、この制振材料13を構成する2枚の板状の粘弾性材料13a,13aの間に、振り子部材14の上端部が挿入されたうえで、この振り子部材14の上端部が粘弾性材料13a,13aに接着剤等によって貼着されている。
また、振り子部材14の下端部は、下側の制振材料13に接合されている。すなわち、この制振材料13を構成する2枚の板状の粘弾性材料13a,13aの間に、振り子部材14の下端部が挿入されたうえで、この振り子部材14の下端部が粘弾性材料13a,13aに接着剤等によって貼着されている。
The pendulum member 14 amplifies and transmits the interlayer deformation of the building to the upper and lower vibration damping materials 13 and 13 and is formed of a vertically long thin plate-shaped steel plate.
The upper end portion of the pendulum member 14 is joined to the upper damping material 13. That is, the upper end portion of the pendulum member 14 is inserted between the two plate-like viscoelastic materials 13a and 13a constituting the vibration damping material 13, and the upper end portion of the pendulum member 14 is the viscoelastic material. It is stuck to 13a, 13a with an adhesive or the like.
The lower end portion of the pendulum member 14 is joined to the lower vibration damping material 13. That is, the lower end portion of the pendulum member 14 is inserted between the two plate-like viscoelastic materials 13a and 13a constituting the vibration damping material 13, and the lower end portion of the pendulum member 14 is the viscoelastic material. It is stuck to 13a, 13a with an adhesive or the like.

また、振り子部材14の中央部には、2つの開孔14a,14aが上下に離間して形成されている。開孔14a,14aは、振り子部材14の中心に対して対称的に配置されており、この開孔14a,14aには、円形ベアリング17,17が取り付けられている。この円形ベアリング17,17には、前記上部スタブ11の突起11aと下部スタブ12の突起12aとがそれぞれ挿入されている。これによって、振り子部材14は上部スタブ11および下部スタブ12に連結されている。
また、前記開孔14a,14aのうちの少なくとも一方は、突起11a(12a)が振り子部材14の軸方向にスライド可能となるように構成されている。例えば、少なくとも一方の開孔14aは振り子部材14の軸方向に長い長穴に形成されており、この長穴となっている開孔14aに円形ベアリング17が振り子部材14の軸方向にスライド可能に取り付けられ、これによって、突起11a(12a)が振り子部材14の軸方向にスライド可能となるように構成されている。
In addition, two openings 14a and 14a are formed in the central portion of the pendulum member 14 so as to be separated from each other in the vertical direction. The openings 14a and 14a are arranged symmetrically with respect to the center of the pendulum member 14, and circular bearings 17 and 17 are attached to the openings 14a and 14a. In the circular bearings 17 and 17, the protrusion 11a of the upper stub 11 and the protrusion 12a of the lower stub 12 are respectively inserted. As a result, the pendulum member 14 is connected to the upper stub 11 and the lower stub 12.
Further, at least one of the openings 14a and 14a is configured such that the protrusion 11a (12a) can slide in the axial direction of the pendulum member 14. For example, at least one of the openings 14a is formed as a long hole in the axial direction of the pendulum member 14, and the circular bearing 17 is slidable in the axial direction of the pendulum member 14 in the opening 14a that is the long hole. Thus, the protrusion 11a (12a) is configured to be slidable in the axial direction of the pendulum member 14.

また、前記上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12a間の間隔Aと、前記振り子部材14に形成された開孔14aと前記制振材料13との間隔Bとの比が、1:1.5に設定されており、てこの原理により制振材料13の変形量および変形速度を、建物の層間変形および層間変形速度の1.5倍に増幅している。   Further, the ratio between the distance A between the projections 11a and 12a provided on the upper stub 11 and the lower stub 12 and the distance B between the opening 14a formed in the pendulum member 14 and the damping material 13 is as follows. 1: 1.5, the amount of deformation and the deformation speed of the damping material 13 are amplified to 1.5 times the interlayer deformation and interlayer deformation speed of the building by the lever principle.

上記のような構成の制振装置10は、図4に示すように、既存の建物のある階に位置する複数の柱1の外面に取り付けられている。   As shown in FIG. 4, the vibration damping device 10 configured as described above is attached to the outer surfaces of a plurality of pillars 1 located on a floor where an existing building is located.

そして、図3に示すように、建物に層間変形が生じると、上部スタブ11と下部スタブ12とがそれぞれ左右に移動し、これによって、建物の層間変形を、上部スタブ11の下端部に設けられた突起11aと下部スタブ12の上端部に設けられた突起12aとの間の相対変形に移行する。
上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12aは、振り子部材14に形成された開孔14a,14aに円形ベアリング17,17を介してそれぞれ挿入されているので、この振り子部材14は開孔14a,14a間の中央部を回転中心Oとして振り子のように振れ、この振り子部材14の上下端部は振れが増幅され、これによって、前記突起11a,12a間の相対変形が増幅される。
したがって、振り子部材14の上下端部にそれぞれ接合している制振材料13,13の変形を1.5倍に増幅できるので、建物の小さな変形から制振装置を有効に働かせることができる。
また、制振材料13,13の変形速度も建物の層間変形速度より1.5倍に増幅することができ、さらに、エネルギー吸収性能が変形速度に比例する粘弾性材料からなる制振材料13,13を用いているので、より効率的にエネルギーを吸収でき、大きな減衰力を発揮できる。
Then, as shown in FIG. 3, when an interlayer deformation occurs in the building, the upper stub 11 and the lower stub 12 move to the left and right, respectively, so that the interlayer deformation of the building is provided at the lower end of the upper stub 11. The process shifts to a relative deformation between the protrusion 11a and the protrusion 12a provided at the upper end of the lower stub 12.
Since the projections 11a and 12a provided on the upper stub 11 and the lower stub 12 are respectively inserted into the openings 14a and 14a formed in the pendulum member 14 via the circular bearings 17 and 17, the pendulum member 14 Swings like a pendulum with the center between the apertures 14a and 14a as the rotation center O, and the upper and lower ends of the pendulum member 14 amplify the swing, thereby amplifying the relative deformation between the protrusions 11a and 12a. The
Therefore, since the deformation of the vibration damping materials 13 and 13 respectively joined to the upper and lower end portions of the pendulum member 14 can be amplified by 1.5 times, the vibration damping device can be effectively operated from a small deformation of the building.
Further, the deformation speed of the vibration damping materials 13 and 13 can be amplified by 1.5 times the interlayer deformation speed of the building, and the vibration damping material 13 made of a viscoelastic material whose energy absorption performance is proportional to the deformation speed. Since 13 is used, energy can be absorbed more efficiently and a large damping force can be exhibited.

また、振り子部材14が振り子のように振れ、建物の層間変形を増幅しながら振り子部材14の上下端部の2ヵ所の制振材料13,13に変形を伝達する構成としている。したがって、建物の変形を2ヵ所に分散、伝達できるため、1ヶ所当りの制振材料13および振り子部材14の負担応力は小さくなり、制振材料13および振り子部材14をコンパクトにできるため、制振装置10を従来の制振装置に比して、大幅に小さくできる。
これにより、設置場所の制限が少なく、必要な個数を比較的容易に設置することができる。特に制振装置10の厚さを薄くできるため、バルコニーや廊下の有効性をあまり損なわないことから柱1の外面に取り付けることもできる。このため、新築建物だけでなく、既設建物の居ながら耐震補強にも容易に適用できる。
さらに、制振装置10がコンパクトであり、部品点数が少なく、部品の大きさも比較的小さいため、装置を設置する場合に大型の重機を必要としない。このため、施工が容易であり、施工コストを低減できる。
Further, the pendulum member 14 swings like a pendulum, and the deformation is transmitted to the two damping materials 13 and 13 at the upper and lower ends of the pendulum member 14 while amplifying the interlayer deformation of the building. Therefore, since the deformation of the building can be distributed and transmitted to two locations, the stress applied to the damping material 13 and the pendulum member 14 per location is reduced, and the damping material 13 and the pendulum member 14 can be made compact. The device 10 can be made much smaller than conventional vibration damping devices.
Thereby, there are few restrictions on an installation place and the required number can be installed comparatively easily. In particular, since the thickness of the vibration damping device 10 can be reduced, the effectiveness of the balcony and the hallway is not significantly impaired, so that it can be attached to the outer surface of the pillar 1. For this reason, it can be easily applied not only to newly built buildings but also to seismic reinforcement while existing buildings are in place.
Furthermore, since the vibration damping device 10 is compact, has a small number of parts, and the size of the parts is relatively small, a large heavy machine is not required when installing the apparatus. For this reason, construction is easy and construction cost can be reduced.

また、建物に層間変形が生じる際に、振り子部材14が開孔14a,14a間の中央部を回転中心Oとして振り子のように振れるので、振り子部材14に形成されている2つの開孔14a,14aの上下間の距離が若干変動するが、2つの開孔14a,14aのうちの少なくとも一方は、突起11aまたは突起12aが振り子部材14の軸方向にスライド可能となるように構成されているので、振り子部材14の振れに伴って2つの開孔14a,14aの上下間の距離が若干変動しても、突起11a,12aが開孔14a,14a内でスライドするので、振り子部材14をスムーズに振れさすことができ、制振装置10をスムーズに働かせることができる。
加えて、開孔14a,14aに取り付けられた円形ベアリング17,17に突起11a,12aが挿入されているので、突起11a,12aと開孔14a,14aとの間の摩擦を低減できる。したがって、振り子部材14をスムーズに振れさすことができ、この点において制振装置10をスムーズに働かせることができる。
Further, when the interlayer deformation occurs in the building, the pendulum member 14 swings like a pendulum with the central portion between the apertures 14a and 14a as the rotation center O. Therefore, the two apertures 14a and 14a formed in the pendulum member 14 Although the distance between the upper and lower portions of 14a varies slightly, at least one of the two openings 14a and 14a is configured such that the protrusion 11a or the protrusion 12a can slide in the axial direction of the pendulum member 14. Even if the distance between the top and bottom of the two openings 14a and 14a slightly varies with the swing of the pendulum member 14, the protrusions 11a and 12a slide in the openings 14a and 14a, so that the pendulum member 14 can be smoothly moved. The vibration control device 10 can be operated smoothly.
In addition, since the protrusions 11a and 12a are inserted into the circular bearings 17 and 17 attached to the openings 14a and 14a, friction between the protrusions 11a and 12a and the openings 14a and 14a can be reduced. Therefore, the pendulum member 14 can be smoothly shaken, and the damping device 10 can be smoothly operated in this respect.

(第2の実施の形態)
図5および図6は、本発明の建物の制振装置の他の例を示すもので、図5はその正面図、図6は側面図である。
この実施の形態では、エネルギーの吸収性能を高め、制振装置の設置する個数を少なくするため、上部および下部のスタブの両側に振り子部材14を配置し、制振材料13の設置箇所数を4ヶ所としている。
(Second Embodiment)
5 and 6 show another example of the vibration damping device for a building according to the present invention. FIG. 5 is a front view thereof, and FIG. 6 is a side view thereof.
In this embodiment, in order to improve energy absorption performance and reduce the number of vibration damping devices to be installed, the pendulum members 14 are arranged on both sides of the upper and lower stubs, and the number of vibration damping materials 13 to be installed is four. There are several places.

以下、本実施の形態の建物の制振装置(以下、制振装置と略称する。)について詳述する。なお、本実施の形態の制振装置20において、前記第1の実施の形態の制振装置10と共通部分には、同一符号を付してその説明を省略または簡略化する。
本実施の形態の建物の制振装置20は、前記制振装置10と同様に、上部スタブ11と、下部スタブ12と、4つの上下の制振材料13…と、2つの振り子部材14,14とを備えている。
Hereinafter, the building vibration damping device of the present embodiment (hereinafter, abbreviated as a vibration damping device) will be described in detail. In the vibration damping device 20 of the present embodiment, the same reference numerals are given to the common parts with the vibration damping device 10 of the first embodiment, and the description thereof is omitted or simplified.
As in the case of the vibration damping device 10, the building vibration damping device 20 of the present embodiment has an upper stub 11, a lower stub 12, four upper and lower vibration damping materials 13, and two pendulum members 14 and 14. And.

上部スタブ11の上端には、フランジ部21が上部スタブ11と直角にかつ一体的に形成されており、このフランジ部21を上部梁2aにアンカーボルト等の止着材Sによって取り付けることによって、上部スタブ11が上部梁2aに取り付けられている。また、下部スタブ11の下端には、フランジ部22が下部スタブ12と直角にかつ一体的に形成されており、このフランジ部22を下部梁2bにアンカーボルト等の止着材Sによって取り付けることによって、下部スタブ12が下部梁2bに取り付けられている。   At the upper end of the upper stub 11, a flange portion 21 is integrally formed at a right angle with the upper stub 11, and the flange portion 21 is attached to the upper beam 2 a with a fastening material S such as an anchor bolt, thereby A stub 11 is attached to the upper beam 2a. Further, a flange portion 22 is integrally formed at a right angle with the lower stub 12 at the lower end of the lower stub 11, and the flange portion 22 is attached to the lower beam 2b by a fastening material S such as an anchor bolt. The lower stub 12 is attached to the lower beam 2b.

上部スタブ11の下端部には円柱状の突起11bが上部スタブ11に対して直角にかつ上部スタブ11を貫通するようにして設けられており、下部スタブ12の上端部には円柱状の突起12bが下部スタブ12に対して直角に下部スタブ12を貫通するようにして設けられている。つまり、上部スタブ11の下端部には両側に突出するようにして突起11bが設けられており、下部スタブ12の上端部には両側に突出するようにして突起12bが設けられている。   A columnar protrusion 11b is provided at a lower end portion of the upper stub 11 so as to pass through the upper stub 11 at a right angle to the upper stub 11, and a columnar protrusion 12b at the upper end portion of the lower stub 12. Is provided so as to penetrate the lower stub 12 at a right angle to the lower stub 12. In other words, the lower stub 11 is provided with a protrusion 11b at the lower end portion so as to protrude on both sides, and the lower stub 12 is provided with a protrusion 12b at the upper end portion so as to protrude on both sides.

前記上部スタブ11の上端部には、2枚のL字状のプレート25,25が上部スタブ11に対して直角にかつ両側に突出するようにしてボルト等の止着材によって固定されており、各プレート25の下面にプレート16,16が互いに平行に垂下されている。そしてこのプレート16,16には上側の制振材料13が設けられている。つまり、制振材料13は上側で2つ設けられている。
また、前記下部スタブ12の下端部には、2枚のL字状のプレート25,25が下部スタブ12に対して直角にかつ両側に突出するようにしてボルト等の止着材によって固定されており、各プレート25の上面にプレート16,16が互いに平行に立設されている。そしてこのプレート16,16には下側の制振材料13が設けられている。つまり、制振材料13は下側で2つ設けられている。
Two L-shaped plates 25, 25 are fixed to the upper end portion of the upper stub 11 by fastening materials such as bolts so as to protrude at right angles to both sides of the upper stub 11, Plates 16 and 16 are suspended from the lower surface of each plate 25 in parallel. The plates 16 and 16 are provided with an upper damping material 13. That is, two damping materials 13 are provided on the upper side.
Further, two L-shaped plates 25, 25 are fixed to the lower end portion of the lower stub 12 by fastening materials such as bolts so as to protrude at right angles to both sides of the lower stub 12. The plates 16 and 16 are erected in parallel with each other on the upper surface of each plate 25. The plates 16 and 16 are provided with a lower damping material 13. That is, two damping materials 13 are provided on the lower side.

2つの振り子部材14,14は、上部スタブ11および下部スタブ12の両側にそれぞれ配置されており、一方の振り子部材14の上端部は、上側の一方の制振材料13に接合され、他方の振り子部材14の上端部は、上側の他方の制振材料13に接合されている。
また、一方の振り子部材14の下端部は、下側の一方の制振材料13に接合され、他方の振り子部材14の下端部は、下側の他方の制振材料13に接合されている。
The two pendulum members 14 and 14 are respectively arranged on both sides of the upper stub 11 and the lower stub 12, and the upper end portion of one pendulum member 14 is joined to one upper damping material 13, and the other pendulum The upper end portion of the member 14 is joined to the other damping material 13 on the upper side.
The lower end of one pendulum member 14 is joined to one lower damping material 13, and the lower end of the other pendulum member 14 is joined to the other lower damping material 13.

また、振り子部材14の中央部に形成されている開孔14a,14aには、円形ベアリング17,17が取り付けられており、この円形ベアリング17,17には、前記上部スタブ11の突起11bと下部スタブ12の突起12bとがそれぞれ挿通されている。これによって、2つの振り子部材14,14は上部スタブ11および下部スタブ12に連結されている。
また、前記上部スタブ11と下部スタブ12にそれぞれ設けられた突起11b,12b間の間隔Aと、前記振り子部材14に形成された開孔14aと前記制振材料13との間隔Bとの比が、1:1.5に設定されており、てこの原理により制振材料13の変形量および変形速度を、建物の層間変形および層間変形速度の1.5倍に増幅している。
Further, circular bearings 17, 17 are attached to the openings 14 a, 14 a formed in the central part of the pendulum member 14, and the protrusions 11 b of the upper stub 11 and the lower part are attached to the circular bearings 17, 17. The protrusion 12b of the stub 12 is inserted through each. Accordingly, the two pendulum members 14 and 14 are connected to the upper stub 11 and the lower stub 12.
Further, the ratio between the distance A between the protrusions 11b and 12b provided on the upper stub 11 and the lower stub 12 and the distance B between the opening 14a formed in the pendulum member 14 and the damping material 13 is as follows. 1: 1.5, the amount of deformation and the deformation speed of the damping material 13 are amplified to 1.5 times the interlayer deformation and interlayer deformation speed of the building by the lever principle.

そして、このような構成の制振装置20では、前記制振装置10と同様に、建物に層間変形が生じると、上部スタブ11と下部スタブ12とがそれぞれ左右に移動し、これによって、建物の層間変形を、上部スタブ11の下端部に設けられた突起11bと下部スタブ12の上端部に設けられた突起12bとの間の相対変形に移行し、上部スタブ11と下部スタブ12にそれぞれ設けられた突起11b,12bは、2つの振り子部材14,14に形成された開孔14a,14aに円形ベアリング17,17を介してそれぞれ挿通されているので、この振り子部材14,14は開孔14a,14a間の中央部を回転中心Oとして振り子のように振れ、この振り子部材14,14の上下端部は振れが増幅され、これによって、前記突起11b,12a間の相対変形が増幅される。
したがって、振り子部材14,14の上下端部にそれぞれ接合している合計4つの制振材料13…の変形を1.5倍に増幅できるので、建物の小さな変形から制振装置を有効に働かせることができる。
また、4つの制振材料13…の変形速度も建物の層間変形速度より1.5倍に増幅することができ、さらに、エネルギー吸収性能が変形速度に比例する粘弾性材料からなる制振材料13を用いているので、より効率的にエネルギーを吸収でき、大きな減衰力を発揮できる。
さらに、この制振装置20では、エネルギーの吸収性能を高められているので、前記制振装置10より設置個数を少なくできるという利点がある。
なお、本実施の形態の制振装置20では、前記制振装置10と同様の効果を得ることができるのは勿論のことである。
In the vibration damping device 20 having such a configuration, when the interlayer deformation occurs in the building, the upper stub 11 and the lower stub 12 move to the left and right, respectively, as in the vibration damping device 10. The interlayer deformation shifts to a relative deformation between the protrusion 11b provided at the lower end of the upper stub 11 and the protrusion 12b provided at the upper end of the lower stub 12, and is provided on the upper stub 11 and the lower stub 12, respectively. Since the protrusions 11b and 12b are inserted into the openings 14a and 14a formed in the two pendulum members 14 and 14 through the circular bearings 17 and 17, respectively, the pendulum members 14 and 14 are opened to the openings 14a and 14a. 14a swings around the rotation center O as a pendulum, and swings are amplified at the upper and lower ends of the pendulum members 14 and 14, whereby the protrusions 11b and 12 The relative deformation between is amplified.
Therefore, the deformation of the total four damping materials 13... Joined to the upper and lower ends of the pendulum members 14 and 14 can be amplified by a factor of 1.5, so that the damping device can work effectively from a small deformation of the building. Can do.
Further, the deformation speed of the four vibration damping materials 13 can be amplified 1.5 times the interlayer deformation speed of the building, and the vibration damping material 13 made of a viscoelastic material whose energy absorption performance is proportional to the deformation speed. Can be used to absorb energy more efficiently and exert a large damping force.
Furthermore, since the vibration damping device 20 has improved energy absorption performance, there is an advantage that the number of installed devices can be smaller than that of the vibration damping device 10.
It is needless to say that the vibration damping device 20 of the present embodiment can obtain the same effects as those of the vibration damping device 10.

(第3の実施の形態)
図7〜図9は、本発明の建物の制振装置の他の例を示すもので、図7はその正面図、図8は側面図、図9は制振装置の振り子部材の変形状態を示す正面図である。
これらの図に示す制振装置30が、前記図1〜図4に示す制振装置10と異なる点は、振り子部材14の上下でてこ比を変えることにより、層間変形の増幅率を変えることを可能としている点であるので、以下ではこの点について詳述し、前記制振装置10と共通部分には、同一符号を付してその説明を省略または簡略化する。
(Third embodiment)
7 to 9 show other examples of the vibration damping device for a building according to the present invention. FIG. 7 is a front view thereof, FIG. 8 is a side view thereof, and FIG. 9 is a deformation state of a pendulum member of the vibration damping device. FIG.
The damping device 30 shown in these drawings is different from the damping device 10 shown in FIGS. 1 to 4 in that the amplification factor of the interlayer deformation is changed by changing the lever ratio above and below the pendulum member 14. Since this is possible, this will be described in detail below, and the same parts as those in the vibration damping device 10 will be denoted by the same reference numerals, and description thereof will be omitted or simplified.

本実施の形態の制振装置30では、上部スタブ11の上下の長さを、下部スタブ12の上下の長さより短く形成するとともに、振り子部材14に形成する2つの開孔14a,14aを、前記制振装置10の場合より、若干上側に位置させている。
そして、上記のように上部スタブ11、下部スタブ12、振り子部材14の構成を若干変更することによって、振り子部材14の上下でてこ比を以下のように変えている。
すなわち、上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12a間の間隔と、前記振り子部材14に形成された2つの開孔14a,14aのうち上の開孔14aと上部スタブ11に設けられた制振材料13との間隔との比を、A:Bとし、上部スタブ11と下部スタブ12にそれぞれ設けられた突起11a,12a間の間隔と、振り子部材14に形成された2つの開孔14a,14aのうち下の開孔14aと下部スタブ12に設けられた制振材料13との間隔との比を、A:Cとすると、A=1、B=1.2、C=2.4に設定している。つまり、A:B=1:1.2、A:C=1:2.4に設定している。
In the vibration damping device 30 of this embodiment, the upper and lower lengths of the upper stub 11 are formed shorter than the upper and lower lengths of the lower stub 12 and the two openings 14a and 14a formed in the pendulum member 14 are It is positioned slightly above the case of the vibration damping device 10.
Then, by slightly changing the configuration of the upper stub 11, the lower stub 12, and the pendulum member 14 as described above, the lever ratio is changed between the upper and lower sides of the pendulum member 14 as follows.
That is, the distance between the protrusions 11a and 12a provided on the upper stub 11 and the lower stub 12, respectively, and the upper opening 14a and the upper stub 11 out of the two openings 14a and 14a formed in the pendulum member 14. The ratio of the distance to the provided damping material 13 is A: B, the distance between the protrusions 11a and 12a provided on the upper stub 11 and the lower stub 12 respectively, and the two formed on the pendulum member 14 Assuming that the ratio of the distance between the lower opening 14a of the openings 14a, 14a and the damping material 13 provided in the lower stub 12 is A: C, A = 1, B = 1.2, C = It is set to 2.4. That is, A: B = 1: 1.2 and A: C = 1: 2.4.

上記のような構成の制振装置30では、制振装置10と同様に、図9に示すように、建物に層間変形が生じると、振り子部材14が開孔14a,14a間の中央部を回転中心Oとして振り子のように振れ、建物の層間変形を上下の制振材料13,13に、上下違った増幅率で増幅しながら伝達する。
そして、スタブの突起11a,12aの間隔(A)と上側突起11a(上側の開孔14a)から上部制震材料13の中心までの間隔(B)の比を1:1.2としたので、上部制震材料13aの変形量および変形速度を1.2倍に増幅できる。また、スタブの突起11a,12aの間隔(A)と下側突起12a(下側の開孔14a)から下部制震材料13aの中心までの間隔(C)の比を1:2.4としたので、下部制震材料13の変形量および変形速度を2.4倍に増幅できる。
このように建物の層間変形量および層間変形速度を1.2倍あるいは2.4倍に増幅できるので、建物の小さな変形から大きな変形まで制振装置を有効に働かせることができるとともに、エネルギー吸収性能が変形速度に比例する粘弾性材料を制振材料としているので、より効果的にエネルギーを吸収できる。
また、てこ比を大きくして建物の変形を粘弾性材料に伝達するのは、風や小地震により建物の層間変形が小さい場合には非常に有効であるが、大地震により建物の層間変形が大きい場合は、粘弾性材料の前記の性状により不利となる。そこで、本制振装置では、振り子部材14の上下でてこ比を変えることにより、層間変形の増幅率を変えることを可能としているので、建物の層間変形が小さい場合から大きい場合まで、ほぼ一定のエネルギー吸収性能を保持することができる。
In the vibration damping device 30 configured as described above, as in the vibration damping device 10, as shown in FIG. 9, when an interlayer deformation occurs in the building, the pendulum member 14 rotates in the center between the openings 14 a and 14 a. It swings like a pendulum as the center O, and the interlayer deformation of the building is transmitted to the upper and lower damping materials 13 and 13 while being amplified at different amplification factors.
And since the ratio of the space | interval (B) from the space | interval (A) of protrusion 11a, 12a of a stub and the upper surface protrusion 11a (upper opening 14a) to the center of the upper damping material 13 was set to 1: 1.2, The deformation amount and deformation speed of the upper damping material 13a can be amplified 1.2 times. The ratio of the distance (A) between the stub protrusions 11a and 12a to the distance (C) from the lower protrusion 12a (lower opening 14a) to the center of the lower vibration damping material 13a was set to 1: 2.4. Therefore, the deformation amount and deformation speed of the lower damping material 13 can be amplified 2.4 times.
As described above, the amount of interlayer deformation and the interlayer deformation speed of the building can be amplified to 1.2 times or 2.4 times, so that the vibration control device can be effectively operated from a small deformation to a large deformation of the building and energy absorption performance. Since the vibration damping material is a viscoelastic material proportional to the deformation speed, energy can be absorbed more effectively.
In addition, it is very effective to transmit the building deformation to the viscoelastic material by increasing the lever ratio, when the interlayer deformation of the building is small due to wind or small earthquakes. If it is large, the above properties of the viscoelastic material are disadvantageous. Therefore, in the present vibration damping device, it is possible to change the amplification factor of the interlayer deformation by changing the lever ratio above and below the pendulum member 14, so that the interlayer deformation of the building is almost constant from the small case to the large case. Energy absorption performance can be maintained.

本発明の建物の制振装置の一例を示すもので、その正面図である。An example of the vibration damping device of the building of the present invention is shown, and is the front view. 同、制振装置の側面図である。It is a side view of a vibration damping device. 図1に示す制振装置の振り子部材の変形状態を示す正面図である。It is a front view which shows the deformation | transformation state of the pendulum member of the damping device shown in FIG. 柱に制振装置を取り付けた状態を示す正面図である。It is a front view which shows the state which attached the damping device to the pillar. 本発明の建物の制振装置の他の例を示すもので、その正面図である。It shows the other example of the vibration damping device of the building of this invention, and is the front view. 同、制振装置の側面図である。It is a side view of a vibration damping device. 本発明の建物の制振装置の他の例を示すもので、その正面図である。It shows the other example of the vibration damping device of the building of this invention, and is the front view. 同、制振装置の側面図である。It is a side view of a vibration damping device. 図7に示す制振装置の振り子部材の変形状態を示す正面図である。It is a front view which shows the deformation | transformation state of the pendulum member of the damping device shown in FIG. 従来の建物の制振装置の一例を示す正面図である。It is a front view which shows an example of the vibration control apparatus of the conventional building. 従来の建物の制振装置の他の例を示す正面図である。It is a front view which shows the other example of the conventional damping device of a building.

符号の説明Explanation of symbols

1 柱
2a 上部梁
2b 下部梁
10,20,30 制振装置
11 上部スタブ
12 下部スタブ
11a,11b,12a,12b 突起
13 制振材料
14 振り子部材
14a 開孔
17 ベアリング
1 Pillar 2a Upper beam 2b Lower beam 10, 20, 30 Damping device 11 Upper stub 12 Lower stub 11a, 11b, 12a, 12b Protrusion 13 Damping material 14 Pendulum member 14a Opening hole 17 Bearing

Claims (5)

既設または新築の建物に取り付けられる建物の制振装置であって、
建物の各階において、柱頭または上部梁に取り付けられる板状の上部スタブと、柱脚または下部梁に取り付けられる板状の下部スタブと、
前記上部スタブの上部と下部スタブの下部とにそれぞれ設けられた上下の制振材料と、
上下端部がそれぞれ前記上下の制振材料に接合され、建物の層間変形を前記上下の制振材料に増幅して伝達する板状の振り子部材とを備え、
前記振り子部材は、その中央部に上下に離間して形成されたそれぞれの開孔に、前記上部スタブの下端部および下部スタブの上端部にそれぞれ設けられた突起がそれぞれ挿入されることによって、前記上部スタブおよび下部スタブに連結されていることを特徴とする建物の制振装置。
A vibration control device for a building attached to an existing or new building,
On each floor of the building, a plate-like upper stub attached to the capital or upper beam, and a plate-like lower stub attached to the column base or lower beam,
Upper and lower vibration damping materials respectively provided on the upper part of the upper stub and the lower part of the lower stub;
The upper and lower ends are joined to the upper and lower vibration damping materials, respectively, and plate-like pendulum members that amplify and transmit the interlayer deformation of the building to the upper and lower vibration damping materials,
The pendulum member is inserted into the respective openings formed in the central portion thereof so as to be spaced apart from each other by inserting protrusions respectively provided at the lower end portion of the upper stub and the upper end portion of the lower stub, thereby A vibration control device for a building, which is connected to an upper stub and a lower stub.
請求項1に記載の建物の制振装置において、
前記振り子部材に形成された2つの開孔のうちの少なくとも一方は、前記突起が前記振り子部材の軸方向にスライド可能となるように構成されていることを特徴とする建物の制振装置。
In the building damping device according to claim 1,
At least one of the two openings formed in the pendulum member is configured such that the protrusion is slidable in the axial direction of the pendulum member.
請求項1または2に記載の建物の制振装置において、
前記開孔にはベアリングが取り付けられており、このベアリングに前記突起が挿入されていることを特徴とする建物の制振装置。
In the building vibration control device according to claim 1 or 2,
A building damping device, wherein a bearing is attached to the opening, and the protrusion is inserted into the bearing.
請求項1〜3のいずれか一項に記載の建物の制振装置において、
前記上部スタブと下部スタブにそれぞれ設けられた突起間の間隔と、前記振り子部材に形成された開孔と前記制振材料との間隔との比が、1:1.2〜2.5に設定されていることを特徴とする建物の制振装置。
In the building damping device according to any one of claims 1 to 3,
The ratio between the distance between the protrusions provided on the upper stub and the lower stub and the distance between the opening formed in the pendulum member and the damping material is set to 1: 1.2 to 2.5. A building vibration control device characterized by being made.
請求項1〜3のいずれか一項に記載の建物の制振装置において、
前記上部スタブと下部スタブにそれぞれ設けられた突起間の間隔と、前記振り子部材に形成された2つの開孔のうち上の開孔と前記上部スタブに設けられた制振材料との間隔との比を、A:Bとし、
前記上部スタブと下部スタブにそれぞれ設けられた突起間の間隔と、前記振り子部材に形成された2つの開孔のうち下の開孔と前記下部スタブに設けられた制振材料との間隔との比を、A:Cとすると、
B>AかつC>AかつB≠Cに設定したことを特徴とする建物の制振装置。
In the building damping device according to any one of claims 1 to 3,
An interval between the protrusions provided on the upper stub and the lower stub, and an interval between the upper opening of the two openings formed in the pendulum member and the damping material provided on the upper stub. The ratio is A: B
An interval between the protrusions provided on the upper stub and the lower stub, and an interval between the lower opening of the two openings formed in the pendulum member and the damping material provided on the lower stub. If the ratio is A: C,
B> A and C> A and B ≠ C.
JP2004048054A 2004-01-06 2004-02-24 Damping device mounting structure Expired - Fee Related JP3848656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048054A JP3848656B2 (en) 2004-01-06 2004-02-24 Damping device mounting structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004001110 2004-01-06
JP2004048054A JP3848656B2 (en) 2004-01-06 2004-02-24 Damping device mounting structure

Publications (2)

Publication Number Publication Date
JP2005220714A true JP2005220714A (en) 2005-08-18
JP3848656B2 JP3848656B2 (en) 2006-11-22

Family

ID=34996564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048054A Expired - Fee Related JP3848656B2 (en) 2004-01-06 2004-02-24 Damping device mounting structure

Country Status (1)

Country Link
JP (1) JP3848656B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322309A (en) * 2005-04-19 2006-11-30 Misawa Homes Co Ltd Vibration control unit
JP2006342655A (en) * 2005-02-17 2006-12-21 Misawa Homes Co Ltd Vibration damping structure
JP2007169896A (en) * 2005-12-19 2007-07-05 Misawa Homes Co Ltd Vibration control device and vibration control panel
JP2007303124A (en) * 2006-05-10 2007-11-22 Misawa Homes Co Ltd Vibration control structure of building, and installation method for vibration control device
JP2015135175A (en) * 2014-01-17 2015-07-27 ツァイトアンファーレンクオチアシーイエンイエンチョウユアン Lever-type viscoelasticity vibration absorber
JP2015218548A (en) * 2014-05-21 2015-12-07 鹿島建設株式会社 Fitting structure of elasto-plastic damper to existing structural member
JP2016017629A (en) * 2014-07-11 2016-02-01 株式会社大林組 Vibration control device and vibration control structure
CN107100407A (en) * 2017-06-23 2017-08-29 大连理工大学 A kind of fan-shaped support rotation amplifying type node shearing damp device
KR20190043795A (en) * 2017-10-19 2019-04-29 주식회사 디알비동일 Vibration damping device for seismic reinforcement of structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342655A (en) * 2005-02-17 2006-12-21 Misawa Homes Co Ltd Vibration damping structure
JP2006322309A (en) * 2005-04-19 2006-11-30 Misawa Homes Co Ltd Vibration control unit
JP2007169896A (en) * 2005-12-19 2007-07-05 Misawa Homes Co Ltd Vibration control device and vibration control panel
JP2007303124A (en) * 2006-05-10 2007-11-22 Misawa Homes Co Ltd Vibration control structure of building, and installation method for vibration control device
JP2015135175A (en) * 2014-01-17 2015-07-27 ツァイトアンファーレンクオチアシーイエンイエンチョウユアン Lever-type viscoelasticity vibration absorber
US9316014B2 (en) 2014-01-17 2016-04-19 National Applied Research Laboratories Lever viscoelastic damping wall assembly
JP2015218548A (en) * 2014-05-21 2015-12-07 鹿島建設株式会社 Fitting structure of elasto-plastic damper to existing structural member
JP2016017629A (en) * 2014-07-11 2016-02-01 株式会社大林組 Vibration control device and vibration control structure
CN107100407A (en) * 2017-06-23 2017-08-29 大连理工大学 A kind of fan-shaped support rotation amplifying type node shearing damp device
KR20190043795A (en) * 2017-10-19 2019-04-29 주식회사 디알비동일 Vibration damping device for seismic reinforcement of structure
KR102059241B1 (en) * 2017-10-19 2019-12-24 주식회사 디알비동일 Vibration damping device for seismic reinforcement of structure

Also Published As

Publication number Publication date
JP3848656B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP3848656B2 (en) Damping device mounting structure
JP2010090651A (en) Seismic damping structure, and building having the same
JP5319902B2 (en) Building vibration control structure
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JP2006328715A (en) Floating floor type vibration control structure
JP4092340B2 (en) Building vibration control structure
JP4579615B2 (en) Multi-layer core wall type seismic control high-rise apartment building
JP4070117B2 (en) Vibration control device
KR101323589B1 (en) Vibration isolation system in transfer story of apartment housing
KR101323587B1 (en) Vibration isolation system in transfer story of apartment housing
JPH11241524A (en) Building used jointly for both base isolation and seismic control
JP2007231523A (en) Base-isolated floor structure
JP4630140B2 (en) Damping device mounting structure and mounting method
JP2004232324A (en) Vibration control system
JP2006249756A (en) Frame structure of building
JP5682035B2 (en) Vibration control structure
JP2003328585A (en) Vibration control structure for building having piloti
JPH05156840A (en) Fitting structure for steel material damper
JP4706281B2 (en) Building seismic control structure
JP2008144581A (en) Vibration control structure of building
JP2007056623A (en) Unit type building
JP2010242450A (en) Vibration control method, vibration control structure, and aseismatic reinforcing method
JPH1113302A (en) Elastoplastic damper
JP2005132597A (en) Guide rail fixing device for elevator
JP7363000B2 (en) building

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060407

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Effective date: 20060728

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees