JPH1067267A - 磁気浮上式サスペンションユニット - Google Patents
磁気浮上式サスペンションユニットInfo
- Publication number
- JPH1067267A JPH1067267A JP22818296A JP22818296A JPH1067267A JP H1067267 A JPH1067267 A JP H1067267A JP 22818296 A JP22818296 A JP 22818296A JP 22818296 A JP22818296 A JP 22818296A JP H1067267 A JPH1067267 A JP H1067267A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnets
- magnetic
- vibration
- magnet
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 21
- 238000005339 levitation Methods 0.000 title claims abstract description 9
- 238000013016 damping Methods 0.000 claims abstract description 28
- 230000033001 locomotion Effects 0.000 claims abstract description 13
- 238000006073 displacement reaction Methods 0.000 description 11
- 230000005284 excitation Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000005415 magnetization Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Seats For Vehicles (AREA)
Abstract
(57)【要約】
【課題】 磁性バネの減衰特性を利用することにより除
振性能を向上させた安価で簡素な構成の磁気浮上式サス
ペンションユニットを提供すること。 【解決手段】 相対移動自在に離間した少なくとも二つ
の永久磁石2,4により磁性バネを構成した。また、少
なくとも二つの永久磁石のうち、一方4をシートに取り
付け、他方の永久磁石2に入力された外力に対しその対
向面積を変化させて内部運動系内のバネ定数あるいは減
衰係数を変化させることにより除振コントロールを容易
にした。
振性能を向上させた安価で簡素な構成の磁気浮上式サス
ペンションユニットを提供すること。 【解決手段】 相対移動自在に離間した少なくとも二つ
の永久磁石2,4により磁性バネを構成した。また、少
なくとも二つの永久磁石のうち、一方4をシートに取り
付け、他方の永久磁石2に入力された外力に対しその対
向面積を変化させて内部運動系内のバネ定数あるいは減
衰係数を変化させることにより除振コントロールを容易
にした。
Description
【0001】
【発明の属する技術分野】本発明は、複数の永久磁石を
有する磁性バネを備えた磁気浮上式サスペンションユニ
ットに関する。
有する磁性バネを備えた磁気浮上式サスペンションユニ
ットに関する。
【0002】
【従来の技術】従来、自動車用シートあるいは救急車用
ベッドには、車体フロアから伝わる振動を抑制する除振
ユニットが取り付けられており、この除振ユニットには
例えば金属バネ、エアサスペンション、エアダンパ等が
使用されている。最近では、自動車用シートにアクチュ
エータを取り付け、振動をアクティブ制御することによ
り着座感を向上したアクティブサスペンションシートも
提案されている。
ベッドには、車体フロアから伝わる振動を抑制する除振
ユニットが取り付けられており、この除振ユニットには
例えば金属バネ、エアサスペンション、エアダンパ等が
使用されている。最近では、自動車用シートにアクチュ
エータを取り付け、振動をアクティブ制御することによ
り着座感を向上したアクティブサスペンションシートも
提案されている。
【0003】
【発明が解決しようとする課題】しかしながら、金属バ
ネ、エアサスペンション、エアダンパ等を使用した除振
ユニットは、車体フロアから伝わる振動のうち4〜20
Hzの振動の周波数を低下させて着座感あるいは使用感
をさらに向上させることはできなかった。また、上記ア
クティブサスペンションシートは重たく高価であるばか
りでなく、アクチュエータを常に作動させておく必要が
あり、アクチュエータをOFFにすると振動がアクチュ
エータを介して乗員に直接伝わり、着座感が損なわれる
という問題があった。
ネ、エアサスペンション、エアダンパ等を使用した除振
ユニットは、車体フロアから伝わる振動のうち4〜20
Hzの振動の周波数を低下させて着座感あるいは使用感
をさらに向上させることはできなかった。また、上記ア
クティブサスペンションシートは重たく高価であるばか
りでなく、アクチュエータを常に作動させておく必要が
あり、アクチュエータをOFFにすると振動がアクチュ
エータを介して乗員に直接伝わり、着座感が損なわれる
という問題があった。
【0004】本発明は、従来技術の有するこのような問
題点に鑑みてなされたものであり、磁性バネの減衰特性
を利用することにより除振性能を向上させた安価で簡素
な構成の磁気浮上式サスペンションユニットを提供する
ことを目的としている。
題点に鑑みてなされたものであり、磁性バネの減衰特性
を利用することにより除振性能を向上させた安価で簡素
な構成の磁気浮上式サスペンションユニットを提供する
ことを目的としている。
【0005】
【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1に記載の発明は、相対移動
自在に離間した少なくとも二つの永久磁石により磁性バ
ネを構成し、上記少なくとも二つの永久磁石の一方をシ
ートに取り付け、他方の永久磁石に入力された外力に対
し上記少なくとも二つの永久磁石の対向面積を変化させ
ることにより内部運動系内のバネ定数あるいは減衰係数
を変化させるようにしたことを特徴とする磁気浮上式サ
スペンションユニットである。
に、本発明のうちで請求項1に記載の発明は、相対移動
自在に離間した少なくとも二つの永久磁石により磁性バ
ネを構成し、上記少なくとも二つの永久磁石の一方をシ
ートに取り付け、他方の永久磁石に入力された外力に対
し上記少なくとも二つの永久磁石の対向面積を変化させ
ることにより内部運動系内のバネ定数あるいは減衰係数
を変化させるようにしたことを特徴とする磁気浮上式サ
スペンションユニットである。
【0006】また、請求項2に記載の発明は、上記他方
の永久磁石の移動とともに一体的に揺動するレバーに慣
性部材を取り付け、該慣性部材をレバーに対し移動させ
ることにより上記少なくとも二つの永久磁石間で最大反
発力を発生する位置を調節するようにしたことを特徴と
する。
の永久磁石の移動とともに一体的に揺動するレバーに慣
性部材を取り付け、該慣性部材をレバーに対し移動させ
ることにより上記少なくとも二つの永久磁石間で最大反
発力を発生する位置を調節するようにしたことを特徴と
する。
【0007】さらに、請求項3に記載の発明は、シート
に取り付けられた永久磁石をシートに対し移動させるこ
とにより上記対向面積を調節するようにしたことを特徴
とする。
に取り付けられた永久磁石をシートに対し移動させるこ
とにより上記対向面積を調節するようにしたことを特徴
とする。
【0008】
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。互いに離間し同磁極
を対向させた少なくとも二つの永久磁石を有する磁性バ
ネ構造体の場合、離間した永久磁石同士は非接触のた
め、構造体自体の摩擦損失等を無視すると、その静特性
は入力時(行き)と同一ライン上を非線形で出力され
(帰り)、さらに、非接触対偶特有の自由度、浮上制御
系の不安定度を利用することにより、小さな入力で静磁
界(磁石の配置)を変化させることで負の減衰を生じや
すい。
て、図面を参照しながら説明する。互いに離間し同磁極
を対向させた少なくとも二つの永久磁石を有する磁性バ
ネ構造体の場合、離間した永久磁石同士は非接触のた
め、構造体自体の摩擦損失等を無視すると、その静特性
は入力時(行き)と同一ライン上を非線形で出力され
(帰り)、さらに、非接触対偶特有の自由度、浮上制御
系の不安定度を利用することにより、小さな入力で静磁
界(磁石の配置)を変化させることで負の減衰を生じや
すい。
【0009】本発明はこの事実に着目してなされたもの
であり、二つの永久磁石間の幾何学的寸法を運動行程内
機構あるいは外力により入力側(行き)と出力側(帰
り)で変化させ、その運動系内で反発力に変換させるこ
とにより、二つの永久磁石の平衡位置からの入力側の反
発力より出力側の反発力を大きくしている。
であり、二つの永久磁石間の幾何学的寸法を運動行程内
機構あるいは外力により入力側(行き)と出力側(帰
り)で変化させ、その運動系内で反発力に変換させるこ
とにより、二つの永久磁石の平衡位置からの入力側の反
発力より出力側の反発力を大きくしている。
【0010】以下、その基本原理について説明する。図
1は、入力側と出力側における二つの永久磁石2,4の
平衡位置を示した模式図で、図2は、いずれか一方の永
久磁石に加えられた荷重と、二つの永久磁石の平衡位置
からの変位量との関係を示した磁性バネ構造体の基本特
性を示している。
1は、入力側と出力側における二つの永久磁石2,4の
平衡位置を示した模式図で、図2は、いずれか一方の永
久磁石に加えられた荷重と、二つの永久磁石の平衡位置
からの変位量との関係を示した磁性バネ構造体の基本特
性を示している。
【0011】図1に示されるように、永久磁石2に対す
る永久磁石4の入力側の平衡位置とバネ定数をそれぞれ
x0,k1とし、出力側の平衡位置とバネ定数をそれぞ
れx1,k2とすると、x0〜x1の間で面積変換が行わ
れ、各平衡位置では次の関係が成立する。 −k1/x0+mg=0 −k2/x1+mg=0 k2>k1
る永久磁石4の入力側の平衡位置とバネ定数をそれぞれ
x0,k1とし、出力側の平衡位置とバネ定数をそれぞ
れx1,k2とすると、x0〜x1の間で面積変換が行わ
れ、各平衡位置では次の関係が成立する。 −k1/x0+mg=0 −k2/x1+mg=0 k2>k1
【0012】従って、その静特性は、図2に示されるよ
うに負の減衰特性を示し、位置x1と位置x0における
ポテンシャルの差が発振のポテンシャルエネルギと考え
ることができる。
うに負の減衰特性を示し、位置x1と位置x0における
ポテンシャルの差が発振のポテンシャルエネルギと考え
ることができる。
【0013】また、図1のモデルを製作し、荷重と変位
量との関係を、荷重を加える時間を変えて実測したとこ
ろ、図3に示されるようなグラフが得られた。これは、
二つの永久磁石2,4が最近接位置に近づくと、大きな
反発力が作用すること、また、平衡位置からの変位量が
微小に変化すると摩擦損失が磁性バネのダンパー効果に
より発生し、そのことにより減衰項が現れたものと解釈
される。
量との関係を、荷重を加える時間を変えて実測したとこ
ろ、図3に示されるようなグラフが得られた。これは、
二つの永久磁石2,4が最近接位置に近づくと、大きな
反発力が作用すること、また、平衡位置からの変位量が
微小に変化すると摩擦損失が磁性バネのダンパー効果に
より発生し、そのことにより減衰項が現れたものと解釈
される。
【0014】図3において、(a)は一定荷重を加えた
場合のグラフで、(a)、(b)、(c)の順で荷重を
加えた時間が短くなっている。すなわち、荷重の加え方
により静特性が異なり、荷重を加える時間が長いほど力
積が大きい。
場合のグラフで、(a)、(b)、(c)の順で荷重を
加えた時間が短くなっている。すなわち、荷重の加え方
により静特性が異なり、荷重を加える時間が長いほど力
積が大きい。
【0015】また、希土類磁石は、磁化の強さが磁界に
依存しない。つまり、内部磁気モーメントが磁界による
影響を受けにくいので、減磁曲線上で磁化の強さはほと
んど変化せず、ほぼその飽和磁化の強さの値を保ってい
る。従って、希土類磁石では、端面上に磁荷が均一に分
布していると仮定したチャージモデルを用いて、入出力
が考えられる。
依存しない。つまり、内部磁気モーメントが磁界による
影響を受けにくいので、減磁曲線上で磁化の強さはほと
んど変化せず、ほぼその飽和磁化の強さの値を保ってい
る。従って、希土類磁石では、端面上に磁荷が均一に分
布していると仮定したチャージモデルを用いて、入出力
が考えられる。
【0016】図4はその考え方を示しており、磁石を最
小単位の磁石の集合と定義し、各単位磁石間の力の関係
を三つに分類して計算したものである。 (a)吸引(r,mとも同一なので、2タイプを1つで
定義する) f(1)=(m2/r2)dx1dy1dx2dy2 fx (1)=f(1)cosθ fz (1)=f(1)sinθ (b)反発 fx (2)=f(2)cosθ fz (2)=f(2)sinθ (c)反発 fx (3)=f(3)cosθ fz (3)=f(3)sinθ 従って、 −fx=2fx (1)−fx (2)−fx (3) −fz=2fz (1)−fz (2)−fz (3) ここで、クーロンの法則は次のように表されるので、 上記−fx,−fzを磁石の寸法の範囲で積分して力を求
めることができる。
小単位の磁石の集合と定義し、各単位磁石間の力の関係
を三つに分類して計算したものである。 (a)吸引(r,mとも同一なので、2タイプを1つで
定義する) f(1)=(m2/r2)dx1dy1dx2dy2 fx (1)=f(1)cosθ fz (1)=f(1)sinθ (b)反発 fx (2)=f(2)cosθ fz (2)=f(2)sinθ (c)反発 fx (3)=f(3)cosθ fz (3)=f(3)sinθ 従って、 −fx=2fx (1)−fx (2)−fx (3) −fz=2fz (1)−fz (2)−fz (3) ここで、クーロンの法則は次のように表されるので、 上記−fx,−fzを磁石の寸法の範囲で積分して力を求
めることができる。
【0017】これを図5に示されるように、対向する磁
石を各磁気ギャップ毎に完全にラップした状態(x軸移
動量=0mm)から完全にずれた状態(x軸移動量=5
0mm)まで移動させて計算したのが図6のグラフであ
る。ただし、「内部磁気モーメントは一定」と定義して
あるが、磁気ギャップが小さいときは磁石の周辺で乱れ
が生じるので、補正している。
石を各磁気ギャップ毎に完全にラップした状態(x軸移
動量=0mm)から完全にずれた状態(x軸移動量=5
0mm)まで移動させて計算したのが図6のグラフであ
る。ただし、「内部磁気モーメントは一定」と定義して
あるが、磁気ギャップが小さいときは磁石の周辺で乱れ
が生じるので、補正している。
【0018】上記計算結果は実測値とも略一致してお
り、図2のポイントaからbに移動させる力がx方向荷
重で、出力はz方向荷重で表されており、不安定系故の
入力<出力の関係が静的に明確になっている。
り、図2のポイントaからbに移動させる力がx方向荷
重で、出力はz方向荷重で表されており、不安定系故の
入力<出力の関係が静的に明確になっている。
【0019】また、図7は、図5に示される磁石の離間
距離を3mmに保持し、完全にずれた状態から完全にラ
ップした状態まで移動させ、さらにこの状態から完全に
ずれた状態まで移動した時の関係を表したグラフであ
る。このグラフは、x方向荷重の絶対値は同じで出力方
向が逆になって出てくる特性で、完全ラップ状態に近づ
く場合は抵抗つまり減衰となり、完全ラップ状態から完
全にずれた状態に移行する場合は加速されることを示し
ている。この特性を非接触ダンパに活用することで、従
来のダンパでは達成できなかった人が認知できる低・中
・高周波領域(0〜50Hz)の振動エネルギの低減つ
まり振動伝達率の改善が可能になった。
距離を3mmに保持し、完全にずれた状態から完全にラ
ップした状態まで移動させ、さらにこの状態から完全に
ずれた状態まで移動した時の関係を表したグラフであ
る。このグラフは、x方向荷重の絶対値は同じで出力方
向が逆になって出てくる特性で、完全ラップ状態に近づ
く場合は抵抗つまり減衰となり、完全ラップ状態から完
全にずれた状態に移行する場合は加速されることを示し
ている。この特性を非接触ダンパに活用することで、従
来のダンパでは達成できなかった人が認知できる低・中
・高周波領域(0〜50Hz)の振動エネルギの低減つ
まり振動伝達率の改善が可能になった。
【0020】また、図8に示されるように、対向する磁
石の回転角度を変化させると、図9に示されるようなグ
ラフが得られた。当然のことながら、対向面積が減少す
ると最大荷重が減少し、所定の入力を加えることによる
面積変換を介して出力を変化させることが可能なことを
示している。
石の回転角度を変化させると、図9に示されるようなグ
ラフが得られた。当然のことながら、対向面積が減少す
ると最大荷重が減少し、所定の入力を加えることによる
面積変換を介して出力を変化させることが可能なことを
示している。
【0021】図10は、永久磁石としてネオジム系磁石
を採用した場合の磁石間距離と荷重との関係を示すグラ
フであり、反発力は質量増加とともに増加する。ここ
で、反発力Fは、 F∝Br2×(幾何学的寸法) Br:磁化の強さ で表され、幾何学的寸法とは、対向する磁石の離間距
離、対向面積、磁束密度、磁界の強さ等により決定され
る寸法を意味する。磁石材料が同一の場合、磁化の強さ
(Br)は一定であるので、幾何学的寸法を変化させる
ことにより磁石の反発力を変えることができる。
を採用した場合の磁石間距離と荷重との関係を示すグラ
フであり、反発力は質量増加とともに増加する。ここ
で、反発力Fは、 F∝Br2×(幾何学的寸法) Br:磁化の強さ で表され、幾何学的寸法とは、対向する磁石の離間距
離、対向面積、磁束密度、磁界の強さ等により決定され
る寸法を意味する。磁石材料が同一の場合、磁化の強さ
(Br)は一定であるので、幾何学的寸法を変化させる
ことにより磁石の反発力を変えることができる。
【0022】図11は、永久磁石2,4の対向面積を変
化させることにより幾何学的寸法を変化させるようにし
た第一の具体的な磁性バネモデルを示している。図11
において、互いに平行に延在する基台6と頂板8とは、
2本のリンク10a,10bからなる左右一対のXリン
ク10により互いに接続されている。リンク10a,1
0bの一端は、基台6と頂板8にそれぞれ枢着されると
ともに、リンク10a,10bの他端は、頂板8に摺動
自在に取り付けられた上部スライダ12と、基台6に摺
動自在に取り付けられた下部スライダ14にそれぞれ枢
着されている。
化させることにより幾何学的寸法を変化させるようにし
た第一の具体的な磁性バネモデルを示している。図11
において、互いに平行に延在する基台6と頂板8とは、
2本のリンク10a,10bからなる左右一対のXリン
ク10により互いに接続されている。リンク10a,1
0bの一端は、基台6と頂板8にそれぞれ枢着されると
ともに、リンク10a,10bの他端は、頂板8に摺動
自在に取り付けられた上部スライダ12と、基台6に摺
動自在に取り付けられた下部スライダ14にそれぞれ枢
着されている。
【0023】また、基台6にはリニアウェイ16が固定
され、永久磁石2が載置された磁石載置台18がリニア
ウェイ16に摺動自在に取り付けられる一方、もう一つ
の永久磁石4が頂板8に固定されている。基台6にはさ
らに支持台20が固定され、この支持台20に第1アー
ム22aと第2アーム22bからなるL字状レバー22
の中央部が枢着されている。第1アーム22aの一端は
磁石載置台18に枢着されるとともに、第2アーム22
bにはバランスウェイト24が取り付けられている。
され、永久磁石2が載置された磁石載置台18がリニア
ウェイ16に摺動自在に取り付けられる一方、もう一つ
の永久磁石4が頂板8に固定されている。基台6にはさ
らに支持台20が固定され、この支持台20に第1アー
ム22aと第2アーム22bからなるL字状レバー22
の中央部が枢着されている。第1アーム22aの一端は
磁石載置台18に枢着されるとともに、第2アーム22
bにはバランスウェイト24が取り付けられている。
【0024】上記構成において、基台6にある入力が加
えられ、基台6が頂板8に向かって移動すると、バラン
スウェイト24の慣性力により磁石載置台18はリニア
ウェイ16に沿って図中右方向に移動する。その結果、
二つの永久磁石2,4の対向面積が徐々に増加して、永
久磁石2,4の最近接位置あるいはこの位置を過ぎた位
置で最大反発力が発生するとともに、反発力により基台
6は下方に移動する。基台6が頂板8に対し一往復する
間に、図11の磁性バネは図3に示されるような負の減
衰特性を示す。なお、バランスウェイト24は基台6に
対し多少の位相遅れがあるので、最大反発力が発生する
位置は、入力に応じてバランスウェイト24を第2アー
ム22bに対して移動させることにより適宜調節するこ
とができる。また、永久磁石4を上部スライダ12と連
動させることにより、タイミング、対向面積の調節も可
能である。
えられ、基台6が頂板8に向かって移動すると、バラン
スウェイト24の慣性力により磁石載置台18はリニア
ウェイ16に沿って図中右方向に移動する。その結果、
二つの永久磁石2,4の対向面積が徐々に増加して、永
久磁石2,4の最近接位置あるいはこの位置を過ぎた位
置で最大反発力が発生するとともに、反発力により基台
6は下方に移動する。基台6が頂板8に対し一往復する
間に、図11の磁性バネは図3に示されるような負の減
衰特性を示す。なお、バランスウェイト24は基台6に
対し多少の位相遅れがあるので、最大反発力が発生する
位置は、入力に応じてバランスウェイト24を第2アー
ム22bに対して移動させることにより適宜調節するこ
とができる。また、永久磁石4を上部スライダ12と連
動させることにより、タイミング、対向面積の調節も可
能である。
【0025】従って、基台6を車両等に固定し、頂板8
の上にシートを載置すると、図11の磁性バネは磁気浮
上式サスペンションユニットとして機能し、微小振動領
域では周期的外力を減衰させるとともに、後述するよう
に、磁性バネが持つ負の減衰を利用することにより低周
波の改善が可能となり、かつ、永久磁石の非線形特性に
よりシートの着座者の体重に関係なく共振点をほぼ一致
させることができる。
の上にシートを載置すると、図11の磁性バネは磁気浮
上式サスペンションユニットとして機能し、微小振動領
域では周期的外力を減衰させるとともに、後述するよう
に、磁性バネが持つ負の減衰を利用することにより低周
波の改善が可能となり、かつ、永久磁石の非線形特性に
よりシートの着座者の体重に関係なく共振点をほぼ一致
させることができる。
【0026】次に、上記磁性バネの動特性を図12に示
される簡略化した基本モデルを状態方程式で説明する。
図12の入力Fが、永久磁石の面積変換等の幾何学的寸
法変化によってもたらされた力である。図12におい
て、バネ定数をk、減衰係数をr、質量mに入力される
調和振動をF(t)とすると、その状態方程式は、
される簡略化した基本モデルを状態方程式で説明する。
図12の入力Fが、永久磁石の面積変換等の幾何学的寸
法変化によってもたらされた力である。図12におい
て、バネ定数をk、減衰係数をr、質量mに入力される
調和振動をF(t)とすると、その状態方程式は、
【数1】 と表される。
【0027】ここで、平衡位置をx0、平衡位置からの
変位をyとすると、
変位をyとすると、
【数2】
【0028】ここで、k/x0 2=k′とおくと、
【数3】
【0029】調和振動をF(t)=Feiωtとおき、y
=xeiωtとおくと、
=xeiωtとおくと、
【数4】 ここで、φは位相遅れを示す。
【数5】 従って、共振周波数ω0は、
【数6】
【0030】ここで、式(2)はさらに、次のように表
すこともできる。
すこともできる。
【数7】 yをxとおいて、3次の項まで考慮すると、
【数8】
【0031】式(3)には、2次の項に−bx2という
減衰項が表れているが、式(3)をさらに簡単なイメー
ジに置き換えると、
減衰項が表れているが、式(3)をさらに簡単なイメー
ジに置き換えると、
【数9】
【0032】ここで、x=x0cosωtとおくと、
【数10】
【0033】つまり、微小振動領域では、周期的な外力
に対して、絶えず一定の反発力((b/2)x0 2)が加
わっていて、その力で周期的外力を減衰させることにな
る。
に対して、絶えず一定の反発力((b/2)x0 2)が加
わっていて、その力で周期的外力を減衰させることにな
る。
【0034】そこで、図13の装置を使用して、磁石単
体の動特性を調べたところ図14及び図15に示される
ような結果が得られた。
体の動特性を調べたところ図14及び図15に示される
ような結果が得られた。
【0035】図13の装置は、二つの永久磁石2,4を
互いに対向せしめ、面積変換することなくXリンク10
を介してその離間距離を変更するようにした装置であ
る。
互いに対向せしめ、面積変換することなくXリンク10
を介してその離間距離を変更するようにした装置であ
る。
【0036】また、図14及び図15において、横軸は
周波数(Hz)を示し、縦軸は振動伝達率(G/G)を
示している。また、図14において、(a),(b),
(c),(d),(e),(f)はそれぞれ、50×5
0×10mm,50×50×15mm,50×50×2
0mm,75×75×15mm,75×75×20m
m,75×75×25mmの磁石を使用して、同じ負荷
30kgを加えているのに対し、図15においては、5
0×50×20mmの同じ磁石を使用して、53kgと
80kgの異なる負荷を加えたものである。
周波数(Hz)を示し、縦軸は振動伝達率(G/G)を
示している。また、図14において、(a),(b),
(c),(d),(e),(f)はそれぞれ、50×5
0×10mm,50×50×15mm,50×50×2
0mm,75×75×15mm,75×75×20m
m,75×75×25mmの磁石を使用して、同じ負荷
30kgを加えているのに対し、図15においては、5
0×50×20mmの同じ磁石を使用して、53kgと
80kgの異なる負荷を加えたものである。
【0037】図14及び図15は磁性バネの非線形特性
を示したもので、両図から、同じ負荷の場合は、磁石サ
イズが大きいほど共振点は低周波域へ移行し、磁石サイ
ズが同じ場合には、負荷が変わっても共振点は変化せ
ず、負荷の軽重で共振点における振動伝達率に大小が生
ずることがわかる。
を示したもので、両図から、同じ負荷の場合は、磁石サ
イズが大きいほど共振点は低周波域へ移行し、磁石サイ
ズが同じ場合には、負荷が変わっても共振点は変化せ
ず、負荷の軽重で共振点における振動伝達率に大小が生
ずることがわかる。
【0038】また、図16は比較例としての、従来の乗
用車シートの動特性を示すグラフであり、振動伝達率が
全体として高く、負荷の変動にともない共振点及び振動
伝達率はともに変動している。
用車シートの動特性を示すグラフであり、振動伝達率が
全体として高く、負荷の変動にともない共振点及び振動
伝達率はともに変動している。
【0039】ところで、上記式(1)において、対向す
る永久磁石間の幾何学的寸法を運動行程内機構あるいは
外力により変化させると、バネ定数kは、図17に示さ
れるように、時間とともに変化する長方形波k(t)で
あって、周期T=2π/ωにおいて、+k’と−k’の
値を1/2周期毎に交互にとる。従って、式(1)は次
のように表される。
る永久磁石間の幾何学的寸法を運動行程内機構あるいは
外力により変化させると、バネ定数kは、図17に示さ
れるように、時間とともに変化する長方形波k(t)で
あって、周期T=2π/ωにおいて、+k’と−k’の
値を1/2周期毎に交互にとる。従って、式(1)は次
のように表される。
【数11】 (i)0<t<π/ωにおいて、
【数12】 (ii)π/ω≦t<2π/ωにおいて、
【数13】
【0040】ここで、0<t<π/ωの時の平衡位置を
x0、平衡位置からの変位をy1とすると、
x0、平衡位置からの変位をy1とすると、
【数14】
【0041】ここで、(n−k’)/x0 2=k1′と
おくと、
おくと、
【数15】
【0042】調和振動をF(t)=Feiωtとおき、y
1=xeiωtとおくと、
1=xeiωtとおくと、
【数16】 ここで、φは位相遅れを示す。
【数17】 従って、共振周波数ω0は、
【数18】
【0043】同様に、π/ω≦t<2π/ωの時、
【数19】 従って、y1<y2で、発散することとなる。
【0044】一般に、自励振動系は負の粘性減衰を有す
るバネ−質量系と置き換えることができ、振動中に外部
から振動エネルギが導入されるが、実際に発生する振動
は、質点に空気抵抗や各種の抵抗が発生し、エネルギを
消失する。
るバネ−質量系と置き換えることができ、振動中に外部
から振動エネルギが導入されるが、実際に発生する振動
は、質点に空気抵抗や各種の抵抗が発生し、エネルギを
消失する。
【0045】しかしながら、本発明の負の減衰特性を有
する磁性バネに外力として振動エネルギが導入される
と、上記したように、y1<y2で発散し、発散し続け
ると振幅が次第に増大し系が破壊されるか、あるいは、
変位の増大とともに大きくなる減衰項を上記状態方程式
に追加することにより、正の減衰が作用し負の減衰と釣
り合った状態で定常的な振動を行うようになる。すなわ
ち、バネ定数k(t)と同様、減衰係数も可変で、式
(1)はさらに次のように書き直すこともできる。
する磁性バネに外力として振動エネルギが導入される
と、上記したように、y1<y2で発散し、発散し続け
ると振幅が次第に増大し系が破壊されるか、あるいは、
変位の増大とともに大きくなる減衰項を上記状態方程式
に追加することにより、正の減衰が作用し負の減衰と釣
り合った状態で定常的な振動を行うようになる。すなわ
ち、バネ定数k(t)と同様、減衰係数も可変で、式
(1)はさらに次のように書き直すこともできる。
【数20】
【0046】本発明の磁性バネを有する振動系は、持続
振動、発散振動を誘発するエネルギ変化・変換系が振動
系内部に存在しており、上記状態方程式に正の減衰項を
機構的に加えることにより、さらに次の状態方程式を得
ることができる。
振動、発散振動を誘発するエネルギ変化・変換系が振動
系内部に存在しており、上記状態方程式に正の減衰項を
機構的に加えることにより、さらに次の状態方程式を得
ることができる。
【数21】
【0047】この状態方程式は、r2≠0の時、xが増
大すると左辺3項が大きくなり、かつ、バネ項の減衰項
により正の減衰が働く。従って、永久磁石による内部励
振特性として、変位が小さい時は負の減衰で、変位の増
大とともに正の減衰が働き、正と負の減衰がつりあう振
幅で振動が定常的になる。
大すると左辺3項が大きくなり、かつ、バネ項の減衰項
により正の減衰が働く。従って、永久磁石による内部励
振特性として、変位が小さい時は負の減衰で、変位の増
大とともに正の減衰が働き、正と負の減衰がつりあう振
幅で振動が定常的になる。
【0048】また、振動系の質量、減衰係数、バネ定数
のうち一つ以上について、その大きさが時間とともに変
化する場合、これによって生じる振動を係数励振振動と
呼ばれているが、上記式(4),(5),(6)は励振
源自体が振動する係数励振振動となっており、系内の非
振動的エネルギが系内部で振動的な励振に変換されて振
動を発生させる。
のうち一つ以上について、その大きさが時間とともに変
化する場合、これによって生じる振動を係数励振振動と
呼ばれているが、上記式(4),(5),(6)は励振
源自体が振動する係数励振振動となっており、系内の非
振動的エネルギが系内部で振動的な励振に変換されて振
動を発生させる。
【0049】通常は供給エネルギは動力エネルギの一部
が変換したものであるから、動力エネルギに上限がある
と供給エネルギにも限りがあり、これが消費エネルギに
等しくなった時点で振幅が抑えられる。永久磁石による
ポテンシャルエネルギは、その系の動力エネルギとは独
立しており、消費エネルギとの格差を広げることができ
るが、永久磁石の質量当たりの最大エネルギ積が増大す
れば、さらにこの格差を大幅に広げることも可能で、1
サイクル中で、負の減衰による供給エネルギを減衰によ
る消費エネルギよりも大きくすることにより、振動エネ
ルギは増大する。
が変換したものであるから、動力エネルギに上限がある
と供給エネルギにも限りがあり、これが消費エネルギに
等しくなった時点で振幅が抑えられる。永久磁石による
ポテンシャルエネルギは、その系の動力エネルギとは独
立しており、消費エネルギとの格差を広げることができ
るが、永久磁石の質量当たりの最大エネルギ積が増大す
れば、さらにこの格差を大幅に広げることも可能で、1
サイクル中で、負の減衰による供給エネルギを減衰によ
る消費エネルギよりも大きくすることにより、振動エネ
ルギは増大する。
【0050】前述したように、式(1)において、減衰
係数r及びバネ定数(係数)kは自由に制御することが
可能で、例えば図1の模式図において、永久磁石4が最
下端にある時、永久磁石2との対向面積を最大とするこ
とで振幅を減衰でき、磁力ブレーキ、動吸振器等に応用
することができる。また、最下端から最上端に向かって
永久磁石4が離れ出してから対向面積を最大にすること
で反発力を増大することができるので、発電機やアンプ
等に応用することもできる。
係数r及びバネ定数(係数)kは自由に制御することが
可能で、例えば図1の模式図において、永久磁石4が最
下端にある時、永久磁石2との対向面積を最大とするこ
とで振幅を減衰でき、磁力ブレーキ、動吸振器等に応用
することができる。また、最下端から最上端に向かって
永久磁石4が離れ出してから対向面積を最大にすること
で反発力を増大することができるので、発電機やアンプ
等に応用することもできる。
【0051】また、上記状態方程式の解から分かるよう
に、本発明の係数励振振動系は、負荷の変動によって固
有振動数が変化しても、励振振動数を移動させることで
振幅の変動を少なくすることができる。すなわち、励振
振動数を可変とし、手動又は自動的に共振振動数を追尾
させて、常に周波数特性の共振振動数が低下するところ
で動作させることが可能で、自動車用シートの除振装置
として使用することにより、振動絶縁性が向上でき、そ
の個別性能を改善することができる。例えば、共振点を
4Hz以下に下げることもできる。また、負の減衰を利
用することによる低周波の改善と永久磁石の持つ非線形
特性を特化させることによる体重差の吸収が可能とな
る。
に、本発明の係数励振振動系は、負荷の変動によって固
有振動数が変化しても、励振振動数を移動させることで
振幅の変動を少なくすることができる。すなわち、励振
振動数を可変とし、手動又は自動的に共振振動数を追尾
させて、常に周波数特性の共振振動数が低下するところ
で動作させることが可能で、自動車用シートの除振装置
として使用することにより、振動絶縁性が向上でき、そ
の個別性能を改善することができる。例えば、共振点を
4Hz以下に下げることもできる。また、負の減衰を利
用することによる低周波の改善と永久磁石の持つ非線形
特性を特化させることによる体重差の吸収が可能とな
る。
【0052】ここで、ウレタンとファイバを組み合わせ
たパッドあるいは本発明の磁性バネ構造を採用したベッ
ド型除振ユニットを使用して振動実験を行ったところ、
図18に示されるような結果が得られた。
たパッドあるいは本発明の磁性バネ構造を採用したベッ
ド型除振ユニットを使用して振動実験を行ったところ、
図18に示されるような結果が得られた。
【0053】図18のグラフからわかるように、パッド
とともに本発明の磁性バネ構造を採用したものは、パッ
ドのみを採用したものに比べ、共振周波数が半分以下の
3Hzまで減少し、除振ユニットとして極めて有効であ
ることが認められた。さらに、セミアクティブ制御を行
うことにより、共振点における振動伝達率を1/3程度
に減少することができた。
とともに本発明の磁性バネ構造を採用したものは、パッ
ドのみを採用したものに比べ、共振周波数が半分以下の
3Hzまで減少し、除振ユニットとして極めて有効であ
ることが認められた。さらに、セミアクティブ制御を行
うことにより、共振点における振動伝達率を1/3程度
に減少することができた。
【0054】さらに、図19のマグレブ(magnetic lev
itation:磁気浮上)ユニットの動特性を調べたとこ
ろ、図20のような結果が得られた。
itation:磁気浮上)ユニットの動特性を調べたとこ
ろ、図20のような結果が得られた。
【0055】図19のマグレブユニットは、基台74の
上に複数の揺動レバー76を介してシート78を揺動自
在に支承し、基台74の上面に二つの永久磁石80,8
2を所定距離離間せしめて固定する一方、この永久磁石
80,82に対し同磁極が対向する永久磁極84をシー
ト78の下面に固定している。なお、永久磁極80,8
2,84としては、75×75×25mmのものを使用
した。
上に複数の揺動レバー76を介してシート78を揺動自
在に支承し、基台74の上面に二つの永久磁石80,8
2を所定距離離間せしめて固定する一方、この永久磁石
80,82に対し同磁極が対向する永久磁極84をシー
ト78の下面に固定している。なお、永久磁極80,8
2,84としては、75×75×25mmのものを使用
した。
【0056】このマグレブユニットに53kg,75k
g,80kgの異なる負荷を加えたが、図20に示され
るように、負荷の変動による振動伝達率の差を小さく抑
えることができるとともに、共振点を略一致させること
ができた。
g,80kgの異なる負荷を加えたが、図20に示され
るように、負荷の変動による振動伝達率の差を小さく抑
えることができるとともに、共振点を略一致させること
ができた。
【0057】また、乗用車用シート、サスペンションシ
ートA、サスペンションシートB、及び、本発明にかか
るマグレブユニットの乗り心地評価を調べたところ、図
21のような結果が得られた。なお、マグレブユニット
の負荷は53kgとし、75×75×25mmの永久磁
石を使用した。また、図中、「固定」はシートをサスペ
ンションに固定しただけの状態を示すとともに、ウレタ
ン、ゲル、スチレンはユニットの上に取り付けたクッシ
ョン材を示している。
ートA、サスペンションシートB、及び、本発明にかか
るマグレブユニットの乗り心地評価を調べたところ、図
21のような結果が得られた。なお、マグレブユニット
の負荷は53kgとし、75×75×25mmの永久磁
石を使用した。また、図中、「固定」はシートをサスペ
ンションに固定しただけの状態を示すとともに、ウレタ
ン、ゲル、スチレンはユニットの上に取り付けたクッシ
ョン材を示している。
【0058】ここで、乗り心地評価定数として、”SAE
paper 820309”に記載され次式で表される乗り心地指数
R(Ride Number)を使用した。 R=K/(A・B・fn) 変数A,B,fnはシートの伝達関数(T.F.)から求
められ、それぞれ次の値を示している。 A: T.F.の最大値 B: 10HzにおけるT.F.値 fn:共振周波数あるいはAが現れた周波数 K: 全く異なったシートを表現する乗り心地係数(多
様なシートを使用したので、K値は"1”と定めた) ISO乗り心地評価は小さい数値で乗り心地が良いこと
を表すのに対し、上記乗り心地指数Rはその数値が大き
いほど良い乗り心地を意味している。
paper 820309”に記載され次式で表される乗り心地指数
R(Ride Number)を使用した。 R=K/(A・B・fn) 変数A,B,fnはシートの伝達関数(T.F.)から求
められ、それぞれ次の値を示している。 A: T.F.の最大値 B: 10HzにおけるT.F.値 fn:共振周波数あるいはAが現れた周波数 K: 全く異なったシートを表現する乗り心地係数(多
様なシートを使用したので、K値は"1”と定めた) ISO乗り心地評価は小さい数値で乗り心地が良いこと
を表すのに対し、上記乗り心地指数Rはその数値が大き
いほど良い乗り心地を意味している。
【0059】図21からわかるように、乗り心地評価を
したシートのうち、乗用車用シートは0.2〜0.3(オ
ールウレタン系)、0.3〜0.5(バネ系)、体重調整
を行ったサスペンションシートは0.5〜0.7の値を示
し、本発明のマグレブユニットの乗り心地は他のシート
より良く、53kgの負荷に対して0.75〜1.60の
乗り心地評価定数が得られた。
したシートのうち、乗用車用シートは0.2〜0.3(オ
ールウレタン系)、0.3〜0.5(バネ系)、体重調整
を行ったサスペンションシートは0.5〜0.7の値を示
し、本発明のマグレブユニットの乗り心地は他のシート
より良く、53kgの負荷に対して0.75〜1.60の
乗り心地評価定数が得られた。
【0060】また、図22は負荷を変えた場合のマグレ
ブユニットの乗り心地評価定数を示しており、この図か
らわかるように、どの負荷に対しても0.7以上の乗り
心地評価定数が得られ、本発明にかかるマグレブユニッ
トの乗り心地の良さを示している。
ブユニットの乗り心地評価定数を示しており、この図か
らわかるように、どの負荷に対しても0.7以上の乗り
心地評価定数が得られ、本発明にかかるマグレブユニッ
トの乗り心地の良さを示している。
【0061】また、図23は、乗用車用シート、サスペ
ンションシートA、サスペンションシートB、及び、本
発明にかかるマグレブユニットの動特性を示しており,
図中、(a)は乗用車用シート、(b),(c)はサス
ペンションシートAにそれぞれ53kg及び75kgの
負荷を加えたもの、(d),(e)はサスペンションシ
ートBにそれぞれ45kg及び75kgの負荷を加えた
もの、(f),(g)は本発明にかかるマグレブユニッ
トにおいてクッション材を変えたもの、(h)は本発明
にかかるマグレブユニットをセミアクティブ制御したも
のをそれぞれ示している。
ンションシートA、サスペンションシートB、及び、本
発明にかかるマグレブユニットの動特性を示しており,
図中、(a)は乗用車用シート、(b),(c)はサス
ペンションシートAにそれぞれ53kg及び75kgの
負荷を加えたもの、(d),(e)はサスペンションシ
ートBにそれぞれ45kg及び75kgの負荷を加えた
もの、(f),(g)は本発明にかかるマグレブユニッ
トにおいてクッション材を変えたもの、(h)は本発明
にかかるマグレブユニットをセミアクティブ制御したも
のをそれぞれ示している。
【0062】図23からわかるように、マグレブユニッ
トの共振点は2〜3Hzの間にあり、低・高周波領域の
振動伝達率も小さいことがわかる。さらに、セミアクテ
ィブ制御を行うことにより、共振点をさらに減少させる
ことができるとともに、その振動伝達率を広範囲の周波
数領域において低減できることが確認できた。
トの共振点は2〜3Hzの間にあり、低・高周波領域の
振動伝達率も小さいことがわかる。さらに、セミアクテ
ィブ制御を行うことにより、共振点をさらに減少させる
ことができるとともに、その振動伝達率を広範囲の周波
数領域において低減できることが確認できた。
【0063】
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。本
発明のうちで、請求項1に記載の発明によれば、相対移
動自在に離間した少なくとも二つの永久磁石により磁性
バネを構成し、一方の永久磁石をシートに取り付け、他
方に入力された外力に対しその対向面積を変化させるこ
とにより内部運動系内のバネ定数あるいは減衰係数を変
化させるようにしたので、サスペンションユニットのパ
ッシブコントロール、セミアクティブコントロールある
いはアクティブコントロールを容易に行うことができ
る。
ているので、以下に記載されるような効果を奏する。本
発明のうちで、請求項1に記載の発明によれば、相対移
動自在に離間した少なくとも二つの永久磁石により磁性
バネを構成し、一方の永久磁石をシートに取り付け、他
方に入力された外力に対しその対向面積を変化させるこ
とにより内部運動系内のバネ定数あるいは減衰係数を変
化させるようにしたので、サスペンションユニットのパ
ッシブコントロール、セミアクティブコントロールある
いはアクティブコントロールを容易に行うことができ
る。
【0064】また、請求項2に記載の発明によれば、外
力が入力される永久磁石の移動とともに一体的に揺動す
るレバーに慣性部材を取り付け、この慣性部材をレバー
に対し移動させることにより永久磁石間で最大反発力を
発生する位置を調節するようにしたので、ポテンシャル
の場としての磁場を有効利用することができるばかりで
なく、磁性バネに正、0又は負の任意の減衰特性を付与
することができ、高周波領域の振動伝達率の低減、体重
差の吸収、及び、共振点の低下等低周波領域の振動エネ
ルギの低減にも効果がある。
力が入力される永久磁石の移動とともに一体的に揺動す
るレバーに慣性部材を取り付け、この慣性部材をレバー
に対し移動させることにより永久磁石間で最大反発力を
発生する位置を調節するようにしたので、ポテンシャル
の場としての磁場を有効利用することができるばかりで
なく、磁性バネに正、0又は負の任意の減衰特性を付与
することができ、高周波領域の振動伝達率の低減、体重
差の吸収、及び、共振点の低下等低周波領域の振動エネ
ルギの低減にも効果がある。
【0065】さらに、請求項3に記載の発明によれば、
シートに取り付けられた永久磁石をシートに対し移動さ
せることにより永久磁石間の対向面積を調節するように
したので、負荷の変動により固有振動数が変化しても、
励振振動数を移動させることができ、振幅の変動を減少
させることができる。
シートに取り付けられた永久磁石をシートに対し移動さ
せることにより永久磁石間の対向面積を調節するように
したので、負荷の変動により固有振動数が変化しても、
励振振動数を移動させることができ、振幅の変動を減少
させることができる。
【図1】 本発明にかかる磁性バネにおいて、二つの永
久磁石の入力側と出力側の平衡位置を示した模式図であ
る。
久磁石の入力側と出力側の平衡位置を示した模式図であ
る。
【図2】 図1の磁性バネにおいて、加えられた荷重と
永久磁石の平衡位置からの変位量との関係を示す基本特
性のグラフである。
永久磁石の平衡位置からの変位量との関係を示す基本特
性のグラフである。
【図3】 実測された荷重と変位量との関係を示すグラ
フである。
フである。
【図4】 永久磁石の端面上に磁荷が均一に分布してい
ると仮定したチャージモデルにおける入出力の考え方を
示す模式図であり、(a)は吸引を、(b)は反発を、
(c)は(b)とは異なる部位の反発をそれぞれ示して
いる。
ると仮定したチャージモデルにおける入出力の考え方を
示す模式図であり、(a)は吸引を、(b)は反発を、
(c)は(b)とは異なる部位の反発をそれぞれ示して
いる。
【図5】 同磁極を対向させた永久磁石において、一方
を他方に対し移動させた(対向面積を変えた)場合の模
式図である。
を他方に対し移動させた(対向面積を変えた)場合の模
式図である。
【図6】 図5に基づいて計算した場合のX軸移動量に
対するX軸及びZ軸方向の荷重を示すグラフである。
対するX軸及びZ軸方向の荷重を示すグラフである。
【図7】 図5の永久磁石の離間距離を一定に保持し、
一方を他方に対し完全にずれた状態から完全にラップし
た状態まで移動し、さらにこの状態から完全にずれた状
態まで移動させた時の変位量と荷重との関係を示すグラ
フである。
一方を他方に対し完全にずれた状態から完全にラップし
た状態まで移動し、さらにこの状態から完全にずれた状
態まで移動させた時の変位量と荷重との関係を示すグラ
フである。
【図8】 同磁極を対向させた永久磁石において、一方
を他方に対し回転させた(対向面積を変えた)場合の模
式図である。
を他方に対し回転させた(対向面積を変えた)場合の模
式図である。
【図9】 図8に基づいて永久磁石を回転させた場合の
対向面積に対する最大荷重を示すグラフである。
対向面積に対する最大荷重を示すグラフである。
【図10】 永久磁石としてネオジム系磁石を採用した
場合の磁石間距離と荷重との関係を示すグラフである。
場合の磁石間距離と荷重との関係を示すグラフである。
【図11】 永久磁石の対向面積を変化させることによ
り幾何学的寸法を変化させるようにした第一の磁性バネ
モデルの正面図である。
り幾何学的寸法を変化させるようにした第一の磁性バネ
モデルの正面図である。
【図12】 磁性バネの特性を説明するための基本モデ
ルである。
ルである。
【図13】 面積変換しない場合の磁性バネの静・動特
性を得るために使用された装置の正面図である。
性を得るために使用された装置の正面図である。
【図14】 図13の装置を使用して得られた磁性バネ
の動特性を示しており、(a)は50×50×10mm
の磁石を使用した場合の、(b)は50×50×15m
mの磁石を使用した場合の、(c)は50×50×20
mmの磁石を使用した場合の、(d)は75×75×1
5mmの磁石を使用した場合の、(e)は75×75×
20mmの磁石を使用した場合の、(f)は75×75
×25mmの磁石を使用した場合のグラフである。
の動特性を示しており、(a)は50×50×10mm
の磁石を使用した場合の、(b)は50×50×15m
mの磁石を使用した場合の、(c)は50×50×20
mmの磁石を使用した場合の、(d)は75×75×1
5mmの磁石を使用した場合の、(e)は75×75×
20mmの磁石を使用した場合の、(f)は75×75
×25mmの磁石を使用した場合のグラフである。
【図15】 図13の装置を使用して得られた磁性バネ
の動特性を示しており、同じ磁石を使用して負荷を変え
た場合のグラフである。
の動特性を示しており、同じ磁石を使用して負荷を変え
た場合のグラフである。
【図16】 比較例としての従来の乗用車用シートの動
特性を示すグラフである。
特性を示すグラフである。
【図17】 本発明の磁性バネ構造におけるバネ定数及
び係数の時間に対する変化を示すグラフである。
び係数の時間に対する変化を示すグラフである。
【図18】 パッドのみを使用した場合、パッドと磁性
バネを使用した場合、及び、さらにセミアクティブ制御
した場合のベッド型除振ユニットの動特性を示すグラフ
である。
バネを使用した場合、及び、さらにセミアクティブ制御
した場合のベッド型除振ユニットの動特性を示すグラフ
である。
【図19】 磁性バネの動特性を測定するために使用さ
れたマグレブユニットの正面図である。
れたマグレブユニットの正面図である。
【図20】 図19のマグレブユニットを使用して測定
されたマグレブユニットの動特性を示すグラフである。
されたマグレブユニットの動特性を示すグラフである。
【図21】 マグレブユニットを含む種々のシートを使
用して測定された乗り心地評価定数を示すグラフであ
る。
用して測定された乗り心地評価定数を示すグラフであ
る。
【図22】 負荷及びクッション材を変えて測定された
マグレブユニットの乗り心地評価定数を示すグラフであ
る。
マグレブユニットの乗り心地評価定数を示すグラフであ
る。
【図23】 マグレブユニットを含む種々のシートを使
用して測定された動特性を示すグラフである。
用して測定された動特性を示すグラフである。
2,4 永久磁石 6 基台 8 頂板 10 Xリンク 12 上部スライダ 14 下部スライダ 16 リニアウェイ 18 磁石載置台 22 L字状レバー 24 バランスウェイト
Claims (3)
- 【請求項1】 相対移動自在に離間した少なくとも二つ
の永久磁石により磁性バネを構成し、上記少なくとも二
つの永久磁石の一方をシートに取り付け、他方の永久磁
石に入力された外力に対し上記少なくとも二つの永久磁
石の対向面積を変化させることにより内部運動系内のバ
ネ定数あるいは減衰係数を変化させるようにしたことを
特徴とする磁気浮上式サスペンションユニット。 - 【請求項2】 上記他方の永久磁石の移動とともに一体
的に揺動するレバーに慣性部材を取り付け、該慣性部材
をレバーに対し移動させることにより上記少なくとも二
つの永久磁石間で最大反発力を発生する位置を調節する
ようにした請求項1に記載の磁気浮上式サスペンション
ユニット。 - 【請求項3】 シートに取り付けられた永久磁石をシー
トに対し移動させることにより上記対向面積を調節する
ようにした請求項1に記載の磁気浮上式サスペンション
ユニット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22818296A JPH1067267A (ja) | 1996-08-29 | 1996-08-29 | 磁気浮上式サスペンションユニット |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22818296A JPH1067267A (ja) | 1996-08-29 | 1996-08-29 | 磁気浮上式サスペンションユニット |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1067267A true JPH1067267A (ja) | 1998-03-10 |
Family
ID=16872502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22818296A Pending JPH1067267A (ja) | 1996-08-29 | 1996-08-29 | 磁気浮上式サスペンションユニット |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1067267A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2419281A (en) * | 2004-10-25 | 2006-04-26 | Keith Dixon | Magnetically-suspended chair |
JP2011102630A (ja) * | 2009-11-11 | 2011-05-26 | Canon Inc | 磁気支持機構、露光装置、およびデバイス製造方法 |
-
1996
- 1996-08-29 JP JP22818296A patent/JPH1067267A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2419281A (en) * | 2004-10-25 | 2006-04-26 | Keith Dixon | Magnetically-suspended chair |
JP2011102630A (ja) * | 2009-11-11 | 2011-05-26 | Canon Inc | 磁気支持機構、露光装置、およびデバイス製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100266432B1 (ko) | 댐핑 특성을 갖는 자기 스프링 및 그 자기 스프링을 갖는 진동 메커니즘 | |
US6241059B1 (en) | Vibration isolator having magnetic springs | |
KR100331934B1 (ko) | 자기스프링을구비한진동기구 | |
US6336627B1 (en) | Suspension unit having a magneto-spring | |
EP1055838B1 (en) | Vibration mechanism | |
EP1702791A2 (en) | Seat suspension control mechanism, magnetic spring and magnetic damper | |
JP2001059546A (ja) | 除振装置及び磁気ダンパ機構 | |
JPH1086724A (ja) | 磁気浮上式サスペンションユニット | |
CN110341566B (zh) | 一种具有振动能量回收及振动主动控制的座椅悬架装置 | |
Sultoni et al. | Modeling, prototyping and testing of regenerative electromagnetic shock absorber | |
JPH1086726A (ja) | 磁気浮上式サスペンションユニット | |
JPH1086725A (ja) | 磁気浮上式サスペンションユニット | |
JPH1067267A (ja) | 磁気浮上式サスペンションユニット | |
JP3903163B2 (ja) | 磁気浮上式サスペンションユニット | |
JPH10220524A (ja) | 負の減衰特性を有する磁性バネ振動機構 | |
JPH10220525A (ja) | 負の減衰特性を有する磁性バネ振動機構 | |
JP3747112B2 (ja) | 減衰特性を有する磁気バネ | |
JP3890383B2 (ja) | 減衰特性を有する磁性バネ | |
Agrawal et al. | Design and Development of a Semi Active Electromagnetic Suspension System | |
Fujita et al. | Vibration characteristics of vertical suspension using magneto-spring | |
JPH06117485A (ja) | 周波数対応型吸振器 | |
Fujita et al. | New vibration system using magneto-spring | |
JPH0538911A (ja) | 鉄道車両のアクテイブ制御による振動抑制方法 | |
Todaka et al. | Moving simulation of vibration systems using permanent magnets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20060710 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A02 | Decision of refusal |
Effective date: 20061205 Free format text: JAPANESE INTERMEDIATE CODE: A02 |