JPH1117108A - Mim capacitor, manufacture thereof, and high-frequency integrated circuit - Google Patents

Mim capacitor, manufacture thereof, and high-frequency integrated circuit

Info

Publication number
JPH1117108A
JPH1117108A JP16388997A JP16388997A JPH1117108A JP H1117108 A JPH1117108 A JP H1117108A JP 16388997 A JP16388997 A JP 16388997A JP 16388997 A JP16388997 A JP 16388997A JP H1117108 A JPH1117108 A JP H1117108A
Authority
JP
Japan
Prior art keywords
insulating film
film
semi
lower electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16388997A
Other languages
Japanese (ja)
Other versions
JP3478945B2 (en
Inventor
Kazuhiko Shirakawa
一彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16388997A priority Critical patent/JP3478945B2/en
Publication of JPH1117108A publication Critical patent/JPH1117108A/en
Application granted granted Critical
Publication of JP3478945B2 publication Critical patent/JP3478945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable reduction in a time period during which a lower wiring of a first insulating film is exposed to RIE(reactive ion etching) in forming a via-hole, prevent intrusion into a dielectric film due to generation of a hole in a lower electrode, and restrain deterioration in insulation property between the lower electrode and an upper electrode. SOLUTION: A first insulating film 2 and a second insulating film 3 are stacked directly below a capacitor. The second insulating film 3 is worked into a recessed shape, and a lower electrode 6 is formed in the recessed portion. At this point, the thickness of the second insulating film 3 and the thickness of the lower electrode 6 are made equal to eliminate any surface step. In addition, etching of a semi-insulating substrate 1 at a step of forming a via-hole 9 is carried out under such conditions that the first insulating film 2 is less likely be etched. When the first insulating film 2 is exposed, etching is interrupted and the etching conditions are changed to etch the first insulating film 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MIM(Meta
l Insulator Metal)キャパシタを用
いた高周波集積回路に関し、詳しくはMIMキャパシタ
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MIM (Meta
More particularly, the present invention relates to a MIM capacitor and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図6に従来のキャパシタの構造とその製
造工程図を示す。特開平3−102865号公報に示さ
れているように、まず、半絶縁性基板1上に、フォトレ
ジストパターン4を形成し、それをマスクに半絶縁性基
板1をエッチングし溝5を形成する。次に、溝5の高さ
と同一面になる様に下層電極6を半絶縁性基板1内に埋
め込む。誘電体膜7を積層し、上層電極8を形成してM
IMキャパシタを作製する。次に、ラッピング及びケミ
カルポリッシングにより半絶縁性基板1を裏面より厚さ
100μmまで薄膜化した後、半絶縁性基板1の裏面か
ら基板のエッチングを行ない下層電極6の裏面までバイ
アホール9を形成し、これに裏面電極10を積層する。
2. Description of the Related Art FIG. 6 shows a structure of a conventional capacitor and a manufacturing process thereof. As shown in JP-A-3-102865, first, a photoresist pattern 4 is formed on a semi-insulating substrate 1, and the semi-insulating substrate 1 is etched using the photoresist pattern as a mask to form a groove 5. . Next, the lower electrode 6 is embedded in the semi-insulating substrate 1 so as to be flush with the height of the groove 5. A dielectric film 7 is laminated, an upper electrode 8 is formed, and M
Fabricate an IM capacitor. Next, after thinning the semi-insulating substrate 1 to a thickness of 100 μm from the back surface by lapping and chemical polishing, the substrate is etched from the back surface of the semi-insulating substrate 1 to form via holes 9 to the back surface of the lower electrode 6. Then, the back electrode 10 is laminated thereon.

【0003】[0003]

【発明が解決しようとする課題】従来技術の場合、半絶
縁性基板1の裏面をラッピングとケミカルポリッシング
による薄膜化を行う際に半絶縁性基板1の厚さが場所に
よって厚くなったり薄くなったり基板面内で分布を持っ
てしまう。このため、半絶縁性基板1の裏面からバイア
ホール9を形成する際に、この厚さのバラツキを見込ん
でオーバーエッチングする必要が生じる。その結果、基
板厚の薄くなった部分では下層配線6がRIEに長時間
さらされることになる。そこで、従来技術では下層電極
6を厚く形成することで下層電極6に穴が生じて、更に
誘電体膜7が侵されることを防いでいる。しかし、下層
電極6のエッチングは避けられず、例えば半絶縁性基板
1の薄膜化工程や、バイアホール形成のエッチング等の
プロセスバラツキが増加した場合には、下層電極6の配
線厚さを厚くしても配線に穴が生じて、更に誘電体膜7
が侵されてしまい、MIMキャパシタの下層電極6と上
層電極8間の絶縁性が保てなくなり、高周波集積回路の
歩留りが低下してしまうことになる。また、従来技術で
は下層配線6の厚さが5μm以上必要なため、半絶縁性
基板1に溝5を形成するエッチングバラツキ及び下層電
極6の成膜の際のバラツキが影響して、半絶縁性基板1
に下層電極6を埋め込んで形成した際に段差が生じてし
まい、キャパシタの絶縁破壊に至ってしまう等の課題が
ある。
In the case of the prior art, when the back surface of the semi-insulating substrate 1 is thinned by lapping and chemical polishing, the thickness of the semi-insulating substrate 1 may increase or decrease depending on the location. It has a distribution in the substrate plane. For this reason, when forming the via hole 9 from the back surface of the semi-insulating substrate 1, it is necessary to perform over-etching in consideration of the thickness variation. As a result, the lower wiring 6 is exposed to RIE for a long time in the portion where the substrate thickness is reduced. Therefore, in the prior art, the lower electrode 6 is formed thick to prevent a hole from being formed in the lower electrode 6 and further prevent the dielectric film 7 from being attacked. However, etching of the lower electrode 6 is unavoidable. For example, when process variations such as a process of thinning the semi-insulating substrate 1 and etching for forming a via hole increase, the wiring thickness of the lower electrode 6 is increased. However, a hole is formed in the wiring, and the dielectric film 7
, The insulation between the lower electrode 6 and the upper electrode 8 of the MIM capacitor cannot be maintained, and the yield of the high-frequency integrated circuit decreases. Further, in the prior art, the thickness of the lower wiring 6 is required to be 5 μm or more. Substrate 1
When the lower electrode 6 is formed by embedding the lower electrode 6, there is a problem that a step is generated, which leads to dielectric breakdown of the capacitor.

【0004】[0004]

【課題を解決するための手段】本発明に係るMIMキャ
パシタ構造では、半絶縁性基板1の上に第1の絶縁膜2
及び第2の絶縁膜3を積層し第2の絶縁膜3に溝5を形
成する。ここに下層電極6を埋め込む構造とし、バイア
ホール9を形成する際に第1の絶縁膜2を半絶縁性基板
1の裏面からバイアホール9を形成する際のエッチング
ストッパー層とするものである。
In the MIM capacitor structure according to the present invention, a first insulating film is formed on a semi-insulating substrate.
Then, the second insulating film 3 is laminated, and a groove 5 is formed in the second insulating film 3. Here, the lower electrode 6 is buried, and the first insulating film 2 is used as an etching stopper layer when forming the via hole 9 from the back surface of the semi-insulating substrate 1 when the via hole 9 is formed.

【0005】請求項1に記載のMIMキャパシタは、半
絶縁性基板上と、該半絶縁性基板上の下層電極と、該下
層電極上に形成された誘電体膜と、該誘電体膜上の上層
電極からなり、下層電極がその直下に形成された前記半
絶縁性基板の裏面に達するバイアホールにより配線され
ているMIMキャパシタにおいて、半絶縁性基板上に第
1の絶縁膜が形成され、該第1の絶縁膜の上に第2の絶
縁膜と下層電極が形成され、該第2の絶縁膜と下層電極
の上面がほぼ同一平面上であることを特徴とする。
According to a first aspect of the present invention, there is provided an MIM capacitor comprising: a semi-insulating substrate; a lower electrode on the semi-insulating substrate; a dielectric film formed on the lower electrode; A first insulating film is formed on a semi-insulating substrate in an MIM capacitor including an upper-layer electrode, and a lower-layer electrode is wired by a via hole reaching a back surface of the semi-insulating substrate formed immediately below the MIM capacitor. A second insulating film and a lower electrode are formed on the first insulating film, and the upper surfaces of the second insulating film and the lower electrode are substantially coplanar.

【0006】請求項2に記載のMIMキャパシタの製造
方法は、半絶縁性基板上と、該半絶縁性基板上の下層電
極と、該下層電極上に形成された誘電体膜と、該誘電体
膜上の上層電極からなり、下層電極がその直下に形成さ
れた前記半絶縁性基板の裏面に達するバイアホールによ
り配線されているMIMキャパシタの製造方法におい
て、該半絶縁性基板上に第1の絶縁膜と第2の絶縁膜を
積層する工程と、第2の絶縁膜に凹部を形成する工程
と、該凹部内にその表面とほぼ同一平面上になるように
下部電極を埋め込む工程とを含むことを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing an MIM capacitor, comprising the steps of: providing a semi-insulating substrate; a lower electrode on the semi-insulating substrate; a dielectric film formed on the lower electrode; A method of manufacturing an MIM capacitor comprising an upper electrode on a film and a lower electrode wired by a via hole reaching a back surface of the semi-insulating substrate formed immediately below the first electrode. Laminating an insulating film and a second insulating film, forming a concave portion in the second insulating film, and embedding a lower electrode in the concave portion so as to be substantially flush with the surface thereof. It is characterized by the following.

【0007】請求項3に記載のMIMキャパシタの製造
方法は、請求項2のMIMキャパシタの製造方法の、前
記第2の絶縁膜に形成した凹部は前記第1の絶縁膜の表
面近傍までとすることを特徴とする。
According to a third aspect of the present invention, there is provided a method of manufacturing an MIM capacitor according to the second aspect, wherein the concave portion formed in the second insulating film extends up to near the surface of the first insulating film. It is characterized by the following.

【0008】請求項4に記載のMIMキャパシタは、請
求項2に記載のMIMキャパシタの製造方法の、前記第
1の絶縁膜はSi34膜、SiO2膜のいずれかから選
択し、第2の絶縁膜は第1の絶縁膜とは異なり、かつ、
Si34膜、SiO2膜、ポリイミド膜等の樹脂のいず
れかから選択することを特徴とする。
According to a fourth aspect of the present invention, in the method of manufacturing a MIM capacitor according to the second aspect, the first insulating film is selected from one of a Si 3 N 4 film and a SiO 2 film. The second insulating film is different from the first insulating film, and
It is characterized in that it is selected from any one of resins such as a Si 3 N 4 film, a SiO 2 film and a polyimide film.

【0009】請求項5に記載のMIMキャパシタは、請
求項2から5のいずれかに記載のMIMキャパシタの製
造方法で、前記半絶縁性基板の裏面からバイアホールを
RIE(Reactive Ion Etching)
法で形成する場合に半絶縁性基板のエッチング速度より
も第1の絶縁膜のエッチング速度の遅いエッチング条件
で行う事を特徴とする。
According to a fifth aspect of the present invention, there is provided the MIM capacitor according to any one of the second to fifth aspects, wherein a via hole is formed from a back surface of the semi-insulating substrate by RIE (Reactive Ion Etching).
In the case of forming by a method, the etching is performed under an etching condition in which the etching rate of the first insulating film is lower than the etching rate of the semi-insulating substrate.

【0010】請求項6に記載の高周波集積回路は、請求
項1のMIMキャパシタを用いた事を特徴とする。
According to a sixth aspect of the present invention, there is provided a high frequency integrated circuit using the MIM capacitor of the first aspect.

【0011】本発明のMIMキャパシタの作用を説明す
ると次のようなものである。本発明のMIMキャパシタ
に於て、バイアホール9を形成する際に、第1の絶縁膜
2で下層配線6がRIEにさらされる時間を短時間とす
ることが出来るため、下層電極6に穴が生じて、更に誘
電体膜7が侵されることが無くMIMキャパシタの下層
電極6と上層電極8間の絶縁性が劣化することが無い。
更に、下層配線6の厚さを薄くすることが可能となり、
下層電極6を埋め込む為の溝5の形成バラツキ、下層電
極6の成膜バラツキを小さく出来るため、下層電極6を
埋め込んで形成した際に段差を生じることが無くなりキ
ャパシタの絶縁破壊電圧の低下を抑制することが出来
る。したがって、高周波集積回路を高歩留りで再現性良
く実現出来、高信頼性化が図れる。
The operation of the MIM capacitor of the present invention is as follows. In the MIM capacitor of the present invention, when the via hole 9 is formed, the time that the lower wiring 6 is exposed to the RIE by the first insulating film 2 can be shortened. As a result, the dielectric film 7 is not damaged and the insulation between the lower electrode 6 and the upper electrode 8 of the MIM capacitor is not deteriorated.
Furthermore, the thickness of the lower wiring 6 can be reduced,
Since the variation in the formation of the groove 5 for embedding the lower electrode 6 and the variation in the film formation of the lower electrode 6 can be reduced, a step does not occur when the lower electrode 6 is embedded and formed, and a decrease in the breakdown voltage of the capacitor is suppressed. You can do it. Therefore, a high-frequency integrated circuit can be realized with high yield and high reproducibility, and high reliability can be achieved.

【0012】[0012]

【発明の実施の形態】次に実施例により、具体的に説明
するが、これによって本発明が何ら限定されるものでは
ない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited by these examples.

【0013】図1を用いて、本発明の第1の実施例のM
IMキャパシタの製造方法を説明する。半絶縁性基板1
(例えばGaAs半絶縁性基板)の上に第1の絶縁膜S
i3N4膜を2000Å積層し、更に、第2の絶縁膜S
iO2膜を1μm積層する(図1(a))。この時の膜
の組み合わせは第2の絶縁膜のエッチング速度が第1の
絶縁膜のエッチング速度よりも10倍以上早いエッチン
グ速度が得られるエッチング条件と膜を選ぶことが望ま
しい。
Referring to FIG. 1, M according to a first embodiment of the present invention will be described.
A method for manufacturing an IM capacitor will be described. Semi-insulating substrate 1
(For example, a GaAs semi-insulating substrate) on a first insulating film S
i3N4 film is laminated at a thickness of 2000 ° and a second insulating film S
An iO 2 film is laminated at 1 μm (FIG. 1A). At this time, it is desirable to select an etching condition and a film that can obtain an etching rate at which the etching rate of the second insulating film is 10 times or more higher than that of the first insulating film.

【0014】次に、通常のフォトリソグラフィー技術に
よりフォトレジストパターン4を形成し、これをマスク
材として第2の絶縁膜SiO2膜をエッチング(例えば
CHF3ガスを用いたRIE法)し溝5を形成する。こ
の時、分光器等で発光スペクトルを観測して第1の絶縁
膜Si34膜の表面が露出した時点でエッチングを終了
する(図1(b))。
Next, a photoresist pattern 4 is formed by a usual photolithography technique, and the second insulating film SiO 2 film is etched using this as a mask material (for example, RIE using CHF 3 gas) to form a groove 5. Form. At this time, the emission spectrum is observed with a spectroscope or the like, and the etching is terminated when the surface of the first insulating film Si 3 N 4 is exposed (FIG. 1B).

【0015】次に、フォトレジストパターン4を残した
まま、MIMキャパシタの下層電極6となる金属膜(例
えばAl)を蒸着法などで1μm成膜する(図1
(c))。次に、フォトレジストパターン4をその上に
蒸着された金属膜と共に除去して、下層電極6を形成す
る(図1(d))。ここで下層電極6は第2の絶縁膜S
iO2膜に埋め込まれて段差を生じない。次に、誘電体
膜7(例えばSiO2、Si34、SiON、PZT、
STO、TaO、等)をプラズマCVD法等により成膜
する(図1(e))。
Next, while the photoresist pattern 4 is left, a metal film (for example, Al) serving as the lower electrode 6 of the MIM capacitor is formed to a thickness of 1 μm by vapor deposition or the like (FIG. 1).
(C)). Next, the photoresist pattern 4 is removed together with the metal film deposited thereon to form the lower electrode 6 (FIG. 1D). Here, the lower electrode 6 is made of a second insulating film S
It is not embedded in the iO 2 film and causes no step. Next, the dielectric film 7 (for example, SiO 2 , Si 3 N 4 , SiON, PZT,
STO, TaO, etc.) are formed by a plasma CVD method or the like (FIG. 1E).

【0016】次に、キャパシタの上層電極7の金属配線
(例えばTi/Au等)を通常の蒸着法または、スパッ
タ法等により成膜し、通常のフォトリソグラフィー技術
によるレジストパターニング、RIE等によるエッチン
グで形成する(図1(f))。
Next, a metal wiring (for example, Ti / Au) of the upper electrode 7 of the capacitor is formed by a normal vapor deposition method or a sputtering method, and is subjected to resist patterning by a normal photolithography technique and etching by RIE or the like. It is formed (FIG. 1F).

【0017】次に、GaAs半絶縁性基板1の熱抵抗低
減の為、裏面を研磨等により削って基板厚さを100μ
m程度に薄くし、赤外線を利用した両面重ね合わせので
きる露光機等を用いたフォトリソ技術によりキャパシタ
の下層電極6に対抗するGaAs半絶縁性基板1の裏面
に開口部のフォトレジストパターンを形成し、RIEに
よりGaAs半絶縁性基板1をエッチングし、第1の絶
縁膜Si34膜に到達したところでエッチングを終了す
る(図1(g))。ここで、GaAs半絶縁性基板1の
エッチングには例えば塩素系のガスSiCl4等を用い
第1の絶縁膜Si34膜がエッチングされ難い条件を選
ぶ。
Next, in order to reduce the thermal resistance of the GaAs semi-insulating substrate 1, the back surface is ground by polishing or the like to reduce the substrate thickness to 100 μm.
m, and a photoresist pattern of an opening is formed on the back surface of the GaAs semi-insulating substrate 1 opposed to the lower electrode 6 of the capacitor by a photolithography technique using an exposure device or the like capable of overlapping both surfaces using infrared rays. Then, the GaAs semi-insulating substrate 1 is etched by RIE, and the etching is terminated when the GaAs semi-insulating substrate 1 reaches the first insulating film Si 3 N 4 (FIG. 1 (g)). Here, for the etching of the GaAs semi-insulating substrate 1, for example, a chlorine-based gas such as SiCl 4 is used, and conditions are selected under which the first insulating film Si 3 N 4 film is hardly etched.

【0018】次に、第1の絶縁膜Si34膜をエッチン
グ(例えばCHF3+SF6ガスを用いたRIE法)し、
下層電極6が露出した時点でエッチングを終了する。最
後に、裏面電極10(例えばAu)を形成する(図1
(h))。
Next, the first insulating film Si 3 N 4 film is etched (for example, RIE using CHF 3 + SF 6 gas),
The etching is terminated when the lower electrode 6 is exposed. Finally, a back electrode 10 (for example, Au) is formed (FIG. 1).
(H)).

【0019】図2に第2の実施例の構造図を示す。ここ
では、第1の絶縁膜にSiO2膜2000Åを用い、そ
れのエッチング条件に例えばCHF3ガスを用いたRI
E法等を用い、第2の絶縁膜にSi34膜1μmを用
い、それのエッチング条件に例えばCHF3+SF6ガス
を用いたRIE法等を用いる。その他の条件構造は第1
の実施例と同様である。図3に第3の実施例の構造図を
示す。ここでは、第1の絶縁膜にSiO2膜2000Å
を用い、それのエッチング条件に例えばCHF3ガスを
用いたRIE法等を用い、第2の絶縁膜にポリイミド膜
1μmをを用い、それのエッチング条件に例えばCHF
3+SF6ガスを用いたRIE法等を用いる。その他の条
件構造は第1の実施例と同様である。
FIG. 2 shows a structural diagram of the second embodiment. Here, the first insulating film is formed of a SiO 2 film 2000 °, and the etching conditions thereof are, for example, a RIF using a CHF 3 gas.
Using an E method or the like, a 1 μm-thick Si 3 N 4 film is used as the second insulating film, and the etching condition thereof is, for example, an RIE method using a CHF 3 + SF 6 gas. Other conditional structures are first
This is the same as the embodiment. FIG. 3 shows a structural diagram of the third embodiment. Here, the first insulating film is made of a SiO 2 film 2000Å.
RIE method using, for example, CHF 3 gas as an etching condition, a polyimide film of 1 μm as a second insulating film, and an etching condition of, for example, CHF 3.
An RIE method using 3 + SF 6 gas is used. Other conditions are the same as in the first embodiment.

【0020】図4に第4の実施例の構造図を示す。ここ
では、第1の絶縁膜にSi34膜2000Åを用い、そ
れのエッチング条件に例えばCHF3+SF6ガスを用い
たRIE法等を用い、第2の絶縁膜にポリイミド膜1μ
mを用い、それのエッチング条件に例えば、CHF3
SF6ガスを用いたRIE法等を用いる。その他の条件
構造は第1の実施例と同様である。
FIG. 4 shows a structural diagram of the fourth embodiment. Here, a Si 3 N 4 film 2000 # is used as the first insulating film, an RIE method using, for example, CHF 3 + SF 6 gas is used as an etching condition thereof, and a polyimide film 1 μm is used as the second insulating film.
m, and for example, CHF 3 +
An RIE method using SF 6 gas or the like is used. Other conditions are the same as in the first embodiment.

【0021】図5に、以上の構造を応用した高周波集積
回路の例を示す。
FIG. 5 shows an example of a high-frequency integrated circuit to which the above structure is applied.

【0022】[0022]

【発明の効果】以上の様に本発明を用いることにより、
バイアホール9を形成する際に、第1の絶縁膜2で下層
配線6がRIEにさらされる時間を短時間とすることが
出来るため、下層電極6に穴が生じて、更に誘電体膜7
が侵されることが無く、下層電極6と上層電極8間の絶
縁性の劣化を抑制できる。更に、下層配線6の厚さを薄
くすることが可能となり、下層電極6を埋め込んで形成
した際に段差が生ぜず、キャパシタの絶縁破壊電圧の低
下を抑制することが出来る。したがって、高周波集積回
路を高歩留りで再現性良く実現出来、素子特性の安定化
になり、高信頼性化が図れる。
By using the present invention as described above,
When the via hole 9 is formed, the time that the lower wiring 6 is exposed to the RIE by the first insulating film 2 can be shortened, so that a hole is formed in the lower electrode 6 and the dielectric film 7 is further formed.
Of the lower electrode 6 and the upper electrode 8 can be suppressed from deteriorating. Further, the thickness of the lower layer wiring 6 can be reduced, so that a step does not occur when the lower layer electrode 6 is buried and formed, and a decrease in the dielectric breakdown voltage of the capacitor can be suppressed. Therefore, a high-frequency integrated circuit can be realized with a high yield and good reproducibility, and element characteristics can be stabilized, and high reliability can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例によるMIMキャパシタ
の構造及び製造方法を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a structure and a method of manufacturing an MIM capacitor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す構造図である。FIG. 2 is a structural diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す構造図である。FIG. 3 is a structural view showing a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す構造図である。FIG. 4 is a structural diagram showing a fourth embodiment of the present invention.

【図5】本発明の実施例によるMIMキャパシタを用い
た高周波集積回路示す図である。
FIG. 5 is a diagram illustrating a high-frequency integrated circuit using an MIM capacitor according to an embodiment of the present invention.

【図6】従来技術のMIMキャパシタの構造及び製造方
法を示す断面図である。
FIG. 6 is a cross-sectional view illustrating a structure and a manufacturing method of a conventional MIM capacitor.

【符号の説明】[Explanation of symbols]

1 半絶縁性基板 2 第1の絶縁膜Si3N4膜 21 第1の絶縁膜SiO2膜 3 第2の絶縁膜SiO2膜 31 第2の絶縁膜Si3N4膜 32 第2の絶縁膜ポリイミド膜 4 フォトレジストパターン 5 第2の絶縁膜の溝 6 MIMキャパシタ下層電極 7 誘電体膜 8 MIMキャパシタ上層電極 9 バイアホール 10 裏面電極 11 チャネル層 12 不純物拡散領域(ソース) 13 不純物拡散領域(ドレイン) 101 MIMキャパシタ 102 MESFET Reference Signs List 1 semi-insulating substrate 2 first insulating film Si3N4 film 21 first insulating film SiO2 film 3 second insulating film SiO2 film 31 second insulating film Si3N4 film 32 second insulating film polyimide film 4 photoresist pattern 5 Groove of second insulating film 6 lower electrode of MIM capacitor 7 dielectric film 8 upper electrode of MIM capacitor 9 via hole 10 back electrode 11 channel layer 12 impurity diffusion region (source) 13 impurity diffusion region (drain) 101 MIM capacitor 102 MESFET

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半絶縁性基板上と、該半絶縁性基板上の
下層電極と、該下層電極上に形成された誘電体膜と、該
誘電体膜上の上層電極からなり、下層電極がその直下に
形成された前記半絶縁性基板の裏面に達するバイアホー
ルにより配線されているMIMキャパシタ(Metal
Insulator Metal)において、半絶縁
性基板上に第1の絶縁膜が形成され、該第1の絶縁膜の
上に第2の絶縁膜と下層電極が形成され、該第2の絶縁
膜と下層電極の上面がほぼ同一平面上であることを特徴
とするMIMキャパシタ。
1. A semiconductor device comprising: a semi-insulating substrate; a lower electrode on the semi-insulating substrate; a dielectric film formed on the lower electrode; and an upper electrode on the dielectric film. An MIM capacitor (Metal) wired by a via hole reaching the back surface of the semi-insulating substrate formed immediately below
Insulator Metal), a first insulating film is formed on a semi-insulating substrate, a second insulating film and a lower electrode are formed on the first insulating film, and the second insulating film and the lower electrode are formed. Wherein the upper surface of the MIM capacitor is substantially coplanar.
【請求項2】 半絶縁性基板上と、該半絶縁性基板上の
下層電極と、該下層電極上に形成された誘電体膜と、該
誘電体膜上の上層電極からなり、下層電極がその直下に
形成された前記半絶縁性基板の裏面に達するバイアホー
ルにより配線されているMIMキャパシタの製造方法に
おいて、該半絶縁性基板上に第1の絶縁膜と第2の絶縁
膜を積層する工程と、第2の絶縁膜に凹部を形成する工
程と、該凹部内にその表面とほぼ同一平面上になるよう
に下部電極を埋め込む工程とを含むことを特徴とするM
IMキャパシタの製造方法。
2. A semiconductor device comprising: a semi-insulating substrate; a lower electrode on the semi-insulating substrate; a dielectric film formed on the lower electrode; and an upper electrode on the dielectric film. In a method of manufacturing an MIM capacitor wired by a via hole reaching a back surface of the semi-insulating substrate formed immediately below, a first insulating film and a second insulating film are stacked on the semi-insulating substrate. A step of forming a recess in the second insulating film, and embedding a lower electrode in the recess so as to be substantially flush with the surface thereof.
A method for manufacturing an IM capacitor.
【請求項3】 前記第2の絶縁膜に形成した凹部は前記
第1の絶縁膜の表面近傍までとすることを特徴とする請
求項2に記載のMIMキャパシタの製造方法。
3. The method of manufacturing an MIM capacitor according to claim 2, wherein the recess formed in the second insulating film is formed up to near the surface of the first insulating film.
【請求項4】 前記第1の絶縁膜はSi34膜、SiO
2膜のいずれかから選択し、第2の絶縁膜は第1の絶縁
膜とは異なり、かつ、Si34膜、SiO2膜、ポリイ
ミド膜等の樹脂のいずれかでから選択することを特徴と
する請求項2に記載のMIMキャパシタの製造方法。
4. The first insulating film is a Si 3 N 4 film, SiO 2
The second insulating film is different from the first insulating film and is selected from any one of resins such as a Si 3 N 4 film, a SiO 2 film, and a polyimide film. 3. The method for manufacturing a MIM capacitor according to claim 2, wherein:
【請求項5】 前記半絶縁性基板の裏面からバイアホー
ルをRIE(Reactive Ion Etchin
g)法で形成する場合に半絶縁性基板のエッチング速度
よりも第1の絶縁膜のエッチング速度の遅いエッチング
条件で行う事を特徴とする請求項2から5のいずれかに
記載のMIMキャパシタの製造方法。
5. A via hole is formed from the back surface of the semi-insulating substrate by RIE (Reactive Ion Etching).
6. The MIM capacitor according to claim 2, wherein, when formed by the g) method, the etching is performed under etching conditions in which the etching rate of the first insulating film is lower than the etching rate of the semi-insulating substrate. Production method.
【請求項6】 請求項1のMIMキャパシタを用いた事
を特徴とする高周波集積回路。
6. A high-frequency integrated circuit using the MIM capacitor according to claim 1.
JP16388997A 1997-06-20 1997-06-20 Method for manufacturing MIM capacitor Expired - Fee Related JP3478945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16388997A JP3478945B2 (en) 1997-06-20 1997-06-20 Method for manufacturing MIM capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16388997A JP3478945B2 (en) 1997-06-20 1997-06-20 Method for manufacturing MIM capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003276052A Division JP2004006958A (en) 2003-07-17 2003-07-17 Metal insulator metal capacitor and high frequency integrated circuit

Publications (2)

Publication Number Publication Date
JPH1117108A true JPH1117108A (en) 1999-01-22
JP3478945B2 JP3478945B2 (en) 2003-12-15

Family

ID=15782733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16388997A Expired - Fee Related JP3478945B2 (en) 1997-06-20 1997-06-20 Method for manufacturing MIM capacitor

Country Status (1)

Country Link
JP (1) JP3478945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560192B1 (en) * 1999-03-19 2003-05-06 Terastor Corporation Method and apparatus for dampening disk vibrations
KR100414873B1 (en) * 2001-05-11 2004-01-13 주식회사 하이닉스반도체 Method for fabricating ferroelectric memory device
CN105280727A (en) * 2015-11-06 2016-01-27 中国电子科技集团公司第十三研究所 Microwave internal matching power transistor matching capacitor and manufacturing method thereof
WO2022228369A1 (en) * 2021-04-29 2022-11-03 华为技术有限公司 Integrated circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560192B1 (en) * 1999-03-19 2003-05-06 Terastor Corporation Method and apparatus for dampening disk vibrations
KR100414873B1 (en) * 2001-05-11 2004-01-13 주식회사 하이닉스반도체 Method for fabricating ferroelectric memory device
CN105280727A (en) * 2015-11-06 2016-01-27 中国电子科技集团公司第十三研究所 Microwave internal matching power transistor matching capacitor and manufacturing method thereof
WO2022228369A1 (en) * 2021-04-29 2022-11-03 华为技术有限公司 Integrated circuit

Also Published As

Publication number Publication date
JP3478945B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
US6788521B2 (en) Capacitor and method for fabricating the same
US5812364A (en) Capacitor
US6172411B1 (en) Self-aligned contact structures using high selectivity etching
JPH01503021A (en) Flattening method for forming through conductors in silicon wafers
US5310695A (en) Interconnect structure in semiconductor device and method for making the same
US6228755B1 (en) Semiconductor device, and manufacturing method therefor
JPH08335634A (en) Manufacturing method for semiconductor device
JPH1117108A (en) Mim capacitor, manufacture thereof, and high-frequency integrated circuit
JP3125869B2 (en) Method for manufacturing semiconductor device
JP2004006958A (en) Metal insulator metal capacitor and high frequency integrated circuit
JP3019446B2 (en) High frequency semiconductor device
JPH0856024A (en) Manufacture of integrated circuit
JPH10144787A (en) Semiconductor device and fabrication thereof
JPH1012868A (en) Semiconductor and its manufacture
JPH08153795A (en) Forming method for contact hole
JP2950059B2 (en) Method for manufacturing semiconductor device
US7241703B2 (en) Film forming method for semiconductor device
JP3070564B2 (en) Method for manufacturing semiconductor device
JPS63224273A (en) Josephson junction element and its manufacture
JPH11265934A (en) Forming method of connecting part
JP2921258B2 (en) Insulating film etching method
JPH05283357A (en) Semiconductor device and its manufacture
JPH11233527A (en) Semiconductor device and its manufacture
JPH0734440B2 (en) Wiring forming method in semiconductor device
JPS6149439A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees