JP2024021161A - vibration damping building - Google Patents

vibration damping building Download PDF

Info

Publication number
JP2024021161A
JP2024021161A JP2022123804A JP2022123804A JP2024021161A JP 2024021161 A JP2024021161 A JP 2024021161A JP 2022123804 A JP2022123804 A JP 2022123804A JP 2022123804 A JP2022123804 A JP 2022123804A JP 2024021161 A JP2024021161 A JP 2024021161A
Authority
JP
Japan
Prior art keywords
building
vibration
damping
external
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022123804A
Other languages
Japanese (ja)
Inventor
和正 大住
俊介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2022123804A priority Critical patent/JP2024021161A/en
Publication of JP2024021161A publication Critical patent/JP2024021161A/en
Pending legal-status Critical Current

Links

Abstract

【課題】外部建物の内側に内部建物を構築し、これらを制振部材により連結する制振建物において、建物の高さや平面形状に制約を受けることなく、内部建物の剛性を確保し、高い制振効果を得ることである。【解決手段】外部建物の内側に該外部建物に比べて剛性の高い内部建物を構築するとともに、該内部建物と前記外部建物との間に設けた隙間に制振部材を設け、該制振部材で、前記内部建物と前記外部建物とを連結する制振建物において、前記内部建物は、下部建物と上部建物と分割されて、前記上部建物の高さ方向中間部に、前記外部建物と一体に接続される接続構造が設けられ、前記制振部材が、少なくとも前記下部建物及び前記上部建物各々の上端近傍に設けられている。【選択図】図1[Problem] In a vibration-damping building that constructs an internal building inside an external building and connects them with damping members, it is possible to ensure the rigidity of the internal building and achieve high control without being constrained by the height or plan shape of the building. The purpose is to obtain a vibration effect. [Solution] An internal building that is more rigid than the external building is constructed inside the external building, and a damping member is provided in a gap between the internal building and the external building, and the damping member In the vibration-damping building that connects the internal building and the external building, the internal building is divided into a lower building and an upper building, and is integrated with the external building at an intermediate part in the height direction of the upper building. A connection structure is provided to be connected, and the vibration damping member is provided at least near the upper end of each of the lower building and the upper building. [Selection diagram] Figure 1

Description

本発明は、外部建物と、外部建物の内側に構築された高い剛性を有する内部建物とを備えた制振建物に関する。 The present invention relates to a vibration-damping building that includes an external building and an internal building that has high rigidity and is constructed inside the external building.

従来より、ラーメン架構を有する外部建物の内側に剛性が高い内部建物を構築し、これらを制振部材により連結した制振建物が知られている。この制振建物は、地震力や風荷重による大きな水平力が入力された場合に、外部建物と内部建物の変形モードが異なることを利用して、制振部材により効率よく振動エネルギーを吸収するものである。 2. Description of the Related Art Conventionally, vibration-damping buildings have been known in which a highly rigid internal building is constructed inside an external building having a rigid frame, and these are connected by vibration-damping members. This vibration-damping building utilizes the fact that the deformation modes of the external and internal buildings are different when a large horizontal force due to earthquake force or wind load is input, and efficiently absorbs vibration energy through vibration-damping members. It is.

特開2009-19479号公報Japanese Patent Application Publication No. 2009-19479

上記の制振建物は、外部建物の剛性を高めることなく耐震性を向上できることから、外部建物の梁や柱を省略するなどして、居住スペースの平面計画に自由度も確保することが可能である。ところが、超高層ビルの高さを超える超々高層ビルや、平面形状の小さい建物に対して、特許文献1の制振建物を採用しようとすると内部建物の剛性を確保できず、満足な制振効果を得ることが困難であった。 Since the above-mentioned vibration-damping building can improve earthquake resistance without increasing the rigidity of the external building, it is possible to secure flexibility in the plan of the living space by omitting beams and columns of the external building. be. However, when trying to adopt the vibration damping building of Patent Document 1 for ultra-high-rise buildings that exceed the height of skyscrapers or buildings with small plan shapes, the rigidity of the internal building cannot be ensured, resulting in a satisfactory vibration damping effect. was difficult to obtain.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、外部建物の内側に内部建物を構築し、これらを制振部材により連結する制振建物において、建物の高さや平面形状に制約を受けることなく、内部建物の剛性を確保し、高い制振効果を得ることである。 The present invention has been made in view of such problems, and its main purpose is to improve the height and plane of the building in a vibration damping building in which an internal building is constructed inside an external building and these are connected by vibration damping members. The purpose is to ensure the rigidity of the internal building and obtain a high vibration damping effect without being constrained by the shape.

かかる目的を達成するため本発明の制振建物は、外部建物の内側に該外部建物に比べて剛性の高い内部建物を構築するとともに、該内部建物と前記外部建物との間に設けた隙間に制振部材を設け、該制振部材で、前記内部建物と前記外部建物とを連結する制振建物において、前記内部建物は、下部建物と上部建物とに分割されて、前記上部建物の高さ方向中間部に、前記外部建物と一体に接続される接続構造が設けられ、前記制振部材が、少なくとも前記下部建物及び前記上部建物各々の上端近傍に設けられていることを特徴とする。 In order to achieve this object, the vibration-damping building of the present invention constructs an internal building that is more rigid than the external building inside the external building, and also constructs a vibration damping building in the gap provided between the internal building and the external building. In a vibration damping building that is provided with a damping member and connects the internal building and the external building with the damping member, the internal building is divided into a lower building and an upper building, and the height of the upper building is A connection structure integrally connected to the external building is provided at a direction intermediate portion, and the vibration damping member is provided at least near the upper end of each of the lower building and the upper building.

本発明の制振建物は、前記接続構造が、高さ方向に複数設けられていることを特徴とする。 The vibration-damping building of the present invention is characterized in that a plurality of the connection structures are provided in the height direction.

本発明の制振建物は、前記接続構造に、ベルトトラスが用いられていることを特徴とする。 The vibration damping building of the present invention is characterized in that a belt truss is used in the connection structure.

本発明の制振建物は、前記制振部材が、前記上部建物の上端近傍と下端近傍に設けられていることを特徴とする。 The vibration damping building of the present invention is characterized in that the vibration damping member is provided near the upper end and near the lower end of the upper building.

本発明の制振建物は、前記下部建物と前記上部建物との間に、鉛直荷重伝達機構が設けられていることを特徴とする。 The vibration damping building of the present invention is characterized in that a vertical load transmission mechanism is provided between the lower building and the upper building.

本発明の制振建物は、前記鉛直荷重伝達機構が、直動転がり支承であることを特徴とする。 The vibration damping building of the present invention is characterized in that the vertical load transmission mechanism is a linear rolling bearing.

本発明の制振建物は、前記接続構造に作業床が設けられていることを特徴とする。 The vibration-damping building of the present invention is characterized in that the connection structure is provided with a work floor.

本発明の制振建物は、前記外部建物が屋根架構を有するとともに、該屋根架構と前記上部建物とが絶縁されていることを特徴とする。 The vibration-damping building of the present invention is characterized in that the external building has a roof frame, and the roof frame and the upper building are insulated.

本発明の制振建物によれば、内部建物を上部建物と下部建物に分割し、両者の高さを外部建物に比べて十分低くするため、上部建物と下部建物の両者に対して容易に、外部建物と比較して高い剛性を確保できる。 According to the vibration-damping building of the present invention, the internal building is divided into the upper building and the lower building, and the heights of both are made sufficiently lower than the external building. High rigidity can be ensured compared to external buildings.

また、上部建物の高さ方向中間部に接続構造を設けて、接続構造の高さ位置で上部建物と外部建物とを一体に接続する。すると、地震動などの外力が作用すると、上部建物は、接続構造を設けた高さ位置を支点にして、外部建物とは異なる振動モードで振動する。したがって、上部建物と外部建物との間に変形差が大きくなる範囲が生じる。 Further, a connecting structure is provided at the middle part in the height direction of the upper building, and the upper building and the external building are integrally connected at the height position of the connecting structure. Then, when an external force such as an earthquake motion acts, the upper building vibrates in a vibration mode different from that of the external building, using the height position where the connection structure is provided as a fulcrum. Therefore, there is a range where the difference in deformation becomes large between the upper building and the outer building.

また、下部建物も外部建物とは異なる振動モードで振動するため、外部建物との間に変形差が大きくなる範囲が生じる。これにより、この下部建物及び上部建物と外部建物との変形差が大きくなる範囲各々に制振部材を配置することで、制振建物が超高層ビルより高い超々高層ビルである場合や、敷地面積の制約により平面形状が小さい場合にも、連結制振構造による制振効果を得ることが可能となる。 Furthermore, since the lower building also vibrates in a vibration mode different from that of the external building, there is a range where the difference in deformation between the lower building and the external building is large. As a result, by placing damping members in areas where the difference in deformation between the lower building, the upper building, and the external building is large, it is possible to use damping materials in areas where the difference in deformation between the lower building, the upper building, and the external building is large. Even if the planar shape is small due to the constraints, it is possible to obtain the vibration damping effect by the connected vibration damping structure.

本発明によれば、外部建物の内側に内部建物を構築し、これらを制振部材により連結する制振建物において、建物の高さや平面形状に制約を受けることなく、内部建物の剛性を確保し、高い制振効果を得ることが可能となる。 According to the present invention, in a vibration damping building in which an internal building is constructed inside an external building and these buildings are connected by a damping member, the rigidity of the internal building can be ensured without being restricted by the height or planar shape of the building. , it becomes possible to obtain a high vibration damping effect.

本発明の実施の形態における制振建物を示す図である。It is a diagram showing a vibration-damping building in an embodiment of the present invention. 本発明の実施の形態における上部建物と下部建物の間に介装置される鉛直荷重伝達機構の一例を示す図である。FIG. 3 is a diagram showing an example of a vertical load transmission mechanism interposed between an upper building and a lower building in an embodiment of the present invention. 本発明の実施の形態における上部構造と外部建物を接続する接続構造を示す図である。FIG. 2 is a diagram showing a connection structure connecting an upper structure and an external building in an embodiment of the present invention. 本発明の実施の形態における制振建物に地震動などの外力が作用した状態を示す図である。FIG. 2 is a diagram showing a state in which an external force such as an earthquake motion is applied to a vibration-damping building according to an embodiment of the present invention. 本発明の実施の形態における制振部材の設置構造を示す図である。It is a figure showing the installation structure of the damping member in an embodiment of the present invention. 本発明の実施の形態における接続構造の他の事例を示す図である。It is a figure which shows the other example of the connection structure in embodiment of this invention. 本発明の実施の形態における接続構造の他の事例を示す図である。It is a figure which shows the other example of the connection structure in embodiment of this invention. 本発明の実施の形態における制振建物の他の事例を示す図である。It is a figure which shows the other example of the damping building in embodiment of this invention.

本発明の制振建物について、図1~図8を参照しつつ、以下に詳細を説明する。 The vibration damping building of the present invention will be described in detail below with reference to FIGS. 1 to 8.

図1で示すように、制振建物10は、外部建物20、内部建物30、ボイド空間40、制振ダンパー50、鉛直荷重伝達機構60、及び接続構造70を備える。 As shown in FIG. 1, the vibration damping building 10 includes an external building 20, an internal building 30, a void space 40, a vibration damper 50, a vertical load transmission mechanism 60, and a connection structure 70.

≪≪外部建物≫≫
外部建物20は、地中に設けた基礎構造80に支持された平面視矩形形状のラーメン架構よりなる高層建物である。その構造は、一般的なラーメン架構に比べて、柱21や梁22の寸法が小さく形成され、さらに、柱21間のスパンが広く、柱21及び梁22の数が少ない。したがって、外部建物20は一般的なラーメン架構に比べて、剛性が低くなっている。このような外部建物20には、天端に屋根架構24が設けられているとともに、この屋根架構24に覆われたボイド空間40が、内部に設けられている。
≪≪External building≫≫
The external building 20 is a high-rise building made of a rigid-frame frame having a rectangular shape in plan view and supported by a foundation structure 80 installed underground. In this structure, the dimensions of the columns 21 and beams 22 are smaller than those of a general rigid-frame frame, the span between the columns 21 is wide, and the number of columns 21 and beams 22 is small. Therefore, the external building 20 has lower rigidity than a general rigid frame. Such an external building 20 is provided with a roof frame 24 at the top thereof, and a void space 40 covered by this roof frame 24 is provided inside.

ボイド空間40は、図1及び図2で示すように、外部建物20の内周壁25に囲まれた上下方向に延在する空間であり、平面視矩形形状に形成されている。自然換気を利用した換気や排気のスペースとして、また、共通室外機などの設備機器が設置され設備機器スペースとして利用されるだけでなく、内部建物30を設ける空間として、利用されている。 As shown in FIGS. 1 and 2, the void space 40 is a space extending in the vertical direction surrounded by the inner peripheral wall 25 of the external building 20, and is formed in a rectangular shape in plan view. It is used not only as a space for ventilation and exhaust using natural ventilation, and as a space for equipment such as a common outdoor unit, but also as a space for installing an internal building 30.

≪≪内部建物、下部建物、上部建物≫≫
内部建物30は、図1で示すように、地中に設けた基礎構造80に支持された鉄筋コンクリート造の建物であり、外部建物20とは独立して構築されている。また、内部建物30は高さ方向に分割されて、下部建物30Aと上部建物30Bとを備える。
≪≪Internal building, lower building, upper building≫≫
As shown in FIG. 1, the internal building 30 is a reinforced concrete building supported by a foundation structure 80 installed underground, and is constructed independently of the external building 20. Further, the internal building 30 is divided in the height direction and includes a lower building 30A and an upper building 30B.

下部建物30Aは、図2で示すように平面視矩形形状に構築され、外周壁31Aと外部建物20の内周壁25とは、間隔D1を設けて対向している。また、外周壁31Aには耐震壁が用いられて、下部建物30Aは下部連続耐震壁を備えている。 The lower building 30A is constructed to have a rectangular shape in plan view as shown in FIG. 2, and the outer peripheral wall 31A and the inner peripheral wall 25 of the external building 20 face each other with an interval D1. Moreover, a seismic wall is used for the outer peripheral wall 31A, and the lower building 30A is equipped with a lower continuous seismic wall.

一方、上部建物30Bも同様に、図3(a)で示すように平面視矩形形状に構築され、外周壁31Bと外部建物20の内周壁25とは、間隔D1を設けて対向している。そして、外周壁31Bには耐震壁が用いられて、上部建物30Bは上部連続耐震壁を備えている。 On the other hand, the upper building 30B is similarly constructed in a rectangular shape in a plan view, as shown in FIG. A shear wall is used for the outer peripheral wall 31B, and the upper building 30B is provided with an upper continuous shear wall.

このような構成の下部建物30Aと上部建物30Bとの間には、図1で示すように鉛直荷重伝達機構60が介装されている。したがって、鉛直荷重伝達機構60を介して下部建物30Aには、上部建物30Bにおける鉛直荷重の少なくとも一部が、伝達される構造となっている。また、上部建物30Bには、下端よりやや上方の高さ位置に、接続構造70が設けられている。 As shown in FIG. 1, a vertical load transmission mechanism 60 is interposed between the lower building 30A and upper building 30B having such a configuration. Therefore, the structure is such that at least a portion of the vertical load on the upper building 30B is transmitted to the lower building 30A via the vertical load transmission mechanism 60. Further, the upper building 30B is provided with a connection structure 70 at a height slightly above the lower end.

接続構造70は、上部建物30Bと外部建物20とを一体に接続する機能と、上部建物30Bの変形を外部建物20の外周柱23で抑制する機能を有している。これらの機能を有していれば、いずれの構造を採用してもよいが、図3(a)(b)では、ベルトトラス71を採用する場合を事例に挙げている。 The connection structure 70 has the function of integrally connecting the upper building 30B and the external building 20, and the function of suppressing deformation of the upper building 30B by the outer peripheral pillars 23 of the external building 20. Any structure may be adopted as long as it has these functions, but in FIGS. 3(a) and 3(b), a belt truss 71 is used as an example.

ベルトトラス71は、図3(a)で示すように平面視で、平面視矩形形状の上部建物30Bにおける外周壁31Bの短辺と同一平面を形成するようにして、外周壁31Bから2方向に4体が張り出している。また、ベルトトラス71の設置階は複数にわたり、図3(b)では3階にわたって配置する場合を例示している。このように配置されるベルトトラス71は、上部建物30Bの外周壁31Bと外部建物20の外周柱23とを緊結し、上部建物30Bの変形を外部建物20の外周柱23で抑制している。 As shown in FIG. 3A, the belt truss 71 extends in two directions from the outer peripheral wall 31B so as to form the same plane as the short side of the outer peripheral wall 31B of the upper building 30B having a rectangular shape in plan view. Four bodies are sticking out. Further, the belt truss 71 is installed on a plurality of floors, and FIG. 3(b) illustrates a case where the belt truss 71 is installed on three floors. The belt truss 71 arranged in this manner tightly connects the outer circumferential wall 31B of the upper building 30B and the outer circumferential column 23 of the external building 20, and suppresses deformation of the upper building 30B by the outer circumferential column 23 of the outer building 20.

上記の構成を有する内部建物30は、図1で示すように、下部建物30Aと上部建物30Bがその高さを、外部建物20に比べて十分低く構築されている。そして、前述したように、下部建物30Aには下部連続耐震壁が形成され、上部建物30Bには上部連続耐震壁が形成されている。これにより、両者には外部建物20と比較して、高い剛性が確保されている。 In the internal building 30 having the above configuration, as shown in FIG. 1, the lower building 30A and the upper building 30B are constructed to be sufficiently lower in height than the external building 20. As described above, a lower continuous shear wall is formed in the lower building 30A, and an upper continuous shear wall is formed in the upper building 30B. Thereby, higher rigidity is ensured in both of them compared to the external building 20.

したがって、下部建物30A及び上部建物30Bの固有周期は外部建物20に比べて短い。これにより、地震動などの外力が作用すると図4で示すように、下部建物30Aは基礎構造80近傍の高さ位置を支点にして、外部建物20とは異なる振動モードで振動する。このため、下部建物30Aの上端近傍と外部建物20との間に変形差が大きくなる範囲E1が生じる。 Therefore, the natural period of the lower building 30A and the upper building 30B is shorter than that of the external building 20. As a result, when an external force such as an earthquake motion is applied, the lower building 30A vibrates in a vibration mode different from that of the external building 20, with the height position near the foundation structure 80 serving as a fulcrum, as shown in FIG. Therefore, a range E1 in which the deformation difference becomes large is generated between the vicinity of the upper end of the lower building 30A and the external building 20.

また、上部建物30Bは接続構造70近傍の高さ位置を支点にして、外部建物20とは異なる振動モードで振動する。これにより、上部建物30Bの上端近傍と外部建物20との間に変形差が大きくなる範囲E2が生じる。したがって、この変形差が大きくなる高さ範囲E1、E2に、制振ダンパー50が設けられている。 Further, the upper building 30B vibrates in a vibration mode different from that of the external building 20, using the height position near the connection structure 70 as a fulcrum. This creates a range E2 in which the difference in deformation becomes large between the vicinity of the upper end of the upper building 30B and the external building 20. Therefore, the vibration damper 50 is provided in the height ranges E1 and E2 where this deformation difference becomes large.

≪≪制振ダンパー、外部基礎、内部基礎≫≫
制振ダンパー50は、オイルダンパー、摩擦ダンパー、粘性ダンパー、粘弾性ダンパー、履歴型ダンパー、又はこれらを組み合わせたものを用いることができ、図5では、減衰こまを採用する場合を事例に挙げている。
≪≪Vibration damper, external foundation, internal foundation≫≫
The vibration damper 50 can be an oil damper, a friction damper, a viscous damper, a viscoelastic damper, a hysteretic damper, or a combination of these. In FIG. 5, a damping top is used as an example. There is.

減衰こまは、筒型の粘性減衰装置であり、外筒と内筒との間に粘性材を封入している。これにより、地震動などの外力が作用した場合に発生する軸変形を、ロータリーボールねじを介して内筒の高速回転変形に変換し、外筒との相対速度により粘性減衰力を発生させる装置である。 The damping top is a cylindrical viscous damping device in which a viscous material is sealed between an outer cylinder and an inner cylinder. This device converts the axial deformation that occurs when an external force such as an earthquake is applied to high-speed rotational deformation of the inner cylinder via the rotary ball screw, and generates viscous damping force by the relative speed with the outer cylinder. .

上記の制振ダンパ―50は、下部建物30A及び上部建物30Bの変形差が大きくなる高さ範囲E1、E2において、外周壁31A、31Bと外部建物20の内周壁25の両者に直接取り付けてもよいし、設置用基礎を設けて、これに取り付ける構成としてもよい。制振ダンパ―50の設置用基礎について、図5で示す上部建物30Bと外部建物20との間に設ける場合を事例に挙げて説明すると、内部基礎33Bと外部基礎26とを備える。 The vibration damper 50 described above may be directly attached to both the outer peripheral walls 31A, 31B and the inner peripheral wall 25 of the external building 20 in the height ranges E1 and E2 where the difference in deformation between the lower building 30A and the upper building 30B becomes large. Alternatively, it may be configured to provide an installation foundation and attach it to this. The foundation for installing the vibration damper 50 will be explained by taking as an example the case where it is installed between the upper building 30B and the external building 20 shown in FIG. 5. The foundation includes an internal foundation 33B and an external foundation 26.

外部基礎26は、図5で示すように、外部建物20の内周壁25と柱21との間に形成されているスラブ27の一部が、ボイド空間40側へ突出した平面視で長方形状の凸部であり、4つの内周壁25各々の中央近傍に設けられている。一方、内部基礎33Bは、平面視矩形形状の上部建物30Bにおける外周壁31Bの長辺に設けられた、ボイド空間40側へ突出する凸部である。これらは、外周壁31Bにおける四隅各々の近傍に設けられている。 As shown in FIG. 5, the external foundation 26 has a rectangular shape in plan view in which a part of the slab 27 formed between the inner peripheral wall 25 and the pillar 21 of the external building 20 protrudes toward the void space 40 side. It is a convex portion and is provided near the center of each of the four inner peripheral walls 25. On the other hand, the internal foundation 33B is a convex portion protruding toward the void space 40, which is provided on the long side of the outer peripheral wall 31B of the upper building 30B, which is rectangular in plan view. These are provided near each of the four corners of the outer peripheral wall 31B.

そして、外部基礎26と上部建物30Bの外周壁31Bとは、間隔D2(<D1)を有して対向している。また、内部基礎33Bと外部建物20の内周壁25とは、間隔D3(>D2,<D1)を有して対向している。このとき、間隔D2は、極大地震よりも小さい通常想定される地震・風で生じる外部建物20と上部建物30Bとの水平方向への相対変位量を上回るが、極大地震で生じる外部建物20と上部建物30Bとの水平方向への相対変位量は下回るように設定されている。 The external foundation 26 and the outer peripheral wall 31B of the upper building 30B face each other with an interval D2 (<D1). Further, the internal foundation 33B and the inner peripheral wall 25 of the external building 20 face each other with an interval D3 (>D2, <D1). At this time, the distance D2 exceeds the amount of relative displacement in the horizontal direction between the external building 20 and the upper building 30B that would occur due to an earthquake or wind that is smaller than a maximum earthquake, but The amount of relative displacement in the horizontal direction with respect to the building 30B is set to be less than that.

この間隔D2を超えない大きさに、制振ダンパー50の伸長ストローク量および収縮ストローク量の最大量Sが設定されている。この制振ダンパー50は、変形差が大きくなる高さ範囲E2に含まれる階層ごとに、上部建物30Bの四隅から外部建物20に向かう2方向に延びるようにして、合計8体が略水平に配置され、上部建物30Bと外部建物20とを連結している。 The maximum amount S of the extension stroke amount and contraction stroke amount of the vibration damper 50 is set to a size that does not exceed this interval D2. A total of eight vibration dampers 50 are arranged approximately horizontally so as to extend in two directions from the four corners of the upper building 30B toward the external building 20 for each floor included in the height range E2 where the difference in deformation becomes large. The upper building 30B and the external building 20 are connected to each other.

その取付構造は、上部建物30Bと外部建物20との間で、制振ダンパー50の一端を外部建物20に設けた外部基礎26の側面に、ヒンジ51を介して回動可能に取り付けられている。また、制振ダンパー50の他端は、上部建物30Bに設けた内部基礎33Bの側面にヒンジ51を介して回動可能に取り付けられている。 Its mounting structure is such that, between the upper building 30B and the external building 20, one end of the vibration damper 50 is rotatably attached to the side surface of the external foundation 26 provided on the external building 20 via a hinge 51. . Further, the other end of the vibration damper 50 is rotatably attached via a hinge 51 to the side surface of an internal foundation 33B provided in the upper building 30B.

下部建物30Aと外部建物20との間に取り付ける制振ダンパー50も、同様に、一端を外部建物20に設けた外部基礎26の側面に、ヒンジ51を介して回動可能に取り付けられている。他端は、下部建物30Aに設けた内部基礎33Aの側面にヒンジ51を介して回動可能に取り付けられている。また、上部建物30Bと同様に、外部基礎26と下部建物30Aの外周壁31Aとは、間隔D2(<D1)を有して対向している。また、内部基礎33Aと外部建物20の内周壁25とは、間隔D3(>D2,<D1)を有して対向している。 The vibration damper 50 installed between the lower building 30A and the external building 20 is similarly rotatably installed via a hinge 51 on the side surface of the external foundation 26, one end of which is provided in the external building 20. The other end is rotatably attached via a hinge 51 to the side surface of an internal foundation 33A provided in the lower building 30A. Further, similarly to the upper building 30B, the external foundation 26 and the outer peripheral wall 31A of the lower building 30A face each other with an interval D2 (<D1). Further, the internal foundation 33A and the inner circumferential wall 25 of the external building 20 face each other with an interval D3 (>D2, <D1).

なお、本実施形態では、制振ダンパー50を平面的に配置するものとしたが、上部建物30Bと外部建物20もしくは下部建物30Aと外部建物20の、異なる高さの位置を結ぶように設置することもできる。 In this embodiment, the vibration damper 50 is arranged in a plane, but it is installed so as to connect the positions of different heights of the upper building 30B and the external building 20 or the lower building 30A and the external building 20. You can also do that.

上記の構成を有する制振建物10は、地震などの外力が作用すると図4で示すように、下部建物30Aに対して外部建物20が、水平方向何れの方向に相対移動しても、両者の変形差が大きくなる高さ範囲E1に設けられた制振ダンパー50により、効率よく振動エネルギーを吸収することができる。同様に、上部建物30Bに対して外部建物20が、水平方向何れの方向に相対移動しても、両者の変形差が大きくなる高さ範囲E2に設けられた制振ダンパー50により、効率よく振動エネルギーを吸収することができる。 When the vibration-damping building 10 having the above configuration is subjected to an external force such as an earthquake, as shown in FIG. Vibration energy can be efficiently absorbed by the vibration damper 50 provided in the height range E1 where the difference in deformation becomes large. Similarly, even if the external building 20 moves relative to the upper building 30B in any direction in the horizontal direction, the vibration damper 50 installed in the height range E2 where the difference in deformation between the two becomes large increases the vibration efficiency. Can absorb energy.

これにより、制振建物10の高さが超高層ビルより高い超々高層ビルである場合や、敷地面積の制約により平面形状が小さい場合にも、連結制振構造による高い制振効果を得ることが可能となる。 As a result, even if the vibration-damping building 10 is a super-high-rise building that is taller than a skyscraper, or if the planar shape is small due to site area restrictions, it is possible to obtain a high vibration-damping effect by the connected vibration-damping structure. It becomes possible.

また、制振ダンパー50の設置階において、図5で示すように、外部建物20に、上部建物30Bに向けて突出する凸部である外部基礎26が設けられ、外部基礎26と上部建物30Bの外周壁31Bとの間隔D2は、制振ダンパー50の収縮ストローク量又は伸長ストローク量の最大量Sよりも狭く設定されている。これらは、下部建物30Aについても同様である。 Furthermore, on the floor where the vibration control damper 50 is installed, as shown in FIG. The distance D2 from the outer peripheral wall 31B is set narrower than the maximum amount S of the contraction stroke amount or the extension stroke amount of the vibration damper 50. The same applies to the lower building 30A.

これにより、極大地震発生時に、外部建物20の外部基礎26と内部建物30とを衝突させて、制振ダンパー50の収縮ストローク量又は伸長ストローク量を、最大量S未満に抑えることができる。したがって、制振ダンパー50のストローク長を従前と同様に設定でき、また、外部建物20と内部建物30との間隔D1も、従前と同様に設定できる。このため、建築計画に支障が生じることがなく、経済的にもデメリットは生じない。また、制振ダンパー50の大型化によるコストの増加を防止することもできる。 Thereby, when an extremely large earthquake occurs, the external foundation 26 of the external building 20 and the internal building 30 collide, and the contraction stroke amount or extension stroke amount of the vibration damper 50 can be suppressed to less than the maximum amount S. Therefore, the stroke length of the vibration damper 50 can be set as before, and the distance D1 between the external building 20 and the internal building 30 can also be set as before. Therefore, there will be no hindrance to the architectural plan, and no economic disadvantage will occur. Further, it is also possible to prevent an increase in cost due to an increase in the size of the vibration damper 50.

また、図1で示すように外部建物20は、十分な耐震性を確保するために高い剛性を持たせる必要がない。したがって、通常のラーメン構造より柱21や梁22の数を少なくするだけでなく、各部材の径を細くすることもできる。これにより、居住ユニット28を開放的なものとし、居住性を向上することができる。 Moreover, as shown in FIG. 1, the external building 20 does not need to have high rigidity in order to ensure sufficient earthquake resistance. Therefore, it is possible not only to reduce the number of columns 21 and beams 22 compared to a normal rigid-frame structure, but also to reduce the diameter of each member. This makes it possible to make the living unit 28 open and improve the livability.

さらに、内部建物30を構成する下部建物30A及び上部建物30Bの内部は、外周壁31A、31Bに開口を多数設ける必要のない設備を設ける空間として利用することができる。例えば、下部建物30Aは、立体駐車機32などを設置できる。 Furthermore, the interior of the lower building 30A and upper building 30B that constitute the internal building 30 can be used as a space for installing equipment without the need to provide many openings in the outer peripheral walls 31A, 31B. For example, the lower building 30A can have a multi-level parking machine 32 installed therein.

立体駐車機32は騒音源となるが、下部建物30Aは、外周壁31Aを耐震壁とし、また、外部建物20に対して独立して設けている。このため、外部建物20への振動及び騒音を遮断することが可能となる。なお、立体駐車機32への車両の出入りは、例えば、外部建物20の地上階に設けられた出入口を通して行えばよい。 Although the multi-story parking machine 32 becomes a noise source, the lower building 30A has an outer peripheral wall 31A as an earthquake-resistant wall, and is provided independently from the external building 20. For this reason, it becomes possible to block vibrations and noise to the external building 20. Note that vehicles may enter and exit the multi-story parking machine 32 through, for example, an entrance provided on the ground floor of the external building 20.

本発明の制振建物及び建物の制振構造は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることはいうまでもない。 It goes without saying that the vibration damping building and vibration damping structure of a building according to the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

≪≪制振建物の他の実施例:接続構造≫≫
例えば、図1では、上部建物30Bと外部建物20を一体に接続する接続構造70を、上部建物30Bの下端よりやや上方の1地点に設ける場合を事例に挙げたが、これに限定するものではない。図6で示すように、接続構造70を、上部建物30Bの高さ方向中間部の2地点に設ける構成としてもよい。もしくは、図7で示すように、接続構造70を、上部建物30Bの中層階に設ける構造としてもよい。
≪≪Other examples of vibration damping buildings: Connection structure≫≫
For example, in FIG. 1, an example is given in which the connection structure 70 that connects the upper building 30B and the external building 20 is provided at one point slightly above the lower end of the upper building 30B, but the invention is not limited to this. do not have. As shown in FIG. 6, the connection structure 70 may be provided at two points in the middle of the upper building 30B in the height direction. Alternatively, as shown in FIG. 7, the connection structure 70 may be provided on a middle floor of the upper building 30B.

つまり、接続構造70は、上部建物30Bの上端及び下端を除く高さ方向中間部であれば、その位置や数量はいずれでもよい。なお、図7で示すように、接続構造70を上部建物30Bの中層階に設けると、上部建物30Bの上層階近傍だけでなく下層階近傍にも、外部建物20との変形差が大きくなる高さ範囲E3が生じる場合がある。この場合には、この高さ範囲S3にも、制振ダンパー50を設ける。 In other words, the connection structure 70 may be located in any position or in any quantity as long as it is in the middle part in the height direction excluding the upper and lower ends of the upper building 30B. As shown in FIG. 7, if the connection structure 70 is provided on the middle floor of the upper building 30B, it will be located not only near the upper floors of the upper building 30B but also near the lower floors at a height where the difference in deformation from the external building 20 is large. A range E3 may occur. In this case, the vibration damper 50 is also provided in this height range S3.

また、接続構造70にベルトトラス71を採用する場合を例示したが、上部建物30Bと外部建物20を一体に接続できれば、その構造はいずれでもよい。例えば、上部建物30Bの外周壁31Bと同様に、鉄筋コンクリート造の耐震壁を採用するなどしてもよい。 Moreover, although the case where the belt truss 71 is adopted as the connection structure 70 is illustrated, any structure may be used as long as the upper building 30B and the external building 20 can be connected integrally. For example, like the outer peripheral wall 31B of the upper building 30B, a shear wall made of reinforced concrete may be used.

さらに、ベルトトラス71は、図3(a)で示すように、平面視で2方向に4体張り出す構成としたが、4方向に張り出させて放射状に設けてもよい。また、ベルトトラス71の設置階も、複数もしくは単数のいずれでもよい。 Furthermore, as shown in FIG. 3(a), the belt truss 71 has a configuration in which four members project out in two directions in a plan view, but it may be provided in a radial manner so as to project out in four directions. Furthermore, the belt truss 71 may be installed on either a plurality of floors or a single floor.

≪≪制振建物の他の実施例:鉛直荷重伝達機構≫≫
図1では、上部建物30Bと下部建物30Aとの間に鉛直荷重伝達機構60を設け、この鉛直荷重伝達機構60を利用して上部建物30Bの鉛直荷重の一部を、下部建物30Aで支持する場合を例示した。しかし、図8で示すように、鉛直荷重伝達機構60を省略し、上部建物30Bを接続構造70を介して外部建物20で支持する構成としてもよい。
≪≪Other examples of vibration damping buildings: Vertical load transmission mechanism≫≫
In FIG. 1, a vertical load transmission mechanism 60 is provided between the upper building 30B and the lower building 30A, and using this vertical load transmission mechanism 60, a part of the vertical load of the upper building 30B is supported by the lower building 30A. An example is given below. However, as shown in FIG. 8, the vertical load transmission mechanism 60 may be omitted and the upper building 30B may be supported by the external building 20 via the connection structure 70.

また、図1では、鉛直荷重伝達機構60として直動転がり支承61を採用する場合を事例に挙げている。しかし、上部建物30Bと下部建物30Aを絶縁し、上部建物30Bにおける鉛直荷重の一部を伝達できれば、すべり支承や積層ゴムなどを採用してもよい。もしくは、制振装置を採用してもよい。 Further, in FIG. 1, a case where a linear motion rolling bearing 61 is employed as the vertical load transmission mechanism 60 is taken as an example. However, as long as the upper building 30B and the lower building 30A can be insulated and a portion of the vertical load on the upper building 30B can be transmitted, sliding bearings, laminated rubber, etc. may be used. Alternatively, a vibration damping device may be employed.

なお、直動転がり支承61は、図2及び図3(b)で示すように、下部建物31の屋根部34に設置された一対の下リニアレール611と、上部建物30Bの床版35に設置され、一対の下リニアレール611に直交する一対の上リニアレール612とを有する。 In addition, as shown in FIGS. 2 and 3(b), the linear motion rolling bearing 61 is installed on a pair of lower linear rails 611 installed on the roof 34 of the lower building 31 and on the floor slab 35 of the upper building 30B. and has a pair of upper linear rails 612 orthogonal to a pair of lower linear rails 611.

また、下リニアレール611と上リニアレール612との交差部に介装される4台のリニアブロック613を有する。そして、図2で示すように、4台のリニアブロック613は、下リニアレール611及び上リニアレール612の両者に沿って移動自在に構成されているため、上部建物30Bの鉛直荷重のみを下部建物31に伝達できる。 Furthermore, four linear blocks 613 are provided at the intersections of the lower linear rail 611 and the upper linear rail 612. As shown in FIG. 2, the four linear blocks 613 are configured to be movable along both the lower linear rail 611 and the upper linear rail 612, so that only the vertical load of the upper building 30B is transferred to the lower building. It can be transmitted to 31.

≪≪制振建物の他の実施例:作業床≫≫
さらに、上部建物30Bと外部建物20を一体に接続する接続構造70について、例えば、図7で示すように下端に作業床72を設けて、ボイド空間40に作業空間を形成してもよい。
≪≪Other examples of vibration damping buildings: Working floor≫≫
Furthermore, regarding the connection structure 70 that integrally connects the upper building 30B and the external building 20, a working floor 72 may be provided at the lower end, for example, as shown in FIG. 7, to form a working space in the void space 40.

≪≪制振建物の他の実施例:吹抜け≫≫
加えて、外部建物20の上端には、図1で示すように屋根架構24を設け、上部建物30Bの上方に吹抜け41を確保している。しかし、屋根架構24を設ける場合に、その高さ位置は上部建物30Bと絶縁されていればいずれでもよく、例えば図8で示すように、屋根架構24をボイド空間40内に設けて、屋根架構24を上部建物30Bの直上に配置し、吹抜け41を省略してもよい。
≪≪Other examples of vibration-damping buildings: Atrium≫≫
In addition, a roof frame 24 is provided at the upper end of the external building 20, as shown in FIG. 1, to ensure an atrium 41 above the upper building 30B. However, when the roof frame 24 is provided, its height position may be at any height as long as it is insulated from the upper building 30B. For example, as shown in FIG. 24 may be placed directly above the upper building 30B, and the atrium 41 may be omitted.

≪≪制振建物の他の実施例:下部建物≫≫
また、下部建物30Aは図1で示すように、地中に設けた基礎構造80に支持されて、外部建物20とは独立して構築されている。しかし、図8で示すように、外部建物20の低層階の梁22と、下部建物30Aの低層階の梁36とを連続して構築し、外部建物20と下部建物30Aの低層階とを、構造的に接続された一体構造としてもよい。
≪≪Other examples of vibration damping buildings: Lower building≫≫
Further, as shown in FIG. 1, the lower building 30A is supported by a foundation structure 80 provided underground and is constructed independently of the external building 20. However, as shown in FIG. 8, the beams 22 on the lower floors of the external building 20 and the beams 36 on the lower floors of the lower building 30A are constructed continuously, and the outer building 20 and the lower floors of the lower building 30A are It may also be a structurally connected unitary structure.

10 制振建物
20 外部建物
21 柱
22 梁
23 外周柱
24 屋根架構
25 内周壁
26 外部基礎
27 スラブ
28 居住ユニット
30 内部建物
30A 下部建物
30B 上部建物
31A 外周壁
31B 外周壁
32 立体駐車機
33A 内部基礎
33B 内部基礎
34 屋根部
35 床版
36 梁
40 ボイド空間
41 吹抜け
50 制振ダンパー
51 ヒンジ
60 鉛直荷重伝達機構
61 直動転がり支承
611 下リニアレール
612 上リニアレール
613 リニアブロック
70 接続構造
71 ベルトトラス
72 作業床
80 基礎構造
10 Vibration control building 20 External building 21 Column 22 Beam 23 Outer pillar 24 Roof frame 25 Inner wall 26 External foundation 27 Slab 28 Residential unit 30 Internal building 30A Lower building 30B Upper building 31A Outer wall 31B Outer wall 32 Multi-story parking machine 33A Internal foundation 33B Internal foundation 34 Roof 35 Floor slab 36 Beam 40 Void space 41 Atrium 50 Vibration damper 51 Hinge 60 Vertical load transmission mechanism 61 Direct rolling bearing 611 Lower linear rail 612 Upper linear rail 613 Linear block 70 Connection structure 71 Belt truss 72 Working floor 80 Basic structure

Claims (8)

外部建物の内側に該外部建物に比べて剛性の高い内部建物を構築するとともに、該内部建物と前記外部建物との間に設けた隙間に制振部材を設け、
該制振部材で、前記内部建物と前記外部建物とを連結する制振建物において、
前記内部建物は、下部建物と上部建物と分割されて、
前記上部建物の高さ方向中間部に、前記外部建物と一体に接続される接続構造が設けられ、
前記制振部材が、少なくとも前記下部建物及び前記上部建物各々の上端近傍に設けられていることを特徴とする制振建物。
Constructing an internal building with higher rigidity than the external building inside the external building, and providing a damping member in the gap provided between the internal building and the external building,
In a vibration-damping building that connects the internal building and the external building with the vibration-damping member,
The internal building is divided into a lower building and an upper building,
A connection structure that is integrally connected to the external building is provided in the middle part of the upper building in the height direction,
A vibration-damping building characterized in that the vibration-damping member is provided at least near the upper end of each of the lower building and the upper building.
請求項1に記載の制振建物において、
前記接続構造が、高さ方向に複数設けられていることを特徴とする制振建物。
In the vibration damping building according to claim 1,
A vibration-damping building characterized in that a plurality of the connection structures are provided in a height direction.
請求項1に記載の制振建物において、
前記接続構造に、ベルトトラスが用いられていることを特徴とする制振建物。
In the vibration damping building according to claim 1,
A vibration-damping building characterized in that a belt truss is used in the connection structure.
請求項1に記載の制振建物において、
前記制振部材が、前記上部建物の上端近傍と下端近傍に設けられていることを特徴とする制振建物。
In the vibration damping building according to claim 1,
A vibration-damping building characterized in that the vibration-damping member is provided near an upper end and near a lower end of the upper building.
請求項1に記載の制振建物において、
前記下部建物と前記上部建物との間に、鉛直荷重伝達機構が設けられていることを特徴とする制振建物。
In the vibration damping building according to claim 1,
A vibration-damping building characterized in that a vertical load transmission mechanism is provided between the lower building and the upper building.
請求項5に記載の制振建物において、
前記鉛直荷重伝達機構が、直動転がり支承であることを特徴とする制振建物。
In the vibration damping building according to claim 5,
A vibration-damping building characterized in that the vertical load transmission mechanism is a direct-acting rolling bearing.
請求項1に記載の制振建物において、
前記接続構造に、作業床が設けられていることを特徴とする制振建物。
In the vibration damping building according to claim 1,
A vibration-damping building characterized in that the connection structure is provided with a work floor.
請求項1に記載の制振建物において、
前記外部建物が、屋根架構を有するとともに、
該屋根架構と前記上部建物とが絶縁されていることを特徴とする制振建物。
In the vibration damping building according to claim 1,
The external building has a roof frame, and
A vibration-damping building characterized in that the roof frame and the upper building are insulated.
JP2022123804A 2022-08-03 2022-08-03 vibration damping building Pending JP2024021161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022123804A JP2024021161A (en) 2022-08-03 2022-08-03 vibration damping building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022123804A JP2024021161A (en) 2022-08-03 2022-08-03 vibration damping building

Publications (1)

Publication Number Publication Date
JP2024021161A true JP2024021161A (en) 2024-02-16

Family

ID=89854936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022123804A Pending JP2024021161A (en) 2022-08-03 2022-08-03 vibration damping building

Country Status (1)

Country Link
JP (1) JP2024021161A (en)

Similar Documents

Publication Publication Date Title
JP4124777B2 (en) Vibration control structure
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JP4689386B2 (en) Building with seismic isolation piloti floor
JP3677712B2 (en) Seismic isolation and control building
JP3843174B2 (en) Seismic isolation structure
JP3828695B2 (en) Seismic control wall of a three-story house
JP2024021161A (en) vibration damping building
JP2024021162A (en) vibration damping building
Lan et al. Multifunctional vibration–absorption RC megaframe structures and their seismic responses
JP5059687B2 (en) Building seismic control structure
JP7154328B2 (en) damping building
JP2010248835A (en) Vibration control structure and method of vibration control
JPH10231639A (en) Vibration-damping structure
JP2001032368A (en) Energy absorption construction for column to beam jointing portion
JP4203336B2 (en) Elevator support structure for middle-rise base-isolated buildings
JP3677703B2 (en) Damping building
JP3622115B2 (en) Seismic control structure of building with piloti
JP4155928B2 (en) Structure of apartment building
JP3677706B2 (en) Seismic isolation and control structure
JP2003155838A (en) Vibration-isolated structure of building
JP2009019479A (en) Seismic response controlled building and seismic response control method
JP7293557B2 (en) building
JP7286904B2 (en) building
JP6846219B2 (en) Building seismic isolation structure
JP6682781B2 (en) Damping building and damping method