JP2009019479A - Seismic response controlled building and seismic response control method - Google Patents

Seismic response controlled building and seismic response control method Download PDF

Info

Publication number
JP2009019479A
JP2009019479A JP2007199422A JP2007199422A JP2009019479A JP 2009019479 A JP2009019479 A JP 2009019479A JP 2007199422 A JP2007199422 A JP 2007199422A JP 2007199422 A JP2007199422 A JP 2007199422A JP 2009019479 A JP2009019479 A JP 2009019479A
Authority
JP
Japan
Prior art keywords
building
external
internal
vibration
external building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007199422A
Other languages
Japanese (ja)
Other versions
JP5076709B2 (en
Inventor
Katsuhisa Nishimura
勝尚 西村
Yoshiyuki Fukumoto
義之 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007199422A priority Critical patent/JP5076709B2/en
Publication of JP2009019479A publication Critical patent/JP2009019479A/en
Application granted granted Critical
Publication of JP5076709B2 publication Critical patent/JP5076709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively use a structural body constructed within an external building in a seismic response controlled building wherein the structural body is constructed inside of the external building and a damping member connects these. <P>SOLUTION: A seismic response controlled building 10 is composed of an external building 20 having a void space 40, an internal building 30 which is separated by an internal clearance from the external building 20 within the void space 40, has a higher rigidity than the external building 20 and is used as a multi-storied parking lot, and a vibration control damper 41 for connecting the external building 20 and the internal building 30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内部にボイド空間を有する外部建物と、外部空間のボイド空間内に構築された内部建物との間に制震部材を設けることにより構成された制震建物に関する。   The present invention relates to a vibration control building configured by providing a vibration control member between an external building having a void space therein and an internal building constructed in the void space of the external space.

従来より、高層建物では、地震力や風荷重による大きな水平力が入力されると、それに応じて、大きな変位が生じるため、柱や梁の本数を増やす、柱や梁の断面積を大きくする、又は柱梁架構内に耐震壁を設けるなどの方法により、耐震性を向上している。しかしながら、これらの方法では、建物の開口面積が減ってしまったり、建物の居室空間が削られてしまったりして、平面計画の障害となるという問題があった。   Conventionally, in a high-rise building, when a large horizontal force due to seismic force or wind load is input, a large displacement occurs accordingly, so increase the number of columns and beams, increase the cross-sectional area of the columns and beams, Alternatively, the earthquake resistance is improved by installing a seismic wall in the column beam frame. However, these methods have a problem that the floor plan is obstructed because the opening area of the building is reduced or the room space of the building is cut.

そこで、本願出願人らは、建物を構成するラーメン架構を有する外部建物内に、剛性が高く振動特性の異なる耐震壁やラーメン架構などの独立部材要素を独立して設け、この外部建物と独立部材要素との間を制震ダンパーにより接続した制震構造を提案している。このような制震構造によれば、外部建物と独立部材要素とが変形モードが異なることを利用して、制震ダンパーにより効率よく振動エネルギーを吸収することができ、これにより外部建物の剛性を高くしなくても耐震性を向上できるので、上記のような問題を解消できる(例えば、特許文献1及び2参照)。
特開2006―241783号公報 特開2005―180089号公報
Therefore, the applicants of the present application independently provided independent member elements such as a seismic wall and a rigid frame having high rigidity and different vibration characteristics in an external building having a rigid frame constituting the building. A seismic control structure is proposed in which elements are connected by seismic dampers. According to such a vibration control structure, the vibration energy can be efficiently absorbed by the vibration control damper by utilizing the fact that the deformation modes of the external building and the independent member element are different, thereby improving the rigidity of the external building. Since the earthquake resistance can be improved without increasing it, the above problems can be solved (see, for example, Patent Documents 1 and 2).
JP 2006-241783 A Japanese Patent Laid-Open No. 2005-180089

しかしながら、特許文献1及び2記載の発明において、独立部材要素として、連層耐震壁を用いているが、この連層耐震壁は、外部建物の制震性を向上するためだけのものであって、有効利用されていない。   However, in the inventions described in Patent Documents 1 and 2, a multi-layer seismic wall is used as an independent member element, but this multi-layer seismic wall is only for improving the seismic performance of an external building. It is not used effectively.

本発明は上記の問題に鑑みなされたものであり、その目的は、外部建物の内側に構造体を構築し、これらを制震部材により連結する制震建物において、外部建物内に構築される構造体を有効利用することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to construct a structure inside an external building and to construct the structure inside the external building in a vibration control building in which these are connected by a vibration control member. It is to use the body effectively.

本発明の制震建物は、内部に鉛直方向に延びる空間を有する外部建物と、前記空間内に前記外部建物との間に隙間を設けるように構築され、前記外部建物に比べて剛性の高い内部建物と、前記外部建物と内部建物との間を接続するように設けられた制震部材と、を備えることを特徴とする。
ここで、前記内部建物は、少なくとも一部が壁構造であり、前記外部建物は、少なくとも一部がラーメン構造であってもよい。
The seismic control building of the present invention is constructed so as to provide a gap between an external building having a space extending vertically in the interior and the external building in the space, and has an interior having higher rigidity than the external building. A building and a vibration control member provided so as to connect the external building and the internal building are provided.
Here, at least a part of the internal building may have a wall structure, and at least a part of the external building may have a ramen structure.

ここで、前記内部建物は、立体駐車場として利用されてもよい。また、前記内部建物と前記外部建物とを接続する通路が設けられており、前記内部建物は、エレベータ及び階段を設けるためのスペースとして利用されてもよい。また、前記内部建物は鉄筋コンクリート造、鉄骨コンクリート造又は鉄骨鉄筋コンクリート造であってもよい。
また、前記内部建物は、前記外部建物に比べて高さが低くてもよい。この場合、前記前記外部建物は、前記内部建物の上方を覆うように設けられた架構を有してもよい。また、前記外部建物に支持されて前記内部建物の上方を覆う屋根を備えてもよい。
Here, the internal building may be used as a multi-story parking lot. Moreover, the channel | path which connects the said internal building and the said external building is provided, and the said internal building may be utilized as a space for providing an elevator and stairs. The internal building may be reinforced concrete, steel concrete, or steel reinforced concrete.
The internal building may be lower in height than the external building. In this case, the external building may have a frame provided so as to cover the upper side of the internal building. Moreover, you may provide the roof supported by the said external building and covering the upper direction of the said internal building.

また、前記外部建物の梁剛性が、当該外部建物を単独の構造物とした場合に、この構造物が設計地震に対して自立し得ない大きさに設定されていてもよい。また、前記外部建物の少なくとも一部が無梁構造であってもよい。
また、前記内部建物と、前記外部建物とは、これらの低層階において、構造的に接続されていてもよい。
Further, the beam rigidity of the external building may be set to such a size that the structure cannot stand alone against a design earthquake when the external building is a single structure. Further, at least a part of the external building may have a beamless structure.
Moreover, the said internal building and the said external building may be structurally connected in these low-rise floors.

また、本発明の建物の制震方法は、前記建物を、内部に鉛直方向に延びる空間を有する外部建物と、前記空間内に前記外部建物との間に隙間を設けるように構築され、前記外部建物に比べて剛性の高い内部建物と、により構成し、前記外部建物と内部建物との間を接続するように制震部材を設けることを特徴とする。   In the building seismic control method of the present invention, the building is constructed such that a gap is provided between the external building having a space extending in a vertical direction inside the building and the external building in the space, An internal building having higher rigidity than the building is provided, and a vibration control member is provided so as to connect between the external building and the internal building.

本発明によれば、外部建物内に構築する構造体を建物とすることにより、建物全体を有効利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the whole building can be used effectively by setting the structure built in an external building as a building.

以下、本発明の制震建物の一実施形態を図面を参照しながら詳細に説明する。
図1は、本実施形態の制震建物10の構成を示す鉛直方向断面図である。また、図2は、制震建物10の制震ダンパー41が取り付けられた階の水平方向断面図である。図1に示すように、本実施形態の制震建物10は、内部に上下方向に伸びるボイド空間40を有する外部建物20と、外部建物20のボイド空間40内に構築された内部建物30と、外部建物20と内部建物30とを接続するようにボイド空間40内の所定の高さに設けられた複数の制震ダンパー41と、を備える。内部建物30は外部建物20に比べて高さが低く、内部建物20の上部の空間は吹抜42となっている。外部建物20の頂部には、吹抜42の上部を覆うように屋根25が設けられており、ボイド空間40に雨が降りこむのを防ぎ、内部建物30の置く上部に設置された設備等が雨水により劣化するのを防いでいる。図2に示すように、制震ダンパー41は、内部建物30の四隅より2方向に延び、外部建物20のボイド空間40に面する部分に接続されている。
Hereinafter, an embodiment of a vibration control building according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a vertical cross-sectional view showing the configuration of the damping building 10 of the present embodiment. FIG. 2 is a horizontal cross-sectional view of the floor to which the damping damper 41 of the damping building 10 is attached. As shown in FIG. 1, the seismic control building 10 of the present embodiment includes an external building 20 having a void space 40 extending in the vertical direction inside, an internal building 30 constructed in the void space 40 of the external building 20, A plurality of damping dampers 41 provided at a predetermined height in the void space 40 so as to connect the external building 20 and the internal building 30 are provided. The internal building 30 is lower in height than the external building 20, and the space above the internal building 20 is an open space 42. A roof 25 is provided at the top of the external building 20 so as to cover the upper part of the vent 42, preventing rain from falling into the void space 40, and the equipment installed on the upper part of the internal building 30 is rainwater. To prevent deterioration. As shown in FIG. 2, the damping damper 41 extends in two directions from the four corners of the internal building 30 and is connected to a portion facing the void space 40 of the external building 20.

外部建物20は平面視矩形に形成され、内部に上下方向に延びるボイド空間40を有する高層建物からなる。外部建物20の各階には、その外周に沿って複数の住戸ユニット22が配置されるともに、各住戸ユニット22に面し、ボイド空間40を取り囲むように廊下24が配置されている。また、各階の廊下24には上下階を連絡するためのエレベータシャフト26が接続されている。外部建物20のボイド空間40は、自然換気を利用した換気や排気のスペースとして、また、共通室外機などの設備機器が設置され設備機器スペースとして利用されている。   The external building 20 is formed of a high-rise building having a rectangular shape in plan view and having a void space 40 extending in the vertical direction inside. On each floor of the external building 20, a plurality of dwelling units 22 are arranged along the outer periphery, and a corridor 24 is arranged so as to face each dwelling unit 22 and surround the void space 40. Also, an elevator shaft 26 for connecting the upper and lower floors is connected to the corridor 24 of each floor. The void space 40 of the external building 20 is used as a space for ventilation or exhaust using natural ventilation, or as a facility equipment space where equipment such as a common outdoor unit is installed.

外部建物20は、一般的なラーメン架構に比べて、柱21や梁23の寸法が小さく形成されるとともに、柱21間のスパンが広く、柱21及び梁23の数が少ない。このため、外部建物20は一般的なラーメン架構に比べて、剛性が低くなっている。また、外部建物20は、上記のように柱21及び梁23が少ないため、従来の高層建物に比べて内部空間の設計の自由度を向上することができるとともに、各住戸ユニット22を開放的なものとすることができる。   In the external building 20, the dimensions of the columns 21 and beams 23 are formed smaller than that of a general frame structure, the span between the columns 21 is wide, and the number of columns 21 and beams 23 is small. For this reason, the external building 20 has lower rigidity than a general frame structure. Moreover, since the external building 20 has few columns 21 and beams 23 as described above, the degree of freedom in designing the internal space can be improved as compared with a conventional high-rise building, and each dwelling unit 22 can be opened. Can be.

内部建物30は鉄筋コンクリート造の建物であり、外周壁に耐震壁が用いられている。このように外周壁に耐震壁を用いることにより、外部建物20に比べて、高い剛性とすることができる。このため、内部建物30は、固有周期が外部建物20に比べて短く、制震建物10に地震などによる外力が作用した場合には、内部建物30と外部建物20とは異なる振動モードで振動する。   The internal building 30 is a reinforced concrete building, and a seismic wall is used for the outer peripheral wall. Thus, by using a seismic wall for the outer peripheral wall, it is possible to make the rigidity higher than that of the external building 20. For this reason, the internal building 30 has a shorter natural period than the external building 20, and the internal building 30 and the external building 20 vibrate in different vibration modes when an external force such as an earthquake acts on the vibration control building 10. .

内部建物30の内部には立体駐車機31が設置されており、この立体駐車機31に車両が上下複数層に駐車されている。なお、立体駐車機31への車両の出入りは、例えば、外部建物20の地上階に設けられた出入口を通して行われる。   A multi-story parking machine 31 is installed inside the internal building 30, and vehicles are parked in this multi-story parking machine 31 in a plurality of upper and lower layers. In addition, entrance / exit of the vehicle to / from the multi-story parking machine 31 is performed, for example, through an entrance / exit provided on the ground floor of the external building 20.

上記のように、内部建物30は、外周壁を耐震壁としたため開口が少なく、また、外部建物20からのアクセスも制限されてしまうため、制震建物10全体を住戸として利用する場合には居住性が損なわれてしまう問題がある。これに対して、本実施形態では、内部建物30を住戸からのアクセスが不要な立体駐車場として利用することにより、内部建物30の外周壁を耐震壁により囲む構成としても、このような問題を生じることなく、内部建物30を有効利用することができる。   As described above, the internal building 30 has a small opening because the outer peripheral wall is a seismic wall, and access from the external building 20 is also restricted. Therefore, when the entire seismic control building 10 is used as a dwelling unit, There is a problem that the performance is impaired. On the other hand, in this embodiment, such a problem can be achieved even if the outer wall of the inner building 30 is surrounded by a seismic wall by using the inner building 30 as a three-dimensional parking lot that does not require access from the dwelling unit. The internal building 30 can be effectively used without being generated.

また、立体駐車機31から騒音や振動が発生するが、上記のように、内部建物30は外周壁を耐震壁とすることにより十分な遮音性能が確保されており、さらに、内部建物30と外部建物20との間に隙間(ボイド空間40)が存在するため、外部建物20の住戸に騒音や振動が伝わるのを防ぐことができる。   In addition, although noise and vibration are generated from the multi-story parking machine 31, as described above, the internal building 30 has sufficient sound insulation performance by making the outer peripheral wall a seismic wall. Since there is a gap (void space 40) with the building 20, noise and vibration can be prevented from being transmitted to the dwelling unit of the external building 20.

また、制震ダンパー41は、地震動などの外力が作用した場合に、外部建物20と内部建物30の変形差が大きくなるような階層において、内部建物30の四隅から水平に2方向に延びるように設けられ、外部建物20のボイド空間40に接続されている。これにより、外力が作用して内部建物30に対して外部建物20が、水平方向何れの方向に相対移動しても、制震ダンパー41により振動エネルギーを吸収することができる。このような制震ダンパー41としては、オイルダンパー、摩擦ダンパー、粘性ダンパー、粘弾性ダンパー、履歴型ダンパー、又はこれらを組み合わせたものを用いることができる。なお、本実施形態では、制震ダンパー41を平面的に配置するものとしたが、内部建物30と外部建物20の異なる高さの位置を結ぶように設置することもできる。   Further, the seismic damper 41 extends horizontally in two directions from the four corners of the inner building 30 in a hierarchy where the deformation difference between the outer building 20 and the inner building 30 becomes large when an external force such as earthquake motion is applied. It is provided and connected to the void space 40 of the external building 20. Thereby, even if the external building 20 moves relative to the internal building 30 in any direction in the horizontal direction due to an external force, the vibration damping damper 41 can absorb the vibration energy. As such a damping damper 41, an oil damper, a friction damper, a viscous damper, a viscoelastic damper, a hysteretic damper, or a combination thereof can be used. In the present embodiment, the damping damper 41 is arranged in a plane, but it can be installed so as to connect different positions of the internal building 30 and the external building 20.

本実施形態の制震建物10に外力が作用すると、上記のように外部建物20に比べて内部建物30の剛性が高いため、外部建物20及び内部建物30は、異なる振動モードで振動する。この際、上記のように、制震ダンパー41が外部建物20と内部建物30の変形差が大きくなるような位置を接続するように取り付けられているため、制震ダンパー41により効率よく振動エネルギーを吸収することができる。   When an external force acts on the vibration control building 10 of the present embodiment, the internal building 30 has higher rigidity than the external building 20 as described above, and thus the external building 20 and the internal building 30 vibrate in different vibration modes. At this time, as described above, since the vibration control damper 41 is attached so as to connect the positions where the deformation difference between the external building 20 and the internal building 30 is large, the vibration control damper 41 can efficiently transmit vibration energy. Can be absorbed.

また、内部建物30を鉄筋コンクリート造とし、外周壁に耐震壁を用いることにより、内部建物30に十分な剛性を持たせることができる。これにより、外力が作用した際に、内部建物30及び外部建物20が異なる周期で振動することとなり、制震ダンパー41により効率よく振動エネルギーを吸収することができる。このため、十分な耐震性を確保するために外部建物20に高い剛性を持たせる必要がなく、外部建物20の柱21や梁23の数を少なくするとともに、各部材の径を細くすることができ、住戸ユニット22を開放的なものとし、居住性を向上することができる。   Moreover, the internal building 30 can be given sufficient rigidity by using a reinforced concrete structure and using a seismic wall for the outer peripheral wall. As a result, when an external force is applied, the internal building 30 and the external building 20 vibrate at different periods, and the vibration damping damper 41 can efficiently absorb vibration energy. For this reason, in order to ensure sufficient earthquake resistance, it is not necessary to give the external building 20 high rigidity, and the number of columns 21 and beams 23 of the external building 20 can be reduced and the diameter of each member can be reduced. It is possible to make the dwelling unit 22 open and improve the comfortability.

ここで、図3は、上記のような制震建物10における外部建物20の固有周期T1と内部建物30の固有周期T2とを複数通りに設定し、各場合の最大応答変形の低減効果を示すグラフである。なお、グラフの縦軸は、最大応答変形比を、外部建物20及び内部建物30の固有周期T1,T2をともに4[s]とした(すなわち、制震ダンパー41において振動エネルギーを吸収しない)場合に対する比率で示し、横軸は制震ダンパーの減衰係数を示す。   Here, FIG. 3 sets the natural period T1 of the external building 20 and the natural period T2 of the internal building 30 in the above-described seismic control building 10 in a plurality of ways, and shows the effect of reducing the maximum response deformation in each case. It is a graph. The vertical axis of the graph represents the maximum response deformation ratio when the natural periods T1 and T2 of the external building 20 and the internal building 30 are both 4 [s] (that is, the vibration damper 41 does not absorb vibration energy). The horizontal axis indicates the damping coefficient of the damping damper.

同図に示すように、減衰係数によらず、固有周期の差を大きくするほど最大応答変形の低減効果は大きくなることがわかる。すなわち、内部建物30の固有周期を短くし、外部建物20の固有周期を長くするほど、制震建物10の制震効果が向上することとなる。   As shown in the figure, it can be seen that the effect of reducing the maximum response deformation increases as the difference in natural period increases, regardless of the attenuation coefficient. That is, as the natural period of the internal building 30 is shortened and the natural period of the external building 20 is increased, the vibration control effect of the vibration control building 10 is improved.

ところで、上記実施形態では、外部建物20の柱梁の数や寸法を少なくすることにより、外部建物20の剛性を低下させて固有周期を長周期化させることにより制震建物10の制震効果を向上していが、特に、外部建物20の梁の剛性を低下させることにより、外部建物20の剛性を低下させて、固有周期を長周期化させることも可能である。   By the way, in the said embodiment, by reducing the number and dimension of the column beam of the external building 20, the rigidity of the external building 20 is reduced and the natural period is lengthened, and the damping effect of the damping building 10 is increased. Although it has improved, it is also possible to reduce the rigidity of the external building 20 by reducing the rigidity of the beam of the external building 20, and to make the natural period longer.

一般的なラーメン架構を用いて独立した超高層建物を構築する場合には、設計用地震荷重が作用しても、これに耐え得る建物の耐震性が得られるような梁剛性(以下、必要梁剛性という)を確保することが必要である。なお、設計用地震荷重とは、構造設計の際に、十分な耐力を有するかどうかを検討するために用いられる地震荷重である。   When building an independent high-rise building using a general frame structure, the beam stiffness (hereinafter referred to as the required beam) that can withstand the seismic load of the building even if a design seismic load is applied. It is necessary to ensure rigidity). The design seismic load is a seismic load used for examining whether or not the structure design has sufficient proof stress.

これに対して、内部建物30及び外部建物20を制震ダンパー41で結ぶことにより、内部建物30及び外部建物20の耐震性が向上され、外部建物20の剛性を低下させることが可能となり、外部建物20の梁剛性を必要梁剛性よりも低くしても、建物全体として設計用地震荷重が作用してもこれに耐え得るような耐震性を持たせることができる。このため、外部建物20の梁構造として、例えば、図4(A)に示すような無梁構造50や、同図(B)に示すような梁せいがスラブ厚と同じような梁構造51や、同図(C)に示すような梁せいが非常に小さい梁構造52を採用することが可能となる。   On the other hand, by connecting the internal building 30 and the external building 20 with the damping damper 41, the earthquake resistance of the internal building 30 and the external building 20 can be improved, and the rigidity of the external building 20 can be reduced. Even if the beam stiffness of the building 20 is lower than the required beam stiffness, the entire building can be provided with seismic resistance that can withstand the design seismic load. For this reason, as the beam structure of the external building 20, for example, a beamless structure 50 as shown in FIG. 4A, a beam structure 51 as shown in FIG. It is possible to employ a beam structure 52 having a very small beam size as shown in FIG.

このような梁構造を採用することにより、外部建物20の剛性が必要梁剛性より低くし、固有周期を長くすることができるので、建物全体としての制震効果が向上し、地震時の変形を小さくすることが可能となる。   By adopting such a beam structure, the rigidity of the external building 20 can be made lower than the required beam rigidity and the natural period can be lengthened, so that the seismic control effect of the entire building is improved and deformation at the time of the earthquake is reduced. It can be made smaller.

以上説明したように、本実施形態では、外部建物20内に構築する構造物を内部建物30としたため、内部建物30を含む制震建物10全体を有効利用することができる。さらに、内部建物30を住戸として利用した場合には、建物の開口等が少ないため、居住性が損なわれるという問題があるが、本実施形態のように内部建物30を建築機能的に居住空間と分離可能な立体駐車場として利用することにより、居住性を損なうことなく、内部建物30を有効利用することができる。   As explained above, in this embodiment, since the structure built in the external building 20 is the internal building 30, the entire seismic control building 10 including the internal building 30 can be used effectively. Furthermore, when the internal building 30 is used as a dwelling unit, there is a problem that the habitability is impaired because there are few openings or the like of the building, but the internal building 30 is architecturally functional as a living space as in this embodiment. By using it as a separable three-dimensional parking lot, the internal building 30 can be used effectively without impairing the habitability.

また、内部建物30を住戸に比べて比較的に開口が少なくてもよい駐車場として利用することにより、内部建物30の構造として大断面の鉄筋コンクリート造の柱梁架構を採用することができる。また、駐車場は居住空間とアクセス不要であるため、外周壁などに開口を設ける必要がなく、外周壁として無開口の耐震壁を用いることができる。このように内部建物30を鉄筋コンクリート造の大断面の柱梁架構により構成することにより、内部建物30に低コストで高い剛性を持たせることができる。また、立体駐車場は騒音源となるが、内部建物30の外周壁を耐震壁とし、また、内部建物30は外部建物20に対して独立して設けられるため、外部建物20への振動及び騒音を遮断することが可能となる。   Further, by using the internal building 30 as a parking lot that may have a relatively small number of openings as compared with the dwelling unit, a large-section reinforced concrete column beam structure can be employed as the structure of the internal building 30. In addition, since the parking lot does not require access to the living space, it is not necessary to provide an opening in the outer peripheral wall or the like, and a non-opening earthquake-resistant wall can be used as the outer peripheral wall. In this way, by configuring the internal building 30 with a reinforced concrete large-section column beam structure, the internal building 30 can be provided with high rigidity at low cost. In addition, although the multistory parking lot is a noise source, the outer peripheral wall of the internal building 30 is a seismic wall, and the internal building 30 is provided independently of the external building 20, so vibration and noise to the external building 20 Can be cut off.

なお、本実施形態では、内部建物30を鉄筋コンクリート造として内部建物30の剛性を高める構成としたが、これに限らず、鉄骨コンクリート造や鉄骨鉄筋コンクリート造としてもよい。また、内部建物30の柱梁架構にブレース材を組み込むことにより、内部建物30の剛性を高めてもよく、要するに、外部建物20よりも高い剛性を有し、低コストで作成することができればよい。   In the present embodiment, the internal building 30 is made of reinforced concrete to increase the rigidity of the internal building 30. However, the present invention is not limited to this, and may be steel-framed concrete or steel-framed reinforced concrete. Further, by incorporating a brace material into the column beam frame of the internal building 30, the rigidity of the internal building 30 may be increased. In short, it is only required to have higher rigidity than the external building 20 and to be produced at low cost. .

また、本実施形態では、内部建物30を外部建物20よりも高さが低いものとしたが、これに限らず、同程度の高さにしても良く、また、外部建物20よりも高くしてもよい。   In the present embodiment, the inner building 30 is lower than the outer building 20. However, the height is not limited to this, and the inner building 30 may be the same height as the outer building 20. Also good.

また、本実施形態では、内部建物30の外壁に開口を設けていないが、これに限らず、開口を設けて、外部建物20との間に足場を渡して、内部建物30と外部建物20との間で移動可能にしてもよい。このようにすれば、内部建物30に階段やエレベータなどの共用施設を設けたり、倉庫として利用したりすることもできる。   Moreover, in this embodiment, although the opening is not provided in the outer wall of the internal building 30, it is not restricted to this, An opening is provided and a scaffold is passed between the external buildings 20, and the internal building 30 and the external building 20 May be movable between. If it does in this way, shared facilities, such as a staircase and an elevator, can be provided in the internal building 30, or it can also be used as a warehouse.

また、上記実施形態では、内部建物30及び外部建物20を夫々独立して構築するものとしたが、これに限らず、これらの建物20、30の低層階において、構造的に接続することも可能である。   Moreover, in the said embodiment, although the internal building 30 and the external building 20 were each constructed | assembled independently, not only this but it can also connect structurally in the low-rise floor of these buildings 20 and 30 It is.

図5は、本発明の別の実施形態である制震建物110を示す図である。同図に示すように、本実施形態の制震建物110では、外部建物120の低層階の梁123と、内部建物130の低層階の梁133とが一体に構築されており、低層階の梁143は内部建物130及び外部建物120を貫通するように設けられている。これにより、外部建物120及び内部建物130の低層階が構造的に接続された一体の構造として機能する。なお、上記実施形態と同様に内部建物130は立体駐車場として利用されており、内部建物130の低層階にはこの立体駐車場からの出入り口として開口が設けられている。   FIG. 5 is a diagram illustrating a seismic control building 110 according to another embodiment of the present invention. As shown in the figure, in the seismic control building 110 of this embodiment, the low-rise beam 123 of the external building 120 and the low-rise beam 133 of the internal building 130 are constructed integrally, and the low-rise beam 143 is provided so as to penetrate the internal building 130 and the external building 120. Thereby, it functions as an integral structure in which the lower floors of the external building 120 and the internal building 130 are structurally connected. As in the above embodiment, the internal building 130 is used as a multilevel parking lot, and an opening is provided on the lower floor of the internal building 130 as an entrance to the multilevel parking lot.

内部建物130及び外部建物120を高層化した場合には、内部建物130に外力が作用すると、建物の下層部分に非常に大きな転倒モーメントが生じることとなる。これに対して、本実施形態では、上記のように内部建物130及び外部建物120の低層階の部分を構造的に接合しているため、内部建物130及び外部建物120の低層階が一体となってこの外力に抵抗することとなり、転倒モーメントが作用することにより基礎に生じる引抜力及び圧縮力を軽減することができる。   When the internal building 130 and the external building 120 are raised, if an external force acts on the internal building 130, a very large overturning moment is generated in the lower layer portion of the building. In contrast, in the present embodiment, the lower floors of the internal building 130 and the external building 120 are structurally joined as described above, so the low floors of the internal building 130 and the external building 120 are integrated. It will resist the external force of the lever, and the pulling force and compressive force generated on the foundation due to the action of the overturning moment can be reduced.

また、内部建物130に外力が作用した場合には、下層階ほど大きなせん断力が作用することとなる。これに対しても、内部建物130及び外部建物120の低層階を構造的に一体とすることで、このせん断力を外部建物120にも負担させることが可能となり、内部建物130及び外部建物120の低層階が一体となってせん断力に抵抗することが可能となる。   Further, when an external force is applied to the internal building 130, a greater shearing force is applied to the lower floor. Against this, by making the lower floors of the internal building 130 and the external building 120 structurally integral, it is possible to load this shearing force on the external building 120, and the internal building 130 and the external building 120. The lower floors can be integrated to resist shearing forces.

また、上記のように内部建物130を立体駐車場として利用する場合には、内部建物130の下層階に車両の出入りのための開口を設ける必要がある。このように内部建物130の下層階に開口を設けると、内部建物130の剛性が低下してしまうため、外部建物120と内部建物130の固有周期の差が小さくなり、その結果、図3を参照して説明したように、制震ダンパー41によるエネルギー吸収能力が低下する。しかしながら、本実施形態では、立体駐車場からの出入りのための開口を外部建物120と構造的に接続された低層階に設けることにより、開口を設けることによる内部建物130の剛性の低下を防止することができ、これにより、制震ダンパー41によるエネルギー吸収能力が低下することを防ぐことができる。   Moreover, when using the internal building 130 as a three-dimensional parking lot as described above, it is necessary to provide an opening for entering and exiting the vehicle on the lower floor of the internal building 130. When the opening is provided in the lower floor of the internal building 130 in this way, the rigidity of the internal building 130 is reduced, so that the difference in natural period between the external building 120 and the internal building 130 is reduced, and as a result, see FIG. As described above, the energy absorption capacity of the vibration control damper 41 is reduced. However, in the present embodiment, by providing an opening for entering and exiting the multistory parking lot on a lower floor that is structurally connected to the external building 120, a decrease in rigidity of the internal building 130 due to the opening is prevented. Accordingly, it is possible to prevent the energy absorption capability of the damping damper 41 from being lowered.

また、上記各実施形態では、外部建物20の上端に掛け渡すように屋根25を設けた場合について説明したが、これに限らず、例えば、図6(A)に示すように、外部建物20の上部20Aをボイド空間40の上部を閉塞するように構築し、外部建物20の上部20Aにより内部建物30の上方を覆う構成としてもよい。かかる構成によってもボイド空間40内に雨水が入りこむのを防止できる。また、必ずしも、外部建物20の上端高さにおいて内部建物30の上方を覆う必要はなく、例えば、図6(B)に示すように、直上の高さなど、外部建物20の上端よりも低い高さ位置において内部建物30の上方を覆う構成としてもよい。また、上記実施形態のように、屋根25を設ける場合においても、外部建物20の上端高さに限らず、外部建物20の上端よりも低い高さに設けてもよい。   Moreover, although each said embodiment demonstrated the case where the roof 25 was provided so that it might span over the upper end of the external building 20, it is not restricted to this, For example, as shown to FIG. The upper part 20 </ b> A may be constructed so as to close the upper part of the void space 40, and the upper part 20 </ b> A of the external building 20 may cover the upper part of the internal building 30. Such a configuration can also prevent rainwater from entering the void space 40. Moreover, it is not always necessary to cover the upper part of the internal building 30 at the upper end height of the external building 20. For example, as shown in FIG. It is good also as a structure which covers the upper part of the internal building 30 in this position. Moreover, when providing the roof 25 like the said embodiment, you may provide not only in the upper end height of the external building 20, but in the height lower than the upper end of the external building 20. FIG.

本実施形態の制震建物の構成を示す鉛直方向断面図である。It is a vertical direction sectional view showing the composition of the seismic control building of this embodiment. 制震建物の制震ダンパーが取り付けられた階の水平方向断面図である。It is a horizontal direction sectional view of the floor where the damping damper of the damping building was attached. 制震建物における外部建物の固有周期T1と内部建物の固有周期T2とを複数通りに設定し、各場合の最大応答変形の低減効果を示すグラフである。It is a graph which shows the reduction effect of the maximum response deformation | transformation in each case, setting the natural period T1 of the external building in a damping building, and the natural period T2 of an internal building in multiple ways. 梁剛性が必要梁剛性よりも低くなるような梁構造の例を示す図である。It is a figure which shows the example of a beam structure that beam rigidity becomes lower than required beam rigidity. 内部建物及び外部建物の低層階を構造的に接合した制震建物を示す図である。It is a figure which shows the damping building which joined the low-rise floor of the internal building and the external building structurally. (A)は、外部建物の上部を内側に突出させて、内部建物の上方を覆うように構築した場合の制震建物を示す図であり、(B)は、内部建物の直上の高さにおいて内部建物の上方を覆う構成とした場合の制震建物を示す図である。(A) is a figure which shows the damping structure at the time of constructing so that the upper part of an external building may protrude inside, and the upper part of an internal building may be covered, (B) is in the height just above an internal building. It is a figure which shows the seismic control building at the time of setting it as the structure which covers the upper part of an internal building.

符号の説明Explanation of symbols

10、110 制震建物
20、120 外部建物
21 柱
22 住戸ユニット
23、123、133、143 梁
24 廊下
25 屋根
26 エレベータシャフト
30、130 内部建物
31 立体駐車機
40 ボイド空間
41 制震ダンパー
42 吹抜
10, 110 Seismic control building 20, 120 External building 21 Column 22 Dwelling unit 23, 123, 133, 143 Beam 24 Corridor 25 Roof 26 Elevator shaft 30, 130 Internal building 31 Multi-story parking machine 40 Void space 41 Damping damper 42

Claims (12)

内部に鉛直方向に延びる空間を有する外部建物と、
前記空間内に前記外部建物との間に隙間を設けるように構築され、前記外部建物に比べて剛性の高い内部建物と、
前記外部建物と内部建物との間を接続するように設けられた制震部材と、を備えることを特徴とする制震建物。
An external building having a space extending vertically in the interior;
Built to provide a gap between the external building in the space, an internal building having a higher rigidity than the external building,
And a vibration control member provided so as to connect between the external building and the internal building.
前記内部建物は、少なくとも一部が壁構造であり、
前記外部建物は、少なくとも一部がラーメン構造であることを特徴とする請求項1記載の制震建物。
The internal building is at least partially a wall structure;
The seismic control building according to claim 1, wherein at least a part of the external building has a ramen structure.
前記内部建物は、立体駐車場として利用されることを特徴とする請求項1又は2記載の制震建物。   The seismic control building according to claim 1, wherein the internal building is used as a multilevel parking lot. 前記内部建物と前記外部建物とを接続する通路が設けられており、
前記内部建物は、エレベータ及び階段を設けるためのスペースとして利用されていることを特徴とする請求項1又は2記載の制震建物。
A passage connecting the internal building and the external building is provided;
The seismic control building according to claim 1, wherein the internal building is used as a space for providing an elevator and a staircase.
前記内部建物は鉄筋コンクリート造、鉄骨コンクリート造又は鉄骨鉄筋コンクリート造であることを特徴とする請求項1から4何れかに記載の制震建物。   5. The vibration-damping building according to claim 1, wherein the internal building is a reinforced concrete structure, a steel-framed concrete structure, or a steel-framed reinforced concrete structure. 前記内部建物は、前記外部建物に比べて高さが低いことを特徴とする請求項1から5何れかに記載の制震建物。   The seismic control building according to any one of claims 1 to 5, wherein the inner building is lower in height than the outer building. 前記外部建物は、前記内部建物の上方を覆うように設けられた架構を有することを特徴とする請求項6記載の制震建物。   The said external building has a frame provided so that the upper part of the said internal building might be covered, The damping building of Claim 6 characterized by the above-mentioned. 前記外部建物に支持されて前記内部建物の上方を覆う屋根を備えることを特徴とする請求項6記載の制震建物。   The vibration control building according to claim 6, further comprising a roof that is supported by the external building and covers an upper portion of the internal building. 請求項1から8何れかに記載の制震建物であって、
前記外部建物の梁剛性が、当該外部建物を単独の構造物とした場合に、この構造物が設計地震に対して自立し得ない大きさに設定されていることを特徴とする制震建物。
A vibration-damping building according to any one of claims 1 to 8,
A seismic control building characterized in that the beam rigidity of the external building is set to a size such that when the external building is a single structure, the structure cannot stand alone against a design earthquake.
請求項1から9何れかに記載の制震建物であって、
前記外部建物の少なくとも一部が無梁構造であることを特徴とする制震建物。
A vibration-damping building according to any one of claims 1 to 9,
A damping structure characterized in that at least a part of the external building has a beamless structure.
請求項1から10何れかに記載の制震建物であって、
前記内部建物と、前記外部建物とは、これらの低層階において、構造的に接続されていることを特徴とする制震建物。
A vibration-damping building according to any one of claims 1 to 10,
The internal building and the external building are structurally connected to each other on these lower floors.
建物の制震方法であって、
前記建物を、内部に鉛直方向に延びる空間を有する外部建物と、
前記空間内に前記外部建物との間に隙間を設けるように構築され、前記外部建物に比べて剛性の高い内部建物と、により構成し、
前記外部建物と内部建物との間を接続するように制震部材を設けることを特徴とする建物の制震方法。
A method of controlling a building,
An external building having a space extending vertically in the building;
It is constructed so as to provide a gap between the external building in the space, and is constituted by an internal building having higher rigidity than the external building,
A building vibration control method, wherein a vibration control member is provided to connect the external building and the internal building.
JP2007199422A 2007-06-12 2007-07-31 Seismic control building, control method Active JP5076709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007199422A JP5076709B2 (en) 2007-06-12 2007-07-31 Seismic control building, control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007155618 2007-06-12
JP2007155618 2007-06-12
JP2007199422A JP5076709B2 (en) 2007-06-12 2007-07-31 Seismic control building, control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012137632A Division JP5704126B2 (en) 2007-06-12 2012-06-19 Seismic control building, control method

Publications (2)

Publication Number Publication Date
JP2009019479A true JP2009019479A (en) 2009-01-29
JP5076709B2 JP5076709B2 (en) 2012-11-21

Family

ID=40359354

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007199422A Active JP5076709B2 (en) 2007-06-12 2007-07-31 Seismic control building, control method
JP2012137632A Active JP5704126B2 (en) 2007-06-12 2012-06-19 Seismic control building, control method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012137632A Active JP5704126B2 (en) 2007-06-12 2012-06-19 Seismic control building, control method

Country Status (1)

Country Link
JP (2) JP5076709B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141792A (en) * 2013-01-22 2014-08-07 Ohbayashi Corp Parking facility
JP7415543B2 (en) 2019-12-23 2024-01-17 株式会社大林組 Clearance adjustment mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043988A (en) * 2015-08-27 2017-03-02 株式会社大林組 Vibration control building

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293284A (en) * 1987-05-22 1988-11-30 株式会社竹中工務店 Vibration damping building
JPH08284470A (en) * 1995-04-14 1996-10-29 Mitsui Constr Co Ltd Collision preventing structure for enclosed structure provided in void space within building
JPH0925736A (en) * 1995-07-12 1997-01-28 Mitsui Constr Co Ltd Collision alleviating structure
JPH11247487A (en) * 1998-03-05 1999-09-14 Sato Tekko Co Ltd Vibration control construction of building
JPH11270175A (en) * 1998-03-19 1999-10-05 Ohbayashi Corp Vibration damping method of connected structure
JP2004169420A (en) * 2002-11-20 2004-06-17 Shimizu Corp Structure of building

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2919303B2 (en) * 1995-04-14 1999-07-12 三井建設株式会社 Collision mitigation damping structure, building using the structure, and damping method
JPH1162316A (en) * 1997-08-07 1999-03-05 Etsuro Suzuki Earthquake resistive damping construction
JP2000154658A (en) * 1998-11-19 2000-06-06 Ohbayashi Corp High-rise building
JP3584979B2 (en) * 2001-09-12 2004-11-04 三井住友建設株式会社 housing complex
JP2004176399A (en) * 2002-11-27 2004-06-24 Fujita Corp Vibration control structure of high rise building
JP4579615B2 (en) * 2004-08-05 2010-11-10 株式会社竹中工務店 Multi-layer core wall type seismic control high-rise apartment building
JP4706281B2 (en) * 2005-03-02 2011-06-22 株式会社大林組 Building seismic control structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293284A (en) * 1987-05-22 1988-11-30 株式会社竹中工務店 Vibration damping building
JPH08284470A (en) * 1995-04-14 1996-10-29 Mitsui Constr Co Ltd Collision preventing structure for enclosed structure provided in void space within building
JPH0925736A (en) * 1995-07-12 1997-01-28 Mitsui Constr Co Ltd Collision alleviating structure
JPH11247487A (en) * 1998-03-05 1999-09-14 Sato Tekko Co Ltd Vibration control construction of building
JPH11270175A (en) * 1998-03-19 1999-10-05 Ohbayashi Corp Vibration damping method of connected structure
JP2004169420A (en) * 2002-11-20 2004-06-17 Shimizu Corp Structure of building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141792A (en) * 2013-01-22 2014-08-07 Ohbayashi Corp Parking facility
JP7415543B2 (en) 2019-12-23 2024-01-17 株式会社大林組 Clearance adjustment mechanism

Also Published As

Publication number Publication date
JP2012211506A (en) 2012-11-01
JP5704126B2 (en) 2015-04-22
JP5076709B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5704126B2 (en) Seismic control building, control method
JP2009084975A (en) Building
JP4579615B2 (en) Multi-layer core wall type seismic control high-rise apartment building
JP4423640B2 (en) Building structure
JP2010248835A (en) Vibration control structure and method of vibration control
JPH11241524A (en) Building used jointly for both base isolation and seismic control
JP2002004628A (en) Damping skeleton structure and building
JP4155928B2 (en) Structure of apartment building
JP5325570B2 (en) housing complex
JP5378783B2 (en) Wall ramen structure building
JP2007332663A (en) Structure of apartment house building
JP2006249756A (en) Frame structure of building
JP6682781B2 (en) Damping building and damping method
JP3677703B2 (en) Damping building
JP3677706B2 (en) Seismic isolation and control structure
JP7169903B2 (en) building
JP5503200B2 (en) Unit building
CN111902592A (en) Duplex apartment design structure capable of reducing interlayer noise and facilitating maintenance
JP3322293B2 (en) Plate apartment house
JP2024021162A (en) Damping building
JP2024021161A (en) Damping building
JP2005155172A (en) Structure of building
JPH09310509A (en) Earthquake resistant reinforcing construction of existing building
JP2024054661A (en) Vibration-damping buildings
JP3301574B2 (en) Vibration control plate apartment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150