JPH02298073A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02298073A
JPH02298073A JP11926889A JP11926889A JPH02298073A JP H02298073 A JPH02298073 A JP H02298073A JP 11926889 A JP11926889 A JP 11926889A JP 11926889 A JP11926889 A JP 11926889A JP H02298073 A JPH02298073 A JP H02298073A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
semiconductor
semiconductor device
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11926889A
Other languages
Japanese (ja)
Other versions
JP2752431B2 (en
Inventor
Kazuhiro Tsuruta
和弘 鶴田
Mitsutaka Katada
満孝 堅田
Seiji Fujino
藤野 誠二
Masami Yamaoka
山岡 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP1119268A priority Critical patent/JP2752431B2/en
Publication of JPH02298073A publication Critical patent/JPH02298073A/en
Priority to US07/731,268 priority patent/US5164218A/en
Priority to US07/844,889 priority patent/US5313092A/en
Application granted granted Critical
Publication of JP2752431B2 publication Critical patent/JP2752431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To acquire a high breakdown strength and to realize a large diameter of a substrate by making a P-N junction side on a first semiconductor substrate flat at a peripheral section thereof forming a mesa structure with a specified incline and by coating the incline with an insulator layer which consists of a thermal oxidation film. CONSTITUTION:At first, a mirror surface 1a of a first semiconductor substrate 1 of high resistance N<->-type is provided with a mesa groove 3 which is formed crosswise having an incline 3a and opens to a substrate edge. The semiconductor substrate and a low resistance second semiconductor substrate 2 of N<+>-type are fully cleaned to remove a spontaneous oxide film thereon. Then, an amount of water on the surface is controlled, and mirrors 1a, 2a are tightly bonded each other and dried. The substrates 1, 2 are directly bonded at a bonding side through heat treatment to acquire a completely integrated substrate 5. The substrate 5 is thermally treated to protect the incline 3a of the mesa groove 3 by an oxide film 6. The substrate surface 1b is lap-polished, a P-N junction surface 7 and a P-layer are formed, a mask is applied, an N<+>-layer is formed, and an aluminum wiring is applied to a specified position of the element surface. Dicing is carried out at a position of the mesa groove 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高耐圧および基板の大口径化を可能にする半
導体装置およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device and a method for manufacturing the same, which enable high breakdown voltage and a large diameter substrate.

〔従来の技術〕[Conventional technology]

第4図に示すブレーナ型半導体装置において、そのPN
接合に逆方向電圧を印加すると、その平坦部より湾曲部
に電界集中が起こる。従って、湾曲部におけるアバラン
シェ降伏電圧の方が低くなるため、600■以上の高耐
圧を必要とする素子には、従来、メサ構造(第5図(a
)、 (b)参照)、あるいはガードリング構造(第6
図参照)といった耐圧構造が採用されている。
In the Brehner type semiconductor device shown in FIG.
When a reverse voltage is applied to the junction, electric field concentration occurs at the curved portion rather than at the flat portion. Therefore, the avalanche breakdown voltage at the curved part is lower, so devices that require a high withstand voltage of 600 µm or more are conventionally constructed with a mesa structure (see Figure 5 (a).
), (b)) or guard ring structure (6th
A pressure-resistant structure (see figure) is adopted.

第5図に示すメサ構造は、素子側面を斜めに機械的研磨
あるいはエツチングし、PN接合面を平坦にするため、
上述のような局部的な電界集中が起こらず、高耐圧が得
られる。しかしながら、PN接合端部の電界という点を
考慮すれば、第5図(b)のように逆メサ構造の方が優
れている。すなわち、この第5図(1))に示すものに
よれば、PN接合端部の電界は弱められ、さらに高耐圧
が得られやすくなる。
The mesa structure shown in Figure 5 is created by mechanically polishing or etching the sides of the device diagonally to make the PN junction surface flat.
Local electric field concentration as described above does not occur, and a high withstand voltage can be obtained. However, when considering the electric field at the end of the PN junction, the inverted mesa structure as shown in FIG. 5(b) is superior. That is, according to the structure shown in FIG. 5(1)), the electric field at the end of the PN junction is weakened, making it easier to obtain a higher breakdown voltage.

従来、第5図(b)に示す逆メサ構造の場合において、
その素子側面を斜めに形成する工程は後工程であり、構
造上基板を厚くすれはメサエッチング量が増加すること
になる。従って、素子の集積度を高めるために、基板を
大口径化しようとする場合、基板を厚くする必要があり
、その結果、基板の大口径化を図ることが困難になると
いう問題がある。
Conventionally, in the case of the inverted mesa structure shown in FIG. 5(b),
The step of forming the side surfaces of the element obliquely is a post-process, and the amount of mesa etching increases as the substrate becomes thicker due to the structure. Therefore, when attempting to increase the diameter of the substrate in order to increase the degree of integration of elements, it is necessary to increase the thickness of the substrate, and as a result, there is a problem in that it becomes difficult to increase the diameter of the substrate.

一方、第6図に示すガードリング構造の場合、PN接合
端部は表面を酸化膜で保護されており、工程も簡単であ
るという利点がある。しかしながら、高耐圧を要求する
ほど、PN接合の湾曲部の電界緩和のためにガードリン
グの本数を増加する必要があり、空乏層を水平方向に長
く伸ばす必要が生じる。従って、それに要する面積が増
大し、素子寸法が大きくなるという問題がある。さらに
湾曲部を無くすことはできないため、耐圧は平坦接合よ
りも低くなってしまうという問題がある。
On the other hand, in the case of the guard ring structure shown in FIG. 6, the surface of the PN junction end is protected by an oxide film, and the process is simple. However, the higher the breakdown voltage is required, the more it is necessary to increase the number of guard rings to alleviate the electric field at the curved portion of the PN junction, and the longer the depletion layer needs to be extended in the horizontal direction. Therefore, there is a problem that the area required for this increases and the element size increases. Furthermore, since the curved portion cannot be eliminated, there is a problem that the withstand voltage is lower than that of flat bonding.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記種々の問題点に鑑みてなされたもので、
高耐圧を得るとともに、基板の大口径化を図ることが容
易な半導体装置およびその製造方法を提供することを目
的とする。
The present invention has been made in view of the various problems mentioned above.
It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same that can easily achieve a high breakdown voltage and increase the diameter of a substrate.

〔課題を解決するための手段] 上記目的を達成するために、請求項1による半導体装置
の発明においては、一方の面および他方の面を有し、こ
の他方の面側に所定濃度の半導体層を有して内部にPN
接合面を形成する第1半導体基板と、 この第1半導体基板の他方の面に接合され、前記第1半
導体基板の他方の面側に存在する半導体層の濃度よりも
高い濃度を有する第2半導体基板と、 前記第1半導体基板と前記第2半導体基板の接合により
前記半導体層と前記第2半導体基板の濃度差にて前記第
1半導体基板内に形成される形成接合層とを具備し、 前記第1半導体基板において、その周縁に沿って前記P
N接合面を貫通して所定の傾斜角面が形成され、 前記所定の傾斜側面は、前記PN接合面の周縁部分にお
いて、前記第1半導体基板の一方の面方向へ近づくにし
たがってその基板の厚さが薄くなるように傾斜づけられ
ていることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the invention of a semiconductor device according to claim 1 has one surface and the other surface, and a semiconductor layer with a predetermined concentration on the other surface side. with PN inside
a first semiconductor substrate forming a bonding surface; and a second semiconductor bonded to the other surface of the first semiconductor substrate and having a concentration higher than that of a semiconductor layer existing on the other surface of the first semiconductor substrate. a substrate; and a bonding layer formed in the first semiconductor substrate due to a concentration difference between the semiconductor layer and the second semiconductor substrate by bonding the first semiconductor substrate and the second semiconductor substrate, In the first semiconductor substrate, the P
A predetermined inclined side surface is formed passing through the N junction surface, and the predetermined inclined side surface has a thickness that increases as it approaches one surface of the first semiconductor substrate at a peripheral portion of the P N junction surface. It is characterized by being sloped so that it becomes thinner.

さらに、上記構成に加えて、請求項3による半導体装置
の発明においては前記所定の傾斜側面を熱酸化膜からな
る絶縁物層によって被覆するという技術的手段を採用す
る。
Furthermore, in addition to the above configuration, the semiconductor device according to the third aspect of the present invention employs a technical means of covering the predetermined inclined side surface with an insulating layer made of a thermal oxide film.

また、請求項5による半導体装置の製造方法の発明にお
いては、鏡面研磨された第1半導体基板の鏡面側に開口
する所定の傾斜側面を有するメサ溝を配設する第1の工
程と、 鏡面研磨された第2半導体基板の鏡面と、前記第1半導
体基板の前記鏡面とを直接接合して接合基板を形成する
第2の工程と、 この接合基板に形成される前記第1半導体基板の前記メ
サ溝と前記第2半導体基板の前記鏡面とによって形成さ
れる空間の内面を絶縁物層によって被覆する第3の工程
と、 前記接合基板における前記第1の半導体基板において、
前記傾斜側面に周縁部を有するPN接合面を形成する第
4の工程と、 を含んで半導体装置を製造することを特徴とする。
Further, in the invention of the method for manufacturing a semiconductor device according to claim 5, a first step of arranging a mesa groove having a predetermined inclined side surface opening on the mirror side of the mirror-polished first semiconductor substrate; and mirror polishing. a second step of directly bonding the mirror surface of the second semiconductor substrate and the mirror surface of the first semiconductor substrate to form a bonded substrate; and the mesa of the first semiconductor substrate formed on the bonded substrate. a third step of covering the inner surface of the space formed by the groove and the mirror surface of the second semiconductor substrate with an insulating layer; and in the first semiconductor substrate in the bonded substrate,
A fourth step of forming a PN junction surface having a peripheral edge portion on the inclined side surface, and manufacturing a semiconductor device is characterized in that the method includes manufacturing a semiconductor device.

〔作用および効果〕[Action and effect]

請求項1による発明においては、第1半導体基板に形成
されるPN接合面は、所定の傾斜側面により、その周縁
部において湾曲した部分がなくなり平坦にされ、かつ逆
メサ構造を構成するため、高耐圧を得るとともに、小面
積の半導体装置が提供できるという優れた効果がある。
In the invention according to claim 1, the PN junction surface formed on the first semiconductor substrate has a predetermined inclined side surface, which eliminates a curved portion at the peripheral edge and is made flat, and forms an inverted mesa structure, so that the PN junction surface has a high height. This has the excellent effect of providing a semiconductor device with a small area and a high breakdown voltage.

請求項3による発明においては、上記傾斜側面を熱酸化
膜からなる絶縁物層によって被覆するようにしているか
ら、前記PN接合面°の周縁部は熱酸化膜で保護される
ことになり、経時変化が少なく安定した高耐圧を得るこ
とができる半導体装置が提供できるという優れた効果が
ある。
In the invention according to claim 3, since the inclined side surface is covered with an insulating layer made of a thermal oxide film, the peripheral edge of the PN junction surface is protected by the thermal oxide film, so that it does not deteriorate over time. This has the excellent effect of providing a semiconductor device that can obtain a stable high breakdown voltage with little change.

請求項5による本発明においては、所定の半導体装置を
得るのに必要な半導体基板を、所定の傾斜側面を有する
メサ溝を第1の工程で配設させた第1半導体基板の鏡面
と、第2半導体基板の鏡面とを第2の工程で直接接合さ
せて接合基板を形成し、さらに第3の工程において、こ
のメサ溝と第2半導体基板の鏡面とによって構成される
空間内面を絶縁物層で被覆するようにして構成し、第4
の工程で絶縁物層で被覆された傾斜側面に周縁部をもつ
PN接合面を形成するようにして、半導体装置を製造し
ているから、本発明の製造方法によって得られる半導体
装置は耐圧を決定するPN接合面周縁部が絶縁物層で保
護された傾斜側面を持つ逆メサ型耐圧構造となり、経時
変化の少ない安定した高耐圧で、かつ小面積の半導体装
置が提供できるという優れた効果がある。また、高濃度
領域となる第2の半導体基板の厚みを増加させても、逆
メサ構造を形成するメサ溝の深さは変化しないので、基
板の大口径化が容易であるという優れた効果がある。
In the present invention according to claim 5, the semiconductor substrate necessary for obtaining a predetermined semiconductor device is formed by using a mirror surface of a first semiconductor substrate in which a mesa groove having a predetermined inclined side surface is formed in the first step; In a second step, the mirror surfaces of the two semiconductor substrates are directly bonded to form a bonded substrate, and in a third step, the inner surface of the space constituted by the mesa groove and the mirror surface of the second semiconductor substrate is coated with an insulating material layer. The fourth
Since the semiconductor device is manufactured by forming a PN junction surface having a peripheral edge on the inclined side surface covered with an insulating material layer in the step of step 1, the semiconductor device obtained by the manufacturing method of the present invention has a high withstand voltage. The periphery of the PN junction surface is protected by an insulator layer and has an inverted mesa-type breakdown voltage structure with sloped side surfaces, which has the excellent effect of providing a semiconductor device with a stable high breakdown voltage that does not change over time and has a small area. . Furthermore, even if the thickness of the second semiconductor substrate, which is the high concentration region, is increased, the depth of the mesa groove forming the inverted mesa structure does not change, which has the excellent effect of making it easy to increase the diameter of the substrate. be.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1図は本発明の一実施例を示す半導体装置の製造工程
を示す断面図である。第2図に示すNPN型高耐圧バイ
ポーラトランジスタを例にとってその製造工程を説明す
る。
FIG. 1 is a sectional view showing the manufacturing process of a semiconductor device according to an embodiment of the present invention. The manufacturing process will be explained by taking the NPN type high voltage bipolar transistor shown in FIG. 2 as an example.

まず、第1図(a)のように高抵抗のN−型の第1半導
体基板1の鏡面1aに、機械研磨あるいは化学エツチン
グにより、傾斜側面3aを有し基板端部に開口するメサ
溝3を十字方向(第1図(a)では一方向のみ図示)に
形成する。この第1半導体基板1と低抵抗のN゛型の第
2°半導体基板2を充分洗浄し、表面の自然酸化膜を除
去する。例えば、H!SOs: HtOz−3: 1の
溶液にてこれらの基板表面に15Å以下の薄い酸化膜を
形成し、親水性を持たせ、純水にて洗浄する。次に、こ
れらの基板を乾燥窒素ブローあるいはスピン乾燥により
表面に吸着した水分量を制御し、2枚の基板の鏡面間±
la、2aを第1図さ)のように密着させる。
First, as shown in FIG. 1(a), a mesa groove 3 having an inclined side surface 3a and opening at the edge of the substrate is formed on the mirror surface 1a of a high-resistance N-type first semiconductor substrate 1 by mechanical polishing or chemical etching. are formed in a cross direction (only one direction is shown in FIG. 1(a)). The first semiconductor substrate 1 and the low resistance N-type second degree semiconductor substrate 2 are thoroughly cleaned to remove the natural oxide film on the surface. For example, H! A thin oxide film of 15 Å or less is formed on the surfaces of these substrates using a solution of SOs: HtOz-3:1 to make them hydrophilic, and then washed with pure water. Next, the amount of moisture adsorbed on the surface of these substrates is controlled by dry nitrogen blowing or spin drying, and the difference between the mirror surfaces of the two substrates is
Place la and 2a in close contact as shown in Figure 1).

これにより、2枚の基板1,2は表面に形成されたシラ
ノール基板および表面に吸着した水分子の水素結合によ
り接着される。さらに接着面4に残っている過剰な水分
を除去するため、真空中にて乾燥させる。このとき、先
に形成したメサ溝3は接着面4の過剰水分の抜は道とし
ても働き、接着の均一性は向上する。また、このとき、
基板の密着を向上させるため、30g重/cd以上の荷
重を印加するようにしてもよい。この後、接着基板l。
As a result, the two substrates 1 and 2 are bonded together by hydrogen bonds between the silanol substrate formed on the surface and the water molecules adsorbed on the surface. Furthermore, in order to remove excess moisture remaining on the adhesive surface 4, it is dried in a vacuum. At this time, the previously formed mesa groove 3 also serves as a channel for removing excess water from the bonding surface 4, improving the uniformity of bonding. Also, at this time,
In order to improve the adhesion of the substrate, a load of 30 g/cd or more may be applied. After this, the adhesive substrate l.

2を例えば窒素、アルゴン等の不活性ガス雰囲気中で1
100°C以上、1時間以上の熱処理を施す。
2 to 1 in an inert gas atmosphere such as nitrogen, argon, etc.
Heat treatment is performed at 100°C or higher for 1 hour or more.

それによって、接着面4において脱水縮合反応が起き、
シリコン(St)と酸素(0)の接合(S−O−3i)
ができ、さらに酸素が基板中に拡散し、シリコン同士の
結合(Si−3t)ができ、2枚の基板1.2は直接接
合され、完全に一体化する(この一体化した基板の符号
を新たに5とする)。ただし、メサ溝3は空洞となって
おり、形成接合層4aが第1半導体基板1の直接接合面
4近傍に形成されている。次に、第1図(C)のように
この一体化した基板5を、例えばドライ02.  ウェ
ッ)Ot、Hz、  02混合燃焼気体中等の酸化性雰
囲気中で900 ”C以上、1時間以上の熱処理を施し
、基板5内部のメサ溝3の傾斜側面3aを酸化する。こ
れにより、メサ溝3の傾斜側面3aは、酸化膜6により
保護されるが、さらに傾斜側面3aの保護を完全にする
ため、例えば減圧CVD法により表面を窒化膜、シリケ
ートガラス等の絶縁物で被覆するようにしてもよい。次
に、第1図(d)のように、後述する第1図(e)の工
程でP層を形成する側の基板表面1bをラップポリッシ
ュする。なお、このラップポリッシュにより、次の第1
図(e)において素子の耐圧を決定するPN接合面7が
メサ溝傾斜側面3aに達するように、かつメサ溝3が基
板表面1bに露出しない程度の厚さにする。さらに、第
1図(e)に示す次の工程ではこの基板5にPN接合面
7を形成する。第1図(e)では、ボロンなどのアクセ
プタ不純物を拡散する二七によりP層を形成している。
As a result, a dehydration condensation reaction occurs on the adhesive surface 4,
Junction of silicon (St) and oxygen (0) (S-O-3i)
Oxygen is further diffused into the substrate, bonding between silicones (Si-3T) is formed, and the two substrates 1.2 are directly bonded and completely integrated (the code for this integrated substrate is (newly set as 5). However, the mesa groove 3 is hollow, and the forming bonding layer 4a is formed in the vicinity of the direct bonding surface 4 of the first semiconductor substrate 1. Next, as shown in FIG. 1(C), this integrated substrate 5 is dried, for example. Heat treatment is performed at 900"C or higher for 1 hour or more in an oxidizing atmosphere such as Ot, Hz, 02 mixed combustion gas to oxidize the inclined side surface 3a of the mesa groove 3 inside the substrate 5. As a result, the mesa groove The inclined side surface 3a of No. 3 is protected by the oxide film 6, but in order to further protect the inclined side surface 3a completely, the surface is coated with an insulating material such as a nitride film or silicate glass by, for example, a low pressure CVD method. Next, as shown in FIG. 1(d), the substrate surface 1b on the side where the P layer will be formed in the step of FIG. 1(e) to be described later is lap-polished. the first of
In Figure (e), the thickness is set so that the PN junction surface 7, which determines the withstand voltage of the element, reaches the mesa groove inclined side surface 3a, and the mesa groove 3 is not exposed to the substrate surface 1b. Furthermore, in the next step shown in FIG. 1(e), a PN junction surface 7 is formed on this substrate 5. In FIG. 1(e), the P layer is formed by diffusing an acceptor impurity such as boron.

そして、所定領域にエミッタ領域を形成するためにマス
クを施し、リンなどのドナー不純物を拡散してN゛層を
形成し、さらに、素子表面の所定位置にアルミ配線を施
す(第1図(f)参照)、そして、第1図(9)に示す
ように、メサ溝3の位置でダイシングすることにより、
第2図に示すNPN型高耐圧バイポーラトランジスタを
製造している。
Then, a mask is applied to form an emitter region in a predetermined region, a donor impurity such as phosphorus is diffused to form an N layer, and aluminum wiring is further applied to a predetermined position on the element surface (see Fig. 1 (f). ), and as shown in FIG. 1 (9), by dicing at the mesa groove 3 position,
The NPN type high voltage bipolar transistor shown in FIG. 2 is manufactured.

なお、上記実施例では、第1図(C)で示す1中耕側面
3aの酸化膜、および絶縁膜形成工程を第1図(d)の
ラッピング処理の前に行っているが、ラッピング後の素
子部形成時、すなわち第1図[e)に示す工程時に行う
ようにしてもよい。
Note that in the above embodiment, the oxide film and insulating film forming process on the side surface 3a of FIG. 1C shown in FIG. 1C was performed before the lapping process shown in FIG. The step may be performed at the time of forming the section, that is, at the time of the step shown in FIG. 1 [e].

上記一実施例にて製造された第2図に示すNPN型高耐
圧バイポーラトランジスタは、酸化膜6で保護された傾
斜側面3aを有する逆メサ構造である。第2図において
、ベースB1コレクタCのPN接合!j7は平坦であり
、かつ、逆メサ構造であるために傾斜側面3aによりP
N接合面7の端部の電界は弱められ、基板濃度に対応し
た理論的に予想される高耐圧化が可能である。また、第
5図(b)に示した従来の逆メサ構造において、前記の
ように傾斜側面を形成する工程が後工程、すなわち電掻
付けが完成し、ダイシングする工程時であるために、こ
の傾斜側面を酸化膜で被覆するために熱処理することが
できず、側面にPN接合端部が露出した状態になり、側
面保護対策にガラス等の保護膜に使用がされているもの
の、保護膜の密着性の問題から耐圧が不安定になりやす
いという問題があった。しかしながら、第2図に示す本
発明における半導体装置の第1実施例のものは、最終工
程ではなく素子形成の前に傾斜側面に保護膜を形成する
工程を設けることができるため、その保護膜を酸化膜に
て形成することができ、従って、吸湿等が原因となる表
面漏れ電流が少なく、経時変化も少ない安定した耐圧を
得ることができる。
The NPN type high breakdown voltage bipolar transistor shown in FIG. 2 manufactured in the above embodiment has an inverted mesa structure having an inclined side surface 3a protected by an oxide film 6. In Fig. 2, PN junction of base B1 collector C! j7 is flat and has an inverted mesa structure, so P
The electric field at the end of the N-junction surface 7 is weakened, making it possible to achieve a theoretically high breakdown voltage corresponding to the substrate concentration. Furthermore, in the conventional inverted mesa structure shown in FIG. 5(b), the step of forming the inclined side surface as described above is a later step, that is, when the electric scraping is completed and the dicing step is performed. Heat treatment cannot be applied to cover the sloped side surface with an oxide film, leaving the PN junction end exposed on the side surface. Although protective films such as glass are used to protect the side surfaces, There was a problem in that pressure resistance was likely to become unstable due to problems with adhesion. However, in the first embodiment of the semiconductor device according to the present invention shown in FIG. 2, a step of forming a protective film on the inclined side surface can be provided before element formation instead of in the final step. It can be formed from an oxide film, and therefore, it is possible to obtain a stable breakdown voltage with little surface leakage current caused by moisture absorption, etc., and little change over time.

さらに、PN接合面7に湾曲部がないため、従来のガー
ドリング構造のように水平方向に空乏層を広げて電界を
緩和する必要がなく、ベース・エミッタ領域以外に耐圧
を向上させるために要する構造の領域で不要であり、そ
のため素子の小面積化が可能である。例えば、1500
V耐圧の素子ではガードリング領域幅は約500μmと
なるが、本実施例ではエツチング領域が約200μmで
ある。なお、逆メサ構造のため、メサ溝端部が素子内部
に入り込み、面積が小さくなる部分が存在するが、オン
電流は主にエミッタ領域で流れるので、少なくともエミ
ッタ領域の外側にメサ溝端部があれば、電流供給能力の
低下はない。また、メサ溝の深さは耐圧を決めるN−コ
1/クタ層8の厚さだけで決定されるため、基板の大口
径化によって基板が厚くなっても、従来の逆メサ構造の
ようにメサ溝深さ、すなわちメサエッチング量が増加す
ることはない。
Furthermore, since there is no curved part in the PN junction surface 7, there is no need to widen the depletion layer in the horizontal direction to alleviate the electric field as in the conventional guard ring structure, which is necessary to improve the breakdown voltage in regions other than the base-emitter region. It is unnecessary in the structure area, and therefore it is possible to reduce the area of the element. For example, 1500
In a V breakdown voltage device, the width of the guard ring region is approximately 500 μm, but in this embodiment, the etching region is approximately 200 μm. Note that due to the inverted mesa structure, there is a part where the mesa groove end enters inside the device and the area becomes smaller, but since the on-current mainly flows in the emitter region, at least if the mesa trench end is outside the emitter region, , there is no decrease in current supply ability. In addition, since the depth of the mesa groove is determined only by the thickness of the N-coder layer 8, which determines the withstand voltage, even if the substrate becomes thicker due to a larger diameter substrate, it will not work like the conventional inverted mesa structure. The mesa groove depth, that is, the mesa etching amount does not increase.

なお、上記一実施例としてNPN型バイポーラトランジ
スタの製造工程を示したが、導電型がP。
In addition, although the manufacturing process of the NPN type bipolar transistor was shown as one example above, the conductivity type is P.

N逆でもよく、素子構造もダイオード、MOSトランジ
スタ、サイリスタ等にも本発明は実施できる。
N may be reversed, and the present invention can also be implemented with element structures such as diodes, MOS transistors, and thyristors.

次に、第3図に本発明によって製造された導電変調型M
O3FETの断面図を示す。
Next, FIG. 3 shows a conductive modulation type M manufactured according to the present invention.
A cross-sectional view of an O3FET is shown.

第3図において、PN接合面17に湾曲部が存在するが
、通常は隣り合う湾曲部との間隔を、オフ時の空乏層が
つながって平坦接合に近い耐圧が得られる距離にすると
同時に、第3図を見てもわかるように、素子周辺部のP
N接合の端部に湾曲部を持っていないので、第1図に示
すNPN型高耐圧バイポーラI−ランジスタと同様に高
耐圧が実現できる。
In FIG. 3, there is a curved part on the PN junction surface 17, but normally the distance between adjacent curved parts is set to such a distance that the depletion layer in the off state is connected and a breakdown voltage close to that of a flat junction is obtained. As can be seen from Figure 3, P in the peripheral area of the element
Since there is no curved portion at the end of the N junction, a high breakdown voltage can be achieved similar to the NPN type high breakdown voltage bipolar I-transistor shown in FIG.

なお、上述の第2図、第3図に示した半導体装置におい
て、所定の傾斜側面を有するメサ溝はV字溝によって構
成されているが、これは第1半導体基板の一方の面(第
2図、第3図では上側)に形成されるPN接合の周縁部
において、第1半導体基板によって低濃度層から前記一
方の面のPN接合を介しである高濃度層へ向かうに従っ
て、半導体装置の厚みが薄くなるように傾斜づけられて
いるものなら何でもよく、例えば所定の曲率半径をもつ
(中耕であってもよい。
Note that in the semiconductor devices shown in FIGS. 2 and 3 described above, the mesa groove having a predetermined inclined side surface is constituted by a V-shaped groove; At the periphery of the PN junction formed on the upper side in FIG. Any type of material may be used as long as it is inclined so that the material becomes thinner, for example, it has a predetermined radius of curvature (it may also be an intermediate material).

また、逆メサ構造においてPN接合面の周縁部における
電界緩和は前述の如く、第5図(b)においてベース、
コレクタ間に対応するPN−接合部の電界がもっとも高
くなるものの、その周縁部である傾斜側面部については
コレクタからベースに向かって半導体装置の横方向断面
積が増大しているため、半導体装置内部のPN−接合部
より電界集中が起こりにくくなり、その結果、必然的に
電界が緩和されるのである。しかしながら、コレクタ側
の断面積が小さくなることによって高抵抗コレクタと低
抵抗コレクタとの界面、すなわちN−−N゛界面電界が
集中する。従って、逆メサの角度によっては半導体装置
内部より先にN−−N”界面においてブレークダウンし
てしまうことになる。
In addition, in the inverted mesa structure, the electric field relaxation at the periphery of the PN junction surface is as described above.
Although the electric field at the PN-junction between the collectors is the highest, the lateral cross-sectional area of the semiconductor device increases from the collector to the base at the periphery of the PN-junction, so the inside of the semiconductor device Electric field concentration is less likely to occur than at the PN-junction, and as a result, the electric field is inevitably relaxed. However, as the cross-sectional area on the collector side becomes smaller, the electric field at the interface between the high-resistance collector and the low-resistance collector, that is, the N--N interface, concentrates. Therefore, depending on the angle of the inverted mesa, breakdown may occur at the N--N'' interface before the inside of the semiconductor device.

そこで本発明者らは、降伏電圧の傾斜側面角度依存性に
ついて考慮するために、第7図に示すA。
In order to consider the dependence of the breakdown voltage on the angle of the inclined side surface, the inventors of the present invention set out the method shown in FIG.

B、Cの各部位の電界強度をシミュレーションによって
計算した。そのシミュレーション結果を第8図に示す。
The electric field strength at each site B and C was calculated by simulation. The simulation results are shown in FIG.

第8図において、曲線A、B、Cは各々部位A、B、C
における降伏電圧の角度依存特性である。部位Aは半導
体装置内部におけるPN−接合部であり、部位Aでの降
伏電圧の角度依存特性は第8図曲線Aに示すように、逆
メサ角度θによらず一定の値をとる。これに対して、P
N−接合端部の部位Bでは、第8図曲線Bに示すように
逆メサ角度が一側(つまりメサ構造)においては部位A
より電界が高くなり、この部分が部位Aより先にブレー
クダウンすることを示している。
In Fig. 8, curves A, B, and C represent portions A, B, and C, respectively.
This is the angle-dependent characteristic of breakdown voltage at . Portion A is a PN-junction inside the semiconductor device, and the angle dependence characteristic of the breakdown voltage at portion A takes a constant value regardless of the inverse mesa angle θ, as shown by curve A in FIG. On the other hand, P
At part B of the N-junction end, as shown in curve B in Figure 8, the reverse mesa angle is one side (that is, mesa structure), and part A is
The electric field becomes higher, indicating that this part breaks down before part A.

また、逆メサ角度が+側においては角度が増す程、電界
が小さくなる。さらに、部位Cについては逆メサ角度が
+側において大きくなる程電界が増大し、逆メサ角度が
45deg以上になると部位Aより高(なり、部位Aよ
り先にブレークダウンすることを示している。従って、
最適な逆メサ角度は、0〜45degである。
Further, when the reverse mesa angle is on the positive side, the electric field becomes smaller as the angle increases. Furthermore, for site C, the electric field increases as the reverse mesa angle increases on the + side, and when the reverse mesa angle becomes 45 degrees or more, it becomes higher than site A, indicating that it breaks down before site A. Therefore,
The optimal reverse mesa angle is 0 to 45 degrees.

逆メサ角度をO〜45degとすることで、第7図にお
いて部位Bおよび部位Cが部位Aより先にブレークダウ
ンすることが、N−15の不純物濃度、厚さを特別に調
整しなくても阻止することができる。
By setting the reverse mesa angle to 0 to 45 degrees, it is possible to ensure that portions B and C break down before portion A in Fig. 7 without any special adjustment of the impurity concentration and thickness of N-15. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における製造方法の一実施例を示す各製
造工程の工程図、第2図は第1図に示す工程によって製
造されるNPN型高耐圧バイポーラトランジスタの断面
図、第3図は本発明における半導体装置の第2実施例を
示す導電変調型MO3FETの断面図、第4図はプレー
ナ型半導体装1の断面構造図、第5図(at (b)は
従来のメサ型半導体装置の断面図、第6図はガードリン
グ型半導体装置の断面図第7図はシミュレーション部位
を示す逆メサ型半導体装置の断面図、第8図はシミュレ
ーションによる電界強度の角度依存特性図である。 1・・・第1半導体基板12・・・第2半導体基板、1
a、2a・・・鏡面、3・・・メサ溝、3a・・・傾斜
側面。 4・・・直接接合面、4a・・・形成接合層、5・・・
接合基板、6・・・酸化膜、7・・・PN接合面、8・
・・高抵抗コレクタ層、13a・・・傾斜側面、14・
・・直接接合面。 14a・・・形成接合層、16・・・酸化膜、17・・
・PN接合面。 代理人弁理士  岡 部   隆 (ほか1名) 第1図 第4図 (a)             (b)第5図 第6図
FIG. 1 is a process diagram of each manufacturing process showing an example of the manufacturing method according to the present invention, FIG. 2 is a cross-sectional view of an NPN type high voltage bipolar transistor manufactured by the steps shown in FIG. 1, and FIG. A cross-sectional view of a conductivity modulation type MO3FET showing a second embodiment of the semiconductor device according to the present invention, FIG. 4 is a cross-sectional structural view of a planar semiconductor device 1, and FIG. 6 is a sectional view of a guard ring type semiconductor device, FIG. 7 is a sectional view of an inverted mesa type semiconductor device showing a simulation part, and FIG. 8 is a diagram of angle dependence characteristics of electric field strength based on simulation.1. ...First semiconductor substrate 12...Second semiconductor substrate, 1
a, 2a... mirror surface, 3... mesa groove, 3a... inclined side surface. 4... Direct bonding surface, 4a... Forming bonding layer, 5...
Bonded substrate, 6... Oxide film, 7... PN junction surface, 8.
...High resistance collector layer, 13a...Slanted side surface, 14.
・Directly bonded surface. 14a... Forming bonding layer, 16... Oxide film, 17...
・PN junction surface. Representative Patent Attorney Takashi Okabe (and 1 other person) Figure 1 Figure 4 (a) (b) Figure 5 Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)一方の面および他方の面を有し、この他方の面側
に所定濃度の半導体層を有して内部にPN接合面を形成
する第1半導体基板と、 この第1半導体基板の他方の面に接合され、前記第1半
導体基板の他方の面側に存在する半導体層の濃度よりも
高い濃度を有する第2半導体基板と、 前記第1半導体基板と前記第2半導体基板の接合により
前記半導体層と前記第2半導体基板の濃度差にて前記第
1半導体基板内に形成される形成接合層とを具備し、 前記第1半導体基板において、その周縁に沿って前記P
N接合面を貫通して所定の傾斜角面が形成され、 前記所定の傾斜側面は、前記PN接合面の周縁部分にお
いて、前記第1半導体基板の一方の面方向へ近づくにし
たがってその基板の厚さが薄くなるように傾斜づけられ
ていることを特徴とする半導体装置。
(1) A first semiconductor substrate having one surface and another surface and having a semiconductor layer of a predetermined concentration on the other surface side to form a PN junction surface therein; and the other side of the first semiconductor substrate. a second semiconductor substrate that is bonded to a surface of the semiconductor substrate and has a concentration higher than that of a semiconductor layer existing on the other surface of the first semiconductor substrate; a bonding layer formed in the first semiconductor substrate due to a concentration difference between the semiconductor layer and the second semiconductor substrate;
A predetermined inclined side surface is formed passing through the N junction surface, and the predetermined inclined side surface has a thickness that increases as it approaches one surface of the first semiconductor substrate at a peripheral portion of the P N junction surface. 1. A semiconductor device characterized in that the semiconductor device is tilted so that the thickness becomes thinner.
(2)前記所定の傾斜側面が絶縁物層によって被覆され
ていることを特徴とする請求項1記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the predetermined inclined side surface is covered with an insulating layer.
(3)前記傾斜側面を被覆する絶縁物層が熱酸化膜であ
ることを特徴とする請求項2記載の半導体装置。
(3) The semiconductor device according to claim 2, wherein the insulating layer covering the inclined side surface is a thermal oxide film.
(4)前記傾斜側面を被覆する絶縁物層が熱酸化膜およ
びその他の絶縁物との多層膜であることを特徴とする請
求項2記載の半導体装置。
(4) The semiconductor device according to claim 2, wherein the insulating layer covering the inclined side surface is a multilayer film including a thermal oxide film and another insulating material.
(5)鏡面研磨された第1半導体基板の鏡面側に開口す
る所定の傾斜側面を有するメサ溝を配設する第1の工程
と、 鏡面研磨された第2半導体基板の鏡面と、前記第1半導
体基板の前記鏡面とを直接接合して接合基板を形成する
第2の工程と、 この接合基板に形成される前記第1半導体基板の前記メ
サ溝と前記第2半導体基板の前記鏡面とによって形成さ
れる空間の内面を絶縁物層によって被覆する第3の工程
と、 前記接合基板における前記第1の半導体基板において、
前記傾斜側面に周縁部を有するPN接合面を形成する第
4の工程と、 を含んで半導体装置を製造することを特徴とする半導体
装置の製造方法。
(5) a first step of arranging a mesa groove having a predetermined inclined side surface opening on the mirror side of the mirror-polished first semiconductor substrate; a mirror-polished second semiconductor substrate; a second step of directly bonding the mirror surface of the semiconductor substrate to form a bonded substrate; and forming the mesa groove of the first semiconductor substrate and the mirror surface of the second semiconductor substrate formed in the bonded substrate. a third step of coating the inner surface of the space to be formed with an insulating layer; and in the first semiconductor substrate in the bonded substrate,
A method for manufacturing a semiconductor device, comprising: forming a PN junction surface having a peripheral edge on the inclined side surface; and manufacturing a semiconductor device.
(6)前記第3の工程は、前記接合基板を熱処理するこ
とによって前記接合基板に形成される空間の内面を熱酸
化膜で被覆する工程であることを特徴とする請求項5記
載の半導体装置の製造方法。
(6) The semiconductor device according to claim 5, wherein the third step is a step of heat-treating the bonded substrate to cover the inner surface of the space formed in the bonded substrate with a thermal oxide film. manufacturing method.
(7)前記第4の工程の後に、前記メサ溝に沿って前記
接合基板をダイシングしてチップに分割分離する第5の
工程を有することを特徴とする請求項5または6に記載
の半導体装置の製造方法。
(7) The semiconductor device according to claim 5 or 6, further comprising a fifth step of dicing the bonded substrate along the mesa groove to separate it into chips after the fourth step. manufacturing method.
JP1119268A 1989-05-12 1989-05-12 Method for manufacturing semiconductor device Expired - Fee Related JP2752431B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1119268A JP2752431B2 (en) 1989-05-12 1989-05-12 Method for manufacturing semiconductor device
US07/731,268 US5164218A (en) 1989-05-12 1991-07-17 Semiconductor device and a method for producing the same
US07/844,889 US5313092A (en) 1989-05-12 1992-03-03 Semiconductor power device having walls of an inverted mesa shape to improve power handling capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119268A JP2752431B2 (en) 1989-05-12 1989-05-12 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02298073A true JPH02298073A (en) 1990-12-10
JP2752431B2 JP2752431B2 (en) 1998-05-18

Family

ID=14757148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119268A Expired - Fee Related JP2752431B2 (en) 1989-05-12 1989-05-12 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2752431B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117176A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Silicon-carbide semiconductor device
US6190947B1 (en) * 1997-09-15 2001-02-20 Zowie Technology Corporation Silicon semiconductor rectifier chips and manufacturing method thereof
JP2007208075A (en) * 2006-02-02 2007-08-16 Fuji Electric Holdings Co Ltd Semiconductor device
JP2008541480A (en) * 2005-05-18 2008-11-20 クリー インコーポレイテッド High voltage silicon carbide MOS bipolar device having bidirectional blocking capability and method of manufacturing the same
WO2009139417A1 (en) * 2008-05-13 2009-11-19 富士電機デバイステクノロジー株式会社 Semiconductor device and method for manufacturing the same
JP2012004174A (en) * 2010-06-14 2012-01-05 Fuji Electric Co Ltd Reverse-blocking insulating gate type bipolar transistor and method of manufacturing the same
JP2014116381A (en) * 2012-12-07 2014-06-26 Nippon Telegr & Teleph Corp <Ntt> Heterojunction bipolar transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112179A (en) * 1975-03-05 1976-10-04 Hitachi Ltd Processing method of the semiconductor
JPS6450571A (en) * 1987-08-21 1989-02-27 Komatsu Mfg Co Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112179A (en) * 1975-03-05 1976-10-04 Hitachi Ltd Processing method of the semiconductor
JPS6450571A (en) * 1987-08-21 1989-02-27 Komatsu Mfg Co Ltd Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117176A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Silicon-carbide semiconductor device
US6190947B1 (en) * 1997-09-15 2001-02-20 Zowie Technology Corporation Silicon semiconductor rectifier chips and manufacturing method thereof
JP2008541480A (en) * 2005-05-18 2008-11-20 クリー インコーポレイテッド High voltage silicon carbide MOS bipolar device having bidirectional blocking capability and method of manufacturing the same
JP2007208075A (en) * 2006-02-02 2007-08-16 Fuji Electric Holdings Co Ltd Semiconductor device
WO2009139417A1 (en) * 2008-05-13 2009-11-19 富士電機デバイステクノロジー株式会社 Semiconductor device and method for manufacturing the same
US8507327B2 (en) 2008-05-13 2013-08-13 Fuji Electric Co., Ltd. Semiconductor device manufacturing method thereof
JP2012004174A (en) * 2010-06-14 2012-01-05 Fuji Electric Co Ltd Reverse-blocking insulating gate type bipolar transistor and method of manufacturing the same
JP2014116381A (en) * 2012-12-07 2014-06-26 Nippon Telegr & Teleph Corp <Ntt> Heterojunction bipolar transistor

Also Published As

Publication number Publication date
JP2752431B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
KR0161356B1 (en) Method of manufacturing semiconductor
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
JP2995723B2 (en) Vertical current semiconductor device using wafer bonding and method of manufacturing the same
US3197681A (en) Semiconductor devices with heavily doped region to prevent surface inversion
JPS6220698B2 (en)
US5677562A (en) Planar P-N junction semiconductor structure with multilayer passivation
JPS61214555A (en) Semiconductor device
JPH03165577A (en) Semiconductor device and its manufacture
WO2004032244A1 (en) Semiconductor device and process for fabricating the same
JPH02298073A (en) Semiconductor device and manufacture thereof
JP2685244B2 (en) Method for manufacturing semiconductor device
KR100505561B1 (en) Manufacturing method of high breakdown voltage transistor
JPS6354212B2 (en)
JPH04256370A (en) Semiconductor device
US3959810A (en) Method for manufacturing a semiconductor device and the same
JP3049703B2 (en) Planar type semiconductor device and method of manufacturing the same
JP4813641B2 (en) PN diode
JP3938261B2 (en) Semiconductor resistance element and manufacturing method thereof
JP3390287B2 (en) Semiconductor device and manufacturing method thereof
JP2001015584A (en) High breakdown voltage semiconductor device and manufacture thereof
JPS59217359A (en) High withstand voltage planar type semiconductor device
JPS63117465A (en) Mos-type transistor
KR880006769A (en) Integrated circuit device and manufacturing method
JPS61288467A (en) Semiconductor device and manufacture thereof
JPS604258A (en) Structure of semiconductor device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees