JPH1117176A - Silicon-carbide semiconductor device - Google Patents

Silicon-carbide semiconductor device

Info

Publication number
JPH1117176A
JPH1117176A JP9166860A JP16686097A JPH1117176A JP H1117176 A JPH1117176 A JP H1117176A JP 9166860 A JP9166860 A JP 9166860A JP 16686097 A JP16686097 A JP 16686097A JP H1117176 A JPH1117176 A JP H1117176A
Authority
JP
Japan
Prior art keywords
trench
conductivity type
insulating film
layer
base layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9166860A
Other languages
Japanese (ja)
Other versions
JP3371763B2 (en
Inventor
Takayuki Iwasaki
貴之 岩崎
Toshiyuki Ono
俊之 大野
Tsutomu Yao
勉 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16686097A priority Critical patent/JP3371763B2/en
Publication of JPH1117176A publication Critical patent/JPH1117176A/en
Application granted granted Critical
Publication of JP3371763B2 publication Critical patent/JP3371763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Abstract

PROBLEM TO BE SOLVED: To alleviate the electric field strength of the interface along an insulating film and the first conducting-type drift by providing the second trench, which is deeper than the first trench filled with a gate electrode and the second conducting type region along the second trench. SOLUTION: A gate electrode 13 of polycrystal silicon is provided at the inner side of a trench 5 through a gate insulating film 6 of a silicon oxide film. A drain electrode 11 of an Ni film is provided at the back surface of an n<+> substrate 1. From the surface of a p-base layer 3, a p<+> type region 7 is formed along a second trench 8, which is deeper than the trench 5 at the gate part, and the side surface and the bottom surface of the second trench 8. A source electrode 12 comprising Ti-Al up to the p-base layer 3 and the surface of an n<+> source region 4 from the p<+> -type region 7 is formed. Thus, the electric field strength of the interface of the gate insulating film 6 and an n<-> drift layer 2 can be alleviated by a depletion layer expanding from the pn junction to the n<-> drift layer 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化けい素半導体
装置に関する。
[0001] The present invention relates to a silicon carbide semiconductor device.

【0002】[0002]

【従来の技術】炭化けい素(以下SiCと略す)は、バ
ンドギャップが大きく、また化学的に安定な材料である
ため、シリコンと比較すると高温や放射線下でも使用可
能な各種の半導体デバイスが期待されて、研究されてい
る。従来のシリコンのデバイスでは、最高でも150℃
程度がその動作限界とされているが、SiCでは、既に
pn接合ダイオードやMOSFET(金属−酸化膜−半導体構
造の電界効果トランジスタ)等の要素デバイスが試作さ
れ、400℃以上の高温でも動作が確認されている。こ
のような高温での使用が可能となれば、原子炉や宇宙な
ど環境が厳しく、人の近づけない環境でのロボットやコ
ンピュータなどが使用可能となる。また、従来のシリコ
ンデバイスは、動作時の発生損失による発熱により温度
上昇してしまうため、これを抑制する冷却設備を備える
必要があり、冷却フィンや、冷却設備のために装置全体
が大型化してしまう。SiCでは、これらの冷却設備を
大幅に小型化,簡素化が可能となる。多くの部品を占め
る半導体デバイスを以上のように小型化が可能となれ
ば、例えば自動車では、大幅に燃費を向上させることが
可能となり、環境保全にも多大な効果が期待できる。こ
のようにSiCの半導体デバイスは、多くの応用分野で
期待されている。
2. Description of the Related Art Since silicon carbide (hereinafter abbreviated as SiC) is a material having a large band gap and being chemically stable, various semiconductor devices that can be used even at high temperature and under radiation compared to silicon are expected. Has been studied. At most 150 ° C for conventional silicon devices
Although the degree of operation is considered to be the operation limit, in SiC, element devices such as pn junction diodes and MOSFETs (field-effect transistors having a metal-oxide-semiconductor structure) have already been prototyped, and operation has been confirmed even at a high temperature of 400 ° C. or higher. Have been. If the use at such a high temperature becomes possible, the environment such as a nuclear reactor and space is severe, and a robot or a computer in an environment that is inaccessible to humans can be used. In addition, since the temperature of a conventional silicon device rises due to heat generated due to a loss generated during operation, it is necessary to provide a cooling facility for suppressing the temperature increase. I will. With SiC, these cooling facilities can be significantly reduced in size and simplified. If a semiconductor device occupying many components can be miniaturized as described above, for example, in an automobile, fuel efficiency can be greatly improved, and a great effect can be expected for environmental conservation. Thus, SiC semiconductor devices are expected in many application fields.

【0003】縦型MOSFETは、SiCの電力用半導体デバ
イスへの適用を考える上で重要なデバイスである。その
理由は電圧駆動型デバイスであるため素子の並列駆動
や、駆動回路の簡素化が可能なこと、および、ユニポー
ラ素子であるために、高速スイッチングが可能なことに
よる。SiCにおいては、シリコンと異なり深い不純物
拡散が困難であるのに対してエピタキシャル成長は比較
的容易であるので、図5のようなトレンチ5を持つトレ
ンチMOSFETが一般的である。図5は、これまで試作され
ているSiCのトレンチMOSFETの要部断面図である。図
5において、nサブストレート1上にそれより不純物
濃度の低いnドリフト層2とp型のpベース層3を
エピタキシャル成長したSiC基板の表面層に、選択的
に高濃度のn+ ソース領域4が形成され、そのn+ ソー
ス領域4の一部に、表面からn- ドリフト層2に達する
溝(以後トレンチと呼ぶ)5が形成されている。トレン
チ5の内側には、ゲート絶縁膜6を介してゲート電極1
3が設けられ、また、n+ ソース領域4の表面とpベー
ス層3の表面露出部に共通に接触してソース電極12,
+ サブストレート1の裏面にドレイン電極11がそれ
ぞれ設けられている。なおSiCにおいては、ゲート絶
縁膜として、SiCを熱酸化してできるシリコン酸化膜
が使用できる。
A vertical MOSFET is an important device when considering application of SiC to a power semiconductor device. The reason is that the device is a voltage-driven device, so that the devices can be driven in parallel and the drive circuit can be simplified, and that the device is a unipolar device, so that high-speed switching is possible. In SiC, unlike silicon, it is difficult to diffuse a deep impurity, but epitaxial growth is relatively easy. Therefore, a trench MOSFET having a trench 5 as shown in FIG. 5 is generally used. FIG. 5 is a cross-sectional view of a principal part of a SiC trench MOSFET that has been prototyped so far. 5, lower it than the impurity concentration on the n + substrate 1 n - drift layer 2 and the p-type p base layer 3 on the surface layer of the SiC substrate epitaxially grown selectively high concentrations of n + source region 4 is formed, and a groove (hereinafter referred to as a trench) 5 reaching the n drift layer 2 from the surface is formed in a part of the n + source region 4. Inside the trench 5, a gate electrode 1 is interposed via a gate insulating film 6.
3 is provided, also, the source electrode 12 in contact with the common exposed surface of the n + surface and the p base layer 3 of the source region 4,
Drain electrodes 11 are provided on the back surface of the n + substrate 1, respectively. In the case of SiC, a silicon oxide film formed by thermally oxidizing SiC can be used as the gate insulating film.

【0004】このMOSFETの動作は、ドレイン電極11と
ソース電極12との間に電圧を印加した状態で、ゲート
電極13にある値以上の正の電圧を加えると、ゲート電
極13の横のpベース層3の表面層に反転層が形成さ
れ、その反転層を通じてソース電極12からドレイン電
極11へと電子電流が流れるものである。
The operation of this MOSFET is such that when a positive voltage of a certain value or more is applied to the gate electrode 13 while a voltage is applied between the drain electrode 11 and the source electrode 12, the p base An inversion layer is formed on the surface layer of the layer 3, and an electron current flows from the source electrode 12 to the drain electrode 11 through the inversion layer.

【0005】[0005]

【発明が解決しようとする課題】絶縁膜と半導体の界面
において、絶縁膜の電界をEi、半導体の電界をEsと
すると、 εi・Ei=εs・Es なる式が成り立つ。ここでεsは、半導体の比誘電率、
εiは絶縁膜の比誘電率である。従って Ei/Es=εs/εi である。この値をシリコンとSiCの場合について計算
してみる。
Assuming that the electric field of the insulating film is Ei and the electric field of the semiconductor is Es at the interface between the insulating film and the semiconductor, the following equation holds: εi · Ei = εs · Es. Where εs is the relative dielectric constant of the semiconductor,
εi is the relative dielectric constant of the insulating film. Therefore, Ei / Es = εs / εi. This value will be calculated for silicon and SiC.

【0006】 εs=11.7 (シリコン) εs=10.0 (SiC) であり、いま、絶縁膜をシリコン酸化膜として、その誘
電率εi=3.8 を代入すると Ei/Es=3.1 (シリコン) Ei/Es=2.6 (SiC) となる。すなわち、図5の従来の構造ではゲート絶縁膜
には、半導体部分よりはるかに大きい電界がかかること
になる。図6に図5のX−X′線に沿ったゲート部分で
の電界分布を示す。縦軸は電界強度、横軸は深さであ
る。絶縁膜の電界強度Eiは、半導体の電界強度Esの
約3倍大きい。
Εs = 11.7 (silicon) εs = 10.0 (SiC), and if the insulating film is a silicon oxide film and its dielectric constant εi = 3.8 is substituted, Ei / Es = 3.1 (Silicon) Ei / Es = 2.6 (SiC). That is, in the conventional structure of FIG. 5, a much larger electric field is applied to the gate insulating film than to the semiconductor portion. FIG. 6 shows an electric field distribution at the gate portion along the line XX 'in FIG. The vertical axis is the electric field strength, and the horizontal axis is the depth. The electric field strength Ei of the insulating film is about three times larger than the electric field strength Es of the semiconductor.

【0007】更に、半導体の最大電界Esmaxは、 Esmax=2×105V/cm (シリコン) Esmax=2×106V/cm (SiC) であるから、絶縁膜の最大電界Eimaxは、 Eimax=6×105V/cm (シリコン) Eimax=5×106V/cm (SiC) となる。シリコン酸化膜の絶縁破壊耐圧は8×106
/cm 程度であることを考えると、半導体内部でアバラ
ンシェ降伏が始まるころには、SiCの場合、ゲート絶
縁膜に絶縁破壊耐圧に近い大きな電界が印加されること
になる。
Further, since the maximum electric field Esmax of the semiconductor is Esmax = 2 × 10 5 V / cm (silicon) Esmax = 2 × 10 6 V / cm (SiC), the maximum electric field Eimax of the insulating film is Eimax = 6 × 10 5 V / cm (silicon) Eimax = 5 × 10 6 V / cm (SiC) The dielectric breakdown voltage of the silicon oxide film is 8 × 10 6 V
When the avalanche breakdown starts inside the semiconductor, a large electric field close to the dielectric breakdown voltage is applied to the gate insulating film in the case of SiC.

【0008】通常パワーデバイスでは、アバランシェ電
流が流れた際に、一定電流まで耐えることが要求される
が、従来のSiCトレンチMOSFETでは、アバランシェ降
伏がゲート部のトレンチで始まるので、そのアバランシ
ェ耐量がゲート絶縁膜の絶縁破壊によって規定されてし
まい、SiCの高い絶縁破壊電界強度を生かすことがで
きない。以上の問題に鑑み、本発明の目的は、ゲート絶
縁膜の絶縁破壊が起きない、アバランシェ耐量の大きい
SiCトレンチMOSFETを提供することにある。
Normally, a power device is required to withstand a certain current when an avalanche current flows. However, in a conventional SiC trench MOSFET, since avalanche breakdown starts in a trench at a gate portion, the avalanche withstand capability is reduced. It is determined by the dielectric breakdown of the insulating film, and cannot utilize the high dielectric breakdown electric field strength of SiC. In view of the above problems, it is an object of the present invention to provide a SiC trench MOSFET having a large avalanche withstand voltage, which does not cause a dielectric breakdown of a gate insulating film.

【0009】[0009]

【課題を解決するための手段】上記の課題解決のため本
発明による炭化けい素半導体装置は、第一導電型の炭化
ケイ素半導体サブストレート上に順に形成されたサブス
トレートより不純物濃度の低い炭化ケイ素の第一導電型
ドリフト層と炭化ケイ素の第二導電型ベース層と、その
第二導電型ベース層の表面層の一部に形成された第一導
電型ソース領域と、その第一導電型ソース領域の表面か
ら第一導電型ドリフト層に達する第一のトレンチを有
し、その第一のトレンチ内に絶縁膜を介して電圧を印加
する電極を備え、前記トレンチよりさらに深い第二のト
レンチ、およびその第二トレンチに沿って第二導電型領
域を備える。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a silicon carbide semiconductor device according to the present invention is a silicon carbide semiconductor device having a lower impurity concentration than a substrate formed sequentially on a silicon carbide semiconductor substrate of a first conductivity type. A first conductivity type drift layer, a second conductivity type base layer of silicon carbide, a first conductivity type source region formed in a part of a surface layer of the second conductivity type base layer, and a first conductivity type source A first trench reaching the first conductivity type drift layer from the surface of the region, including an electrode for applying a voltage via an insulating film in the first trench, a second trench further deeper than the trench, And a second conductivity type region along the second trench.

【0010】上記の手段によれば、ゲート電極の充填さ
れた第一のトレンチより深い第二のトレンチ、およびそ
の第二トレンチに沿って第二導電型領域を備えることに
よって、絶縁膜と第一導電型ドリフト層界面の電界強度
を緩和し、アバランシェ耐量を増大させることができ
る。
According to the above means, by providing the second trench deeper than the first trench filled with the gate electrode and the second conductivity type region along the second trench, the insulating film and the first trench are formed. The electric field intensity at the interface of the conductivity type drift layer can be reduced, and the avalanche resistance can be increased.

【0011】[0011]

【発明の実施の形態】図1は、本発明の実施例のSiC
トレンチMOSFETの要部断面図である。図1に示したの
は、電流のオン・オフを行う活性領域であり、MOSFETに
は、この他に主に周縁部に耐圧を担う部分があるが、そ
の部分は本発明の本質に関わる部分ではないので記述を
省略する。図1において、n+ サブストレート1上にそ
れより不純物濃度の低いn- ドリフト層2とp型のpベ
ース層3をエピタキシャル成長したSiC基板におい
て、pベース層3の表面層に選択的に高濃度のn+ ソー
ス領域4が形成され、そのn+ ソース領域4の一部に、
表面からn- ドリフト層2に達するトレンチ5が形成さ
れている。トレンチ5の内側には、シリコン酸化膜のゲ
ート絶縁膜6を介して多結晶シリコンのゲート電極13
が設けられている。またn+ サブストレート1の裏面に
Ni膜のドレイン電極11が設けられている。このMOSF
ETでは、pベース層3の表面からゲート部分のトレンチ
5よりも深い第二のトレンチ8、およびその第二のトレ
ンチ8の側面及び底面に沿ってp+ 型領域7が形成され
ている。そして、そのp+ 型領域7からpベース層3,
+ ソース領域4の表面に達するTi−Alからなるソ
ース電極12が設けられている。図1のMOSFETの動作
は、ドレイン電極11とソース電極12との間に電圧を
印加した状態で、ゲート電極13にある値以上の正の電
圧を加えると、ゲート電極13の横のpベース層3の表
面層に反転層が形成され、その反転層を通じてソース電
極12からドレイン電極11へと電子電流が流れるもの
である。図1のMOSFETにおいて、第二のトレンチ8の深
さは、ゲート部分のトレンチ5よりも深い。よって、ド
レイン電極11とソース電極12との間に電圧を印加
し、その電圧を高めた際、p+ 型領域7とn-ドリフト
層2よりなるpn接合から、n-ドリフト層2に拡がる
空乏層によって、ゲート絶縁膜6とn- ドリフト層2の
界面の電界強度が緩和される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a SiC according to an embodiment of the present invention.
FIG. 3 is a sectional view of a main part of a trench MOSFET. FIG. 1 shows an active region for turning on and off a current. The MOSFET mainly has a portion that bears a withstand voltage mainly at a peripheral portion, and the portion is a portion related to the essence of the present invention. Therefore, the description is omitted. In FIG. 1, in a SiC substrate in which an n drift layer 2 having a lower impurity concentration and a p-type p base layer 3 having a lower impurity concentration are epitaxially grown on an n + substrate 1, a high concentration is selectively formed on a surface layer of the p base layer 3. the n + source region 4 is formed, a part of the n + source region 4,
Trench 5 reaching n drift layer 2 from the surface is formed. Inside the trench 5, a gate electrode 13 of polycrystalline silicon is interposed via a gate insulating film 6 of a silicon oxide film.
Is provided. On the back surface of the n + substrate 1, a drain electrode 11 of a Ni film is provided. This MOSF
In the ET, a second trench 8 deeper than the gate portion trench 5 from the surface of the p base layer 3 and ap + -type region 7 are formed along the side and bottom surfaces of the second trench 8. Then, from the p + type region 7, the p base layer 3,
A source electrode 12 made of Ti—Al reaching the surface of n + source region 4 is provided. The operation of the MOSFET shown in FIG. 1 is as follows. When a positive voltage of a certain value or more is applied to the gate electrode 13 in a state where a voltage is applied between the drain electrode 11 and the source electrode 12, the p base layer next to the gate electrode 13 3, an inversion layer is formed on the surface layer, and an electron current flows from the source electrode 12 to the drain electrode 11 through the inversion layer. In the MOSFET of FIG. 1, the depth of the second trench 8 is deeper than the trench 5 in the gate portion. Therefore, when a voltage is applied between the drain electrode 11 and the source electrode 12 and the voltage is increased, the depletion spreading from the pn junction formed by the p + type region 7 and the n drift layer 2 to the n drift layer 2 The layer reduces the electric field strength at the interface between the gate insulating film 6 and the n drift layer 2.

【0012】図2は図5に示した従来の技術のMOSFETと
図1に示した本発明によるMOSFETのX−X′に沿った電
界強度をシミュレーションした結果である。横軸にゲー
ト絶縁膜6底部からの距離(X−X′方向の上面からの
距離)、縦軸に電界強度をとってある。図3から分かる
ように、従来の技術ではゲート絶縁膜6とn- ドリフト
層2の界面のn- ドリフト層2側の電界強度が2.0 で
あるのに対して、本発明では1.2 まで低減し得る。す
なわち、p+ 型領域7とn- ドリフト層2よりなるpn
接合から、n- ドリフト層2に拡がる空乏層によって、
ゲート絶縁膜6とn- ドリフト層2の界面の電界強度が
緩和されるので、ゲート部のトレンチ5の角部でアバラ
ンシェ降伏が起きてゲート絶縁膜6が破壊することはな
い。すなわち、電圧印加時にゲート絶縁膜が絶縁破壊す
ることのない、アバランシェ耐量の大きいMOSFETとする
ことができる。
FIG. 2 shows the results of simulating the electric field strength along XX 'of the conventional MOSFET shown in FIG. 5 and the MOSFET according to the present invention shown in FIG. The horizontal axis represents the distance from the bottom of the gate insulating film 6 (the distance from the upper surface in the XX ′ direction), and the vertical axis represents the electric field intensity. As can be seen from FIG. 3, the electric field strength on the n drift layer 2 side at the interface between the gate insulating film 6 and the n drift layer 2 is 2.0 in the conventional technique, whereas the electric field strength in the present invention is 1.2. Can be reduced. That is, the pn composed of the p + type region 7 and the n drift layer 2
By the depletion layer extending from the junction to the n drift layer 2,
Since the electric field strength at the interface between the gate insulating film 6 and the n drift layer 2 is reduced, avalanche breakdown does not occur at the corners of the trench 5 in the gate portion, and the gate insulating film 6 is not broken. That is, a MOSFET having a large avalanche withstand capability can be obtained without causing a gate insulating film to undergo dielectric breakdown when a voltage is applied.

【0013】図3(a)ないし(d)は、図1の実施例
のトレンチMOSFETの製造方法を説明するための各工程の
断面図である。n+ サブストレート1上にそれより不純
物濃度の低いn- ドリフト層2とp型のpベース層3を
エピタキシャル成長により形成する〔図3(a)〕。次
に、pベース層3の表面層に選択的に高濃度の窒素イオ
ンを注入し、n+ ソース領域4を形成する。次にフォト
レジストのパターニングとふっ素/酸素の混合ガスを用
いたプラズマエッチングによって、ゲート部分のトレン
チ5を形成する。次にゲート部分のトレンチ5内に熱酸
化によりゲート絶縁膜6を形成し、さらに減圧CVD法
により多結晶シリコンを充填してゲート電極13を形成
する〔図3(b)〕。次にフォトレジストのパターニン
グとふっ素/酸素の混合ガスを用いたプラズマエッチン
グによって、第二のトレンチ8を形成する。次に、高濃
度のほう素イオンを注入し、p+ 型領域7を形成し、欠
陥回復のための熱処理をする。第二のトレンチ8の深さ
は、ゲート部分のトレンチ5よりも深くすることが重要
である〔図3(c)〕。最後にNiを蒸着してドレイン
電極11を、Ti−Alを蒸着してソース電極12を形
成する〔図3(d)〕。
FIGS. 3A to 3D are cross-sectional views of respective steps for explaining a method of manufacturing the trench MOSFET of the embodiment of FIG. An n drift layer 2 having a lower impurity concentration and a p-type p base layer 3 are formed on the n + substrate 1 by epitaxial growth (FIG. 3A). Next, high-concentration nitrogen ions are selectively implanted into the surface layer of p base layer 3 to form n + source region 4. Next, a trench 5 at a gate portion is formed by patterning a photoresist and performing plasma etching using a mixed gas of fluorine and oxygen. Next, a gate insulating film 6 is formed in the trench 5 at the gate portion by thermal oxidation, and polycrystalline silicon is filled by a low pressure CVD method to form a gate electrode 13 (FIG. 3B). Next, a second trench 8 is formed by patterning a photoresist and performing plasma etching using a mixed gas of fluorine and oxygen. Next, boron ions are implanted at a high concentration to form p + -type regions 7 and heat treatment is performed to recover defects. It is important that the depth of the second trench 8 is greater than the depth of the trench 5 in the gate portion (FIG. 3C). Finally, Ni is deposited to form a drain electrode 11 and Ti-Al is deposited to form a source electrode 12 (FIG. 3D).

【0014】図4は本発明の他の実施例の断面図であ
る。pベース層3の表面からゲート部分のトレンチ5よ
りも深い第二のトレンチ8、および第二のトレンチ8の
底面及び側面に沿ってp+ 型領域7が形成されている点
は図1と同じである。しかし、このMOSFETでは、p+
領域7と隣接する他のp+ 型領域7の間に複数のトレン
チ5があることが異なる。順方向導通時、p+ 型領域7
には電流が流れないデッドスペースとなるのでオン電圧
が高くなるが、図4のような構造とすることで、p+
領域7の占める面積を低減でき、オン電圧を低くでき
る。
FIG. 4 is a sectional view of another embodiment of the present invention. The point that the second trench 8 is deeper than the trench 5 in the gate portion from the surface of the p base layer 3 and that the p + type region 7 is formed along the bottom and side surfaces of the second trench 8 is the same as FIG. It is. However, this MOSFET is different in that there are a plurality of trenches 5 between the p + -type region 7 and another adjacent p + -type region 7. At the time of forward conduction, p + type region 7
In this case, a dead space in which no current flows increases, and the on-voltage increases. However, the structure as shown in FIG. 4 can reduce the area occupied by the p + -type region 7 and reduce the on-voltage.

【0015】図7は図1に対して、電界緩和の効果を更
に向上させた他の実施例の断面図である。図7におい
て、n+ サブストレート1上にそれより不純物濃度の低
いn-ドリフト層2とp型のpベース層3をエピタキシ
ャル成長したSiC基板において、pベース層3の表面
層に選択的に高濃度のn+ ソース領域4が形成され、そ
のn+ ソース領域4の一部に、表面からn- ドリフト層
2に達するトレンチ5が形成されている。トレンチ5の
内側には、シリコン酸化膜のゲート絶縁膜6を介して多
結晶シリコンのゲート電極13が設けられている。また
+ サブストレート1の裏面にNi膜のドレイン電極1
1が設けられている。pベース層3の表面からゲート部
分のトレンチ5よりも深い第二のトレンチ8が形成さ
れ、第二のトレンチ8の側面及び底面に沿ってp+ 型領
域7が設けられている。そして、そのp+ 型領域7から
pベース層3,n+ ソース領域4の表面に達するTi−
Alからなるソース電極12が設けられている。図7の
特徴とするところはp+ 型領域7の横方向に最も拡がっ
た位置が基板表面より内部にある逆テーパ型になってい
ることである。ドレイン電極11とソース電極12との
間に電圧を印加し、その電圧を高めた際、p+ 型領域7
とn- ドリフト層2よりなるpn接合から、n-ドリフ
ト層2に拡がる空乏層は基板表面より内部に行くほど広
くなる。よって、図7のごとき構造とすることで、p+
型領域7と隣接する他のp+ 型領域7からn- ドリフト
層2方向に拡がる空乏層は、図1と比べて低いソース,
ドレイン間電圧で接触するため、ゲート絶縁膜6とn-
ドリフト層2の界面の電界緩和の効果が大きい。
FIG. 7 is a cross-sectional view of another embodiment in which the effect of relaxing the electric field is further improved with respect to FIG. In FIG. 7, in the SiC substrate on which the n drift layer 2 and the p-type p base layer 3 having lower impurity concentrations are epitaxially grown on the n + substrate 1, the surface layer of the p base layer 3 is selectively highly doped. The n + source region 4 is formed, and a trench 5 reaching the n drift layer 2 from the surface is formed in a part of the n + source region 4. A gate electrode 13 made of polycrystalline silicon is provided inside the trench 5 via a gate insulating film 6 made of a silicon oxide film. A drain electrode 1 made of a Ni film is formed on the back surface of the n + substrate 1.
1 is provided. A second trench 8 deeper than the gate portion trench 5 is formed from the surface of the p base layer 3, and ap + type region 7 is provided along the side and bottom surfaces of the second trench 8. Then, the Ti − layer reaching the surface of p base layer 3 and n + source region 4 from p + type region 7.
A source electrode 12 made of Al is provided. A feature of FIG. 7 is that the position of the p + -type region 7 which is most widened in the lateral direction is an inverted tapered type which is located inside the substrate surface. When a voltage is applied between the drain electrode 11 and the source electrode 12 and the voltage is increased, the p + -type region 7
And n - from the pn junction consisting of the drift layer 2, n - depletion layer that spreads in the drift layer 2 becomes wider toward the interior than the substrate surface. Therefore, by adopting the structure as shown in FIG. 7, p +
A depletion layer extending in the direction of n drift layer 2 from another p + -type region 7 adjacent to n-type region 7 has a lower source,
Since the contact is made with the voltage between the drains, the gate insulating film 6 and n
The effect of relaxing the electric field at the interface of the drift layer 2 is great.

【0016】図8は本発明の他の実施例の断面図であ
る。図8において、n+ サブストレート1上にそれより
不純物濃度の低いn- ドリフト層2とp型のpベース層
3をエピタキシャル成長したSiC基板において、pベ
ース層3の表面層に選択的に高濃度のn+ ソース領域4
が形成され、そのn+ ソース領域4の一部に、表面から
- ドリフト層2に達するトレンチ5が形成されてい
る。トレンチ5の内側には、シリコン酸化膜のゲート絶
縁膜6を介して多結晶シリコンのゲート電極13が設け
られている。またn+ サブストレート1の裏面にNi膜
のドレイン電極11が設けられている。このMOSFETで
は、pベース層3の表面からゲート部分のトレンチ5よ
りも深い第二のトレンチ8、およびp+ 型領域7がトレ
ンチ5と交差するように形成されている。そして、その
+ 型領域7からpベース層3,n+ ソース領域4の表
面に達するTi−Alからなるソース電極12が設けら
れている。図8の構造でも、ドレイン電極11とソース
電極12との間に電圧を印加し、その電圧を高めた際、
+ 型領域7とn- ドリフト層2よりなるpn接合か
ら、n-ドリフト層2に拡がる空乏層によって、ゲート
絶縁膜6とn-ドリフト層2の界面の電界強度が緩和さ
れる。したがって、MOSFETのアバランシェ耐量はSiC
の絶縁破壊電界強度によって規定され、ゲート絶縁膜6
が破壊することはない。すなわち、電圧印加時にゲート
絶縁膜が絶縁破壊することのない、アバランシェ耐量の
大きいMOSFETとすることができる。
FIG. 8 is a sectional view of another embodiment of the present invention. In FIG. 8, in the SiC substrate on which the n drift layer 2 and the p-type p base layer 3 having lower impurity concentrations are epitaxially grown on the n + substrate 1, the surface layer of the p base layer 3 is selectively made to have a high concentration. N + source region 4
Is formed, and a trench 5 reaching the n drift layer 2 from the surface is formed in a part of the n + source region 4. A gate electrode 13 made of polycrystalline silicon is provided inside the trench 5 via a gate insulating film 6 made of a silicon oxide film. On the back surface of the n + substrate 1, a drain electrode 11 of a Ni film is provided. In this MOSFET, a second trench 8 deeper than the trench 5 in the gate portion from the surface of the p base layer 3 and ap + type region 7 are formed so as to intersect with the trench 5. A source electrode 12 made of Ti-Al is provided from the p + type region 7 to the surface of the p base layer 3 and the n + source region 4. Also in the structure of FIG. 8, when a voltage is applied between the drain electrode 11 and the source electrode 12 and the voltage is increased,
The depletion layer extending from the pn junction composed of the p + type region 7 and the n drift layer 2 to the n drift layer 2 reduces the electric field strength at the interface between the gate insulating film 6 and the n drift layer 2. Therefore, the avalanche withstand capability of the MOSFET is SiC
Of the gate insulating film 6
Will not be destroyed. That is, a MOSFET having a large avalanche withstand capability can be obtained without causing a gate insulating film to undergo dielectric breakdown when a voltage is applied.

【0017】図9は本発明によるMOSFETをスイッチング
素子とする電力用インバータ装置の主回路の一例であ
る。図中破線で囲んだ部分、すなわちMOSFETとダイオー
ドの逆並列回路部に本発明によるMOSFETが適用されてい
る。本インバータ装置は一対の直流端子121及び12
2、並びに交流の相数に等しい3個の交流端子131〜
133を備え、直流端子に直流電源を接続し、MOSFET10
1〜106をスイッチングすることにより、直流電力を交流
電力に変換して交流端子に出力する。直流端子間には、
直列接続されたMOSFETの組101と102,103と1
04,105と106の各両端が接続される。各MOSFET
の組における2個のMOSFETの直列接続点からは交流端子
が取り出される。
FIG. 9 shows an example of a main circuit of a power inverter device using a MOSFET as a switching element according to the present invention. The MOSFET according to the present invention is applied to a portion surrounded by a broken line in the drawing, that is, an anti-parallel circuit portion of the MOSFET and the diode. This inverter device has a pair of DC terminals 121 and 12
2, and three AC terminals 131 to
133, a DC power supply is connected to the DC terminal,
By switching 1 to 106, DC power is converted into AC power and output to an AC terminal. Between the DC terminals
A set of MOSFETs 101 and 102, 103 and 1 connected in series
04, 105 and 106 are connected at both ends. Each MOSFET
An AC terminal is taken out from the series connection point of the two MOSFETs in the set.

【0018】本発明によるSiCのMOSFETを用いれば、
シリコンに比べ大幅に低損失のMOSFETが可能となり、モ
ジュールの損失が低減でき、インバータ装置の効率が向
上する。また、ダイオードをSiCのショットキーダイ
オードとすることで、スイッチングデバイス,ダイオー
ド共にユニポーラ型となる。よって、インバータ装置の
さらなる高速化が可能となる。
If the SiC MOSFET according to the present invention is used,
MOSFETs with much lower loss than silicon can be achieved, module loss can be reduced, and the efficiency of the inverter device improves. Further, when the diode is a Schottky diode of SiC, both the switching device and the diode are unipolar. Therefore, the speed of the inverter device can be further increased.

【0019】図10は本発明によるトレンチ型の絶縁ゲ
ートバイポーラトランジスタ(以下IGBTと記す)の
実施例の断面図である。図10において、p+サブスト
レート9上にn- ドリフト層2とp型のpベース層3を
エピタキシャル成長したSiC基板において、pベース
層3の表面層に選択的に高濃度のn+ ソース領域4が形
成され、そのn+ ソース領域4の一部に、表面からn-
ドリフト層2に達するトレンチ5が形成されている。ト
レンチ5の内側には、シリコン酸化膜のゲート絶縁膜6
を介して多結晶シリコンのゲート電極13が設けられて
いる。またp+ サブストレート9の裏面にTi−Alの
コレクタ電極14が設けられている。このIGBTで
は、pベース層3の表面からゲート部分のトレンチ5よ
りも深い第二のトレンチ8、およびその第二のトレンチ
8の側面及び底面に沿ってp+ 型領域7が形成されてい
る。そして、そのp+ 型領域7からpベース層3,n+
ソース領域4の表面に達するTi−Alからなるエミッ
タ電極15が設けられている。図10のIGBTの動作
は、コレクタ電極14とエミッタ電極15との間に電圧
を印加した状態で、ゲート電極13にある値以上の正の
電圧を加えると、ゲート電極13の横のpベース層3の
表面層に反転層が形成され、その反転層を通じてエミッ
タ電極15からpベース層3へと電子電流が注入され
る。この電子電流がpベース層3,n- ドリフト層2,
+ サブストレート9よりなるバイポーラトランジスタ
のベース電流となり、IGBTが動作する。図10のI
GBTでは、コレクタ電極14とエミッタ電極15との
間に電圧を印加し、その電圧を高めた際、p+ 型領域7
とn- ドリフト層2よりなるpn接合から、n- ドリフ
ト層2に拡がる空乏層によって、ゲート絶縁膜6とn-
ドリフト層2の界面の電界強度が緩和される。したがっ
て、IGBTのアバランシェ耐量はSiCの絶縁破壊電
界強度によって規定され、ゲート絶縁膜6が破壊するこ
とはない。すなわち、電圧印加時にゲート絶縁膜が絶縁
破壊することのない、アバランシェ耐量の大きいIGB
Tとすることができる。
FIG. 10 is a sectional view of an embodiment of a trench type insulated gate bipolar transistor (hereinafter referred to as IGBT) according to the present invention. Referring to FIG. 10, in a SiC substrate in which n drift layer 2 and p-type p base layer 3 are epitaxially grown on p + substrate 9, a high concentration n + source region 4 is selectively formed on the surface layer of p base layer 3. Is formed, and a part of the n + source region 4 is n from the surface.
A trench 5 reaching the drift layer 2 is formed. Inside the trench 5, a gate insulating film 6 of a silicon oxide film is formed.
, A gate electrode 13 of polycrystalline silicon is provided. Also, a Ti-Al collector electrode 14 is provided on the back surface of the p + substrate 9. In the IGBT, a second trench 8 deeper than the gate portion trench 5 from the surface of the p base layer 3 and ap + type region 7 are formed along the side and bottom surfaces of the second trench 8. Then, p base layer 3 from the p + -type region 7, n +
An emitter electrode 15 made of Ti-Al reaching the surface of the source region 4 is provided. The operation of the IGBT of FIG. 10 is as follows. When a positive voltage of a certain value or more is applied to the gate electrode 13 with a voltage applied between the collector electrode 14 and the emitter electrode 15, the p base layer 3, an inversion layer is formed on the surface layer, and an electron current is injected from the emitter electrode 15 to the p base layer 3 through the inversion layer. This electron current is applied to p base layer 3, n drift layer 2,
The current becomes the base current of the bipolar transistor composed of the p + substrate 9, and the IGBT operates. I in FIG.
In the GBT, when a voltage is applied between the collector electrode 14 and the emitter electrode 15 and the voltage is increased, the p + -type region 7
And n - from the pn junction consisting of the drift layer 2, n - the depletion layer that spreads in the drift layer 2, a gate insulating film 6 n -
The electric field strength at the interface of the drift layer 2 is reduced. Therefore, the avalanche withstand capability of the IGBT is determined by the dielectric breakdown electric field strength of SiC, and the gate insulating film 6 does not break. In other words, an IGB having a large avalanche withstand voltage does not cause breakdown of the gate insulating film when a voltage is applied.
T.

【0020】なお、一般に、SiCは低抵抗率のp型領
域を形成することが困難である。これはアルミニウム,
ほう素などのp型不純物の不純物準位が200meVか
ら300meVと深いため、不純物の活性化率が非常に
低いからである。したがって、SiCのIGBTはラッ
チアップしやすいという欠点がある。しかし、図10の
構造とすることにより、p+ 型領域7を通って電流が流
れるため、ラッチアップが起きにくくなる。
In general, it is difficult for SiC to form a p-type region having a low resistivity. This is aluminum,
This is because the impurity activation rate of impurities is extremely low because the impurity level of a p-type impurity such as boron is as deep as 200 meV to 300 meV. Therefore, the SiC IGBT has a drawback that it is easy to latch up. However, with the structure shown in FIG. 10, a current flows through the p + -type region 7, so that latch-up hardly occurs.

【0021】図11は本発明によるIGBTをスイッチ
ング素子とする電力用インバータ装置の主回路の一例で
ある。図中破線で囲んだ部分、すなわちIGBTとダイ
オードの逆並列回路部に本発明のIGBTが適用されて
いる。本インバータ装置は一対の直流端子121及び1
22、並びに交流の相数に等しい3個の交流端子131〜
133を備え、直流端子に直流電源を接続し、IGBT141
〜146をスイッチングすることにより、直流電力を交流
電力に変換して交流端子に出力する。直流端子間には、
直列接続されたIGBTの組101と102,103と
104,105と106の各両端が接続される。各IG
BTの組における2個のIGBTの直列接続点からは交
流端子が取り出される。
FIG. 11 shows an example of a main circuit of a power inverter device using an IGBT as a switching element according to the present invention. The IGBT of the present invention is applied to a portion surrounded by a broken line in the drawing, that is, an antiparallel circuit portion of the IGBT and the diode. This inverter device has a pair of DC terminals 121 and 1
22, and three AC terminals 131 to
133, DC power supply is connected to DC terminal, IGBT141
By switching 〜146, DC power is converted to AC power and output to the AC terminal. Between the DC terminals
Both ends of the series-connected IGBT sets 101 and 102, 103 and 104, and 105 and 106 are connected. Each IG
An AC terminal is taken out from a series connection point of two IGBTs in the set of BTs.

【0022】本発明のSiCのIGBTを用いれば、シ
リコンに比べ大幅に低損失のIGBTが可能となり、モジュ
ールの損失が低減でき、インバータ装置の効率が向上す
る。
By using the SiC IGBT of the present invention, an IGBT having a much lower loss than silicon can be realized, the module loss can be reduced, and the efficiency of the inverter device can be improved.

【0023】[0023]

【発明の効果】以上説明したように本発明のSiC半導
体装置によれば、ゲート部より深い第二のトレンチ、お
よびその第二トレンチに沿ってp型領域を設けることに
よって、電圧印加時にp型領域から拡がる空乏層によ
り、ゲート絶縁膜にかかる電界強度が緩和される。した
がって、ゲート絶縁膜が絶縁破壊することのない、アバ
ランシェ耐量の大きいSiCトレンチMOSFETとすること
ができる。
As described above, according to the SiC semiconductor device of the present invention, by providing the second trench deeper than the gate portion and the p-type region along the second trench, the p-type The electric field intensity applied to the gate insulating film is reduced by the depletion layer extending from the region. Therefore, a SiC trench MOSFET having a large avalanche resistance can be obtained without dielectric breakdown of the gate insulating film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のトレンチMOSFETの断面構造
図。
FIG. 1 is a sectional structural view of a trench MOSFET according to an embodiment of the present invention.

【図2】図1と図5のトレンチMOSFETのX−X′に沿っ
ての電界強度分布。
FIG. 2 is an electric field intensity distribution along XX ′ of the trench MOSFET of FIGS. 1 and 5;

【図3】図1のトレンチMOSFETの製造方法を説明するた
めの製造行程順の断面構造図。
FIG. 3 is a sectional view illustrating a method of manufacturing the trench MOSFET of FIG. 1 in a manufacturing process order.

【図4】第二トレンチの間に複数のトレンチゲートを設
けたトレンチMOSFETの断面図。
FIG. 4 is a cross-sectional view of a trench MOSFET in which a plurality of trench gates are provided between second trenches.

【図5】従来例のトレンチMOSFETの断面構造図。FIG. 5 is a sectional structural view of a conventional trench MOSFET.

【図6】図5のトレンチMOSFETのX−X′に沿っての電
界強度分布
6 is an electric field intensity distribution along XX 'of the trench MOSFET of FIG.

【図7】電界緩和の効果を高めたトレンチMOSFETの断面
構造図。
FIG. 7 is a sectional structural view of a trench MOSFET in which the effect of electric field relaxation is enhanced.

【図8】p型領域がトレンチゲートと交差するように配
置したトレンチMOSFETの断面構造図。
FIG. 8 is a sectional structural view of a trench MOSFET in which a p-type region is arranged to intersect a trench gate.

【図9】本発明のトレンチMOSFETを適用した電力用イン
バータ装置の主回路の実施例。
FIG. 9 is an embodiment of a main circuit of a power inverter device to which the trench MOSFET of the present invention is applied.

【図10】本発明の実施例のトレンチIGBTの断面
図。
FIG. 10 is a sectional view of a trench IGBT according to an embodiment of the present invention.

【図11】本発明のトレンチIGBTを適用した電力用
インバータ装置の主回路の実施例。
FIG. 11 is an embodiment of a main circuit of a power inverter device to which the trench IGBT of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…n+ サブストレート、2…n- ドリフト層、3…p
ベース層、4…n+ ソース領域、5…トレンチ、6…ゲ
ート絶縁膜、7…p+ 型領域、8…第二のトレンチ、9
…p+ サブストレート、11…ドレイン電極、12…ソ
ース電極、13…ゲート電極、14…コレクタ電極、1
5…エミッタ電極、101〜106…MOSFET、111〜
116…ダイオード、121,122…直流端子、13
1〜133…交流端子、141〜146…IGBT。
1 ... n + substrate, 2 ... n - drift layer, 3 ... p
Base layer, 4 ... n + source region, 5 ... trench, 6 ... gate insulating film, 7 ... p + type region, 8 ... second trench, 9
... p + substrate, 11 ... drain electrode, 12 ... source electrode, 13 ... gate electrode, 14 ... collector electrode, 1
5 ... Emitter electrode, 101-106 ... MOSFET, 111-
116: diode, 121, 122: DC terminal, 13
1 to 133 ... AC terminals, 141 to 146 ... IGBTs.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第一導電型の炭化けい素半導体基板上に、
順に形成された第一導電型のドリフト層と第二導電型ベ
ース層と、第二導電型ベース層に形成された第一導電型
ソース領域と、第一導電型ソース領域の表面から第一導
電型ドリフト層に達する第一のトレンチを有し、第一の
トレンチ内に絶縁膜を介してゲート電極を備え、前記第
一のトレンチより深い第二のトレンチを有し、その第二
のトレンチの内面に沿って第二導電型領域を備えること
を特徴とする炭化けい素半導体装置。
A first conductivity type silicon carbide semiconductor substrate;
A first conductivity type drift layer and a second conductivity type base layer formed in order, a first conductivity type source region formed on the second conductivity type base layer, and a first conductive type source region from the surface of the first conductivity type source region. A first trench that reaches the mold drift layer, a gate electrode is provided in the first trench via an insulating film, and a second trench that is deeper than the first trench is provided. A silicon carbide semiconductor device comprising a second conductivity type region along an inner surface.
【請求項2】請求項1において、第二のトレンチと隣接
する他の第二のトレンチの間に、少なくとも二つの第一
のトレンチを有することを特徴とする炭化けい素半導体
装置。
2. The silicon carbide semiconductor device according to claim 1, wherein at least two first trenches are provided between the second trench and another adjacent second trench.
【請求項3】請求項1において、第一トレンチより深い
第二トレンチの横方向に最も広がった位置が基板表面よ
り内部にあることを特徴とする炭化けい素半導体装置。
3. The silicon carbide semiconductor device according to claim 1, wherein the position of the second trench deeper than the first trench in the lateral direction is located inside the substrate surface.
【請求項4】請求項1において、第一トレンチと第一ト
レンチより深い第二のトレンチが交差することを特徴と
する炭化けい素半導体装置。
4. The silicon carbide semiconductor device according to claim 1, wherein the first trench and the second trench deeper than the first trench intersect.
【請求項5】第二導電型の炭化けい素半導体基板上に、
順に形成された第一導電型のドリフト層と第二導電型ベ
ース層と、第二導電型ベース層に形成された第一導電型
ソース領域と、第一導電型ソース領域の表面から第一導
電型ドリフト層に達する第一のトレンチを有し、トレン
チ内に絶縁膜を介してゲート電極を備え、前記第一のト
レンチより深い第二のトレンチを有し、その第二のトレ
ンチの内面に沿って第二導電型領域を備えることを特徴
とする炭化けい素半導体装置。
5. The method according to claim 5, wherein the second conductivity type silicon carbide semiconductor substrate is
A first conductivity type drift layer and a second conductivity type base layer formed in order, a first conductivity type source region formed on the second conductivity type base layer, and a first conductive type source region from the surface of the first conductivity type source region. A first trench reaching the mold drift layer, a gate electrode provided in the trench via an insulating film, a second trench deeper than the first trench, and an inner surface of the second trench extending along the inner surface of the second trench. And a second conductivity type region.
JP16686097A 1997-06-24 1997-06-24 Silicon carbide semiconductor device Expired - Lifetime JP3371763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16686097A JP3371763B2 (en) 1997-06-24 1997-06-24 Silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16686097A JP3371763B2 (en) 1997-06-24 1997-06-24 Silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPH1117176A true JPH1117176A (en) 1999-01-22
JP3371763B2 JP3371763B2 (en) 2003-01-27

Family

ID=15838993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16686097A Expired - Lifetime JP3371763B2 (en) 1997-06-24 1997-06-24 Silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP3371763B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099909A1 (en) * 2001-06-05 2002-12-12 National University Of Singapore Power mosfet having enhanced breakdown voltage
WO2002099870A1 (en) * 2001-06-04 2002-12-12 Matsushita Electric Industrial Co., Ltd. Production method for semiconductor device
JP2005175062A (en) * 2003-12-09 2005-06-30 Toyota Central Res & Dev Lab Inc Semiconductor device, and method for suppressing latch-up phenomenon
US6953968B2 (en) 2001-01-19 2005-10-11 Mitsubishi Denki Kabushiki Kaisha High voltage withstanding semiconductor device
JP2006237125A (en) * 2005-02-23 2006-09-07 Kansai Electric Power Co Inc:The Method of operating bipolar type semiconductor device, and bipolar type semiconductor device
JP2007220888A (en) * 2006-02-16 2007-08-30 Central Res Inst Of Electric Power Ind Silicon carbide semiconductor device having radiation resistance by superlattice structure and its operation method
JP2008306193A (en) * 2003-08-22 2008-12-18 Kansai Electric Power Co Inc:The Method for manufacturing semiconductor device
JP2010004014A (en) * 2008-05-22 2010-01-07 Sumitomo Electric Ind Ltd Insulated gate field effect transistor
JP2011044513A (en) * 2009-08-20 2011-03-03 National Institute Of Advanced Industrial Science & Technology Silicon carbide semiconductor device
US7994513B2 (en) 2008-04-17 2011-08-09 Denso Corporation Silicon carbide semiconductor device including deep layer
WO2012077617A1 (en) * 2010-12-10 2012-06-14 三菱電機株式会社 Semiconductor device and production method therefor
JP2012243985A (en) * 2011-05-20 2012-12-10 Shindengen Electric Mfg Co Ltd Semiconductor device and method for manufacturing the same
JP2018098483A (en) * 2016-12-13 2018-06-21 現代自動車株式会社Hyundai Motor Company Semiconductor element and method for manufacturing the same
CN108336133A (en) * 2018-02-09 2018-07-27 电子科技大学 A kind of silicon carbide insulated gate bipolar transistor and preparation method thereof
JP2018133579A (en) * 2018-04-18 2018-08-23 ローム株式会社 Semiconductor device
CN109768091A (en) * 2019-03-13 2019-05-17 中国科学院微电子研究所 A kind of double groove SS-SiC MOSFET structures
JP2020004876A (en) * 2018-06-28 2020-01-09 富士電機株式会社 Silicon carbide semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400548B2 (en) * 2015-09-14 2018-10-03 株式会社東芝 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298073A (en) * 1989-05-12 1990-12-10 Nippon Soken Inc Semiconductor device and manufacture thereof
JPH07161983A (en) * 1993-12-03 1995-06-23 Fuji Electric Co Ltd Siliconcarbite vertical mosfet
JPH08264772A (en) * 1995-03-23 1996-10-11 Toyota Motor Corp Field-effect type semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298073A (en) * 1989-05-12 1990-12-10 Nippon Soken Inc Semiconductor device and manufacture thereof
JPH07161983A (en) * 1993-12-03 1995-06-23 Fuji Electric Co Ltd Siliconcarbite vertical mosfet
JPH08264772A (en) * 1995-03-23 1996-10-11 Toyota Motor Corp Field-effect type semiconductor element

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953968B2 (en) 2001-01-19 2005-10-11 Mitsubishi Denki Kabushiki Kaisha High voltage withstanding semiconductor device
US7115944B2 (en) 2001-01-19 2006-10-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
WO2002099870A1 (en) * 2001-06-04 2002-12-12 Matsushita Electric Industrial Co., Ltd. Production method for semiconductor device
WO2002099909A1 (en) * 2001-06-05 2002-12-12 National University Of Singapore Power mosfet having enhanced breakdown voltage
JP2008306193A (en) * 2003-08-22 2008-12-18 Kansai Electric Power Co Inc:The Method for manufacturing semiconductor device
JP2005175062A (en) * 2003-12-09 2005-06-30 Toyota Central Res & Dev Lab Inc Semiconductor device, and method for suppressing latch-up phenomenon
JP2006237125A (en) * 2005-02-23 2006-09-07 Kansai Electric Power Co Inc:The Method of operating bipolar type semiconductor device, and bipolar type semiconductor device
JP2007220888A (en) * 2006-02-16 2007-08-30 Central Res Inst Of Electric Power Ind Silicon carbide semiconductor device having radiation resistance by superlattice structure and its operation method
US7994513B2 (en) 2008-04-17 2011-08-09 Denso Corporation Silicon carbide semiconductor device including deep layer
JP2010004014A (en) * 2008-05-22 2010-01-07 Sumitomo Electric Ind Ltd Insulated gate field effect transistor
JP2011044513A (en) * 2009-08-20 2011-03-03 National Institute Of Advanced Industrial Science & Technology Silicon carbide semiconductor device
US9985093B2 (en) 2010-12-10 2018-05-29 Mitsubishi Electric Corporation Trench-gate type semiconductor device and manufacturing method therefor
WO2012077617A1 (en) * 2010-12-10 2012-06-14 三菱電機株式会社 Semiconductor device and production method therefor
US9224860B2 (en) 2010-12-10 2015-12-29 Mitsubishi Electric Corporation Trench-gate type semiconductor device and manufacturing method therefor
US9614029B2 (en) 2010-12-10 2017-04-04 Mitsubishi Electric Corporation Trench-gate type semiconductor device and manufacturing method therefor
JP2012243985A (en) * 2011-05-20 2012-12-10 Shindengen Electric Mfg Co Ltd Semiconductor device and method for manufacturing the same
JP2018098483A (en) * 2016-12-13 2018-06-21 現代自動車株式会社Hyundai Motor Company Semiconductor element and method for manufacturing the same
CN108336133A (en) * 2018-02-09 2018-07-27 电子科技大学 A kind of silicon carbide insulated gate bipolar transistor and preparation method thereof
CN108336133B (en) * 2018-02-09 2020-08-28 电子科技大学 Silicon carbide insulated gate bipolar transistor and manufacturing method thereof
JP2018133579A (en) * 2018-04-18 2018-08-23 ローム株式会社 Semiconductor device
JP2020004876A (en) * 2018-06-28 2020-01-09 富士電機株式会社 Silicon carbide semiconductor device
CN109768091A (en) * 2019-03-13 2019-05-17 中国科学院微电子研究所 A kind of double groove SS-SiC MOSFET structures

Also Published As

Publication number Publication date
JP3371763B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
USRE47198E1 (en) Power semiconductor device
JP3371763B2 (en) Silicon carbide semiconductor device
JP2021182639A (en) Semiconductor device and power converter
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
JPH08204179A (en) Silicon carbide trench mosfet
JP3259485B2 (en) Silicon carbide type MOSFET
JP2005317751A (en) Inversely conductive semiconductor device and its manufacturing method
JP2001185727A (en) Semiconductor device and its manufacturing method
JP2002319676A (en) Semiconductor device, manufacturing method and control method
JP5321377B2 (en) Power semiconductor device
JPH03238871A (en) Semiconductor device and manufacture thereof
JPH08306937A (en) High-breakdown strength semiconductor device
WO2013088544A1 (en) Semiconductor device and power converting apparatus
Takei et al. 600 V-IGBT with reverse blocking capability
CN104303285A (en) Semiconductor device and method for manufacturing semiconductor device
JP2004193212A (en) Semiconductor device
JPH10321879A (en) Silicon carbide diode
JPH0457110B2 (en)
JP5233158B2 (en) Silicon carbide semiconductor device
JPH0851202A (en) Semiconductor bidirectional switch, and its drive method
JP2007116160A (en) Trench igbt for large capacity load
JP6101440B2 (en) Diode and power converter using the same
JP2003264288A (en) Semiconductor device
JP2002353454A (en) Semiconductor device and manufacturing method
JPH05206469A (en) Insulated gate bipolar transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term