JPH11219705A - Positive electrode active material for lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery

Info

Publication number
JPH11219705A
JPH11219705A JP10020729A JP2072998A JPH11219705A JP H11219705 A JPH11219705 A JP H11219705A JP 10020729 A JP10020729 A JP 10020729A JP 2072998 A JP2072998 A JP 2072998A JP H11219705 A JPH11219705 A JP H11219705A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
lithium secondary
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10020729A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tateishi
和幸 立石
Shigenori Suketani
重徳 祐谷
Itaru Mikaki
至 御書
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP10020729A priority Critical patent/JPH11219705A/en
Publication of JPH11219705A publication Critical patent/JPH11219705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a heavy load characteristic and a charging/discharging cycle characteristic at a high temperature by using a positive electrode active material mainly made of a spinel Li-Mn(SLM) composite oxide containing fine grains having the specific surface area and average grain size within specific ranges respectively and containing fine grains having the average grain size of a specific value or below at a specific wt.% or below. SOLUTION: This positive electrode active material for a lithium secondary battery is mainly made of an SLM composite oxide containing fine grains having the specific surface area of 0.1-5 m<2> /g and the average grain size of 5-30 μm and containing fine grains having the average grain size of 1 μm or below at 3 wt.% or below. When the positive electrode active material with this composition is used, the reaction to an electrolyte is made proper by its function, and the deterioration of a battery life, various battery performance, a charging/ discharging cycle characteristic and a high-load characteristic can be suppressed. Raw amaterial resources are stable and inexpensive, and high electromotive force can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スピネル型Li・
Mn系複合酸化物を主成分とするリチウム二次電池用の
正極活物質に関する。
[0001] The present invention relates to a spinel type Li ·
The present invention relates to a positive electrode active material for a lithium secondary battery containing a Mn-based composite oxide as a main component.

【0002】[0002]

【従来の技術】リチウム二次電池は、起電力並びにエネ
ルギー密度の点で優れているので一般的に益々注目され
つつあり、斯界では一層実用性の高い製品を開発する目
的で各種の改善研究が鋭意なされている。正極活物質の
改善研究もその重要な一つであって、高起電力が得られ
る岩塩系のリチウム遷移金属系複合酸化物、例えばLi
CoO2 、LiNiO2 などが特に注目されている。ま
た岩塩系の該複合酸化物を正極活物質とするリチウム二
次電池の放電容量や充放電サイクル特性を改善するため
に種々の提案もなされている。
2. Description of the Related Art Lithium secondary batteries are generally receiving more and more attention because they are superior in terms of electromotive force and energy density. In the art, various improvements have been studied in order to develop more practical products. Has been keen. Research on improvement of the positive electrode active material is also one of the important issues, and a rock salt-based lithium transition metal-based composite oxide capable of obtaining a high electromotive force, for example, Li
CoO 2 , LiNiO 2, etc. have received particular attention. Various proposals have also been made to improve the discharge capacity and charge / discharge cycle characteristics of a lithium secondary battery using the rock salt-based composite oxide as a positive electrode active material.

【0003】例えば特開平4−56064号公報には、
LiCoO2 を正極活物質とする電池の低放電容量の問
題を改善するために、LiCoO2 の製造の際に用いた
Li 2 CO3 の残存量が10重量%以下で且つ比表面積
が2m2 /g以下のLiCoO2 を用いる提案がなされ
ている。
For example, Japanese Patent Laid-Open No. 4-56064 discloses that
LiCoOTwoOf low discharge capacity of battery using lithium as positive electrode active material
LiCoO to improve the titleTwoUsed in the manufacture of
Li TwoCOThreeIs less than 10% by weight and specific surface area
Is 2mTwo/ G or less of LiCoOTwoA proposal was made to use
ing.

【0004】特開平4−249073号公報には、リチ
ウム二次電池の充放電サイクル特性を改善するために比
表面積が0.01〜0.30m2 /gのLix MO
2 (0.05≦x≦1.10、Mは遷移金属)を用いる
提案がなされている。
Japanese Patent Application Laid-Open No. Hei 4-249073 discloses a Li x MO having a specific surface area of 0.01 to 0.30 m 2 / g in order to improve the charge / discharge cycle characteristics of a lithium secondary battery.
2 (0.05 ≦ x ≦ 1.10, M is a transition metal) has been proposed.

【0005】さらに特許第2615854号公報には、
電池の低放電容量の問題を改善するために、平均粒径が
10〜150μmで且つ5μm以下の粒子が30容量%
未満のLix MO2 (0.05≦x≦1.10、Mは遷
移金属)を用いる発明が記載されている。
Further, Japanese Patent No. 2615854 discloses that
In order to improve the problem of low discharge capacity of the battery, 30% by volume of particles having an average particle size of 10 to 150 μm and 5 μm or less are used.
The invention using less than Li x MO 2 (0.05 ≦ x ≦ 1.10, M is a transition metal) is described.

【0006】ところで最近では、上記したLiCo
2 、LiNiO2 などに代わって、資源的に安定して
いるために安価でありながら、しかも一層の高起電力が
期待されるLi・Mn系の複合酸化物、就中、岩塩系の
Li・Mn系複合酸化物よりさらに高起電力が期待され
るスピネル型のLi・Mn系複合酸化物(以下におい
て、該スピネル型複合酸化物をSLM系複合酸化物と略
称する)が正極活物質として注目されている。しかしな
がら、近時、大電流の放電に耐え得る、即ち重負荷特性
の優れた二次電池や充放電サイクル特性、就中、60℃
前後の高温度での充放電サイクル特性の優れた二次電池
の要求が高まっているにも拘らず、SLM系複合酸化物
を用いた電池は上記の諸要求に応え得るまでには至って
いない。また岩塩系リチウム遷移金属系複合酸化物の放
電特性や充放電特性の改善には上記した種々の提案や発
明が公知であるにも拘らず、SLM系複合酸化物の改善
研究は未だしの状況にある。
Recently, however, the above-mentioned LiCo
Instead of O 2 , LiNiO 2, etc., Li · Mn-based composite oxides which are inexpensive due to their stable resources and which are expected to have a higher electromotive force, especially rock salt-based Li A spinel-type Li · Mn-based composite oxide, which is expected to have a higher electromotive force than the Mn-based composite oxide (hereinafter, the spinel-type composite oxide is abbreviated as an SLM-based composite oxide) as a positive electrode active material Attention has been paid. However, recently, a secondary battery capable of withstanding a large current discharge, that is, a secondary battery having excellent heavy load characteristics and charge / discharge cycle characteristics, particularly, 60 ° C.
Despite the growing demand for secondary batteries having excellent charge / discharge cycle characteristics before and after high temperatures, batteries using SLM-based composite oxides have not yet been able to meet the above requirements. In addition, despite the various proposals and inventions described above for improving the discharge characteristics and charge / discharge characteristics of rock salt-based lithium transition metal-based composite oxides, research on the improvement of SLM-based composite oxides has not yet been made. It is in.

【0007】[0007]

【発明が解決しようとする課題】しかして本発明は、S
LM系複合酸化物を主成分とし、重負荷特性や高温度で
の充放電サイクル特性の改善されたリチウム二次電池用
の正極活物質を提案することを課題とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an S
An object of the present invention is to propose a positive electrode active material for a lithium secondary battery having a LM-based composite oxide as a main component and having improved heavy load characteristics and charge / discharge cycle characteristics at high temperatures.

【0008】[0008]

【課題を解決するための手段】上記の課題は、つぎの正
極活物質により解決することができる。 (1) 比表面積が0.1〜5m2 /g、平均粒子径が5〜
30μmであって且つ平均粒子径が1μm以下の微細粒
子の含有量が3重量%以下であるスピネル型Li・Mn
系複合酸化物を主成分とすることを特徴とするリチウム
二次電池用の正極活物質。
The above-mentioned problems can be solved by the following positive electrode active material. (1) Specific surface area of 0.1 to 5 m 2 / g, average particle size of 5 to 5
Spinel type Li · Mn having a content of fine particles having a particle size of 30 μm and an average particle size of 1 μm or less of 3% by weight or less
A positive electrode active material for a lithium secondary battery, characterized by containing a composite oxide as a main component.

【0009】[0009]

【作用】SLM系複合酸化物として、比表面積が0.
1〜5m2 /gであり、平均粒子径が5〜30μmで
あり、且つ平均粒子径が1μm以下の微細粒子の含有
量が3重量%以下であるものを主成分とする正極活物質
により上記の課題を解決することができる。
The specific surface area of the SLM-based composite oxide is set to 0.1.
1 to 5 m 2 / g, the average particle diameter is 5 to 30 μm, and the content of fine particles having an average particle diameter of 1 μm or less is 3% by weight or less. Can be solved.

【0010】[0010]

【発明の実施の形態】本発明においてSLM系複合酸化
物としては、Mnを他の元素で置換しないもの、Mnの
一部を他の元素で置換したもの、さらにMnの一部を他
の元素で置換したもののうちでも二種以上の元素で置換
したものなど、各種のSLM系複合酸化物を対象とし
得、例えば下記の一般式(1)にて示されるものを例示
することができる。 LiA Mn2-x Mex 4 (1) 一般式(1)において、Aは0.05〜2.3、好まし
くは0.5〜1.5であり、Xは0〜0.5である。X
が0の場合は、Mnを他の元素で置換しないものを意味
する。一方、Xが0でない場合はMnを元素Meで置換
したものを意味し、その際にはXは0.01〜0.5、
特に0.02〜0.2であることが好ましい。元素Me
としては、新周期率表の3〜10族元素、例えばZr、
V、Cr、Mo、Fe、Co、Niなど、または13〜
15族元素、例えばB、Al、Ge、Pb、Sn、Sb
などである。それらの元素の二種以上でMnを置換する
SLM系複合酸化物にあっては、二種以上の元素の合計
量が上記Xの範囲内であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, SLM-based composite oxides include those in which Mn is not substituted with another element, those in which Mn is partially substituted with another element, and those in which Mn is partially substituted with another element. Various SLM-based composite oxides, such as those substituted with two or more elements among those substituted with, can be used, for example, those represented by the following general formula (1). Li A Mn 2-x Me x O 4 (1) General formula (1), A is from 0.05 to 2.3, preferably 0.5 to 1.5, X is 0 to 0.5 is there. X
Is 0, it means that Mn is not replaced by another element. On the other hand, when X is not 0, it means that Mn is replaced by the element Me, and in this case, X is 0.01 to 0.5,
It is particularly preferably 0.02 to 0.2. Element Me
As elements of Group 3 to 10 of the new periodic table, for example, Zr,
V, Cr, Mo, Fe, Co, Ni, etc., or 13 to
Group 15 element, for example, B, Al, Ge, Pb, Sn, Sb
And so on. In the case of an SLM-based composite oxide in which Mn is substituted by two or more of these elements, the total amount of the two or more elements may be within the above range of X.

【0011】本発明においてSLM系複合酸化物の比表
面積は、吸着ガスとして窒素ガスを用いるBET法の定
圧1点法(例えば、荒井康夫著「粉体の材料化学」第1
78頁〜184頁、培風館(東京)、1995年参照)
にて測定された値である。
In the present invention, the specific surface area of the SLM-based composite oxide can be determined by the constant pressure one-point method of the BET method using nitrogen gas as an adsorption gas (for example, Yasuo Arai, “Powder Material Chemistry,”
(See pages 78-184, Baifukan (Tokyo), 1995)
It is a value measured in.

【0012】本発明においてSLM系複合酸化物の平均
粒子径は、周知のマイクロトラック粒度分析計を用いて
レーザー光の散乱により視野内の粒子の個数(n)と各
粒子の直径(d)(注、マイクロトラック粒度分析計に
よれば、種々の形状の粒子毎に球相当径が自動的に測定
される。)を測定し、粒子個数(n)と各粒子の直径
(d)とから下式(2)にて算出される値(平均体積
径、あるいは体積加重平均粒径)である。 (Σnd3 /Σn) 1/3 (2) SLM系複合酸化物に限らず各種のLi・Mn系複合酸
化物は、一般的に一次粒子と称される小粒子の多数個が
凝集した構造を有し、この一次粒子の凝集体を二次粒子
と称している。上記の測定方法並びに計算から得られる
値は、二次粒子の平均粒子径に該当する。
In the present invention, the average particle size of the SLM-based composite oxide is determined by scattering a laser beam using a well-known Microtrac particle size analyzer and the number (n) of particles in the visual field and the diameter (d) of each particle (d) ( Note, according to the Microtrac particle size analyzer, the sphere equivalent diameter is automatically measured for each particle having various shapes.) The number of particles (n) and the diameter (d) of each particle are It is a value (average volume diameter or volume-weighted average particle diameter) calculated by equation (2). (Σnd 3 / Σn) 1/3 (2) Not only SLM-based composite oxides but also various Li-Mn-based composite oxides have a structure in which many small particles generally called primary particles are aggregated. And the aggregate of the primary particles is called a secondary particle. The values obtained from the above measurement methods and calculations correspond to the average particle size of the secondary particles.

【0013】本発明のSLM系複合酸化物がリチウム二
次電池用の正極活物質として機能する際には、電解液と
の反応性が適度であることが必要である。一般的に、反
応性が過大であると正極活物質と電解液との劣化が早く
て電池寿命を縮め、逆に反応性が過小であると各種の電
池性能を低下せしめる傾向にある。特に比表面積が5m
2 /gより大きく且つ平均粒子径が5μm未満のもの、
換言すると表面積の大きい小粒子を使用すると、かかる
粒子は電解液との反応性が過大であって、このために該
粒子と電解液との副反応が大きくなって両者が劣化し、
電池の高温度での充放電サイクル特性が低下し易い。
When the SLM-based composite oxide of the present invention functions as a positive electrode active material for a lithium secondary battery, it is necessary that the reactivity with an electrolytic solution is appropriate. In general, if the reactivity is excessive, the deterioration of the positive electrode active material and the electrolytic solution is quick, and the battery life is shortened. Conversely, if the reactivity is too small, various battery performances tend to decrease. Especially the specific surface area is 5m
2 / g and an average particle diameter of less than 5 μm,
In other words, when small particles having a large surface area are used, such particles have excessive reactivity with the electrolytic solution, so that a side reaction between the particles and the electrolytic solution is increased and both are deteriorated,
The charge / discharge cycle characteristics of the battery at high temperatures are likely to deteriorate.

【0014】一方、比表面積が0.1m2 /gより小さ
く且つ平均粒子径が30μmより大きいもの、換言する
と表面積が極めて小さい大粒子は、電解液との反応面積
が小さく、しかも大粒子中でのリチウムイオンの通過時
間が長くなって大電流の取り出しが困難となり、この結
果リチウム二次電池の高負荷特性が低下する。
On the other hand, a large particle having a specific surface area of less than 0.1 m 2 / g and an average particle diameter of more than 30 μm, in other words, a large particle having a very small surface area has a small reaction area with an electrolytic solution, And the passage of lithium ions becomes longer, making it difficult to extract a large current. As a result, the high-load characteristics of the lithium secondary battery deteriorate.

【0015】正極活物質層は、通常、後記するようにS
LM系複合酸化物と導電剤と結着剤とからなる組成物を
集電体に塗布し、必要に応じて乾燥することにより形成
されるが、平均粒子径が30μmより大きい大粒子を使
用した場合には、その比表面積の大小に係わらず上記組
成物の塗布性が悪くて均一な正極活物質層を形成するこ
とが困難となる。
The positive electrode active material layer is usually made of S
A composition comprising an LM-based composite oxide, a conductive agent, and a binder is applied to a current collector, and is formed by drying if necessary. Large particles having an average particle diameter of greater than 30 μm were used. In such a case, regardless of the specific surface area, the applicability of the composition is poor and it is difficult to form a uniform positive electrode active material layer.

【0016】またSLM系複合酸化物中における平均粒
子径が1μm以下の微細粒子の含有量が3重量%より多
いものを使用しても本発明の課題を達成することができ
ない。その理由は目下のところ定かでないが、SLM系
複合酸化物は一般的に比表面積が大きく、このために微
細粒子は結着剤と馴染み性が悪くて正極活物質層から脱
落し易くて脱落した微細粒子が正負極間を短絡するため
と思われる。
The object of the present invention cannot be achieved even if the content of fine particles having an average particle size of 1 μm or less in the SLM-based composite oxide is more than 3% by weight. Although the reason is not clear at present, the SLM-based composite oxide generally has a large specific surface area, and therefore, the fine particles are poorly compatible with the binder and easily fall off from the positive electrode active material layer, so that they fall off. This is probably because fine particles short-circuit the positive and negative electrodes.

【0017】しかして本発明において、SLM系複合酸
化物として比表面積が0.2〜4m 2 /g、特に0.2
5〜3.5m2 /gであり、平均粒子径が8〜25μ
m、特に10〜20μmであって、且つ平均粒子径が1
μm以下の微細粒子の含有量が1重量%以下、特に0.
5重量%以下であるものが好ましい。
Thus, in the present invention, the SLM complex acid
Specific surface area of 0.2 to 4m Two/ G, especially 0.2
5-3.5mTwo/ G, and the average particle size is 8 to 25 μm.
m, especially 10 to 20 μm, and the average particle diameter is 1
The content of fine particles having a particle size of 1 μm or less is 1% by weight or less, and
It is preferably at most 5% by weight.

【0018】本発明で用いるSLM系複合酸化物、例え
ば上記一般式(1)にて示されるものは、該一般式中に
含まれる元素(但し酸素を除く)の酸化物、水酸化物、
炭酸塩、あるいは硝酸塩などを各元素の原子数比が一般
式(1)で示される割合となるように混合し、得られた
混合物を大気中で500〜1000℃で1〜50時間加
熱焼成し、冷却後に粉砕し分級することにより得ること
ができる。なお平均粒子径が1μm以下の微細粒子は、
分級の程度を強化することにより除去あるいは減少せし
めることができる。
The SLM-based composite oxide used in the present invention, for example, one represented by the above general formula (1) is an oxide (oxide) or a hydroxide of an element (excluding oxygen) contained in the general formula (1).
Carbonates or nitrates are mixed so that the atomic ratio of each element becomes the ratio represented by the general formula (1), and the resulting mixture is heated and fired at 500 to 1000 ° C. for 1 to 50 hours in the air. After cooling, it can be obtained by crushing and classifying. The fine particles having an average particle diameter of 1 μm or less are
It can be removed or reduced by increasing the degree of classification.

【0019】本発明の正極活物質は、従来のSLM系複
合酸化物を正極活物質とする非水電解質リチウム二次電
池や固体電解質リチウム二次電池などの分野で従来から
知られている方法と同じ方法にて実用することができ
る。以下に、その代表的乃至好ましい実用方法の若干例
を説明する。
The cathode active material of the present invention can be prepared by a method known in the field of a nonaqueous electrolyte lithium secondary battery or a solid electrolyte lithium secondary battery using a conventional SLM-based composite oxide as a cathode active material. It can be used in the same way. Hereinafter, some examples of typical or preferable practical methods will be described.

【0020】正極活物質の結着剤としては、ポリテトラ
フルオロエチレン、ポリビニリデンフルオリド、ポリエ
チレン、エチレン−プロピレン−ジエン系ポリマーなど
が例示され、導電剤としては、各種導電性黒鉛や導電性
カーボンブラックなどが例示される。
Examples of the binder for the positive electrode active material include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and ethylene-propylene-diene-based polymers. Examples of the conductive agent include various types of conductive graphite and conductive carbon. Black is exemplified.

【0021】正極活物質の使用量は、正極活物質、結着
剤、および導電剤の合計量100重量部あたり80〜9
5重量部程度であり、結着剤の使用量は正極活物質10
0重量部あたり1〜10重量部程度であり、また導電剤
の使用量は正極活物質100重量部あたり3〜15重量
部程度である。
The amount of the positive electrode active material used is 80 to 9 per 100 parts by weight of the total amount of the positive electrode active material, the binder, and the conductive agent.
It is about 5 parts by weight, and the amount of the binder used is 10
The amount is about 1 to 10 parts by weight per 0 parts by weight, and the amount of the conductive agent is about 3 to 15 parts by weight per 100 parts by weight of the positive electrode active material.

【0022】正極シートは、正極集電体の片面または両
面に正極活物質、結着剤、および導電剤からなる混合組
成物を塗布し、充分に乾燥後、圧延して形成することが
でき、片面または両面に厚さ20〜500μm程度、特
に50〜200μm程度の正極活物質層を有するものが
例示される。
The positive electrode sheet can be formed by applying a mixed composition comprising a positive electrode active material, a binder, and a conductive agent to one or both surfaces of a positive electrode current collector, sufficiently drying the resultant, and rolling. One having a positive electrode active material layer having a thickness of about 20 to 500 μm, particularly about 50 to 200 μm on one or both sides is exemplified.

【0023】本発明の正極活物質と共用される負極活物
質として好ましい例を挙げると、各種の天然黒鉛や人造
黒鉛、例えば繊維状黒鉛、鱗片状黒鉛、球状黒鉛などの
黒鉛類であり、その結着剤としては、ポリテトラフルオ
ロエチレン、ポリビニリデンフルオリド、ポリエチレ
ン、エチレン−プロピレン−ジエン系ポリマーなどであ
る。負極活物質の使用量は、負極活物質と結着剤との合
計量100重量部あたり80〜96重量部程度である。
Preferred examples of the negative electrode active material used in common with the positive electrode active material of the present invention include various natural graphites and artificial graphites, for example, graphites such as fibrous graphite, flake graphite, and spherical graphite. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, and an ethylene-propylene-diene-based polymer. The amount of the negative electrode active material used is about 80 to 96 parts by weight per 100 parts by weight of the total amount of the negative electrode active material and the binder.

【0024】正極集電体としては、アルミニウム、アル
ミニウム合金、チタンなどの導電性金属の、厚さ10〜
100μm程度、特に15〜50μm程度の箔や穴あき
箔、厚さ25〜300μm程度、特に30〜150μm
程度のエキスパンドメタルなどが好ましい。
As the positive electrode current collector, a conductive metal such as aluminum, an aluminum alloy,
About 100 μm, especially about 15 to 50 μm foil or perforated foil, about 25 to 300 μm thickness, especially about 30 to 150 μm
A certain degree of expanded metal is preferred.

【0025】負極集電体としては、銅、ニッケル、銀、
SUSなどの導電性金属の、厚さ5〜100μm程度、
特に8〜50μm程度の箔や穴あき箔、厚さ20〜30
0μm程度、特に25〜100μm程度のエキスパンド
メタルなどが好ましい。
As the negative electrode current collector, copper, nickel, silver,
About 5-100 μm in thickness of conductive metal such as SUS,
Especially about 8 to 50 μm foil or perforated foil, thickness 20 to 30
Expanded metal having a thickness of about 0 μm, particularly about 25 to 100 μm is preferable.

【0026】非水電解質としては、塩類を有機溶媒に溶
解させた電解液が例示される。該塩類としては、LiC
lO4 、LiBF4 、LiPF6 、LiAsF6 、Li
AlCl4 、Li(CF3 SO2 2 Nなどが例示さ
れ、それらの一種または二種以上の混合物が使用され
る。
Examples of the non-aqueous electrolyte include an electrolyte in which salts are dissolved in an organic solvent. The salts include LiC
10 4 , LiBF 4 , LiPF 6 , LiAsF 6 , Li
Examples thereof include AlCl 4 and Li (CF 3 SO 2 ) 2 N, and one or a mixture of two or more thereof is used.

【0027】有機溶媒としては、エチレンカーボネー
ト、プロピレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、エチルメチルカーボネート、ジ
メチルスルホキシド、スルホラン、γ−ブチロラクト
ン、1,2−ジメトキシエタン、N,N−ジメチルホル
ムアミド、テトラヒドロフラン、1,3−ジオキソラ
ン、2−メチルテトラヒドロフラン、ジエチルエーテル
などが例示され、それらの一種または二種以上の混合物
が使用される。また電解液中における上記塩類の濃度
は、0.1〜3モル/リットル程度が適当である。
As the organic solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate,
Diethyl carbonate, ethyl methyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran, 1,3-dioxolan, 2-methyltetrahydrofuran, diethyl ether, and the like, One or a mixture of two or more thereof is used. The concentration of the above salts in the electrolyte is suitably about 0.1 to 3 mol / l.

【0028】[0028]

【実施例】以下、実施例により本発明を一層詳細に説明
するとともに、比較例をも挙げて本発明の顕著な効果を
示す。
EXAMPLES The present invention will be described in more detail with reference to the following examples, and comparative examples will also be described to show the remarkable effects of the present invention.

【0029】実施例1〜5、比較例1〜4 電解MnO2 とLi2 CO3 との均一な混合物を約75
0℃で約15時間焼成し、ついで粉砕してLiMn2
4 の化学式を有する粉末を得た。かくして得た粉末を日
本ニューマチック社製のMDS−1型気流分級機にかけ
て種々の条件にて分級し、表1に示す通り比表面積、平
均粒子径、並びに平均粒子径が1μm以下の微細粒子の
含有量が異なる実施例1〜5と比較例1〜4の9種類の
正極活物質としてのSLM系複合酸化物を得た。
[0029] Examples 1-5, about a homogeneous mixture of Comparative Examples 1 to 4 electrolytic MnO 2 and Li 2 CO 3 75
Bake at 0 ° C. for about 15 hours, then pulverize to obtain LiMn 2 O
A powder having the chemical formula of 4 was obtained. The powder thus obtained was classified under various conditions using an MDS-1 type airflow classifier manufactured by Nippon Pneumatic Co., Ltd., and as shown in Table 1, specific surface area, average particle diameter, and fine particles having an average particle diameter of 1 μm or less were obtained. Nine kinds of SLM-based composite oxides as positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 to 4 having different contents were obtained.

【0030】実施例6〜9、比較例5 電解MnO2 、Li2 CO3 、Co2 3 、およびGe
2 3 との均一な混合物を約750℃で約15時間焼成
し、ついで粉砕してLiMn1.9OCo0.05Ge 0.054
の化学式を有する粉末を得た。かくして得た粉末を日本
ニューマチック社製のMDS−1型気流分級機にかけて
種々の条件にて分級し、表1に示す通り比表面積、平均
粒子径、並びに平均粒子径が1μm以下の微細粒子の含
有量が異なる実施例6〜9と比較例5の5種類の正極活
物質としてのSLM系複合酸化物を得た。
Examples 6 to 9 and Comparative Example 5 Electrolytic MnOTwo, LiTwoCOThree, CoTwoOThree, And Ge
TwoOThreeBaking at about 750 ° C for about 15 hours
And then pulverized into LiMn1.9OCo0.05Ge 0.05OFour
A powder having the following chemical formula was obtained. Powder obtained in Japan
Using a Pneumatic MDS-1 airflow classifier
Classified under various conditions, specific surface area and average as shown in Table 1.
Including fine particles having a particle diameter and an average particle diameter of 1 μm or less
Five types of positive electrode active materials of Examples 6 to 9 and Comparative Example 5 having different weights
An SLM-based composite oxide as a substance was obtained.

【0031】実施例1〜9および比較例1〜5の各正極
活物質を使用し、正極活物質92重量部、アセチレンブ
ラック3重量部、ポリフッ化ビニリデン5重量部、およ
びN−メチル2ピロリドン70重量部を混合してスラリ
ーとした。このスラリーをアルミニウム箔上に塗布し乾
燥して、20mg/cm2 の正極活物質を有する正極シ
ートを作製した。かくして得た各正極シートとLi箔と
を多孔質ポリエチレンセパレータを介して密着対向さ
せ、エチレンカーボネートとエチルメチルカーボネート
との混合溶媒(混合体積比率は1:1)1リットルあた
り1モルのLiPF6 を溶解してなる溶液を電解液とし
て使用して、これを上記正極シートとLi箔との間に含
浸して密閉コイン型のリチウム二次電池を作製した。各
リチウム二次電池につき、下記に示す試験方法にて高温
度(60℃)下での充放電サイクル特性並びに室温(2
0℃)下での重負荷特性を測定した。
Using the positive electrode active materials of Examples 1 to 9 and Comparative Examples 1 to 5, 92 parts by weight of the positive electrode active material, 3 parts by weight of acetylene black, 5 parts by weight of polyvinylidene fluoride, and 70 parts by weight of N-methyl-2-pyrrolidone 70 Parts by weight were mixed to form a slurry. This slurry was applied on an aluminum foil and dried to prepare a positive electrode sheet having a positive electrode active material of 20 mg / cm 2 . Each positive electrode sheet thus obtained and the Li foil were closely adhered to each other via a porous polyethylene separator, and 1 mol of LiPF 6 per liter of a mixed solvent of ethylene carbonate and ethyl methyl carbonate (mixing volume ratio was 1: 1) was added. The dissolved solution was used as an electrolytic solution, which was impregnated between the positive electrode sheet and the Li foil to produce a sealed coin-type lithium secondary battery. For each lithium secondary battery, the charge / discharge cycle characteristics at high temperature (60 ° C.) and room temperature (2
(0 ° C.).

【0032】〔高温度下での充放電サイクル特性の試験
方法〕正極シートの面積1cm2 あたり1mAの定電流
および4.3Vの定電圧下で5時間充電し、ついで正極
シートの面積1cm2 あたり0.4mAの定電流のもと
で端子電圧が3Vとなる時点まで放電させ、この後1時
間充放電を休止する。以上の充放電並びに休止を1サイ
クルとして20回繰り返すが、初回のみ室温(20℃)
下で行い、2サイクル目以降は60℃で行う。各サイク
ルにおける放電容量は、放電電流値と放電時間から電気
量(mA・H)を算出し、リチウム二次電池中に含まれ
ている正極活物質の重量(g)から放電容量(mA・H
/g)を得る。表1には、初回の放電容量に対する20
サイクル目の放電容量の割合、即ち放電容量維持率
(%)をもって示した。
[Test method for charge / discharge cycle characteristics at high temperature] The positive electrode sheet was charged at a constant current of 1 mA per 1 cm 2 area and a constant voltage of 4.3 V for 5 hours, and then charged per 1 cm 2 area of the positive electrode sheet. Discharge is performed under a constant current of 0.4 mA until the terminal voltage becomes 3 V, and then charging and discharging are paused for one hour. The above charge / discharge and pause are repeated as one cycle for 20 times, but only at the first time at room temperature (20 ° C.)
Performed at 60 ° C. for the second and subsequent cycles. The discharge capacity in each cycle is calculated by calculating the quantity of electricity (mA · H) from the discharge current value and the discharge time, and calculating the discharge capacity (mA · H) from the weight (g) of the positive electrode active material contained in the lithium secondary battery.
/ G). Table 1 shows that the 20
The ratio is shown as the ratio of the discharge capacity at the cycle, that is, the discharge capacity maintenance ratio (%).

【0033】〔重負荷特性の試験方法〕上記の高温度下
での充放電サイクル特性の試験方法における初回の充放
電並びに休止の後、2サイクル目には同温度下で正極シ
ートの面積1cm2 あたり1mAの定電流および4.3
Vの定電圧下で5時間充電し、ついで正極シートの面積
1cm2 あたり6mAの定電流のもとで端子電圧が3V
となる時点まで放電させる。表1には、初回の放電容量
に対する2サイクル目の放電容量の割合、即ち放電容量
維持率(%)をもって示した。
[Test Method for Heavy Load Characteristics] After the first charge / discharge and pause in the above test method for charge / discharge cycle characteristics at high temperature, the area of the positive electrode sheet was 1 cm 2 at the same temperature at the second cycle. Constant current of 1 mA per unit and 4.3
The battery was charged at a constant voltage of 5 V for 5 hours, and then a terminal voltage of 3 V was applied under a constant current of 6 mA per 1 cm 2 of the area of the positive electrode sheet.
Discharge until the point where. Table 1 shows the ratio of the discharge capacity in the second cycle to the first discharge capacity, that is, the discharge capacity maintenance ratio (%).

【0034】表1より、実施例1〜9の正極活物質を使
用した各電池は、いずれも高温度下での充放電サイクル
特性並びに室温下での重負荷特性の両方に良好な性能を
示しているのに対して、比較例1〜5の正極活物質を使
用した各電池は、いずれも上記両特性に劣ることが判
る。
From Table 1, it can be seen that each of the batteries using the positive electrode active materials of Examples 1 to 9 exhibited good performance in both charge-discharge cycle characteristics at high temperatures and heavy load characteristics at room temperature. On the other hand, it is understood that each of the batteries using the positive electrode active materials of Comparative Examples 1 to 5 is inferior in both of the above characteristics.

【0035】[0035]

【表1】 [Table 1]

【0036】上記した実施例1〜9および比較例1〜5
の各正極活物質のうち、実施例1と比較例1とのそれら
を代表に選んで、両正極活物質の一層詳細な比較を図1
〜図3に示す。
The above Examples 1 to 9 and Comparative Examples 1 to 5
Of the positive electrode active materials described above, those of Example 1 and Comparative Example 1 were selected as representatives, and a more detailed comparison of both positive electrode active materials was performed as shown in FIG.
3 to FIG.

【0037】図1は、両正極活物質の粒度分布に関し、
粒子径(μm)毎の相対粒子量(%)を示すグラフであ
る。同図より、実施例1では粒子径10μmあたりに最
大の相対粒子量が存在し、一方、比較例1では粒子径4
0μmあたりに最大の相対粒子量が存在することが判
る。
FIG. 1 shows the particle size distribution of both positive electrode active materials.
It is a graph which shows the relative particle amount (%) for every particle diameter (micrometer). As can be seen from the figure, in Example 1, the maximum relative particle amount exists around a particle diameter of 10 μm.
It can be seen that the maximum relative particle amount exists around 0 μm.

【0038】図2は、前記した重負荷特性の試験方法に
おける2サイクル目の放電電流(6mA/cm2 )に代
えて、0.4mA/cm2 から6mA/cm2 まで種々
変えた場合の各放電電流に対する放電容量の変化を示す
グラフである。なお同図の縦軸は、初回の放電電流
(0.4mA/cm2 )下における放電容量を100%
とした場合の2サイクル目の放電容量維持率(%)を示
す。同図より、2サイクル目の放電電流が小さい領域
(軽負荷領域)では実施例1と比較例1との間に差異は
見られないが、3mA/cm2 以上の重負荷領域では、
両者間に明確な差異が生じることが判る。
[0038] Figure 2, instead of the second cycle of the discharge current (6 mA / cm 2) in the test method of the above-described heavy load characteristics, each of the case where various varied from 0.4 mA / cm 2 until 6 mA / cm 2 4 is a graph showing a change in discharge capacity with respect to a discharge current. The vertical axis in the figure indicates the discharge capacity under the initial discharge current (0.4 mA / cm 2 ) of 100%.
Shows the discharge capacity maintenance ratio (%) in the second cycle in the case of. According to the figure, no difference is observed between Example 1 and Comparative Example 1 in a region where the discharge current in the second cycle is small (light load region), but in a heavy load region of 3 mA / cm 2 or more,
It can be seen that there is a clear difference between the two.

【0039】図3は、前記した高温度下(60℃)での
充放電サイクル特性の試験において20サイクルに至る
までの途中の各サイクル毎の放電容量維持率(%)を示
すグラフである。同図より、サイクル数が増加するにつ
れて両者間の維持率の差が漸次増大していくことが判
る。
FIG. 3 is a graph showing a discharge capacity retention ratio (%) for each cycle in the course of the charge / discharge cycle characteristics test at a high temperature (60 ° C.) up to 20 cycles. From the figure, it can be seen that as the number of cycles increases, the difference in the maintenance ratio between the two gradually increases.

【0040】[0040]

【発明の効果】本発明の正極活物質は、原料資源が安定
しているために安価であり、しかも高起電力にして高温
度での充放電サイクル特性や重負荷特性に優れているの
で、各種の電気機器とりわけ携帯用品用の長寿命リチウ
ム二次電池の製造に好適である。
The positive electrode active material of the present invention is inexpensive due to stable raw material resources, and is excellent in charge / discharge cycle characteristics and heavy load characteristics at high temperatures with high electromotive force. It is suitable for the production of long-life lithium secondary batteries for various electric devices, especially portable products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1と比較例1の両正極活物質の粒度分布
を比較するグラフである。
FIG. 1 is a graph comparing the particle size distribution of both positive electrode active materials of Example 1 and Comparative Example 1.

【図2】実施例1と比較例1の各正極活物質を用いた両
リチウム二次電池の放電電流に対する放電容量維持率を
比較するグラフである。
FIG. 2 is a graph comparing discharge capacity retention ratios with respect to discharge current of both lithium secondary batteries using each positive electrode active material of Example 1 and Comparative Example 1.

【図3】実施例1と比較例1の各正極活物質を用いた両
リチウム二次電池の60℃での充放電サイクル試験にお
ける各サイクル毎の放電容量維持率の変化を示すグラフ
である。
FIG. 3 is a graph showing a change in a discharge capacity retention ratio for each cycle in a charge / discharge cycle test at 60 ° C. of both lithium secondary batteries using each of the positive electrode active materials of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

A 実施例1 B 比較例1 A Example 1 B Comparative Example 1

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比表面積が0.1〜5m2 /g、平均粒
子径が5〜30μmであって且つ平均粒子径が1μm以
下の微細粒子の含有量が3重量%以下であるスピネル型
Li・Mn系複合酸化物を主成分とすることを特徴とす
るリチウム二次電池用の正極活物質。
1. Spinel-type Li having a specific surface area of 0.1 to 5 m 2 / g, an average particle diameter of 5 to 30 μm, and a content of fine particles having an average particle diameter of 1 μm or less of 3% by weight or less. A positive electrode active material for a lithium secondary battery, comprising a Mn-based composite oxide as a main component.
JP10020729A 1998-02-02 1998-02-02 Positive electrode active material for lithium secondary battery Pending JPH11219705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10020729A JPH11219705A (en) 1998-02-02 1998-02-02 Positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10020729A JPH11219705A (en) 1998-02-02 1998-02-02 Positive electrode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11219705A true JPH11219705A (en) 1999-08-10

Family

ID=12035284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10020729A Pending JPH11219705A (en) 1998-02-02 1998-02-02 Positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH11219705A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569557B1 (en) 1998-09-17 2003-05-27 Ngk Insulators, Ltd. Lithium secondary battery
JP2005302510A (en) * 2004-04-12 2005-10-27 Rikogaku Shinkokai Lithium-ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6569557B1 (en) 1998-09-17 2003-05-27 Ngk Insulators, Ltd. Lithium secondary battery
EP1465280A2 (en) * 1998-09-17 2004-10-06 Ngk Insulators, Ltd. Positive electrode for lithium secondary battery
EP1465280A3 (en) * 1998-09-17 2009-05-13 Ngk Insulators, Ltd. Positive electrode for lithium secondary battery
JP2005302510A (en) * 2004-04-12 2005-10-27 Rikogaku Shinkokai Lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
JP3869605B2 (en) Nonaqueous electrolyte secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
US9293766B2 (en) Lithium nickel cobalt manganese composite oxide cathode material
JP4853608B2 (en) Lithium secondary battery
JP2000277116A (en) Lithium secondary battery
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
KR20020069148A (en) Lithium Secondary Cell
JP4813450B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery using the same
JP2003221236A (en) Composite oxide containing lithium and nonaqueous secondary battery using it
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JPH07235292A (en) Nonaqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2000251892A (en) Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
JP2004006094A (en) Nonaqueous electrolyte secondary battery
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP4794192B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2004055247A (en) Secondary battery and collector for it
JP2002270181A (en) Non-aqueous electrolyte battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP4810729B2 (en) Lithium transition metal composite oxide and method for producing the same
JPH11260368A (en) Positive electrode active material for lithium secondary battery