JPH11158587A - Raw alloy for manufacture of rare earth magnetic powder, and its production - Google Patents

Raw alloy for manufacture of rare earth magnetic powder, and its production

Info

Publication number
JPH11158587A
JPH11158587A JP10059645A JP5964598A JPH11158587A JP H11158587 A JPH11158587 A JP H11158587A JP 10059645 A JP10059645 A JP 10059645A JP 5964598 A JP5964598 A JP 5964598A JP H11158587 A JPH11158587 A JP H11158587A
Authority
JP
Japan
Prior art keywords
phase
rare earth
producing
earth magnet
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10059645A
Other languages
Japanese (ja)
Other versions
JP3567720B2 (en
Inventor
Ryoji Nakayama
亮治 中山
Yoshinari Ishii
義成 石井
Koichiro Morimoto
耕一郎 森本
Kensuke Oki
憲典 沖
Noriyuki Kuwano
範之 桑野
Masaru Itakura
賢 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP05964598A priority Critical patent/JP3567720B2/en
Publication of JPH11158587A publication Critical patent/JPH11158587A/en
Application granted granted Critical
Publication of JP3567720B2 publication Critical patent/JP3567720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a raw alloy for manufacture of a rare earth magnetic powder. SOLUTION: When the symbol R refers hereinafter to at least one kind among rare earth elements including Y, the symbol T refers hereinafter to Fe or a component which is composed essentially of Fe and in which part of Fe is substituted by Co or Ni, the symbol M refers hereinafter to B or a component in which part of B is substituted by C, and the symbol A refers hereinafter to at least one element among Al, Ga, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W, this raw alloy has a structure in which a phase (hereinafter referred to as an internal dispersed phase), constituted so that a g-phase having a crystal structure capable of being in a coherent relation with an MR hydride consisting of an M-containing R hydride is dispersed in the inner part of a phase of the above MR hydride having 0.002-20 μm average grain size, is dispersed integrally with a rim-like phase which surrounds the above internal dispersed phase and a part or the whole of which has an R2 T14 M-type tetragonal structure in the matrix of an R-T-M-A alloy composed essentially of R, T, M and A into island state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、希土類磁石粉末
製造用原料合金およびその製造方法に関するものであ
り、この希土類磁石粉末製造用原料合金を脱水素して得
られた希土類磁石粉末は、有機バインダーまたは金属バ
インダーにより結合してボンド磁石を製造したり、ホッ
トプレスまたは熱間静水圧プレスしてそれぞれホットプ
レス磁石または熱間静水圧プレス磁石を製造することが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material alloy for producing a rare earth magnet powder and a method for producing the same. The rare earth magnet powder obtained by dehydrogenating the material alloy for producing a rare earth magnet powder has an organic binder. Alternatively, a bonded magnet can be manufactured by bonding with a metal binder, or a hot pressed magnet or a hot isostatic pressed magnet can be manufactured by hot pressing or hot isostatic pressing, respectively.

【0002】[0002]

【従来の技術】微細な希土類金属間化合物相の集合組織
からなる希土類磁石粉末を製造するには、R2 Fe14
金属間化合物相を500〜1000℃の水素中でR2
14B相に水素を吸蔵させて、RH2 ,FeおよびFe
2 Bの3相に相変態させ、続けて同じ温度領域で脱水素
を行うと、前記水素吸蔵により発生したRH2 ,Feお
よびFe2 Bの3相はR2 Fe14B相に再変態し、微細
なR2 Fe14B金属間化合物の再結晶集合組織となり、
優れた磁気特性を示すようになることは知られている
[特開平3−129702号公報、日本金属学会秋季大
会一般講演概要(1989,P367)などを参照]。
2. Description of the Related Art To manufacture a rare earth magnet powder having a texture of a fine rare earth intermetallic compound phase, R 2 Fe 14 B
The intermetallic compound phase is subjected to R 2 F in hydrogen at 500 to 1000 ° C.
e 14 B phase is made to absorb hydrogen, and RH 2 , Fe and Fe
When the phase is transformed to the 3B phase and dehydrogenation is subsequently performed in the same temperature range, the 3 phases of RH 2 , Fe and Fe 2 B generated by the hydrogen absorption are re-transformed to the R 2 Fe 14 B phase. And a recrystallized texture of fine R 2 Fe 14 B intermetallic compound,
It is known that excellent magnetic properties are exhibited [see Japanese Unexamined Patent Publication (Kokai) No. 3-129702, Summary of General Lectures of Autumn Meeting of the Japan Institute of Metals (1989, P367)].

【0003】この製法は、R2 Fe14B金属間化合物相
の水素化(Hydrogenation )、相分解(Decomposition
)、脱水素化(Desorption)および再結合(Recombina
tion)の工程からなるところからHDDR処理法と呼ば
れており、この方法は、Yを含む少なくとも1種の希土
類元素(以下、Rで示す)、Fe、またはFeを主成分
とし一部をCo,Niで置換した成分(以下、Tで示
す)、B、またはBのうちの一部をCで置換した成分
(以下、Mで示す)、Al,Ga,Si,Ti,V,C
r,Zr,Nb,Mo,Hf,Ta,Wのうちの少なく
とも1種以上(以下、Aで示す)とすると、R,T,M
およびAを主成分とする合金(以下、R−T−M−A系
合金という)についても適用することができ、一層磁気
異方性に優れた再結晶集合組織を有する希土類磁石粉末
が得られることも知られている。
[0003] This production method comprises the steps of hydrogenation and phase decomposition of an R 2 Fe 14 B intermetallic compound phase.
), Dehydrogenation and Recombina
), which is called an HDDR processing method. This method includes at least one rare earth element (hereinafter, referred to as R) containing Y, Fe, or Fe as a main component and a part as Co. , Ni (hereinafter referred to as T), B, or a component obtained by substituting a part of B with C (hereinafter referred to as M), Al, Ga, Si, Ti, V, C
Assuming that at least one of r, Zr, Nb, Mo, Hf, Ta, and W (hereinafter, indicated by A), R, T, M
And an alloy containing A as a main component (hereinafter referred to as an RTMA-based alloy), and a rare-earth magnet powder having a recrystallized texture with more excellent magnetic anisotropy can be obtained. It is also known.

【0004】しかし、500℃〜1000℃の温度範囲
で水素吸蔵処理し、引き続きその温度範囲で脱水素処理
すると、常に高温で処理されるために異常な粒成長が起
こり、均一で微細な再結晶集合組織が得られない場合が
あり、したがって、十分な磁気特性を有する希土類磁石
粉末は得られない場合がある。
[0004] However, if a hydrogen storage treatment is performed at a temperature in the range of 500 ° C to 1000 ° C and then a dehydrogenation treatment is performed in the temperature range, abnormal grain growth occurs because the treatment is always performed at a high temperature, and uniform and fine recrystallization is performed. In some cases, a texture cannot be obtained, and thus a rare-earth magnet powder having sufficient magnetic properties may not be obtained.

【0005】これを解決するために、特開平9−310
102号公報に見られるように、R−T−M−A系合金
の素地中に、平均粒径:0.002〜20μmのMを含
有するRの水素化物からなる相(以下、MR水素化物相
という)と、このMR水素化物相とこのMR水素化物相
の周囲を包囲する一部または全部がR2 14M型の正方
晶構造を有するリム状相が一体となって島状に分散して
いる組織を有する希土類磁石粉末製造用原料合金をあら
かじめ製造しておき、この希土類磁石粉末製造用原料合
金に脱水素処理を施すことにより希土類磁石粉末を製造
する方法が提案されている。この方法によると、高温加
熱は脱水素処理の時間だけであるから長持間の加熱が避
けられ、従って異常な結晶粒の成長は避けられるという
効果がある。
In order to solve this problem, Japanese Patent Application Laid-Open No. 9-310
As disclosed in Japanese Patent Application Publication No. 102-102, a phase consisting of a hydride of R containing M having an average particle size of 0.002 to 20 μm (hereinafter referred to as an MR hydride) is contained in a base of an RTMA-based alloy. Phase), and the MR hydride phase and the rim-like phase having a tetragonal structure of the R 2 T 14 M type partly or wholly surrounding the MR hydride phase are integrally dispersed in the form of islands. A method has been proposed in which a raw material alloy for producing a rare-earth magnet powder having the same structure as described above is prepared in advance, and the raw-material alloy for producing a rare-earth magnet powder is subjected to a dehydrogenation treatment to produce a rare-earth magnet powder. According to this method, since high-temperature heating is performed only for the time of the dehydrogenation treatment, there is an effect that long-lasting heating can be avoided, and thus abnormal growth of crystal grains can be avoided.

【0006】この特開平9−310102号公報記載の
希土類磁石粉末製造用原料合金は、図5に示されるよう
に、平均粒径:0.002〜20μmのMR水素化物相
の周囲を一部または全部がR2 14M型の正方晶構造を
有するリム状相が包囲した状態でR−T−M−A系合金
素地中に島状に分散している組織を有している。
As shown in FIG. 5, the raw material alloy for producing a rare earth magnet powder disclosed in Japanese Patent Application Laid-Open No. Hei 9-310102 partially or partially surrounds an MR hydride phase having an average particle size of 0.002 to 20 μm. It has a structure in which a rim-like phase having an R 2 T 14 M-type tetragonal structure is entirely dispersed in the RTMA-based alloy base material in an island shape.

【0007】前記MR水素化物相は、立体的に見ると、
球形または球形に近い形状をした粒状(以下、球形粒状
という)のRの水素化物であったり、紡錘形もしくは楕
円形またはこれらに近い形状をした粒状(以下、紡錘形
粒状という)のRの水素化物であったり、さらに球形粒
状および紡錘形粒状が共存していたりすることがある
が、その中でも前記MR水素化物相は紡錘形粒状である
ことが最も好ましく、紡錘形粒状および球形粒状の共存
が次に好ましく、球形状であることがその次に好まし
い。これらMR水素化物はいずれもリム状相で包囲され
て複合相を形成している。
The MR hydride phase, when viewed three-dimensionally,
A spherical or nearly spherical granular hydride of R (hereinafter, referred to as spherical granular), a spindle-shaped or oval-shaped granular hydride of R (hereinafter, spindle-shaped granular), and a hydride of R. In some cases, spherical granules and spindle granules may coexist, and among them, the MR hydride phase is most preferably spindle granules, and the coexistence of spindle granules and spherical granules is more preferable. The shape is then preferred. Each of these MR hydrides is surrounded by a rim-like phase to form a composite phase.

【0008】[0008]

【発明が解決しようとする課題】この特開平9−310
102号公報記載の希土類磁石粉末製造用原料合金は、
温度:500〜1000℃で強制的な脱水素処理する
と、粒成長が著しく抑制された、均一で微細なA成分を
含有するR2 14M相の再結晶集合組織を有する磁気異
方性に優れた希土類磁石粉末が得られ、さらに原料合金
を長期間保管後に前記脱水素処理を行っても、得られる
磁石粉末の磁気特性劣化がほとんどない特性を有する
が、未だ十分でなく、さらに一層優れた希土類磁石粉末
製造用原料合金が求められていた。
The problem to be solved by the present invention is disclosed in Japanese Patent Application Laid-Open No. 9-310.
No. 102, the raw material alloy for producing rare earth magnet powder,
When the dehydrogenation treatment is forcibly performed at a temperature of 500 to 1000 ° C., the magnetic anisotropy having a recrystallized texture of the R 2 T 14 M phase containing a uniform and fine A component in which grain growth is significantly suppressed is reduced. Excellent rare earth magnet powder can be obtained, and even if the above-mentioned dehydrogenation treatment is performed after storing the raw material alloy for a long period of time, the magnetic properties of the obtained magnet powder have almost no deterioration in magnetic properties. There has been a demand for a raw material alloy for producing rare earth magnet powder.

【0009】[0009]

【課題を解決するための手段】そこで、本発明者等は、
従来の特開平9−310102号公報記載の希土類磁石
粉末製造用原料合金よりも一層優れた希土類磁石粉末製
造用原料合金を得るべく研究を行った結果、(a)R−
T−M−A系合金素地中に、平均粒径:0.002〜2
0μmのMR水素化物相内部に、前記MR水素化物と整
合的な関係にあり得る結晶構造を有する相(以下、g相
という)が分散して存在している相(以下、前記MR水
素化物相中にg相が分散している相を内部分散相とい
う)と、この内部分散相の周囲を包囲する一部または全
部がR2 14M型の正方晶構造を有するリム状相が一体
となって島状に分散している組織を有する希土類磁石粉
末製造用原料合金を作製し、この希土類磁石粉末製造用
原料合金を脱水素処理すると、従来よりも一層優れた磁
気特性を有する希土類磁石粉末を得ることができる、
(b)前記(a)の希土類磁石粉末製造用原料合金に、
さらに、格子定数がa=0.65〜0.85nm,c=
0.90〜1.10nmの正方晶系結晶構造を有しかつ
(R+M)/Tが0.13〜0.30の組成比を有する
相(以下、TE相という)が分散している組織を有する
希土類磁石粉末製造用原料合金を脱水素処理すると、従
来よりも一層優れた磁気特性を有する希土類磁石粉末を
得ることができる、という知見を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
As a result of conducting research to obtain a raw material alloy for producing a rare earth magnet powder which is more excellent than the raw material alloy for producing a rare earth magnet powder described in JP-A-9-310102, (a) R-
Average particle size: 0.002 to 2 in the TMA alloy base
A phase in which a phase (hereinafter, referred to as a g phase) having a crystal structure that can be in a consistent relationship with the MR hydride is dispersed and present in the 0 μm MR hydride phase (hereinafter, the MR hydride phase). A phase in which the g phase is dispersed is referred to as an internally dispersed phase), and a rim-like phase having a tetragonal structure of the R 2 T 14 M type partially or wholly surrounds the internally dispersed phase. When a raw alloy for producing a rare earth magnet powder having a structure that is dispersed in an island shape is produced, and the raw alloy for producing a rare earth magnet powder is subjected to dehydrogenation treatment, a rare earth magnet powder having more excellent magnetic properties than before is obtained. You can get
(B) The raw material alloy for producing a rare earth magnet powder of (a) above,
Further, when the lattice constants are a = 0.65 to 0.85 nm, c =
A structure in which a phase having a tetragonal crystal structure of 0.90 to 1.10 nm and a composition ratio of (R + M) / T of 0.13 to 0.30 (hereinafter referred to as TE phase) is dispersed. It has been found that when a raw material alloy for producing a rare-earth magnet powder is subjected to a dehydrogenation treatment, a rare-earth magnet powder having more excellent magnetic properties than before can be obtained.

【0010】この発明は、かかる研究結果に基づいてな
されたものであって、(1)R−T−M−A系合金の素
地中に、平均粒径:0.002〜20μmのMR水素化
物相の内部に前記MR水素化物と整合的な関係にあり得
る結晶構造を有するg相が分散している構成の内部分散
相と、この内部分散相の周囲を包囲する一部または全部
がR2 14M型の正方晶構造を有するリム状相が一体と
なって島状に分散している組織を有する希土類磁石粉末
製造用原料合金、(2)R−T−M−A系合金の素地中
に、MR水素化物相の内部にg相が分散している構成の
内部分散相とこの内部分散相の周囲を包囲する一部また
は全部がR 2 14M型の正方晶構造を有するリム状相が
一体となって島状に分散して存在しており、さらにTE
相が分散している組織を有する希土類磁石粉末製造用原
料合金、(3)前記TE相は、前記MR水素化物相の内
部にg相が分散している構成の内部分散相の周囲を一部
包囲する状態で分散している前記(2)記載の希土類磁
石粉末製造用原料合金、に特徴を有するものである。
[0010] The present invention is based on the results of such research.
(1) a raw material of an RTMA-based alloy
Underground, MR hydrogenation with an average particle size of 0.002 to 20 μm
May be in a consistent relationship with the MR hydride inside the material phase
Dispersion of a structure in which g-phase having a crystalline structure is dispersed
Phase and some or all surrounding the internal dispersed phase
Is RTwoT14R-shaped phase having M-type tetragonal structure is integrated
Rare earth magnet powder having a structure dispersed in an island shape
Raw material alloy for production, (2) Underground of RTMA-based alloy
The g-phase is dispersed inside the MR hydride phase.
The internal dispersed phase and the part surrounding the internal dispersed phase or
Is all R TwoT14A rim-like phase having an M-type tetragonal structure
They are integrated and distributed in an island shape, and
Raw material for producing rare earth magnet powder having a phase dispersed structure
Alloy, (3) the TE phase is one of the MR hydride phases
Part around the internal dispersed phase in which the g phase is dispersed in the part
The rare earth magnet according to (2), which is dispersed in a surrounding state.
Material alloy for the production of stone powder.

【0011】前記MR水素化物相の大きさは平均粒径:
0.002〜20μm(好ましくは0.002〜3μ
m、さらに好ましくは0.002〜1μm)の範囲内に
あり、微細であるほど好ましいが、平均粒径が0.00
2μmよりも小さいとMR水素化物相とg相からなる内
部分散相を形成しなくなるので希土類磁石粉末製造用原
料合金としては好ましくない。内部分散相を構成する前
記MR水素化物相は、M:0.1〜50原子%を含むR
の水素化物であることが好ましく、M:0.1〜50原
子%を含みかつ30原子%以下(0を含まず)のTおよ
びAを含むRの水素化物であることが一層好ましい。
[0011] The size of the MR hydride phase is an average particle size:
0.002 to 20 μm (preferably 0.002 to 3 μm
m, more preferably within a range of 0.002 to 1 μm), and the finer the particle, the more preferable.
If it is smaller than 2 μm, an internal dispersed phase consisting of an MR hydride phase and a g phase will not be formed, which is not preferable as a raw material alloy for producing a rare earth magnet powder. The MR hydride phase constituting the internal dispersed phase has an M content of 0.1 to 50 atomic%.
Is preferable, and M is more preferably a hydride of R containing 0.1 to 50 atomic% and containing T and A of 30 atomic% or less (not including 0).

【0012】前記「MR水素化物と整合的な関係にあり
得る結晶構造を有するg相」とは、具体的には、MR水
素化物の結晶構造が面心立方格子に類する構造であり、
g相の結晶構造がMR水素化物の面心立方格子に類する
低指数の面間隔にほぼ等しい面間隔を有する構造であ
り、これはMR水素化物の結晶構造とg相の結晶構造が
整合的な関係にあることを意味するものである。また、
前記リム状相は少なくとも一部がR2 14M型の正方晶
構造を有する相であることが好ましいが、全部がR2
14M型の正方晶構造を有する相であることが一層好まし
い。また、R2 14M型の正方晶構造を有するリム状相
は成分としてAを一部含有し、一部水素化物となってい
る。
The “g phase having a crystal structure that can be in a consistent relationship with the MR hydride” is, specifically, a structure in which the crystal structure of the MR hydride is similar to a face-centered cubic lattice,
The crystal structure of the g-phase has a plane spacing substantially equal to the low-index plane spacing similar to the face-centered cubic lattice of the MR hydride, which indicates that the crystal structure of the MR hydride and the crystal structure of the g-phase are consistent. It means that they are in a relationship. Also,
It is preferable that at least a part of the rim-like phase is a phase having a tetragonal structure of R 2 T 14 M type, but all of the rim-like phase is R 2 T
More preferably, the phase has a 14 M-type tetragonal structure. The rim-like phase having a tetragonal structure of the R 2 T 14 M type partially contains A as a component and is partially hydride.

【0013】この発明の希土類磁石粉末製造用原料合金
に含まれるYを含む希土類元素のうち少なくとも1種以
上の希土類元素の中でもRはNd,Pr,Dy,La,
Ceが特に好ましく、さらにAはZr,Ga,Hf,N
b,Ta,Al,Siのうちの少なくとも1種であるこ
とが特に好ましい。
R is Nd, Pr, Dy, La, among at least one rare earth element among the rare earth elements including Y contained in the raw alloy for producing a rare earth magnet powder of the present invention.
Ce is particularly preferred, and A is Zr, Ga, Hf, N
Particularly preferred is at least one of b, Ta, Al and Si.

【0014】この発明の希土類磁石粉末製造用原料合金
の組織を図面に基づいて説明する。図1は、この発明の
前記(1)の希土類磁石粉末製造用原料合金の組織の写
生図である。図1から、MR水素化物相の内部に細かい
斑点状にg相が分散して内部分散相を構成し、この内部
分散相をリム状相が包囲した状態で素地中に島状に分散
している組織を有することが分かる。図2は、この発明
の前記(2)および(3)の希土類磁石粉末製造用原料
合金の組織の写生図である。図2から、MR水素化物相
の内部に細かい斑点状にg相が分散して内部分散相を構
成し、この内部分散相をリム状相およびTE相が包囲し
た状態で素地中に島状に分散している組織を有すること
が分かる。なお、図1および図2の代表的な素地はMを
主成分(例えば、Fe、Fe−Co、Fe2 B、(F
e,Co)2 B等)とする相である。かかる図1および
図2に示される組織を有する希土類磁石粉末製造用原料
合金を、真空雰囲気中で500〜1000℃の範囲内の
所定の温度に昇温し保持することにより強制的に脱水素
処理すると、微細なR2 14M型金属間化合物相の再結
晶集合組織を有する磁気異方性に優れた希土類磁石粉末
を製造することができ、A成分を含むR2 14Mの正方
晶構造のC軸方向が一定方向に揃った再結晶集合組織を
有する優れた磁気異方性磁石粉末が得られ、この希土類
磁石粉末を有機バインダーまたは金属バインダーにより
結合することにより、または温度:600〜900℃で
ホットプレスまたは熱間静水圧プレスすることにより希
土類磁石を製造することができる。
The structure of the raw material alloy for producing a rare earth magnet powder according to the present invention will be described with reference to the drawings. FIG. 1 is a sketch of the structure of the raw material alloy for producing a rare earth magnet powder of the above (1) of the present invention. From FIG. 1, the g phase is dispersed in the form of fine spots inside the MR hydride phase to form an internal dispersed phase, and the internal dispersed phase is dispersed in the form of islands in a matrix with the rim-shaped phase surrounded. It can be seen that there is a certain organization. FIG. 2 is a sketch of the structure of the raw material alloy for producing a rare earth magnet powder according to the above (2) and (3) of the present invention. From FIG. 2, it can be seen from FIG. 2 that the g phase is dispersed in the MR hydride phase in the form of fine spots to form an internally dispersed phase, and this internally dispersed phase is formed into an island shape in a matrix with the rim-like phase and the TE phase surrounded. It can be seen that it has a dispersed tissue. 1 and 2 is mainly composed of M (for example, Fe, Fe—Co, Fe 2 B, (F
e, Co) 2 B). The raw material alloy for manufacturing a rare earth magnet powder having the structure shown in FIGS. 1 and 2 is forcibly dehydrogenated by raising the temperature to a predetermined temperature in the range of 500 to 1000 ° C. in a vacuum atmosphere and maintaining the temperature. As a result, a rare-earth magnet powder having a fine R 2 T 14 M-type intermetallic compound phase and excellent in magnetic anisotropy having a recrystallized texture can be produced, and a tetragonal crystal of R 2 T 14 M containing A component can be produced. An excellent magnetic anisotropic magnet powder having a recrystallized texture in which the C-axis direction of the structure is aligned in a certain direction is obtained, and the rare earth magnet powder is bonded with an organic binder or a metal binder, or at a temperature of 600 to 600 ° C. Rare earth magnets can be manufactured by hot pressing or hot isostatic pressing at 900 ° C.

【0015】この発明の前記(1)の希土類磁石粉末製
造用原料合金を製造するには、R−T−M−A系合金イ
ンゴット、好ましくは900〜1200℃で均質化処理
を行ったR−T−M−A系合金インゴットを用意し、こ
のインゴットを、非酸化性雰囲気(真空雰囲気、不活性
ガス雰囲気など)中で室温から温度:500℃未満の範
囲内の所定の温度に昇温、または昇温し保持したのち、
水素または水素と不活性ガスの混合雰囲気中で温度:5
00〜750℃の範囲内の所定の温度に昇温し保持し、
さらに水素または水素と不活性ガスの混合雰囲気中、温
度:750〜1000℃の範囲内の所定の温度に昇温し
保持することによりR−T−M−A系合金インゴットに
水素を吸蔵させる水素吸蔵処理を施し、引き続いてこの
水素吸蔵処理を施したR−T−M−A系合金インゴット
を不活性ガス雰囲気中で500〜1000℃に保持の不
活性ガス熱処理を施し、ついで、不活性ガス雰囲気中で
室温まで冷却する冷却処理を施すことにより製造するこ
とができる。
In order to produce the raw material alloy for producing a rare earth magnet powder of the above (1) of the present invention, an RTMA based alloy ingot, preferably an R-TMA alloy which has been homogenized at 900 to 1200 ° C. A TMA-based alloy ingot is prepared, and the ingot is heated from a room temperature to a predetermined temperature within a range of less than 500 ° C. in a non-oxidizing atmosphere (a vacuum atmosphere, an inert gas atmosphere, or the like). Or after heating and holding,
Temperature: 5 in an atmosphere of hydrogen or a mixture of hydrogen and an inert gas
Heated to a predetermined temperature in the range of 00 to 750 ° C. and held,
Further, in an atmosphere of hydrogen or a mixed atmosphere of hydrogen and an inert gas, the temperature is raised to a predetermined temperature in the range of 750 to 1000 ° C., and the hydrogen is absorbed in the RTMA alloy ingot by keeping the temperature. The hydrogen-absorbing RTMA-based alloy ingot is subjected to an inert gas heat treatment at 500 to 1000 ° C. in an inert gas atmosphere. It can be manufactured by performing a cooling process of cooling to room temperature in an atmosphere.

【0016】また、この発明のTE相が分散している組
織を有する前記(2)または(3)の希土類磁石粉末製
造用原料合金を製造するには、R−T−M−A系合金イ
ンゴット、好ましくは900〜1200℃で均質化処理
を行ったR−T−M−A系合金インゴットを用意し、こ
のインゴットを、非酸化性雰囲気(真空雰囲気、不活性
ガス雰囲気など)中で室温から温度:500℃未満の範
囲内の所定の温度に昇温、または昇温し保持したのち、
水素または水素と不活性ガスの混合雰囲気中で温度:7
50〜1000℃の範囲内の所定の温度に昇温し保持す
ることによりR−T−M−A系合金インゴットに水素を
吸蔵させる水素吸蔵処理を施し、引き続いてこの水素吸
蔵処理を施したR−T−M−A系合金インゴットを不活
性ガス雰囲気中で温度:500〜1000℃の範囲内の
所定の温度に保持の不活性ガス熱処理を施し、ついで、
不活性ガス雰囲気中で室温まで冷却する冷却処理を施す
ことにより製造することができる。
Further, in order to produce the raw material alloy for producing a rare earth magnet powder according to the above (2) or (3) having a structure in which the TE phase is dispersed according to the present invention, an RTMA-based alloy ingot is required. Preferably, an RTMA-based alloy ingot that has been subjected to a homogenization treatment at 900 to 1200 ° C. is prepared, and this ingot is heated from room temperature in a non-oxidizing atmosphere (vacuum atmosphere, inert gas atmosphere, etc.). Temperature: After raising the temperature to a predetermined temperature within a range of less than 500 ° C., or after maintaining the temperature,
Temperature: 7 in an atmosphere of hydrogen or a mixture of hydrogen and an inert gas
The R-T-MA-based alloy ingot is subjected to a hydrogen-absorbing treatment by raising the temperature to a predetermined temperature in the range of 50 to 1000 ° C. and holding the same, and subsequently, the R which has been subjected to this hydrogen-absorbing treatment is treated. -TMA-based alloy ingot is subjected to an inert gas heat treatment at a predetermined temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere.
It can be manufactured by performing a cooling process of cooling to room temperature in an inert gas atmosphere.

【0017】従って、この発明は、(4)R−T−M−
A系合金インゴットを、非酸化性雰囲気中で室温から温
度:500℃未満の範囲内の所定の温度に昇温、または
昇温し保持したのち、水素または水素と不活性ガスの混
合雰囲気中で温度:500〜750℃の範囲内の所定の
温度に昇温し保持し、さらに水素または水素と不活性ガ
スの混合雰囲気中で温度:750〜1000℃の範囲内
の所定の温度に昇温し保持することによりR−T−M−
A系合金インゴットに水素を吸蔵させる水素吸蔵処理を
施し、引き続いて水素吸蔵処理を施したR−T−M−A
系合金インゴットを不活性ガス雰囲気中で500〜10
00℃に保持の不活性ガス熱処理を施し、ついで、不活
性ガス雰囲気中で室温まで冷却する冷却処理を施す希土
類磁石粉末製造用原料合金の製造方法、(5)R−T−
M−A系合金インゴットを、非酸化性雰囲気中で室温か
ら温度:500℃未満までの所定の温度に昇温、または
昇温し保持したのち、水素または水素と不活性ガスの混
合雰囲気中で温度:750〜1000℃の範囲内の所定
の温度に昇温し保持することによりR−T−M−A系合
金インゴットに水素を吸蔵させる水素吸蔵処理を施し、
引き続いて水素吸蔵処理を施したR−T−M−A系合金
インゴットを不活性ガス雰囲気中で温度:500〜10
00℃の範囲内の所定の温度に保持の不活性ガス熱処理
を施し、ついで、不活性ガス雰囲気中で室温まで冷却す
る冷却処理を施す希土類磁石粉末製造用原料合金の製造
方法、(6)前記希土類磁石粉末製造用原料合金の製造
方法において、前記R−T−M−A系合金インゴット
は、真空またはAr雰囲気中、温度:600〜1200
℃に保持することにより均質化処理したR−T−M−A
系合金インゴットである前記(4)または(5)記載の
希土類磁石粉末製造用原料合金の製造方法、に特徴を有
するものである。
Accordingly, the present invention provides (4) RTM-
The A-based alloy ingot is heated in a non-oxidizing atmosphere from room temperature to a predetermined temperature within a range of less than 500 ° C., or is heated and maintained, and then is heated in hydrogen or a mixed atmosphere of hydrogen and an inert gas. Temperature: The temperature is raised to a predetermined temperature in the range of 500 to 750 ° C. and maintained, and further raised to a predetermined temperature in the range of 750 to 1000 ° C. in hydrogen or a mixed atmosphere of hydrogen and an inert gas. By holding, RT-M-
R-T-M-A which has been subjected to a hydrogen storage process for storing hydrogen in an A-based alloy ingot, and subsequently subjected to a hydrogen storage process.
500 to 10-10 in an inert gas atmosphere
A method of producing a raw alloy for producing a rare earth magnet powder, which is subjected to an inert gas heat treatment maintained at 00 ° C. and then subjected to a cooling treatment of cooling to room temperature in an inert gas atmosphere; (5) RT-
The MA alloy ingot is heated in a non-oxidizing atmosphere to a predetermined temperature from room temperature to a temperature of less than 500 ° C., or is heated and maintained, and then is heated in a hydrogen or a mixed atmosphere of hydrogen and an inert gas. Temperature: A hydrogen storage treatment is performed to raise and maintain a predetermined temperature in the range of 750 to 1000 ° C. to store hydrogen in the RTMA alloy ingot,
Subsequently, the RTMA-based alloy ingot that has been subjected to the hydrogen storage treatment is heated in an inert gas atmosphere at a temperature of 500 to 10
(6) a method for producing a raw alloy for producing a rare earth magnet powder, which comprises performing an inert gas heat treatment at a predetermined temperature within a range of 00 ° C., and then performing a cooling process of cooling to room temperature in an inert gas atmosphere; In the method for producing a raw material alloy for producing a rare earth magnet powder, the RTMA-based alloy ingot is heated in a vacuum or Ar atmosphere at a temperature of 600 to 1200.
RTMA that has been homogenized by holding at
The method according to the above (4) or (5), which is a raw alloy for producing a rare earth magnet powder, which is a system alloy ingot.

【0018】前記(4)または(5)記載の不活性ガス
熱処理の不活性ガス雰囲気は、圧力:0.5〜11at
mの不活性ガス雰囲気であり、不活性ガス熱処理後の冷
却は、500℃までを30〜500℃/min.の冷却
速度で行うことが好ましい。
The inert gas atmosphere in the inert gas heat treatment according to the above (4) or (5) has a pressure of 0.5 to 11 at.
m inert gas atmosphere, and cooling after the inert gas heat treatment is performed up to 500 ° C. at 30 to 500 ° C./min. It is preferable to carry out at a cooling rate of

【0019】この発明の(4)および(5)の希土類磁
石粉末製造用原料合金の製造方法において、非酸化性雰
囲気は、真空雰囲気、不活性ガス雰囲気、または真空雰
囲気にしたのち不活性ガス雰囲気にするなど真空雰囲気
および不活性ガス雰囲気の組み合わせた雰囲気である
が、合金表面の吸着ガスを取り去るために真空雰囲気ま
たは昇温過程の初期を真空雰囲気とすることが最も好ま
しい。
In the method for producing a raw material alloy for producing a rare earth magnet powder according to (4) and (5) of the present invention, the non-oxidizing atmosphere is a vacuum atmosphere, an inert gas atmosphere, or a vacuum atmosphere and then an inert gas atmosphere. Although the atmosphere is a combination of a vacuum atmosphere and an inert gas atmosphere, it is most preferable to use a vacuum atmosphere or a vacuum atmosphere at the beginning of the temperature raising process in order to remove the adsorbed gas from the alloy surface.

【0020】この発明の前記(4)の希土類磁石粉末製
造用原料合金の製造方法の処理パターンを図3に示し
た。図3では、R−T−M−A系合金を非酸化性雰囲気
中で室温から温度:500℃未満の範囲内の所定の温度
に昇温しまたは昇温保持したのち、水素ガス雰囲気また
は水素ガスと不活性ガスの混合ガス雰囲気中で温度:5
00〜750℃の範囲内の所定の温度に昇温し保持し、
さらに水素ガス雰囲気または水素ガスと不活性ガスの混
合ガス雰囲気で温度:750〜1000℃の範囲内の所
定の温度に昇温し保持することによりR−T−M−A系
合金に水素を吸蔵させて相変態を促し、引き続いて水素
吸蔵処理を施したR−T−M−A系合金インゴットを不
活性ガス雰囲気中で温度:500〜1000℃の範囲内
の所定の温度に保持の不活性ガス熱処理を施し、つい
で、不活性ガス雰囲気中で室温まで冷却することを示し
ている。
FIG. 3 shows a processing pattern of the method (4) for producing a raw material alloy for producing a rare earth magnet powder according to the present invention. In FIG. 3, the RTMA alloy is heated or kept at a predetermined temperature within a range of less than 500 ° C. from room temperature in a non-oxidizing atmosphere, and then heated to a hydrogen gas atmosphere or hydrogen. Temperature: 5 in a mixed gas atmosphere of gas and inert gas
Heated to a predetermined temperature in the range of 00 to 750 ° C. and held,
Further, hydrogen is absorbed in the RTMA alloy by raising the temperature to a predetermined temperature within the range of 750 to 1000 ° C. and maintaining the temperature in a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas. The RTMA-based alloy ingot, which has been subjected to a phase transformation and subsequently subjected to a hydrogen storage treatment, is maintained at a predetermined temperature within a range of 500 to 1000 ° C. in an inert gas atmosphere. This indicates that a gas heat treatment is performed, and then cooling to room temperature is performed in an inert gas atmosphere.

【0021】さらにこの発明の前記(5)の希土類磁石
粉末製造用原料合金の製造方法の処理パターンを図4に
示した。図4では、R−T−M−A系合金を非酸化性雰
囲気中で室温から温度:500℃未満の範囲内の所定の
温度に昇温しまたは昇温保持したのち、水素ガス雰囲気
または水素ガスと不活性ガスの混合ガス雰囲気中で温
度:750〜1000℃の範囲内の所定の温度に昇温し
保持することによりR−T−M−A系合金に水素を吸蔵
させて相変態を促し、引き続いて水素吸蔵処理を施した
R−T−M−A系合金インゴットを不活性ガス雰囲気中
で温度:500〜1000℃の範囲内の所定の温度に保
持の不活性ガス熱処理を施し、ついで、不活性ガス雰囲
気中で室温まで冷却することを示している。
FIG. 4 shows a processing pattern of the method (5) for producing a raw material alloy for producing a rare earth magnet powder according to the present invention. In FIG. 4, the RTMA-based alloy is heated or kept at a predetermined temperature within a range of less than 500 ° C. from room temperature in a non-oxidizing atmosphere, and then heated in a hydrogen gas atmosphere or a hydrogen gas atmosphere. In a mixed gas atmosphere of a gas and an inert gas, the temperature is raised to and maintained at a predetermined temperature in the range of 750 to 1000 ° C., whereby hydrogen is absorbed in the RTMA alloy so that the phase transformation is performed. And then subjecting the RTMA-based alloy ingot subjected to the hydrogen storage treatment to an inert gas heat treatment at a predetermined temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere, Next, it is shown that cooling is performed to room temperature in an inert gas atmosphere.

【0022】この発明の前記(4)の希土類磁石粉末製
造用原料合金の製造方法のパターンを図3示し、さらに
この発明の前記(5)の希土類磁石粉末製造用原料合金
の製造方法のパターンを図4示したが、これにのみ限定
されるものではなく、種々に変形したパターンを採用す
ることができる。
FIG. 3 shows a pattern of the method (4) for producing a material alloy for producing a rare earth magnet powder according to the present invention. FIG. 3 shows a pattern of a method for producing a material alloy for producing a rare earth magnet powder (5) according to the present invention. Although shown in FIG. 4, the present invention is not limited to this, and variously modified patterns can be adopted.

【0023】この発明の希土類磁石粉末製造用原料合金
の製造方法における不活性ガス熱処理は、水素吸蔵処理
したR−T−M−A系合金をArガスやHeガスなどの
不活性ガス雰囲気(圧力:0.5〜11atm、好まし
くは圧力:1.2〜11atm、さらに好ましくは1.
2〜2atm)の不活性ガス雰囲気で温度:500〜1
000℃(好ましくは650〜950℃、さらに好まし
くは750〜900℃)の範囲内の所定の温度に30秒
〜5時間(好ましくは1分〜1時間、さらに好ましくは
10分〜30分)の範囲内の所定の時間保持する熱処理
である。この不活性ガス熱処理は圧力:1.2〜2at
mのArガス雰囲気中、温度:750〜900℃に1分
〜30分保持することにより行うことが最も好ましい。
この不活性ガス熱処理は、水素吸蔵処理の水素ガス雰囲
気または水素ガスと不活性ガスの混合ガス雰囲気を不活
性ガスで置換する形で不活性ガスを導入し行う。
In the inert gas heat treatment in the method for producing a raw material alloy for producing a rare earth magnet powder according to the present invention, the hydrogen-absorbing RTMA alloy is treated with an inert gas atmosphere (pressure) such as Ar gas or He gas. : 0.5 to 11 atm, preferably pressure: 1.2 to 11 atm, more preferably 1.
Temperature: 500 to 1 in an inert gas atmosphere of 2 to 2 atm)
At a predetermined temperature in the range of 000 ° C. (preferably 650 to 950 ° C., more preferably 750 to 900 ° C.) for 30 seconds to 5 hours (preferably 1 minute to 1 hour, more preferably 10 minutes to 30 minutes). This is a heat treatment that is maintained for a predetermined time within the range. This inert gas heat treatment has a pressure of 1.2 to 2 at.
It is most preferable that the temperature is maintained at 750 to 900 ° C. for 1 to 30 minutes in an Ar gas atmosphere of m.
This inert gas heat treatment is performed by introducing an inert gas in such a manner that the hydrogen gas atmosphere of the hydrogen storage treatment or the mixed gas atmosphere of the hydrogen gas and the inert gas is replaced with the inert gas.

【0024】その後の冷却処理では不活性ガス(Arガ
ス)により室温まで冷却するが、冷却処理の冷却は50
0℃までを30〜500℃/min.(好ましくは、5
0〜300℃/min.)の冷却速度で行うと一層優れ
た原料合金を製造することができる。
In the subsequent cooling process, cooling is performed to room temperature by an inert gas (Ar gas).
0 to 30 ° C / min. (Preferably 5
0 to 300 ° C / min. By performing the cooling at the cooling rate of (1), a more excellent raw material alloy can be produced.

【0025】この様にして得られた原料合金は一時保存
することができる。この原料合金を、到達圧:1Tor
r未満の真空雰囲気中、温度:500〜1000℃の範
囲内の所定の温度に保持する脱水素処理を行うことによ
り、強制的に水素を放出させて水素を十分に除去し、つ
いで不活性ガス(Arガス)より室温まで冷却すること
により微細なR2 14M型金属間化合物相の再結晶集合
組織を有する磁気異方性に優れた希土類磁石粉末を製造
することができる。
The raw material alloy thus obtained can be temporarily stored. This raw material alloy was subjected to an ultimate pressure of 1 Torr.
By performing a dehydrogenation treatment at a predetermined temperature within a range of 500 to 1000 ° C. in a vacuum atmosphere of less than r, hydrogen is forcibly released to sufficiently remove hydrogen, and then inert gas is removed. By cooling from (Ar gas) to room temperature, a rare-earth magnet powder having a fine R 2 T 14 M type intermetallic compound phase and excellent magnetic anisotropy having a recrystallized texture can be produced.

【0026】この発明の希土類磁石粉末製造用原料合金
を製造するための出発原料としては、鋳造合金、焼結合
金、超急冷合金、アトマイズ合金、一部あるいは全部非
晶質合金、メカニカルアロイ合金、共還元粉末などいず
れの合金を用いてもよいが、この中でも鋳造合金、一部
あるいは全部非晶質合金またはメカニカルアロイ合金を
用いることが特に好ましい。
Starting materials for producing the raw material alloy for producing a rare earth magnet powder of the present invention include a cast alloy, a sintered alloy, a super-quenched alloy, an atomized alloy, a partially or entirely amorphous alloy, a mechanical alloy alloy, Although any alloy such as a co-reduced powder may be used, it is particularly preferable to use a cast alloy, a partially or entirely amorphous alloy or a mechanical alloy alloy.

【0027】[0027]

【発明の実施の形態】実施例1 高周波真空溶解炉を用いて溶解し、得られた溶湯を鋳造
し、表1に示される成分組成のR−T−M−A系合金a
〜jの鋳塊を製造し、このR−T−M−A系合金a〜j
の鋳塊から10mm以下の角のブロックを作製し、この
ブロックを1×10-3Torr以下のの真空雰囲気中、
温度1130℃、30時間保持の条件で均質化処理を行
った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Example 1 An RF-M-A-based alloy a having the component composition shown in Table 1 was melted by using a high-frequency vacuum melting furnace, and the obtained molten metal was cast.
To RT-MA-based alloys a to j
A square block of 10 mm or less is produced from the ingot of the above, and this block is placed in a vacuum atmosphere of 1 × 10 −3 Torr or less.
The homogenization treatment was performed at a temperature of 1130 ° C. for 30 hours.

【0028】[0028]

【表1】 [Table 1]

【0029】得られたブロックをそれぞれ表2〜4に示
される条件で室温から昇温または昇温し保持する昇温処
理を施したのち、表2〜4に示される圧力の水素雰囲気
中、保持温度1および保持温度2の二段階保持温度条件
で水素吸蔵処理を行い、引き続いて表2〜4に示される
条件で不活性ガス熱処理を行い、その後、表2〜4に示
される条件でArガスで強制的に室温まで冷却し、本発
明希土類磁石粉末製造用原料合金(以下、本発明原料と
いう)1〜30を作製した。
The obtained blocks are subjected to a temperature-raising treatment in which the temperature is raised or raised from room temperature under the conditions shown in Tables 2 to 4, and then kept in a hydrogen atmosphere at the pressures shown in Tables 2 to 4. Hydrogen storage treatment was performed under two-stage holding temperature conditions of temperature 1 and holding temperature 2, followed by inert gas heat treatment under the conditions shown in Tables 2 to 4, and then Ar gas under the conditions shown in Tables 2 to 4. To forcibly cool to room temperature, to produce raw material alloys (hereinafter referred to as raw materials of the present invention) 1 to 30 of the present invention for producing rare earth magnet powder.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】これら本発明原料1〜30を透過電子顕微
鏡で組織観察を行い、Mを含有するRの水素化物からな
るMR水素化物相の内部に分散しているg層の有無およ
びTE相の有無を調べ、その結果を表5〜表7に示し
た。
The structures of the raw materials 1 to 30 of the present invention were observed with a transmission electron microscope, and the presence or absence of a g layer and the presence or absence of a TE phase inside an MR hydride phase composed of a hydride of R containing M were observed. And the results are shown in Tables 5 to 7.

【0034】さらに、本発明原料1〜30を大気中、温
度:30℃、湿度:70%にて60日保管した後、1×
10-2Torrの真空雰囲気中、温度:850℃、1時
間保持の条件で脱水素処理を行い、ついでArガスによ
り急冷したのち粉砕して200μm以下の希土類磁石粉
末を製造した。この希土類磁石粉末の組織を観察したと
ころ、微細なR2 14M型金属間化合物相の再結晶集合
組織を有しており、この希土類磁石粉末を40kOeの
磁場中で配向処理し、振動試料型磁束計で磁気特性を測
定し、その結果を表5〜表7に示した。
Further, the raw materials 1 to 30 of the present invention were stored in the atmosphere at a temperature of 30 ° C. and a humidity of 70% for 60 days, and then 1 ×
A dehydrogenation treatment was performed in a vacuum atmosphere of 10 -2 Torr at a temperature of 850 ° C. for 1 hour, followed by rapid cooling with Ar gas and pulverization to produce a rare earth magnet powder of 200 μm or less. Observation of the structure of the rare earth magnet powder revealed that it had a fine recrystallized texture of the R 2 T 14 M type intermetallic compound phase. This rare earth magnet powder was subjected to orientation treatment in a magnetic field of 40 kOe. The magnetic properties were measured with a magnetic flux meter, and the results are shown in Tables 5 to 7.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】実施例2 実施例1で作製した表1に示される成分組成のR−T−
M−A系合金a〜jのブロックを表8〜10に示される
条件で室温から昇温または昇温し保持する昇温処理を施
したのち、表8〜10に示される圧力の水素雰囲気中、
表8〜10に示される保持温度条件で水素吸蔵処理を行
い、引き続いて表8〜10に示される条件で不活性ガス
熱処理を行い、その後、表8〜表10に示される条件で
Arガスで強制的に室温まで冷却し、本発明原料31〜
60を作製した。
Example 2 The R-T- component having the composition shown in Table 1 prepared in Example 1 was used.
After subjecting the blocks of the MA-based alloys a to j to a temperature increase or a temperature increase from room temperature under the conditions shown in Tables 8 to 10, and then holding them in a hydrogen atmosphere at the pressures shown in Tables 8 to 10 ,
A hydrogen storage treatment was performed under the holding temperature conditions shown in Tables 8 to 10, followed by an inert gas heat treatment under the conditions shown in Tables 8 to 10, and then with Ar gas under the conditions shown in Tables 8 to 10. Forcibly cool to room temperature,
60 were produced.

【0039】[0039]

【表8】 [Table 8]

【0040】[0040]

【表9】 [Table 9]

【0041】[0041]

【表10】 [Table 10]

【0042】これら本発明原料31〜60を透過電子顕
微鏡で組織観察を行い、MR水素化物相の内部に分散し
ているg層の有無およびTE相の有無を調べ、その結果
を表11〜13に示した。本発明原料31〜40で認め
られたTE相について電子線解析EDX分析の結果、表
11に示した格子定数と組成比を有する相であった。
The structures of the raw materials 31 to 60 of the present invention were observed with a transmission electron microscope to determine the presence or absence of a g layer and the presence of a TE phase dispersed inside the MR hydride phase. It was shown to. As a result of electron beam EDX analysis of the TE phase observed in the raw materials 31 to 40 of the present invention, the TE phase was a phase having a lattice constant and a composition ratio shown in Table 11.

【0043】さらに、本発明原料31〜60を大気中、
温度:30℃、湿度:70%にて60日保管した後、1
×10-2Torrの真空雰囲気中、温度:850℃、1
時間保持の条件で脱水素処理を行い、ついでArガスに
より急冷したのち粉砕して200μm以下の希土類磁石
粉末を製造した。この希土類磁石粉末の組織を観察した
ところ、微細なR2 14M型金属間化合物相の再結晶集
合組織を有しており、この希土類磁石粉末を40kOe
の磁場中で配向処理し、振動試料型磁束計で磁気特性を
測定し、その結果を表11〜13に示した。
Further, the raw materials 31 to 60 of the present invention were placed in the atmosphere,
After storing for 60 days at a temperature of 30 ° C. and a humidity of 70%,
× 10 −2 Torr in a vacuum atmosphere, temperature: 850 ° C., 1
A dehydrogenation treatment was performed under the condition of holding time, and then quenched with Ar gas and then pulverized to produce a rare earth magnet powder of 200 μm or less. Observation of the structure of the rare-earth magnet powder revealed that it had a fine recrystallized texture of the R 2 T 14 M-type intermetallic compound phase.
And the magnetic properties were measured with a vibrating sample magnetometer, and the results are shown in Tables 11 to 13.

【0044】[0044]

【表11】 [Table 11]

【0045】[0045]

【表12】 [Table 12]

【0046】[0046]

【表13】 [Table 13]

【0047】従来例1 実施例1で作製した表1に示される成分組成のR−T−
M−A系合金a〜jの均質化処理したブロックを表14
に示される条件で水素雰囲気中および不活性ガス雰囲気
中で処理することにより従来原料1〜10を製造し、こ
れら従来原料1〜10を透過電子顕微鏡で組織観察を行
い、MR水素化物相の内部に分散しているg相およびT
E相の有無を調べ、その結果を表15に示した。
Conventional Example 1 R-T- having the component composition shown in Table 1 prepared in Example 1
Table 14 shows the homogenized blocks of MA alloys a to j.
Are processed in a hydrogen atmosphere and an inert gas atmosphere under the conditions shown in (1) to (3) to produce the conventional raw materials 1 to 10. The structures of the conventional raw materials 1 to 10 are observed with a transmission electron microscope, and the inside of the MR hydride phase is G phase and T dispersed in
The presence or absence of the E phase was examined, and the results are shown in Table 15.

【0048】さらに、従来原料1〜10を大気中、温
度:30℃、湿度:70%にて60日保管した後、1×
10-2Torrの真空雰囲気中、温度:850℃、1時
間保持の条件で脱水素処理を行い、ついでArガスによ
り急冷したのち粉砕して200μm以下の希土類磁石粉
末を製造した。この希土類磁石粉末の組織を観察したと
ころ、微細なR2 14M型金属間化合物相の再結晶集合
組織を有しており、この希土類磁石粉末を40kOeの
磁場中で配向処理し、振動試料型磁束計で磁気特性を測
定し、その結果を表15に示した。
Further, the conventional raw materials 1 to 10 were stored in the atmosphere at a temperature of 30 ° C. and a humidity of 70% for 60 days, and then 1 ×
A dehydrogenation treatment was performed in a vacuum atmosphere of 10 -2 Torr at a temperature of 850 ° C. for 1 hour, followed by rapid cooling with Ar gas and pulverization to produce a rare earth magnet powder of 200 μm or less. Observation of the structure of the rare earth magnet powder revealed that it had a fine recrystallized texture of the R 2 T 14 M type intermetallic compound phase. This rare earth magnet powder was subjected to orientation treatment in a magnetic field of 40 kOe. The magnetic properties were measured with a magnetic flux meter, and the results are shown in Table 15.

【0049】[0049]

【表14】 [Table 14]

【0050】[0050]

【表15】 [Table 15]

【0051】表1〜15に示される結果から、表1の合
金aを使用し、この発明の方法で製造したg相、または
g相およびTE相を有する本発明原料1、11、31お
よび41を脱水素処理し、急冷し、200μm以下に粉
砕することにより得られた希土類磁石粉末の磁気特性
は、同じ表1の合金aを使用し、従来の方法で製造した
g層およびTE相の存在しない従来原料1を脱水素処理
し、急冷し、200μm以下に粉砕することにより得ら
れた希土類磁石粉末の磁気特性よりも優れていることが
分かる。
From the results shown in Tables 1 to 15, raw materials 1, 11, 31 and 41 of the present invention having g phase or g phase and TE phase produced by the method of the present invention using alloy a of Table 1 The magnetic properties of the rare earth magnet powder obtained by dehydrogenating, quenching, and pulverizing to 200 μm or less show the existence of the g layer and the TE phase produced by the conventional method using the same alloy a in Table 1. It can be seen that the magnetic properties of the rare earth magnet powder obtained by subjecting the conventional raw material 1 to a dehydrogenation treatment, quenching, and pulverizing the raw material 1 to 200 μm or less are excellent.

【0052】同様に、表1の合金b〜jをそれぞれ使用
し、この発明の方法で製造したg相、またはg相および
TE相を有する本発明原料を脱水素処理し、急冷し、2
00μm以下に粉砕することにより得られた希土類磁石
粉末の磁気特性は、同じ表1の合金b〜jをそれぞれ使
用し、従来の方法で製造したg層およびTE相の存在し
ない従来原料を脱水素処理し、急冷し、200μm以下
に粉砕することにより得られた希土類磁石粉末の磁気特
性よりも優れていることが分かる。
Similarly, using each of the alloys b to j in Table 1, the raw material of the present invention having the g phase or the g phase and the TE phase produced by the method of the present invention is subjected to dehydrogenation treatment, quenched, and cooled.
The magnetic properties of the rare earth magnet powder obtained by pulverizing to less than 00 μm were obtained by using the same alloys b to j in Table 1 and dehydrogenating the g layer manufactured by the conventional method and the conventional raw material having no TE phase. It can be seen that the magnetic properties of the rare earth magnet powder obtained by treating, quenching, and grinding to 200 μm or less are superior.

【0053】[0053]

【発明の効果】上述のように、この発明のg相、または
g相およびTE相を有する原料合金を脱水素処理して得
られた希土類磁石粉末の磁気特性は、従来のg相および
TE相の無い原料合金を脱水素処理して得られた希土類
磁石粉末の磁気特性よりも優れているところから、従来
よりも優れた希土類磁石粉末を提供することができ、産
業上優れた効果を奏するものである。
As described above, the magnetic properties of the rare earth magnet powder obtained by subjecting the raw material alloy having the g phase or the g phase and the TE phase of the present invention to dehydrogenation treatment are different from those of the conventional g phase and the TE phase. Which is superior to the magnetic properties of rare earth magnet powders obtained by dehydrogenation of raw material alloys with no iron, can provide rare earth magnet powders superior to conventional ones, and has excellent industrial effects It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の希土類磁石粉末製造用原料合金の組
織写生図である。
FIG. 1 is a structural sketch of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図2】この発明の希土類磁石粉末製造用原料合金の組
織写生図である。
FIG. 2 is a structural sketch of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図3】この発明の希土類磁石粉末製造用原料合金の製
造パターン図である。
FIG. 3 is a production pattern diagram of a raw material alloy for producing a rare earth magnet powder according to the present invention.

【図4】この発明の希土類磁石粉末製造用原料合金の製
造パターン図である。
FIG. 4 is a production pattern diagram of a raw material alloy for producing a rare earth magnet powder of the present invention.

【図5】従来の希土類磁石粉末製造用原料合金の組織写
生図である。
FIG. 5 is a structural sketch of a conventional raw material alloy for producing rare earth magnet powder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B22F 9/00 H01F 1/04 H (72)発明者 沖 憲典 福岡県春日市春日公園6−1 九州大学 総合理工学研究科 (72)発明者 桑野 範之 福岡県春日市春日公園6−1 九州大学 総合理工学研究科 (72)発明者 板倉 賢 福岡県春日市春日公園6−1 九州大学 総合理工学研究科────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI // B22F 9/00 H01F 1/04 H (72) Inventor Noriyuki Oki 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Kyushu University Science and Engineering Graduate School (72) Inventor Noriyuki Kuwano 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Graduate School of Comprehensive Science and Engineering, Kyushu University (72) Inventor Ken Itakura 6-1 Kasuga Park, Kasuga City, Fukuoka Prefecture Graduate School of Comprehensive Science and Engineering, Kyushu University

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 Yを含む少なくとも1種の希土類元素
(以下、Rで示す)と、 Fe、またはFeを主成分とし一部をCo、Niで置換
した成分(以下、Tで示す)と、 B、またはBのうち一部をCで置換した成分(以下、M
で示す)と、 Al,Ga,Si,Ti,V,Cr,Zr,Nb,M
o,Hf,Ta,Wのうちの少なくとも1種(以下、A
で示す)と、を主成分とする合金(以下、この合金をR
−T−M−A系合金という)の素地中に、 平均粒径:0.002〜20μmのMを含有するRの水
素化物からなる相(以下、MR水素化物相という)の内
部に、前記MR水素化物と整合的な関係にあり得る結晶
構造を有する相(以下、g相という)が分散している構
成の相と(以下、この相を内部分散相という)、この内
部分散相の周囲を包囲する一部または全部がR2 14
型の正方晶構造を有するリム状相が一体となって島状に
分散している組織を有することを特徴とする希土類磁石
粉末製造用原料合金。
1. At least one rare earth element containing Y (hereinafter referred to as R), Fe or a component containing Fe as a main component and partially substituting Co or Ni (hereinafter referred to as T), B or a component obtained by partially replacing B with C (hereinafter referred to as M
), Al, Ga, Si, Ti, V, Cr, Zr, Nb, M
o, Hf, Ta, and W (hereinafter, A
) And an alloy containing as a main component (hereinafter, this alloy is referred to as R
-T-M-A-based alloy), a phase comprising an R hydride containing M having an average particle size of 0.002 to 20 μm (hereinafter referred to as an MR hydride phase) A phase having a structure in which a phase having a crystal structure (hereinafter, referred to as a g phase) that can be in a consistent relationship with the MR hydride is dispersed (hereinafter, this phase is referred to as an internal dispersed phase), and a periphery of the internal dispersed phase; Part or all of R 2 T 14 M
A raw material alloy for producing a rare earth magnet powder, wherein the raw material alloy has a structure in which a rim-like phase having a tetragonal structure of a mold is integrated and dispersed in an island shape.
【請求項2】 Rと、Tと、Mと、Aを主成分とする組
成のR−T−M−A系合金の素地中に、 MR水素化物相の内部にg相が分散している構成の内部
分散相とこの内部分散相の周囲を包囲する一部または全
部がR2 14M型の正方晶構造を有するリム状相が一体
となって島状に分散して存在し、 さらに格子定数がa=0.65〜0.85nm,c=
0.90〜1.10nmの正方晶系結晶構造を有しかつ
(R+M)/Tが0.13〜0.30の組成比を有する
相(以下、TE相という)が分散している組織を有する
ことを特徴とする希土類磁石粉末製造用原料合金。
2. A g-phase is dispersed inside an MR hydride phase in a base of an RTMA-based alloy having a composition containing R, T, M, and A as main components. An internal dispersed phase having a constitution and a rim-like phase having a tetragonal structure of the R 2 T 14 M type in which a part or the whole surrounding the internal dispersed phase is present in an integrated and dispersed island form; The lattice constants are a = 0.65 to 0.85 nm, c =
A structure in which a phase having a tetragonal crystal structure of 0.90 to 1.10 nm and a composition ratio of (R + M) / T of 0.13 to 0.30 (hereinafter referred to as TE phase) is dispersed. A raw material alloy for producing a rare earth magnet powder, comprising:
【請求項3】 前記TE相は、前記MR水素化物相の内
部にg相が分散している構成の内部分散相の周囲を一部
包囲する状態で分散していることを特徴とする請求項2
記載の希土類磁石粉末製造用原料合金。
3. The method according to claim 2, wherein the TE phase is dispersed so as to partially surround the internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase. 2
A raw material alloy for producing a rare earth magnet powder as described above.
【請求項4】 前記MR水素化物相は、M:0.1〜5
0原子%を含むRの水素化物であることを特徴とする請
求項1、2または3記載の希土類磁石粉末製造用原料合
金。
4. The MR hydride phase according to claim 1, wherein M: 0.1-5.
4. The raw material alloy for producing a rare earth magnet powder according to claim 1, which is a hydride of R containing 0 atomic%.
【請求項5】 前記MR水素化物相は、M:0.1〜5
0原子%を含みかつ30原子%以下(0を含まず)のT
およびAを含むRの水素化物であることを特徴とする請
求項1、2または3記載の希土類磁石粉末製造用原料合
金。
5. The MR hydride phase, wherein M: 0.1 to 5
T containing 0 atomic% and not more than 30 atomic% (excluding 0)
4. The raw material alloy for producing a rare earth magnet powder according to claim 1, which is a hydride of R containing A and A.
【請求項6】 前記MR水素化物相の内部にg相が分散
している構成の内部分散相は、球状または球形に近い形
状をした粒状(以下、球形粒状という)を有することを
特徴とする請求項1、2または3記載の希土類磁石粉末
製造用原料合金。
6. The internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase has a spherical or nearly spherical shape (hereinafter, referred to as a spherical particle). The raw material alloy for producing a rare earth magnet powder according to claim 1, 2 or 3.
【請求項7】 前記MR水素化物相の内部にg相が分散
している構成の内部分散相は、紡錘形もしくは楕円球形
またはそれらに近い形状をした粒状(以下、紡錘形粒状
という)を有することを特徴とする請求項1、2または
3記載の希土類磁石粉末製造用原料合金。
7. The internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase has a spindle shape, an ellipsoidal spherical shape, or a granular shape close to them (hereinafter, referred to as a spindle-shaped granular shape). A raw material alloy for producing a rare earth magnet powder according to claim 1, 2 or 3.
【請求項8】 前記MR水素化物相の内部にg相が分散
している構成の内部分散相は、球形粒状および紡錘形粒
状を有することを特徴とする請求項1、2または3記載
の希土類磁石粉末製造用原料合金。
8. The rare earth magnet according to claim 1, wherein the internally dispersed phase having a structure in which the g phase is dispersed inside the MR hydride phase has a spherical shape and a spindle shape. Raw material alloy for powder production.
【請求項9】 R−T−M−A系合金インゴットを、 非酸化性雰囲気中で室温から温度:500℃未満までの
所定の温度に昇温、または昇温し保持したのち、 水素または水素と不活性ガスの混合雰囲気中、温度:5
00〜750℃に昇温し保持し、さらに水素または水素
と不活性ガスの混合雰囲気中、温度:750〜1000
℃に昇温し保持することによりR−T−M−A系合金イ
ンゴットに水素を吸蔵させる水素吸蔵処理を施し、 引き続いて水素吸蔵処理を施したR−T−M−A系合金
インゴットを不活性ガス雰囲気中で500〜1000℃
に保持の不活性ガス熱処理を施し、 ついで、不活性ガス雰囲気中で室温まで冷却する冷却処
理を施すことを特徴とする希土類磁石粉末製造用原料合
金の製造方法。
9. The RTMA-based alloy ingot is heated to a predetermined temperature from room temperature to a temperature of less than 500 ° C. in a non-oxidizing atmosphere, or is heated to and maintained at a predetermined temperature. In a mixed atmosphere of inert gas and inert gas, temperature: 5
The temperature is raised to and maintained at 00 to 750 ° C., and further, in a hydrogen or mixed atmosphere of hydrogen and an inert gas, at a temperature of 750 to 1000
C. The hydrogen storage treatment is carried out in which the RTMA-based alloy ingot absorbs hydrogen by raising the temperature to ℃ and holding it, and then the RTMA-based alloy ingot which has been subjected to the hydrogen storage treatment is subjected to the hydrogen absorption treatment. 500-1000 ° C in an active gas atmosphere
A method for producing a raw material alloy for producing a rare earth magnet powder, comprising: performing a holding inert gas heat treatment; and performing a cooling process of cooling to room temperature in an inert gas atmosphere.
【請求項10】 R−T−M−A系合金インゴットを、 非酸化性雰囲気中で室温から温度:500℃未満までの
所定の温度に昇温、または昇温し保持したのち、 水素または水素と不活性ガスの混合雰囲気中で温度:7
50〜1000℃に昇温し保持することによりR−T−
M−A系合金インゴットに水素を吸蔵させる水素吸蔵処
理を施し、 引き続いて水素吸蔵処理を施したR−T−M−A系合金
インゴットを不活性ガス雰囲気中で500〜1000℃
に保持の不活性ガス熱処理を施し、 ついで、不活性ガス雰囲気中で室温まで冷却する冷却処
理を施すことを特徴とする希土類磁石粉末製造用原料合
金の製造方法。
10. An RTMA-based alloy ingot is heated to a predetermined temperature from room temperature to a temperature of less than 500 ° C. in a non-oxidizing atmosphere, or heated to and maintained at a predetermined temperature. Temperature: 7 in a mixed atmosphere of inert gas and inert gas
By raising the temperature to 50 to 1000 ° C. and holding it, the RT-
The MA-based alloy ingot is subjected to a hydrogen-absorbing treatment for absorbing hydrogen, and then the RT-MA-based alloy ingot subjected to the hydrogen-absorbing treatment is subjected to an inert gas atmosphere at 500 to 1000 ° C.
A method for producing a raw material alloy for producing a rare earth magnet powder, comprising: performing a holding inert gas heat treatment; and performing a cooling process of cooling to room temperature in an inert gas atmosphere.
【請求項11】 前記R−T−M−A系合金インゴット
は、真空またはAr雰囲気中、温度:600〜1200
℃に保持することにより均質化処理したR−T−M−A
系合金インゴットであることを特徴とする請求項9また
は10記載の希土類磁石粉末製造用原料合金の製造方
法。
11. The RTMA-based alloy ingot is prepared in a vacuum or Ar atmosphere at a temperature of 600 to 1200.
RTMA that has been homogenized by holding at
The method for producing a raw material alloy for producing a rare earth magnet powder according to claim 9 or 10, wherein the method is a system alloy ingot.
【請求項12】 前記不活性ガス熱処理における不活性
ガス雰囲気は、圧力:0.5〜11atmの範囲内にあ
る不活性ガス雰囲気であることを特徴とする請求項9ま
たは10記載の希土類磁石粉末製造用原料合金の製造方
法。
12. The rare earth magnet powder according to claim 9, wherein the inert gas atmosphere in the inert gas heat treatment is an inert gas atmosphere within a pressure range of 0.5 to 11 atm. Production method of raw material alloy for production.
【請求項13】 前記不活性ガス熱処理後の冷却は、5
00℃までを30〜500℃/min.の冷却速度で行
うことを特徴とする請求項9または10記載の希土類磁
石粉末製造用原料合金の製造方法。
13. The cooling after the heat treatment with the inert gas is 5%.
00 ° C to 30 to 500 ° C / min. The method for producing a raw material alloy for producing a rare earth magnet powder according to claim 9, wherein the cooling is performed at a cooling rate of:
JP05964598A 1997-09-26 1998-03-11 Raw material alloy for producing rare earth magnet powder and method for producing the same Expired - Fee Related JP3567720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05964598A JP3567720B2 (en) 1997-09-26 1998-03-11 Raw material alloy for producing rare earth magnet powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-261862 1997-09-26
JP26186297 1997-09-26
JP05964598A JP3567720B2 (en) 1997-09-26 1998-03-11 Raw material alloy for producing rare earth magnet powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11158587A true JPH11158587A (en) 1999-06-15
JP3567720B2 JP3567720B2 (en) 2004-09-22

Family

ID=26400704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05964598A Expired - Fee Related JP3567720B2 (en) 1997-09-26 1998-03-11 Raw material alloy for producing rare earth magnet powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3567720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2645381A3 (en) * 2012-03-30 2016-12-28 Toda Kogyo Corporation R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2645381A3 (en) * 2012-03-30 2016-12-28 Toda Kogyo Corporation R-T-B-based rare earth magnet particles, process for producing the R-T-B-based rare earth magnet particles, and bonded magnet

Also Published As

Publication number Publication date
JP3567720B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
CN102918611B (en) The manufacture method of rare-earth permanent magnet and rare-earth permanent magnet
KR20160117363A (en) R-Fe-B TYPE SINTERED MAGNET AND METHOD FOR MAKING THE SAME
JP6693392B2 (en) R- (Fe, Co) -B system sintered magnet and its manufacturing method
TWI738932B (en) R-Fe-B series sintered magnet and its manufacturing method
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
SI9300639A (en) Magnetic powder of type Fe - RARE EARTH - B and correspondent magnets and its method of preparation
JPH05209210A (en) Production of magnet alloy particle
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH024901A (en) Manufacture of rare earth element-fe-b series alloy magnet powder
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH11158588A (en) Raw alloy for manufacture of rare earth magnetic powder, and its production
JP2022077979A (en) Manufacturing method of rare earth sintered magnet
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JPH11158587A (en) Raw alloy for manufacture of rare earth magnetic powder, and its production
JP6760538B2 (en) Rare earth magnet powder manufacturing method
JP4650218B2 (en) Method for producing rare earth magnet powder
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP3204025B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP2623731B2 (en) Manufacturing method of rare earth-Fe-B based anisotropic permanent magnet
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees