JPH11187868A - ウィルスまたは細胞の培養法 - Google Patents

ウィルスまたは細胞の培養法

Info

Publication number
JPH11187868A
JPH11187868A JP9360012A JP36001297A JPH11187868A JP H11187868 A JPH11187868 A JP H11187868A JP 9360012 A JP9360012 A JP 9360012A JP 36001297 A JP36001297 A JP 36001297A JP H11187868 A JPH11187868 A JP H11187868A
Authority
JP
Japan
Prior art keywords
oxygen
virus
culture
culturing
hydrophobic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9360012A
Other languages
English (en)
Other versions
JP3641123B2 (ja
Inventor
Masamichi Motoki
政道 元木
Hiroshi Eguchi
広志 江口
Kenichi Masuda
賢一 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP36001297A priority Critical patent/JP3641123B2/ja
Publication of JPH11187868A publication Critical patent/JPH11187868A/ja
Application granted granted Critical
Publication of JP3641123B2 publication Critical patent/JP3641123B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【課題】 ウィルスまたは細胞を培養する方法におい
て、培養液中へ酸素を効率よく供給してウィルスや細胞
を生育させる方法を提供する。 【解決手段】 (第1発明)ウィルスを細胞とともにサ
スペンジョン状態で培養する方法において、ウィルスと
酸素ガスを直接接触させずに、十分量の酸素を培養液中
へ供給することを特徴とするウィルスの培養法。 (第2発明)培養槽内で、ウィルスを細胞とともにサス
ペンジョン状態で培養する方法において、あるいは細胞
をサスペンジョン状態で培養する方法において、(a)
酸素を溶解している疎水性溶媒を該培養槽へ供給する
工程、(b) 該培養槽より疎水性溶媒を槽外へ取り出
す工程、(c) 酸素透過性の膜を用いて、上記(b)の
工程で取り出された疎水性溶媒に酸素を溶解させる工
程、および(d) 得られた酸素を溶解している疎水性
溶媒を前記(a)の工程へ循環する工程よりなる培養液
への酸素供給法を用いることを特徴とする、ウィルスま
たは細胞の培養法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ウィルスまたは細
胞を培養する方法において、培養液中へ酸素を効率よく
供給してウィルスや細胞を生育させる方法に関する。
【0002】
【従来の技術】細胞の大量培養によって、インターフェ
ロン、エリスロポエチン、モノクローナル抗体などの有
用蛋白質が工業規模で製造されている。現在も、遺伝子
組換え処理を施した細胞を用いて新規な有用蛋白質を製
造する試みが広く行われている。
【0003】現在まで遺伝子組換えの材料としてよく用
いられてきたのは、大腸菌などの微生物や哺乳動物の株
化細胞である。しかし、微生物を用いた場合、蛋白質の
生物活性発現に必要な立体構造の形成や糖鎖付加などの
アミノ酸修飾が正しく起こらないことが知られている。
したがって、組換え蛋白の生産における微生物の使用
は、一部のケースに限られてきた。一方、哺乳動物細胞
を用いた場合には、立体構造形成やアミノ酸修飾が実現
できる反面、目的蛋白質の生産性が低く、実用化にたど
り着けないケースもあった。
【0004】最近、昆虫細胞感染性ウィルスの1つであ
るバキュロウィルスに遺伝子組換え処理を施して昆虫細
胞に感染させ、有用蛋白質を製造することが可能となっ
た。バキュロウィルスを用いる利点として、蛋白質の立
体構造形成やアミノ酸修飾が正しく行われ、かつ目的蛋
白の発現量が哺乳動物細胞を用いた場合よりもはるかに
高いことが挙げられる。バキュロウィルスは微生物と哺
乳動物細胞両方の利点を兼ね備えた有用蛋白製造法と言
えるが、一方、バキュロウィルスを大量培養する技術が
確立されていないため、現在のところまだ有用蛋白の工
業規模製造に用いられた例がない。
【0005】従来バキュロウィルスを昆虫細胞とともに
培養する際には、温度および湿度が管理されたインキュ
ベータ内に培養器(シャーレや培養びん)を静置する方
法(静置培養法)が広く行われてきた。しかし、静置培
養法では工業生産に適した大量培養が不可能であった。
一般に、工業規模の製造では需要に応じて数十Lから数
万Lの培養液を扱う必要があるが、現在の静置培養法で
は多数の培養器を用いても最大で数L規模の培養しかで
きない。
【0006】大規模生産に適した方法として、培養槽を
用いてウィルスを細胞とともにサスペンジョン状態で培
養する方法が考えられる。この方法では、培養槽など関
連設備の許す限り数十万L規模の培養まで可能である。
微生物や一部の哺乳動物細胞では、培養槽を用いてサス
ペンジョン状態で大量培養する技術が既に確立している
(例えば特公平4−16153号、特公平4−2579
6号公報参照)。
【0007】哺乳動物細胞のうち物理的刺激に弱い一部
の細胞株(例えばハムスターの卵巣由来CHO細胞やヒ
トの腎臓由来293細胞)は、サスペンジョン培養にお
いて酸素ガスや空気を培養液へ直接通気すると、細胞が
深刻なダメージを受けることが一般に知られている。そ
れに対し、バキュロウィルスの宿主となる昆虫細胞のう
ち一般によく用いられるSf9株(夜盗蛾の卵巣由来)
やTn5株(イラクサキンウワバの卵由来)は、物理的
刺激に強く、培養液への直接通気が可能であることが知
られている。本発明者らも、培養液へ酸素ガスを直接通
気することによって、比較的簡単にSf9株およびTn
5株を培養槽でサスペンジョン培養することができた。
しかし、酸素ガスの直接通気によって増殖中のSf9株
やTn5株に遺伝子組換えバキュロウィルスを感染させ
たところ、なぜかバキュロウィルスが細胞中で増殖せ
ず、かつ目的蛋白質もほとんど発現しなかった。すなわ
ち直接通気による方法では、静置培養法で認められるよ
うな感染後のウィルス力価の上昇が全く認められなかっ
たのである。
【0008】細胞の大量培養では、酸素ガスまたは空気
を培養液へ通気して十分量の酸素を培養液中へ供給する
方法が一般によく用いらていれる。しかし、一部の細胞
株ではガス相と培養液の気液界面においてダメージを受
けて細胞が死滅してしまうため、酸素ガスや空気を培養
槽に直接通気することは不可能である。
【0009】そこで、酸素ガスを細胞に直接接触させず
に十分量の酸素を培養液中へ供給する培養法が既にいく
つか考案されている。その培養法の1つとして、酸素を
溶解した疎水性溶媒(酸素キャリアー)を培養液に添加
する方法(例えば、特開昭62−289170号公報参
照)があげられる。
【0010】このような酸素キャリアを用いる培養法
は、他の方法(例えば、European J Appl Microbiol Bi
otechnol 1981, No12, 193-197に示されたような酸素透
過性の膜を介して培養液中に酸素を供給する方法)に比
べて、種々の細胞株や微生物株に適用可能であり、スケ
ールアップが容易であるなど多くの利点を有している。
しかしながら、装置が複雑で故障が多く、長期の運転が
困難であるため、現在まで工業規模の製造で用いられた
ことはなかった。具体的には、培養槽から取り出した疎
水性溶媒へ酸素吸収塔によって酸素を吸収させる操作が
必要であるが、酸素吸収塔における排気フィルターの閉
塞や雑菌汚染などのトラブルが頻繁に発生するという欠
点をもっていた。
【0011】
【発明が解決しようとする課題】本発明が解決しようと
する第1の課題は、大量培養においてウィルスが増殖し
ない原因を取り除き、効率よくウィルスを増殖させるこ
とができる培養法を提供することにある。本発明が解決
しようとする第2の課題は、酸素を溶解した疎水性溶媒
を培養液に添加する培養法において、簡単な構造の装置
を用い、かつ長期にわたり安定した運転が可能な培養法
を提供することにある。
【0012】
【課題を解決するための手段】まず、第1の課題の解決
手段について説明する。本発明者らは、種々の培養条件
について鋭意検討を重ねた結果、意外にも培養槽に通気
する酸素ガスそのものがウィルスの増殖活性を低下させ
る主原因であることを見出した。本発明者らは、この知
見を基礎にさらに研究を続け、酸素ガスをウィルスに直
接接触させずに十分量の酸素を培養液中へ供給する培養
法を用いれば、バキュロウィルスが昆虫細胞内で効率よ
く増殖し、かつ目的蛋白も大量に発現することを見出し
た。すなわち、第1の発明は、ウィルスを細胞とともに
サスペンジョン状態で培養する方法において、ウィルス
と酸素ガスを直接接触させずに、十分量の酸素を培養液
中へ供給することを特徴とするウィルスの培養法であ
る。
【0013】次いで、第2の課題の解決手段について説
明する。本発明者らは、酸素が溶解した疎水性溶媒を培
養液に添加することを特徴とする培養法において、酸素
吸収塔に代わる酸素吸収装置として酸素透過性の膜を介
して疎水性溶媒へ酸素を供給する装置を発案した。そし
て、膜の材質、形状、設置形態に検討を重ね、従来の酸
素吸収塔とは違った故障の少ない酸素吸収装置を発明し
た。このような酸素吸収装置を含む新しい培養法は、
(a) 酸素を溶解している疎水性溶媒を該培養槽へ供
給する工程、(b) 該培養槽より疎水性溶媒を槽外へ
取り出す工程、(c) 酸素透過性の膜を用いて、前記
(b)の工程で取り出された疎水性溶媒に酸素を溶解さ
せる工程、および(d) 得られた酸素を溶解している
疎水性溶媒を前記(a)の工程へ循環する工程よりなる
ことを特徴とするウィルスまたは細胞の培養法である。
【0014】かかる培養法を用いることにより、簡単な
構造の装置を用いかつ長期にわたる安定した培養槽の運
転が可能となった。
【0015】
【発明の実施の形態】本発明における細胞は、動物細胞
が好適であり、昆虫細胞、哺乳動物細胞が例示できる。
【0016】第1の発明の実施に際し、酸素ガスをウィ
ルスに直接接触させずに十分量の酸素を培養液中へ供給
する方法として、前述の酸素透過性の膜を介して培養液
中に酸素を供給する方法でもよいが、酸素を溶解した疎
水性溶媒を培養液に添加する方法の方が前述のとおり多
くの利点があり好ましい。また、酸素ガスを直接ウィル
スに接触させない培養法は、バキュロウィルスに限ら
ず、他のウィルス、例えば哺乳動物感染性のウィルス
(サイトメガロウィルス、ヘルペスウィルスなど)を哺
乳動物細胞とともに培養する場合などにも広く適用する
ことができる。
【0017】本発明に用いる疎水性溶媒は、ウィルスや
細胞に毒性を示さず、水に難溶で、酸素の溶解度が高い
溶媒であれば何でもよく、例えば人工血液として使用さ
れているフルオロカーボン類や潤滑油として使用されて
いるパラフィン油などが使用可能である。フルオロカー
ボン類としては、住友スリーエム(株)から発売されて
いる各種フロリナート(商標)が、さまざまな細胞およ
び人体に無毒であるとわかっているので、特に推奨され
る。
【0018】本発明で用いることにできる装置の概略を
図1に例示する。図1において培養槽本体Aは、おおよ
そ円筒状の形状をしており、底部に攪拌子Bが設置さ
れ、それを磁力による回転装置C(マグネティックスタ
ーラー)などで回転させることによって細胞をサスペン
ジョン状態に維持することができる。フルオロカーボン
のような水よりも比重の大きい疎水性溶媒を用いる際に
は、培養槽下部に疎水性溶媒が溜まるので、攪拌子Bに
よる培養液の攪拌は疎水性溶媒を通して間接的に行われ
ることになる。攪拌翼Bの回転速度は、細胞が培養槽下
部に沈降しない程度に設定するのが望ましい。回転速度
を高くすると、ウィルスや細胞にダメージを与えること
があるので注意が必要である。
【0019】フルオロカーボンのように水よりも比重の
大きい疎水性溶媒を用いる際には、培養槽本体Aの底部
に溶媒の取り出し口Dを設け、培養槽の上部培養液内に
溶媒供給ノズルEを設ける必要がある。疎水性溶媒から
培養液への酸素移動が効率よく行われるためには、多数
の疎水性溶媒の細かい液滴が培養液中を漂う必要があ
り、そのためには供給ノズルEの先端が培養液に浸って
いることが望ましい。一方、パラフィン油のような水よ
りも比重が小さい疎水性溶媒を用いる際には、反対に培
養槽本体Aの上部に溶媒の取り出し口を設け、培養槽の
底部に溶媒の供給ノズルを設ける必要がある。
【0020】取り出し口DよりポンプFによって抜き出
された疎水性溶媒は、酸素透過性の膜を用いた酸素吸収
装置Gに供給される。
【0021】酸素吸収装置Gで用いられる膜は、高い酸
素透過性を持つことに加えて、疎水性溶媒が外に漏れ出
さない性質を有している必要がある。また、膜の表面積
を増加させて酸素吸収効率を高めるため、膜をチューブ
状に成形できるものが望ましい。さらに、培養前の滅菌
処理を簡便に行うために、高圧蒸気滅菌(オートクレー
ブ)が可能な膜であることが望ましい。このような性質
を持つ膜の材料として、例えばシリコンやテフロンが挙
げられる。シリコンやテフロンなどは、既にチューブ状
に成形された膜が商業的に入手可能である。例えば、N
RK(株)などから発売されている各種シリコンチュー
ブが、安価であり、さまざまな規格が揃っていて使いや
すい。このシリコンチューブにおいて、高い酸素吸収効
率と膜の耐久性を両立させるため、チューブの肉厚(膜
の厚さ)が0.5mm程度がよく、例えば内径2mm外
径3mmのシリコンチューブが特に推奨される。
【0022】酸素吸収装置Gにおいて、疎水性溶媒と酸
素ガスは酸素透過性の膜を挟んで接することになる。シ
リコンチューブなどチューブ状に成形された膜を用いる
場合は、チューブ内に疎水性溶媒を流し、チューブの外
側に酸素ガスを満たすことによって効率よく溶媒へ酸素
を吸収させることができる。この場合、チューブの外側
が酸素ガスに接している限り、シリコンチューブは2本
以上並列に分枝して用いてもよい。また、チューブの設
置形態は図1のようにコイル状であっても、あるいはホ
ローファイバー状であってもよい。
【0023】酸素吸収装置Gによって十分量の酸素を吸
収した疎水性溶媒は、培養槽上部のノズルEより培養液
中へ供給され、疎水性溶媒の多数の細かい液滴が培養液
中を漂うことになる。これらの液滴に溶解している酸素
が培養液中に移動することによって、ウィルスや細胞の
生育に必要な酸素が十分量供給される。
【0024】一般に、ウィルスを細胞とともに培養する
場合、あるいは細胞のみを培養する場合、培養液中の溶
存酸素濃度(DO)は0.2〜10.0ppm、望まし
くは1.0〜3.0ppmの範囲に保たれるべきであ
り、低すぎるDOや高すぎるDOはウィルスや細胞に深
刻なダメージを与えることが知られている。DOを好ま
しい範囲に保つため、培養槽にDOセンサーHを設置す
ることが推奨される。DOセンサーHから出力された電
気信号はDO制御器Iに入力され、DO制御器Iがポン
プFの動作を制御することによって培養液中のDOが好
ましい範囲に保たれる。ポンプの流速をPID制御する
ことによって、精密にDO制御することも可能である。
【0025】
【実施例】[実施例1] (1)実験装置 以下に示す実施例では、疎水性溶媒として住友スリーエ
ム(株)から発売されているフロリナートFC−40
(商標)を用いた。
【0026】実験装置は、図1に示されたものを用い
た。培養槽Aの内径は120mmφ、高さは280mm
のガラス製であり、底部にマグネットにより駆動可能な
撹拌子が設置されている。培養槽Aには疎水性溶媒取り
出し口D、疎水性溶媒供給口E、均圧管Jが設けてあ
る。均圧管Jは、滅菌フィルターを経由して大気に通じ
ている。培養温度を28℃に保つため、培養槽Aを28
℃の恒温水中に設置した。
【0027】酸素吸収装置Gとして、内径120mm
φ、高さ120mmの円筒形プラスチック容器を用い
た。酸素透過性の膜として、内径2mm外径3mmのシ
リコンチューブ(NRK(株)製、商品名:シリコンチ
ューブC−230)を用い、2.5mのシリコンチュー
ブを2本並列に繋いで容器G内にコイル状に設置した。
また、容器G内に酸素ガスを約10mL/分 程度のゆ
っくりとした流速で流し、シリコンチューブの外側を酸
素ガスで満たした。
【0028】(2)材料の準備 ウィルス:成書(実験医学別冊 バイオマニュアルシリ
ーズ4 遺伝子導入と発現・解析法 新井賢一ら編 羊
土社 1994年度版 pp142−150)に示され
た方法に従って、ヒト酸性ホスファターゼ遺伝子が組み
込まれた組換えバキュロウィルスを作製し、ウィルスを
Sf9株とともに静置培養して増殖させ、培養槽への接
種に必要な量の組換えバキュロウィルスを得た。
【0029】細胞:酸素ガス直接通気下のサスペンジョ
ン培養によってSf9株を増殖させ、目的蛋白の発現に
必要な数の細胞を得た。下記培地を用いた場合、酸素通
気下のサスペンジョン培養におけるSf9株の最高到達
密度は2.0×106cells/mL程度である。
【0030】培地:基礎培地としてグレース培地(GI
BCO社)を用い、以下の成分を添加した。 炭酸水素ナトリウム (和光純薬) 0.35g/L 10% Pluronic F−68水溶液 (GIBCO社) 20mL/L Triptose Phosephate Broth (GIBCO社) 20mL/L 40mg/mLゲンタマイシン水溶液(シェリングプラウ社)0.15mL/L 牛胎児血清 (GIBCO社) 100mL/L
【0031】(3)実験方法および結果 実験装置と疎水性溶媒を別々にして高圧蒸気滅菌(12
1℃,20分)し、室温まで冷却後、培養槽に疎水性溶
媒を投入した。別滅菌により、疎水性溶媒によってDO
センサーが劣化するのを防止することができる。
【0032】培養槽に培地2.0Lを投入して加温し、
培地の温度が28℃に到達したのち、ウィルスと細胞を
培養槽へ無菌的に接種した。ウィルスは予め静置培養の
培養液を遠心分離(3000rpm,5分)して古い細
胞を除去したものを、また、細胞はサスペンジョン培養
の培養液を遠心分離(3000rpm,5min)して
細胞をペレット状に濃縮したものを用いた。ウィルスと
細胞の量比を表すMOI( Multiplicity of Infection
)は、接種時において0.06とした。攪拌速度を6
0rpmに設定し、培養液のDOが自動的に2.0pp
mに保たれるようにDO制御器Iを調整した。また、培
養槽の温度は終始28℃に保った。
【0033】培養開始から5日後まで、培養を継続し
た。培養経過を、表1に示す。表1において、Sf9株
の生細胞密度は、トリパンブルー染色後の顕微鏡観察で
血球計算板によって測定した。また、培養液のウィルス
濃度は文献( BIO INDUSTRY Vol.10, No.1, 1993, pp40
-51)に示されたプラーク形成法によって求め、またヒ
ト酸性ホスファターゼの発現量は酵素活性を市販キット
(和光純薬 酸性ホスファKII−ワコー)で測定して定
量化した。
【0034】
【表1】
【0035】表1に示されたように、酸素ガスを直接培
養槽に通気した培養法では認められなかったウィルス濃
度の上昇が認められた。同様に直接通気で検出されなか
った酸性ホスファターゼ活性の上昇が認められ、目的蛋
白が十分に発現していることが示された。これより、ウ
ィルスと酸素ガスを直接接触させない培養法により、効
率よくウィルスを増殖させ、かつ目的蛋白を発現させる
ことが可能であることが示された。また、5日間の培養
を通じて装置のトラブルは皆無であり、本法によって長
期に安定した培養が可能であることが示された。
【0036】[実施例2]実施例1と同様な方法を用い
て組換えバキュロウィルスを培養し、種々の有用蛋白質
を製造することができた。その結果を表2に示す。
【0037】
【表2】
【0038】
【発明の効果】ウィルスを細胞とともにサスペンジョン
状態で培養する方法において、ウィルスにダメージを与
えることなく十分量の酸素を培養液中に供給し、効率よ
くウィルスを増殖させることが可能となった。また、培
養槽内で、ウィルスを細胞とともに、あるいは細胞のみ
をサスペンジョン状態で培養する方法において、酸素を
溶解した疎水性溶媒を培養液に添加する培養法の欠点
(トラブルの多さ)を克服し、簡単な構造の装置を用い、
かつ長期にわたり安定した運転が可能となった。
【図面の簡単な説明】
【図1】本発明の実施に用いることのできる培養システ
ムの一例
【符号の説明】
A……培養槽本体 B……攪拌子 C……磁力による回転装置 D……溶媒の取り出し口 E……供給ノズル F……ポンプ G……酸素吸収装置 H……DOセンサー I……DO制御器 J……均圧管

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 ウィルスを細胞とともにサスペンジョン
    状態で培養する方法において、ウィルスと酸素ガスを直
    接接触させずに、十分量の酸素を培養液中へ供給するこ
    とを特徴とする、ウィルスの培養法。
  2. 【請求項2】 酸素溶解性の疎水性溶媒を培養液に添加
    することを特徴とする、請求項1に記載のウィルスの培
    養法。
  3. 【請求項3】 培養槽内で、ウィルスを細胞とともにサ
    スペンジョン状態で培養する方法において、あるいは細
    胞をサスペンジョン状態で培養する方法において、
    (a) 酸素を溶解している疎水性溶媒を該培養槽へ供
    給する工程、(b) 該培養槽より疎水性溶媒を槽外へ
    取り出す工程、(c) 酸素透過性の膜を用いて、上記
    (b)の工程で取り出された疎水性溶媒に酸素を溶解さ
    せる工程、および(d) 得られた酸素を溶解している
    疎水性溶媒を前記(a)の工程へ循環する工程よりなる
    培養液への酸素供給法を用いることを特徴とする、ウィ
    ルスまたは細胞の培養法。
  4. 【請求項4】 チューブ状に成形された酸素透過性の膜
    を用いて疎水性溶媒に酸素を溶解させる工程を含む、請
    求項3に記載のウィルスまたは細胞の培養法。
  5. 【請求項5】 酸素透過性の膜が肉厚0.4〜0.6m
    mのシリコン膜である、請求項3または請求項4に記載
    のウィルスまたは細胞の培養法。
  6. 【請求項6】 酸素溶解性の疎水性溶媒がフルオロカー
    ボンである、請求項2から請求項5のいずれかに記載の
    ウィルスまたは細胞の培養法。
  7. 【請求項7】 ウィルスが昆虫細胞感染性ウィルスであ
    る、請求項1から請求項6のいずれかに記載のウィルス
    または細胞の培養法。
  8. 【請求項8】 ウィルスがバキュロウィルスである、請
    求項7に記載のウィルスまたは細胞の培養法。
JP36001297A 1997-12-26 1997-12-26 ウィルスまたは細胞の培養法 Expired - Fee Related JP3641123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36001297A JP3641123B2 (ja) 1997-12-26 1997-12-26 ウィルスまたは細胞の培養法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36001297A JP3641123B2 (ja) 1997-12-26 1997-12-26 ウィルスまたは細胞の培養法

Publications (2)

Publication Number Publication Date
JPH11187868A true JPH11187868A (ja) 1999-07-13
JP3641123B2 JP3641123B2 (ja) 2005-04-20

Family

ID=18467443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36001297A Expired - Fee Related JP3641123B2 (ja) 1997-12-26 1997-12-26 ウィルスまたは細胞の培養法

Country Status (1)

Country Link
JP (1) JP3641123B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512694A (ja) * 2009-12-08 2013-04-18 ウィルソン ウォルフ マニュファクチャリング コーポレイション 養子細胞療法のための細胞を培養する方法
KR101436134B1 (ko) * 2010-01-27 2014-09-01 가부시키가이샤 아이에이치아이 배양정보 생성장치 및 배양장치와 배양방법
JP2019060609A (ja) * 2017-09-22 2019-04-18 国立研究開発法人理化学研究所 テラヘルツ波を用いた細胞評価用の媒質
WO2022097582A1 (ja) 2020-11-05 2022-05-12 株式会社 潤工社 気体透過性容器、その容器を使用した培養装置および培養システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512694A (ja) * 2009-12-08 2013-04-18 ウィルソン ウォルフ マニュファクチャリング コーポレイション 養子細胞療法のための細胞を培養する方法
KR101436134B1 (ko) * 2010-01-27 2014-09-01 가부시키가이샤 아이에이치아이 배양정보 생성장치 및 배양장치와 배양방법
KR101511029B1 (ko) * 2010-01-27 2015-04-13 가부시키가이샤 아이에이치아이 배양정보 생성장치 및 배양장치와 배양방법
JP2019060609A (ja) * 2017-09-22 2019-04-18 国立研究開発法人理化学研究所 テラヘルツ波を用いた細胞評価用の媒質
WO2022097582A1 (ja) 2020-11-05 2022-05-12 株式会社 潤工社 気体透過性容器、その容器を使用した培養装置および培養システム

Also Published As

Publication number Publication date
JP3641123B2 (ja) 2005-04-20

Similar Documents

Publication Publication Date Title
US3821087A (en) Cell culture on semi-permeable tubular membranes
US5804431A (en) Method, compositions and apparatus for cell transfection
KR102282939B1 (ko) 고-밀도 세포 뱅킹 방법
Lydersen et al. Ceramic matrix for large scale animal cell culture
US20150064768A1 (en) Systems and Methods for Virus Propagation in Cell Cultures for Vaccine Manufacture
JP2018501804A (ja) 揺動プラットフォームバイオリアクターを用いた多能性幹細胞の増殖及び継代
US20220364036A1 (en) Fixed-bed bioreactor with constant-flow pump/ tubing system
US4024020A (en) Method of cell culture on polyacrylonitrile surface
Tolbert et al. Large-scale cell culture technology
CN108866013B (zh) 一种大规模生产慢病毒的方法
JP2019509047A (ja) 撹拌タンクバイオリアクタを用いた多能性幹細胞の増殖および継代
JP3641123B2 (ja) ウィルスまたは細胞の培養法
JP6758194B2 (ja) 高細胞密度フィル・アンド・ドロー発酵プロセス
NO840419L (no) Cellekulturapparat og fremgangsmaate for et immobilisert cellekomposittprodukt
Meng et al. Hepatocyte culture in bioartificial livers with different membrane characteristics
KR100575461B1 (ko) 생물 배양 장치 및 방법
Nagle Jr Heat-stable chemically defined medium for growth of animal cells in suspension
Pörtner et al. Cultivation of mammalian cells in fixed-bed reactors
JPH10108673A (ja) 中空糸型培養器を用いた動物細胞の培養方法
JPH0236226B2 (ja)
Allman Bioreactors: design, operation, and applications
RU2307166C2 (ru) Способ экспресс-определения нестерильности питательных сред для глубинного культивирования микроорганизмов, клеток животных и вирусов в биореакторах
JPH078265A (ja) マイクロキャリア分離装置および分離方法
JPH07135968A (ja) 付着非依存性細胞のマイクロキャリアへの細胞接着方法
WO2002079497A1 (en) System for co-culturing bacteria and eukaryotic cells

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees