JPH1062802A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH1062802A
JPH1062802A JP27279296A JP27279296A JPH1062802A JP H1062802 A JPH1062802 A JP H1062802A JP 27279296 A JP27279296 A JP 27279296A JP 27279296 A JP27279296 A JP 27279296A JP H1062802 A JPH1062802 A JP H1062802A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
signal wiring
video signal
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27279296A
Other languages
Japanese (ja)
Other versions
JP3567183B2 (en
Inventor
Naoto Hirota
直人 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBAYASHI SEIKO KK
Original Assignee
OOBAYASHI SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17518813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1062802(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by OOBAYASHI SEIKO KK filed Critical OOBAYASHI SEIKO KK
Priority to JP27279296A priority Critical patent/JP3567183B2/en
Priority to PCT/JP1997/002862 priority patent/WO1998008134A1/en
Priority to TW86111895A priority patent/TW406206B/en
Publication of JPH1062802A publication Critical patent/JPH1062802A/en
Application granted granted Critical
Publication of JP3567183B2 publication Critical patent/JP3567183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Abstract

PROBLEM TO BE SOLVED: To obtain a transverse electric field liquid crystal display device which is free from gradation inversion, is good in visual angle characteristics, allows the utilization of low-voltage driving ICs and is high in response speed by specifying the inter-electrode distance between a liquid crystal driving electrode and a common electrode to the inter-electrode distance which is not completely uniform within one pixel but is the combination of >=2 kinds of the inter-electrode distances. SOLUTION: The inter-electrode distance of the liquid crystal driving electrode 4 and the common electrode 3 is composed of the inter-electrode distance which is not completely uniform within one pixel but is the combination of >=2 kinds of the inter-electrode distances. The inter-electrode distances include, for example, two kinds; a, b and the inter-electrode distances a, b are arranged symmetrically to the center line. When the number of the electrodes increases, the inter-electrode distances include the combinations of, for example, two kinds and the combinations of three kinds. Since liquid crystal molecules are liable to receive the influence of the electric fields from video signal wirings 2, the crosstalks of the direction aligned to the video signal wirings 2 are decreased by arranging the video signal wirings 2 so as to hold these wirings with the common electrodes 3. The inter-electrode distance (a) nearest to the video signal wirings 2 is recommended to be set at the largest value in order to further improve the effect thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、広視野角・高画質の大
画面アクティブマトリックス型液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large screen active matrix type liquid crystal display device having a wide viewing angle and high image quality.

【0002】[0002]

【従来の技術】従来のアクティブマトリックス型液晶表
示装置の一方の基板上に形成した櫛歯状電極対を用いて
液晶組成物層に電界を印加する方式が、例えば特開平7
−36058号や特開平7−159786号、特開平6
−160878号公報により提案されている。以下液晶
組成物層に印加する主たる電界方向が、基板界面にほぼ
平行な方向である表示方式を、横電界方式と称する。図
1、図2が従来の横電界方式の例である。櫛歯状の画素
電極である液晶駆動電極と共通電極とは、直線状で
平行に配置されており、との電極間距離aは、すべ
て同じである。
2. Description of the Related Art A method of applying an electric field to a liquid crystal composition layer using a comb-like electrode pair formed on one substrate of a conventional active matrix type liquid crystal display device is disclosed in, for example, Japanese Patent Application Laid-Open No.
-36058, JP-A-7-159786, JP-A-6-159786
It has been proposed by JP-A-160878. Hereinafter, a display method in which the main electric field direction applied to the liquid crystal composition layer is substantially parallel to the substrate interface is referred to as a horizontal electric field method. 1 and 2 show examples of a conventional in-plane switching method. The liquid crystal drive electrode, which is a comb-shaped pixel electrode, and the common electrode are linearly arranged in parallel, and the distance a between the electrodes is the same.

【0003】[0003]

【発明が解決しようとする課題】横電界方式の液晶セル
の駆動電圧に対する透過率特性は、図3にあるようにあ
る電圧以上の電圧を印加すると輝度が低下してしまう。
映像信号電圧が、すこし高すぎるような場合には、画像
の階調が反転してしまうことになる。階調表示特性にお
いて、この階調反転は、非常に大きな問題であり、きわ
めて不自然な画像表示となってしまう。
As shown in FIG. 3, the transmittance characteristic of a horizontal electric field type liquid crystal cell with respect to the driving voltage is such that the luminance decreases when a voltage higher than a certain voltage is applied.
If the video signal voltage is slightly too high, the gradation of the image will be inverted. In the gray scale display characteristics, this gray scale inversion is a very serious problem, resulting in an extremely unnatural image display.

【0004】横電界方式の液晶表示装置では、液晶駆動
電圧が従来の縦電界方式のTN液晶表示装置よりも高く
なる傾向があり、駆動するドライバーICも高電圧出力
のものが要求され、コスト高になる問題があった。
In the liquid crystal display device of the horizontal electric field type, the liquid crystal driving voltage tends to be higher than that of the conventional TN liquid crystal display device of the vertical electric field type, and a driving IC having a high voltage output is required. There was a problem.

【0005】さらに横電界方式の液晶表示装置で用いら
れる配向膜と液晶にはプレチルト角が1度以下の組み合
せが要求され、従来のTN液晶表示装置で用いられてい
た4度〜7度付近の配向膜が使用できない。そのため
に、横電界方式の液晶表示装置を従来のTN液晶表示装
置の製造ラインで作る場合、配向膜の材料や液晶材料の
変更が必要となり、生産効率が低下するという問題が発
生する。
Further, a combination of an alignment film and a liquid crystal used in a liquid crystal display device of a horizontal electric field type requires a pretilt angle of 1 degree or less, and a combination of about 4 degrees to 7 degrees used in a conventional TN liquid crystal display device. The alignment film cannot be used. For this reason, when a horizontal electric field type liquid crystal display device is manufactured on a conventional TN liquid crystal display device manufacturing line, it is necessary to change the material of the alignment film and the liquid crystal material, which causes a problem that the production efficiency is reduced.

【0006】またカラーフィルター基板には、従来のT
N液晶表示装置のように表面全体に透明導電性膜がない
ために静電気の影響をうけやすく、チャージアップした
場合、配向不良をおこす問題がある。
On the other hand, a conventional T filter is used for a color filter substrate.
Since there is no transparent conductive film on the entire surface as in the N liquid crystal display device, it is susceptible to the influence of static electricity, and there is a problem that poor alignment is caused when charged up.

【0007】横電界方式の液晶表示装置で用いられる画
素電極の加工は、ウェットエッチング加工によるものが
多く、電極間距離を非常に小さくすることができない。
そのために液晶の応答速度は従来のTN液晶よりもおそ
く、動画対応が困難であった。
The processing of the pixel electrodes used in the liquid crystal display device of the horizontal electric field method is often performed by wet etching, and the distance between the electrodes cannot be made very small.
Therefore, the response speed of the liquid crystal is slower than that of the conventional TN liquid crystal, and it is difficult to handle moving images.

【0008】本発明は、これらの課題を解決するもので
あり、その目的とするところは、階調反転のない、視角
特性が良好で、低電圧駆動ICが利用でき、応答速度の
速い横電界液晶表示装置を提供することにある。さら
に、使用可能な液晶組成物及び配向膜材料の選択の自由
度を上げ、液晶プロセスの歩留りを向上し、コストを安
くすることである。
An object of the present invention is to solve these problems. An object of the present invention is to provide a horizontal electric field which has no visual inversion, has good viewing angle characteristics, can use a low-voltage driving IC, and has a high response speed. It is to provide a liquid crystal display device. Another object is to increase the degree of freedom in selecting usable liquid crystal compositions and alignment film materials, improve the yield of the liquid crystal process, and reduce costs.

【0009】[0009]

【課題を解決するための手段】前記課題を解決し、上記
目的を達成するために本発明では、以下の手段を用い
る。基板上に走査信号配線と映像信号配線と前記走査信
号配線と映像信号配線との各交差部に形成された薄膜ト
ランジスターと、前記薄膜トランジスタに接続された液
晶駆動電極と、少なくとも一部が前記液晶駆動電極と対
向して形成された共通電極とを有するアクティブマトリ
ックス基板と、前記アクティブマトリックス基板に対向
する対向基板と、前記アクティブマトリックス基板と前
記対向基板に挾持された液晶層とからなる液晶表示装置
において、 〔手段1〕前記液晶駆動電極と前記共通電極との電極間
距離が、1画素内で、すべて均一でなく、2種類以上の
電極間距離の組み合せとした。
Means for Solving the Problems In order to solve the above problems and achieve the above object, the present invention uses the following means. A thin film transistor formed on the substrate at each intersection of the scanning signal wiring, the video signal wiring, the scanning signal wiring and the video signal wiring, a liquid crystal driving electrode connected to the thin film transistor, and at least a part of the liquid crystal driving electrode A liquid crystal display device comprising: an active matrix substrate having a common electrode formed to face an electrode; a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. [Means 1] The inter-electrode distance between the liquid crystal driving electrode and the common electrode is not uniform within one pixel, but is a combination of two or more types of inter-electrode distance.

【0010】〔手段2〕手段1において、液晶駆動電極
と共通電極との電極間距離が、1画素内で、2種類以上
存在し、画素の中央を境にして異なる電極間距離を、左
右対称または、上下対称に配置した。
[Means 2] In the means 1, there are two or more kinds of electrode distances between the liquid crystal drive electrode and the common electrode within one pixel. Alternatively, they are arranged vertically symmetrically.

【0011】〔手段3〕共通電極を映像信号配線の伸び
ている方向に連結し、有効表示画面内部では、共通電極
が映像信号配線を横ぎって互いに連結しない構造とし
た。
[Means 3] The common electrodes are connected in the direction in which the video signal wiring extends, and in the effective display screen, the common electrodes are not connected to each other across the video signal wiring.

【0012】〔手段4〕手段3において、映像信号配線
の伸びている方向に連結された共通電極を、奇数群と偶
数群に分離し、走査信号の周期にあわせて奇数群と偶数
群の共通電極にそれぞれ逆相の電圧波形を印加させ、か
つ奇数群と偶数群の共通電極に対向している液晶駆動電
極に、共通電極とは逆相の映像信号波形をそれぞれ印加
する駆動方式を特徴とする液晶表示装置。
[Means 4] In the means 3, the common electrodes connected in the direction in which the video signal wiring extends are separated into an odd group and an even group, and the common electrodes of the odd group and the even group are synchronized with the period of the scanning signal. A drive system in which voltage waveforms of opposite phases are applied to the electrodes, and a video signal waveform of a phase opposite to that of the common electrodes is applied to the liquid crystal drive electrodes facing the common electrodes of the odd and even groups, respectively. Liquid crystal display device.

【0013】〔手段5〕横電界方式の液晶駆動電極にお
いて、液晶駆動電極と共通電極とが絶縁膜を介して重畳
されることで形成された付加容量よりも、液晶駆動電極
と走査信号配線とが、絶縁膜を介して重畳されることで
形成された付加容量の方が大きくなるような構造とし
た。
[Means 5] In the liquid crystal driving electrode of the horizontal electric field type, the liquid crystal driving electrode and the scanning signal wiring are more connected than the additional capacitance formed by overlapping the liquid crystal driving electrode and the common electrode via the insulating film. However, the structure was such that the additional capacitance formed by being superposed through the insulating film became larger.

【0014】〔手段6〕手段5において、共通電極の電
位は固定しておき、液晶駆動電極には、走査信号の周期
にあわせて、共通電極電位に対して正負の映像信号電圧
を交互に書きこみ、かつ前記液晶組成物層に印加される
電圧がより高まるように、絶縁膜を介して液晶駆動電極
と重畳されている走査信号配線にも電圧信号波形を印加
する容量結合駆動方式を用いた液晶表示装置。
[Means 6] In the means 5, the potential of the common electrode is fixed, and the positive and negative video signal voltages with respect to the common electrode potential are alternately written on the liquid crystal drive electrode in accordance with the period of the scanning signal. In order to further increase the voltage applied to the liquid crystal composition layer, a capacitive coupling drive method is used in which a voltage signal waveform is also applied to a scanning signal line superimposed on a liquid crystal drive electrode via an insulating film. Liquid crystal display.

【0015】〔手段7〕横電界方式の液晶表示装置にお
いて、薄膜半導体層に不純物をドーピングし、活性化し
て低抵抗化して液晶駆動電極とした。
[Means 7] In a liquid crystal display device of an in-plane switching mode, a thin film semiconductor layer is doped with an impurity, activated and reduced in resistance to form a liquid crystal drive electrode.

【0016】〔手段8〕手段7において、前記映像信号
配線と画素電極が、液晶配向方向に対して±1度から±
45度の角度の範囲で、屈曲している構造配置にした。
[Means 8] In the means 7, the video signal wiring and the pixel electrode may be set at ± 1 degrees to ±
The structure was bent at an angle of 45 degrees.

【0017】〔手段9〕手段7において、前記走査信号
配線と画素電極が、液晶配向方向に対し、±1度から±
45度の角度の範囲で、屈曲している構造配置にした。
[Means 9] In the means 7, the scanning signal wiring and the pixel electrode are arranged at an angle of ± 1 degree to ± 1 degree with respect to the liquid crystal alignment direction.
The structure was bent at an angle of 45 degrees.

【0018】〔手段10〕手段7において、前記映像信
号配線と、画素電極が、液晶配向方向に対し、90度を
のぞく45度から135度の範囲で屈曲している構造配
置にした。
[Means 10] In the means 7, the video signal wiring and the pixel electrode are arranged so as to be bent in a range from 45 degrees to 135 degrees except 90 degrees with respect to the liquid crystal alignment direction.

【0019】〔手段11〕手段7において、前記走査信
号配線と画素電極が、液晶配向方向に対し、90度をの
ぞく45度から135度の範囲で屈曲している構造配置
にした。
[Means 11] In the means 7, the scanning signal wiring and the pixel electrode are arranged so as to be bent from 45 degrees to 135 degrees except 90 degrees with respect to the liquid crystal alignment direction.

【0020】〔手段12〕横電界方式の液晶表示装置に
おいて、対向基板に形成されたカラーフィルター層の上
をおおうオーバーコート層に、高抵抗材(10Ω・c
m〜1011Ω・cm)を用いた。
[Means 12] In an in-plane switching mode liquid crystal display device, a high resistance material (10 9 Ω · c) is applied to the overcoat layer covering the color filter layer formed on the opposite substrate.
m to 10 11 Ω · cm).

【0021】〔手段13〕手段12において、カラーフ
ィルター層とオーバーコート層と、液晶層の厚みを合計
したものが、液晶駆動電極と共通電極との電極間距離の
2倍以上あることを特徴とする液晶表示装置。
[Means 13] In the means 12, the sum of the thicknesses of the color filter layer, the overcoat layer and the liquid crystal layer is at least twice the distance between the liquid crystal drive electrode and the common electrode. Liquid crystal display device.

【0022】〔手段14〕横電界方式の液晶表示装置に
おいて、対向基板に形成されたカラーフィルター層の上
をおおうオーバーコート層に絶縁膜を用い、R,G,B
カラーフィルターの境界のオーバーコート絶縁膜上に導
電性、または半導体の電極をブラックマスクとして形成
した。
[Means 14] In an in-plane switching mode liquid crystal display device, an insulating film is used as an overcoat layer covering a color filter layer formed on a counter substrate, and R, G, B
A conductive or semiconductor electrode was formed as a black mask on the overcoat insulating film at the boundary of the color filter.

【0023】〔手段15〕横電界方式の液晶表示装置の
製造工程において、液晶を配向させるための配向膜を塗
布し、焼成後、配向膜にUV照射処理または、He,N
e,Ar,N,Oなどのイオンインプランテーショ
ン処理やプラズマ処理をした後、ラビング処理すること
で、液晶プレチルト角を1度以下に低下させた。
[Means 15] In the manufacturing process of the liquid crystal display device of the horizontal electric field type, an alignment film for aligning the liquid crystal is applied, and after baking, the alignment film is subjected to UV irradiation treatment or He, N
The liquid crystal pretilt angle was reduced to 1 degree or less by performing rubbing processing after performing ion implantation processing or plasma processing of e, Ar, N 2 , O 2, and the like.

【0024】〔手段16〕手段3において、映像信号配
線の伸びている方向に連結された共通電極を、奇数群と
偶数群に分離し、かつ映像信号配線を画面の中央で上下
に2分割した。
[Means 16] In the means 3, the common electrode connected in the direction in which the video signal wiring extends is divided into an odd group and an even group, and the video signal wiring is vertically divided into two at the center of the screen. .

【0025】〔手段17〕手段16において、画面の中
央で上下の群に2分割された走査信号配線を同時に上群
と下群とで駆動し、上下の映像信号配線には、奇数群と
偶数群とで逆相の映像信号電圧波形を印加し、共通電極
の奇数群と偶数群には、それぞれの映像信号配線の電圧
波形と逆相の共通電極駆動波形を印加することで、同時
に画面の上下の2本の水平ラインに異なる映像信号を書
きこむ駆動方式を特徴とする液晶表示装置。
[Means 17] In the means 16, the scanning signal lines divided into two groups at the center of the screen, the upper and lower groups, are simultaneously driven by the upper and lower groups. By applying a video signal voltage waveform of the opposite phase to the group, and applying the voltage waveform of the video signal wiring and the common electrode drive waveform of the opposite phase to the odd and even groups of the common electrodes, A liquid crystal display device characterized by a driving method in which different video signals are written in two upper and lower horizontal lines.

【0026】[0026]

【作用】上記手段1,2の如く、前記液晶駆動電極と、
前記共通電極との電極間距離が、1画素内ですべて均一
でなく、2種類以上の電極間距離の組み合せて構成され
ている場合、図3にあるように、一番短かい電極間距離
の所が階調反転しても、電極間距離の広い所では、反転
が生じていないので、画素全体では、階調反転がくいと
められる。図5,図6,図8,図10,にあるように画
素の中央を境にして、異なる電極間距離が、左右対称ま
たは、上下対称に配置されている場合には、走査信号配
線や映像信号配線に一番近接している電極の電極間距離
を大きくすることで、クロストークの少ない均一な画像
を得ることができる。
The liquid crystal driving electrode is provided as described in the above means 1 and 2.
When the distance between the electrodes and the common electrode is not uniform in one pixel and is configured by combining two or more kinds of distances between the electrodes, as shown in FIG. Even when the gradation is inverted, since the inversion does not occur at the place where the distance between the electrodes is wide, the gradation inversion is determined to be small in the whole pixel. As shown in FIG. 5, FIG. 6, FIG. 8, and FIG. 10, when the distance between the electrodes is symmetrically arranged left and right or vertically symmetric with respect to the center of the pixel, the scanning signal wiring and the image By increasing the distance between the electrodes closest to the signal wiring, a uniform image with less crosstalk can be obtained.

【0027】上記手段3,4により、横電界方式の液晶
表示装置でも、ドット反転駆動方式の映像信号駆動電圧
を半分以下に低減することが可能となる。5V駆動の映
像信号駆動ICを使用することができるので、コストを
安くすることができる。図16,図17にあるようにド
ット反転駆動では、水平クロストークと水直クロストー
クが発生しにくいので、良好な画質を得ることができ
る。さらに図13にあるように、共通電極の連結部でT
FT部分を完全におおうことで、TFTに光が進入する
ことを防止できるので、カラーフィルター側のブラック
マスクを省略することができ、カラーフィルターのコス
トをさげることが可能となる。CF側ブラックマスクが
なくなることで、開口率が上昇し輝度の明るい液晶パネ
ルを作ることができる。
The above means 3 and 4 make it possible to reduce the video signal driving voltage of the dot inversion driving method to less than half even in the liquid crystal display device of the horizontal electric field method. Since a video signal driving IC driven by 5 V can be used, the cost can be reduced. As shown in FIG. 16 and FIG. 17, in the dot inversion drive, horizontal crosstalk and horizontal crosstalk hardly occur, so that good image quality can be obtained. Further, as shown in FIG.
By completely covering the FT portion, light can be prevented from entering the TFT, so that the black mask on the color filter side can be omitted and the cost of the color filter can be reduced. By eliminating the CF-side black mask, a liquid crystal panel having a high aperture ratio and a high luminance can be manufactured.

【0028】上記手段5,6により、横電界方式の液晶
表示装置でも、水平ライン反転駆動方式の映像信号駆動
電圧を半分以下に低減することが可能となる。図24,
図27,図29にあるように、絶縁膜を介して液晶駆動
電極と走査信号配線に大きな容量を形成し、この容量を
用いて液晶駆動電極の電位をコントロールするために、
共通電極に特別な駆動信号波形を印加する必要はない。
つまり共通電極電位は、映像信号電圧の中央値に近い電
位に固定しておけばよい。従来の水平ライン反転駆動方
式では、共通電極全体を、走査信号配線の周期にあわせ
て映像信号波形と逆相の電圧波形で駆動するため、共通
電極の抵抗値を小さくしなければならず材料の自由度が
なかった。共通電極全体では、映像信号配線と重畳する
面積が大きく全体の容量が大きくなるために、駆動する
場合、消費電力が大きくなるという問題があった。これ
をさけるために図60,図61のような駆動方式もある
が、共通電極を個別に駆動するための引き出し端子が増
加するという問題があった。引き出し端子の増加は、駆
動ICの数の増加、ICコストの増加、接続不良の増加
の原因になる。本発明のように共通電極電位を固定し
て、容量結合水平ライン反転駆動により横電界方式液晶
を駆動することで、超大型液晶表示装置を、コスト安
く、しかも消費電力の増加を最小におさえて実現するこ
とができる。横電界方式の場合には、従来の縦電界方式
と異なり、走査信号配線と液晶駆動電極とが形成する容
量にくらべて大きく形成できる。このために図41、に
あるように、走査信号配線の駆動電圧振幅Vを小さく
できるので、TFTにかかるバイアス電圧も小さくなり
TFTの特性シフトを小さくおさえることができる。こ
のことで、薄膜トランジスタ(TFT)のゲート絶縁膜
の形成温度をさげることが可能となり、大型基板製造時
のタクトタイムの短縮と基板の熱歪曲や、熱収縮の低減
につながり製造コストの低減が可能となる。
By means 5 and 6, even in the liquid crystal display device of the horizontal electric field system, the video signal driving voltage of the horizontal line inversion driving system can be reduced to half or less. FIG.
As shown in FIGS. 27 and 29, in order to form a large capacitance on the liquid crystal driving electrode and the scanning signal wiring via the insulating film, and to control the potential of the liquid crystal driving electrode using this capacitance,
It is not necessary to apply a special drive signal waveform to the common electrode.
That is, the common electrode potential may be fixed at a potential close to the median value of the video signal voltage. In the conventional horizontal line inversion driving method, since the entire common electrode is driven with a voltage waveform having a phase opposite to that of the video signal waveform in accordance with the period of the scanning signal wiring, the resistance value of the common electrode must be reduced. There was no freedom. The entire common electrode has a large area that overlaps with the video signal wiring and a large overall capacitance, so that there is a problem that power consumption increases when driving. In order to avoid this, there are driving methods as shown in FIGS. 60 and 61, but there is a problem that the number of lead terminals for individually driving the common electrodes increases. The increase in the number of lead terminals causes an increase in the number of drive ICs, an increase in IC cost, and an increase in connection failure. By driving the in-plane switching mode liquid crystal by capacitive coupling horizontal line inversion driving as in the present invention, the ultra-large liquid crystal display device can be manufactured at low cost and with minimal increase in power consumption. Can be realized. In the case of the horizontal electric field method, unlike the conventional vertical electric field method, it can be formed larger than the capacitance formed by the scanning signal wiring and the liquid crystal drive electrode. For this reason, as shown in FIG. 41, the driving voltage amplitude V * of the scanning signal wiring can be reduced, so that the bias voltage applied to the TFT is also reduced, and the characteristic shift of the TFT can be reduced. This makes it possible to lower the formation temperature of the gate insulating film of a thin film transistor (TFT), thereby shortening the tact time when manufacturing a large-sized substrate, reducing the heat distortion and thermal shrinkage of the substrate, and reducing the manufacturing cost. Becomes

【0029】上記手段7により、液晶駆動電極を、薄膜
トランジスタ(TFT)のドレイン電極形成時に同時に
形成することができるようになる。薄膜シリコン層の加
工には、ドライエッチングの方法が用いられるので、従
来のウェットエッチングを用いた加工方法よりも、微細
化と加工精度をはるかに向上することができる。図4
2,図43,図44,図57にあるように、液晶駆動電
極をドレイン電極と同時に形成することで、ドレイン電
極と液晶駆動電極とのコンタクト不良問題が発生しなく
なり、液晶駆動電極と共通電極との電極間距離の加工精
度もあがるので、画面全体で輝度ムラの発生が減少す
る。液晶駆動電極と共通電極の両方をドライエッチング
で加工することにより電極間距離を小さくすることがで
きるので、液晶駆動電圧をさげることができ、液晶の応
答速度をあげることも同時に可能となる。
According to the means 7, the liquid crystal drive electrode can be formed simultaneously with the formation of the drain electrode of the thin film transistor (TFT). Since a dry etching method is used for processing the thin film silicon layer, miniaturization and processing accuracy can be greatly improved as compared with a conventional processing method using wet etching. FIG.
As shown in FIGS. 43, 44 and 57, by forming the liquid crystal driving electrode at the same time as the drain electrode, the problem of poor contact between the drain electrode and the liquid crystal driving electrode does not occur. The processing accuracy of the inter-electrode distance is also increased, so that the occurrence of luminance unevenness on the entire screen is reduced. By processing both the liquid crystal drive electrode and the common electrode by dry etching, the distance between the electrodes can be reduced, so that the liquid crystal drive voltage can be reduced and the response speed of the liquid crystal can be increased at the same time.

【0030】上記手段7,8,9,10,11を用いる
ことで、図52,図53にあるように、画素電極(液晶
駆動電極と、共通電極の一部)内で、横電界が印加され
た場合、液晶分子は、画素電極内部で左回転と右回転の
2通りの回転運動が、発生する。図51の従来の横電界
方式では、一方向の回転運動だけなので、プレチルト角
が大きい場合、図50のように、視野角の特性に片より
が発生する。ひとつの画素内部で、左回転と右回転の2
通りの液晶分子の回転運動が発生する場合には、プレチ
ルト角が大きくても、視野角の特性の片よりが発生しな
い。このことより、本発明の構造を用いた横電界方式の
液晶表示装置では、プレチルト角の制限をうけないの
で、配向膜と液晶の選択の自由度が大きくなる。液晶プ
ロセスで使用するシール材と配向膜、注入口封止材など
従来の縦界方式の液晶セルプロセスで使用していたもの
を使用することができるので、生産効率、投資効率を上
げることができる。偏光板の有効利用率もあがるのでコ
ストdownができる。階調反転も防止できる。
By using the means 7, 8, 9, 10, and 11, a horizontal electric field is applied within the pixel electrode (the liquid crystal drive electrode and a part of the common electrode) as shown in FIGS. In this case, the liquid crystal molecules undergo two kinds of rotational movements, left rotation and right rotation, inside the pixel electrode. In the conventional in-plane switching method shown in FIG. 51, since only one rotational movement is performed, when the pretilt angle is large, the characteristics of the viewing angle are partially separated as shown in FIG. Inside one pixel, left rotation and right rotation
When the liquid crystal molecules have the same rotational motion, even if the pre-tilt angle is large, there is no difference in the viewing angle characteristics. From this, in the in-plane switching mode liquid crystal display device using the structure of the present invention, since the pretilt angle is not restricted, the degree of freedom in selecting the alignment film and the liquid crystal is increased. Since the same materials used in the conventional vertical-field liquid crystal cell process, such as the sealing material, alignment film, and injection port sealing material used in the liquid crystal process can be used, production efficiency and investment efficiency can be increased. . Since the effective utilization rate of the polarizing plate is increased, the cost can be reduced. Gradation inversion can also be prevented.

【0031】上記手段12,13,14を用いること
で、カラーフィルター全面に透明導電体膜(ITO)が
なくても液晶セルプロセスでの静電気のチャージアップ
がなくなりパーティクルの付着が減少する。配向膜にも
本発明と同程度(10Ω・cm〜1011Ω・cm)
の抵抗性を持たせることで、その効果は増大する。図4
5,図46,図47,図48,図49にあるように、▲
35▼,▲36▼,▲42▼,▲40▼は、ITOや金
属または金属酸化物と金属の積層物か、金属シリサイ
ド、不純物ドーピング活性した半導体層を用いることで
液晶セル完成後に、外部からの静電気ダメージを完全に
防止することができる。高抵抗層のオーバーコート層を
用いることで安価な電着カラーフィルターを横電界方式
液晶に用いることができるので平面度の良い、セルギャ
ップのムラのない、コントラストの良好な液晶パネルを
コスト安く作ることが可能となる。
By using the above means 12, 13, and 14, even if the transparent conductive film (ITO) is not provided on the entire surface of the color filter, static electricity is not charged up in the liquid crystal cell process, and adhesion of particles is reduced. The same as the present invention for the alignment film (10 9 Ω · cm to 10 11 Ω · cm)
By increasing the resistance, the effect is increased. FIG.
5, FIG. 46, FIG. 47, FIG.
35 ▼, 3636 ▼, 4242 ▼, and 4040 ▼ are prepared by using ITO or a stacked layer of metal or metal oxide and metal, metal silicide, or a semiconductor layer activated by impurity doping. Can completely prevent electrostatic damage. By using an overcoat layer of a high-resistance layer, an inexpensive electrodeposition color filter can be used for a horizontal electric field type liquid crystal, so that a liquid crystal panel with good flatness, no cell gap unevenness, and good contrast can be manufactured at low cost. It becomes possible.

【0032】上記手段15により、従来縦電界方式の液
晶表示装置に用いていたプレチルト角3〜6度程度の配
向膜の特性を変化させプレチルト角1度以下にすること
ができる。図50にあるように、プレチルト角を1度以
下にさげることで、横電界方式の液晶セルの視角特性を
大幅に改善できる。本発明の製造方法を用いれば、従来
縦電界方式の液晶セルプロセスで使用していた配向膜を
変更せずに使用できるので、UV照射装置、イオンイン
プランテーション装置、プラズマ表面処理装置のどれか
一台を従来の液晶セル製造ラインに導入するだけで横電
界方式の液晶表示装置を作ることが可能となる。生産効
率、投資効率を上げることができる。また図54,図5
5にあるように、マスキング処理を用いることで、1画
素内で、プレチルト角を2種類以上設定できるようにな
るので視角特性のコントロールが自由になる。階調反転
も防止できる。
By means of the means 15, the characteristics of the alignment film having a pretilt angle of about 3 to 6 degrees used in a conventional vertical electric field type liquid crystal display device can be changed to a pretilt angle of 1 degree or less. As shown in FIG. 50, by reducing the pretilt angle to 1 degree or less, the viewing angle characteristics of the in-plane switching mode liquid crystal cell can be significantly improved. By using the manufacturing method of the present invention, the alignment film conventionally used in the vertical electric field type liquid crystal cell process can be used without being changed, so that any one of the UV irradiation device, the ion implantation device, and the plasma surface treatment device can be used. A horizontal electric field type liquid crystal display device can be manufactured simply by introducing the table into a conventional liquid crystal cell production line. Production efficiency and investment efficiency can be improved. 54 and FIG.
As described in No. 5, by using the masking process, two or more types of pretilt angles can be set within one pixel, and thus the control of the viewing angle characteristics becomes free. Gradation inversion can also be prevented.

【0033】上記手段16,17にある、フレーム周波
数と走査信号配線が増加する超高精細表示(SXGAや
UXGA)の場合でも走査信号配線アドレス時間を2倍
に長くできるので電子移動の遅いアモルファス薄膜トラ
ンジスタでも十分に対応が可能となる。さらに大画化し
た場合でも映像信号配線の長さが1/2になるのと、走
査信号配線と映像信号配線の交差する数も1/2になる
ので映像信号配線の抵抗の問題が解消する。つまり従来
用いていた金属材料を用いることができるので、プロセ
ス変更の必要がなくなる。従来のVGA,SVGA表示
装置と同じプロセスで作ることができるので生産効率、
投資効率があがる。本発明によれば、超高精細表示に、
ドット反転駆動を導入でき、低電圧駆動ICを利用でき
るので、コストの安い、表示ムラのない高品位画像をア
モルファスシリコン薄膜トランジスタを用いて実現でき
Even in the case of ultra-high-definition display (SXGA or UXGA) in which the frame frequency and the scanning signal wiring increase in the above means 16, 17, the scanning signal wiring address time can be doubled, so that the amorphous thin film transistor with slow electron transfer. However, it is possible to respond sufficiently. Even when the image is further enlarged, the length of the video signal wiring is reduced to と and the number of intersections between the scanning signal wiring and the video signal wiring is also reduced to で, so that the problem of the resistance of the video signal wiring is solved. . That is, since a metal material used conventionally can be used, there is no need to change the process. Since it can be made by the same process as conventional VGA and SVGA display devices, production efficiency and
Increases investment efficiency. According to the present invention, for ultra-high definition display,
Since dot inversion driving can be introduced and a low-voltage driving IC can be used, low-cost, high-quality images without display unevenness can be realized using amorphous silicon thin film transistors.

【0034】[0034]

【実施例】【Example】

〔実施例1〕図4,図5は本発明の単位画素の断面図及
び平面図である。ガラス基板▲10▼上に、走査信号配
線(ゲート電極)を形成した。走査信号配線は、Al
などの陽性酸化処理可能な金属が良いが、G,Mo,T
i,W,Ta Nbなどの純金属や合金でもよい。電気
抵抗値の低いCuと前記高融点金属との二層構造、三層
構造などが、超大型液晶表示装置では用いられる。走査
信号配線の上に、ゲート絶縁膜を形成してから、非
晶質シリコン(a−Si)膜▲T▼を形成しトランジス
タの活性能動層とする。非晶質シリコンの一部に重畳す
るように映像信号配線とドレイン電極▲D▼を形成す
る。図4の場合には、ドレイン電極▲D▼と液晶駆動電
極は同じ金属材料で同時に形成される。これらすべて
を被覆するようにS:N膜やS:O膜よりなる保護絶
縁膜を形成する。次に共通電極を形成する。以上の
単位画素をマトリックス状に配置したアクティブマトリ
ックス基板の表面にポリイミドよりなる配向膜を形成
し、表面にラビング処理を施した。同じく表面にラビン
グ処理を施した配向膜を表面に形成した対向基板▲1
1▼と、前記アクティブマトリックス基板の間に棒状の
液晶分子を含む、液晶組成物を封入し、二枚の基板の
外表面に、偏光板▲12▼,▲13▼を配置した。図5
にあるように、共通電極と液晶駆動電極との電極間
距離は、a,b2種類あり、図5では電極間距離aとb
は、左右対称に配置されている。図6,図8,図10で
は、電極の数が増加しており、電極間距離もaとbの組
み合せと、aとbとcの組み合せとがあり、図7,図
9,図11に整理した。図5と同様に左右対称配置にな
るように、組み合せを考えてあるが、対称性が必ず必要
というわけではない。図58にあるように、共通電極
と液晶駆動電極との電極間距離の種類も、a,b,c
の3種類だけではなく、それ以上の種類を導入すること
も可能である。
Embodiment 1 FIGS. 4 and 5 are a sectional view and a plan view of a unit pixel according to the present invention. The scanning signal wiring (gate electrode) was formed on the glass substrate (10). The scanning signal wiring is Al
Metals that can be subjected to a positive oxidation treatment, such as G, Mo, T
Pure metals or alloys such as i, W, and TaNb may be used. A two-layer structure, a three-layer structure, and the like of Cu having a low electric resistance value and the refractory metal are used in an ultra-large liquid crystal display device. After forming a gate insulating film on the scanning signal wiring, an amorphous silicon (a-Si) film (T) is formed to be an active active layer of the transistor. A video signal wiring and a drain electrode (D) are formed so as to overlap a part of the amorphous silicon. In the case of FIG. 4, the drain electrode (D) and the liquid crystal drive electrode are simultaneously formed of the same metal material. A protective insulating film made of an S: N film or an S: O 2 film is formed so as to cover all of them. Next, a common electrode is formed. An alignment film made of polyimide was formed on the surface of an active matrix substrate in which the above unit pixels were arranged in a matrix, and the surface was subjected to a rubbing treatment. Counter substrate having an alignment film on the surface similarly rubbed on the surface.
1) and a liquid crystal composition containing rod-like liquid crystal molecules was sealed between the active matrix substrates, and polarizing plates (12) and (13) were arranged on the outer surfaces of the two substrates. FIG.
As shown in FIG. 5, there are two types of distances between the common electrode and the liquid crystal drive electrode, a and b. In FIG.
Are arranged symmetrically. 6, 8, and 10, the number of electrodes is increasing, and the distance between the electrodes is also a combination of a and b and a combination of a, b, and c. Tidy. Although the combination is considered so as to have a symmetrical arrangement as in FIG. 5, symmetry is not necessarily required. As shown in FIG. 58, the types of the inter-electrode distance between the common electrode and the liquid crystal drive electrode are also a, b, and c.
It is possible to introduce not only the three types but also more types.

【0035】図5,図6,図8,図10の場合には、映
像信号配線からの電界の影響を液晶分子が受けやすい
ので、共通電極でをはさみこむように配置すること
で映像信号配線にそった方向のクロストークを低減で
きることは、従来から知られている。その効果をさらに
向上するためには、映像信号配線に一番近い電極間距
離aを一番大きな値に設定すると良い。つまりa>b≧
cかa>c≧bの条件で電極間距離を配置するとクロス
トークはさらに低減できる。
In FIGS. 5, 6, 8, and 10, since the liquid crystal molecules are easily affected by the electric field from the video signal wiring, the common electrode is interposed between the liquid crystal molecules to arrange the video signal wiring. It is conventionally known that crosstalk in a direction along the direction can be reduced. In order to further improve the effect, it is preferable to set the inter-electrode distance a closest to the video signal wiring to the largest value. That is, a> b ≧
If the distance between the electrodes is arranged under the condition of c or a> c ≧ b, the crosstalk can be further reduced.

【0036】階調反転の問題は、映像信号電圧が大きす
ぎる時に発生するが、特に液晶プレチルト角が大きい場
合には、正面方向よりも液晶の配向方向の傾めからみた
時により階調反転しやすくなる。これを改善するには、
配向方向に対するプレチルト角を2種類以上もたせたり
正と負のプレチルト角をもたせたりする方法もあるが、
一番簡単なのはプレチルト角を0(ゼロ)度にすること
である。しかし量産で用いられているラビング処理によ
る配向方法では、完全にプレチルト角はゼロ度にするこ
とができずどうしても0.5度前後のプレチルト角は発
生してしまう。正面と傾めから見た時の階調反転を防止
する方法としては、横電界方式の液晶表示装置において
は、本発明のように一画素内での電極間距離の値を2種
類以上設定することが、特に有効である。通常の5V駆
動で液晶を駆動する場合、5V以下で透過率が最大にな
る電極間距離と、5V以上で透過率が最大になる電極間
距離の組み合せで電極を配置すると良い。図3の特性で
は、5V駆動では、電極間距離を5μmと7.5μmの
2種類で設定すると良い。
The problem of grayscale inversion occurs when the video signal voltage is too large. In particular, when the liquid crystal pretilt angle is large, grayscale inversion is more caused when tilting the liquid crystal alignment direction than in the front direction. It will be easier. To improve this,
There are also methods of giving two or more types of pretilt angles to the orientation direction and giving positive and negative pretilt angles,
The simplest is to set the pretilt angle to 0 (zero) degree. However, in the orientation method by rubbing treatment used in mass production, the pretilt angle cannot be completely set to zero degree, and a pretilt angle of about 0.5 degree is inevitably generated. As a method for preventing grayscale inversion when viewed from the front and tilt, in a horizontal electric field type liquid crystal display device, two or more types of values of the distance between electrodes within one pixel are set as in the present invention. Is particularly effective. When the liquid crystal is driven by normal 5V driving, the electrodes may be arranged in a combination of the distance between the electrodes at which the transmittance becomes maximum at 5V or less and the distance between the electrodes at which the transmittance becomes maximum at 5V or more. According to the characteristics shown in FIG. 3, in the case of 5V driving, it is preferable to set the distance between the electrodes to two types of 5 μm and 7.5 μm.

【0037】〔実施例2〕図13,図64は、共通電極
が映像信号配線にそう方向で連結され、有効表示画面内
部では、共通電極が、映像信号配線を横ぎって互いに連
結されていない場合の単位画素の平面図である。図13
では、共通電極の連結部が薄膜トランジスタの上部をお
おっており、この場合には、対向基板のカラーフィルタ
ーにはブラックマスク(BM)がなくても薄膜トランジ
スタの半導体層▲T▼には、光が侵入しないので、薄膜
トランジスタのOFF時のリーク電流の増大はない。図
18,図19,図20,図21,図22,図23は、こ
れらの単位画素をストライプ配列や、デルタ配列に配置
した平面図である。図20,図22,図23は、画素電
極が走査信号配線と平行になっているが、共通電極の連
結方向は映像信号配線にそう方向に、なっている。この
ような平面配列を実現するためには、図1にあるような
従来の断面構造では、走査信号配線と共通電極とが
ショートしてしまうため、図4,図12,図42,図4
4,図57にあるような断面構造が必要となる。これら
の断面構造では、共通電極が基板の上部に形成されてお
り、共通電極の下の保護絶縁膜や上層絶縁膜▲14▼
に誘電率の小さな酸化物系の絶縁膜や有機絶縁膜が使用
できる。そのために走査信号配線の駆動時の負荷の増大
を最小におさえることができる。
[Embodiment 2] FIGS. 13 and 64 show that the common electrode is connected to the video signal wiring in the same direction, and the common electrode is not connected to each other across the video signal wiring inside the effective display screen. It is a top view of the unit pixel in the case. FIG.
In this case, the connection part of the common electrode covers the upper part of the thin film transistor. In this case, even if the color filter of the opposite substrate does not have a black mask (BM), light enters the semiconductor layer (T) of the thin film transistor. Therefore, there is no increase in leakage current when the thin film transistor is turned off. FIGS. 18, 19, 20, 21, 22, and 23 are plan views in which these unit pixels are arranged in a stripe arrangement or a delta arrangement. In FIGS. 20, 22, and 23, the pixel electrode is parallel to the scanning signal wiring, but the connection direction of the common electrode is in the same direction as the video signal wiring. In order to realize such a planar arrangement, in the conventional cross-sectional structure as shown in FIG. 1, the scanning signal wiring and the common electrode are short-circuited.
4, a cross-sectional structure as shown in FIG. 57 is required. In these cross-sectional structures, the common electrode is formed above the substrate, and the protective insulating film and the upper insulating film below the common electrode (14)
In addition, an oxide insulating film or an organic insulating film having a small dielectric constant can be used. Therefore, it is possible to minimize an increase in load when driving the scanning signal wiring.

【0038】〔実施例3〕図14,図15は、実施例2
でのべた映像信号配線にそう方向で連結された共通電極
を、有効表示画面外で奇数群と偶数群とに連結分離した
平面図である。図15は、共通電極2本を1組としてい
る。3本を1組として考えて奇数群と偶数群に連結分離
することも可能である。図59は、奇数群連結電極▲4
4▼と偶数群連結電極▲45▼とで有効表示画面全体を
囲んだ構造配置の平面図である。それぞれの共通連結電
極と、走査信号配線、映像信号配線とは静電気対策用の
非線形抵抗素子で連結されている。この構造により、液
晶セルプロセスでの静電気不良問題をいちじるしく低減
することが可能である。図40は、奇数群と偶数群に分
離した共通電極に、走査信号の周期にあわせて、それぞ
れ逆相の電圧信号波形を印加し、かつ奇数群、偶数群の
共通電極に対向している液晶駆動電極に、共通電極とは
逆相の映像信号波形をそれぞれ印加する駆動電圧波形図
である。図16,図17は、本発明の図14,図15の
構造配列の画素に映像信号電圧がどのように書きこまれ
たかを示す極性図である。共通電極電位を基準にしてプ
ラスと、マイナスとに分けています。このような書きこ
み駆動方式は、ドット反転駆動方式と呼ばれています。
この駆動方式では、水平クロストークが発生しなくなり
良好な画像が得られます。映像信号波形と逆相の電圧を
共通電極に印加することで、液晶相に大きな電圧を印加
できるので、共通電極電位を固定していた従来のドット
反転駆動の場合の映像信号駆動振幅よりも1/2以下に
低減が可能となります。これにより、安価な5V駆動の
ICを使用することができるのでコストdownが可能
となる。
Third Embodiment FIGS. 14 and 15 show a second embodiment.
FIG. 10 is a plan view in which common electrodes connected in the same direction to the above-described video signal wiring are connected and separated into odd groups and even groups outside the effective display screen. FIG. 15 shows two common electrodes as one set. It is also possible to consider three as one set and connect and separate them into an odd group and an even group. FIG. 59 shows the odd group connection electrode 4
FIG. 4 is a plan view of a structural arrangement surrounding an entire effective display screen with 4 </ b> ▼ and even-number group connection electrodes 45. Each common connection electrode is connected to the scanning signal wiring and the video signal wiring by a non-linear resistance element for countermeasures against static electricity. With this structure, it is possible to remarkably reduce the problem of static electricity failure in the liquid crystal cell process. FIG. 40 shows a liquid crystal in which opposite-phase voltage signal waveforms are applied to a common electrode separated into an odd-numbered group and an even-numbered group in accordance with the period of a scanning signal, and opposing the odd-numbered and even-numbered common electrodes. FIG. 7 is a drive voltage waveform diagram for applying a video signal waveform having a phase opposite to that of the common electrode to the drive electrodes. FIGS. 16 and 17 are polar diagrams showing how a video signal voltage is written to the pixels having the structural arrangements of FIGS. 14 and 15 according to the present invention. It is divided into plus and minus based on the common electrode potential. Such a write drive method is called a dot inversion drive method.
With this drive method, horizontal crosstalk does not occur and good images can be obtained. By applying a voltage having a phase opposite to that of the video signal waveform to the common electrode, a large voltage can be applied to the liquid crystal phase, so that the amplitude of the video signal drive is smaller than that of the conventional dot inversion drive in which the potential of the common electrode is fixed. / 2 or less. As a result, an inexpensive IC driven at 5 V can be used, so that the cost can be reduced.

【0039】〔実施例4〕図24,図27,図29は、
液晶駆動電極と共通電極とが絶縁膜を介して重畳さ
れることで形成された付加容量よりも、液晶駆動電極
と走査信号配線とが絶縁膜を介して重畳されることで
形成された付加容量▲16▼の方が大きい場合の、単位
画素の平面図である。図30,図31,図32,図3
3,図34,図35は、これらの単位画素をストライプ
配列やデルタ配列に配置した平面図である。これらの平
面構造を歩留りよく実現するためには、図12,図2
6,図28,図42,図44,図57,図65のような
断面構造が望ましい。液晶駆動電極と走査信号配線とで
形成される付加容量をさらに大きくする場合には、図6
6にあるような断面構造を用いると良い。液晶駆動電極
と共通電極との重畳面積は可能なかぎり小さくすると良
い。
[Embodiment 4] FIGS. 24, 27 and 29 show
The additional capacitance formed by overlapping the liquid crystal driving electrode and the scanning signal wiring via the insulating film is more than the additional capacitance formed by overlapping the liquid crystal driving electrode and the common electrode via the insulating film. It is a top view of a unit pixel when (16) is larger. FIG. 30, FIG. 31, FIG. 32, FIG.
3, FIG. 34 and FIG. 35 are plan views in which these unit pixels are arranged in a stripe arrangement or a delta arrangement. In order to realize these planar structures with good yield, FIGS.
A cross-sectional structure as shown in FIGS. 6, 28, 42, 44, 57, and 65 is desirable. In order to further increase the additional capacitance formed by the liquid crystal drive electrode and the scanning signal wiring, FIG.
6 is preferably used. The overlap area between the liquid crystal drive electrode and the common electrode should be as small as possible.

【0040】〔実施例5〕図41は実施例4の横電界方
式液晶表示パネルを駆動する走査信号電圧波形と映像信
号電圧波形のタイミング図である。走査信号は4値波形
となっている。共通電極電位は映像信号波形の中央値に
近い電位に固定してある。液晶駆動電極と走査信号配線
とが、絶縁膜を介して重畳されることで形成された付加
容量を通して走査信号電圧のVr(−)やVr(+)を
液晶組成物に印加する容量結合駆動方式を用いている。
横電界方式の液晶表示装置では、液晶駆動電極と共通電
極とで液晶組成物を介して形成される画素電極間容量
は、従来の縦電極方式とくらべて非常に小さくなるの
で、走査信号配線上の付加容量の効果が大きくなり、V
r(−)やVr(+)の電圧振幅が小さくてすむ。この
ため薄膜トランジスタの走査信号配線(ゲート電極)と
ドレイン電極に印加されるバイアス電圧も小さくなるの
で薄膜トランジスタの特性シフトも小さくなる。横電界
方式では、液晶駆動電極と共通電極との交差面積を小さ
くできるので、本発明のような水平ライン反転駆動方式
でも、水平方向のストロークを低減できる利点がある。
映像信号配線駆動ICも信号振幅を小さくできるので安
価な5V電源のICが使用できる。コストdownに効
果がある。
Fifth Embodiment FIG. 41 is a timing chart of a scanning signal voltage waveform and a video signal voltage waveform for driving the in-plane switching mode liquid crystal display panel of the fourth embodiment. The scanning signal has a quaternary waveform. The common electrode potential is fixed at a potential close to the center value of the video signal waveform. A capacitive coupling drive system in which a scanning signal voltage Vr (-) or Vr (+) is applied to a liquid crystal composition through an additional capacitor formed by overlapping a liquid crystal driving electrode and a scanning signal line via an insulating film. Is used.
In a horizontal electric field type liquid crystal display device, the capacitance between pixel electrodes formed between a liquid crystal driving electrode and a common electrode via a liquid crystal composition is much smaller than in a conventional vertical electrode type. The effect of the additional capacity of
The voltage amplitude of r (-) and Vr (+) can be small. Therefore, the bias voltage applied to the scanning signal wiring (gate electrode) and the drain electrode of the thin film transistor is also reduced, so that the characteristic shift of the thin film transistor is also reduced. In the horizontal electric field method, since the intersection area between the liquid crystal driving electrode and the common electrode can be reduced, the horizontal line inversion driving method as in the present invention has an advantage that the horizontal stroke can be reduced.
Since the signal amplitude of the video signal wiring drive IC can also be reduced, an inexpensive 5V power supply IC can be used. This is effective in cost down.

【0041】〔実施例6〕図42,図43,図44,図
57,図64,図65,図24は薄膜半導体層に不純物
をドーピングし、活性化して低抵抗化し、液晶駆動電極
として用いる実施例の単位画素の断面図及び平面図であ
る。ガラス基板▲10▼上に、走査信号配線(ゲート電
極)を形成しこれを覆うようにゲート絶縁膜を形成
してから、非晶質シリコン膜を形成し真空をやぶらずに
バックチャネル側保護絶縁膜▲BP▼を連続形成する。
この時の非晶質シリコン膜は300Å〜700Å程度の
膜厚が良い。バックチャネル保護縁縁膜は2000Å程
度で十分である。バックチャネル保護絶縁膜▲BP▼を
残してそれ以外はフッ酸系のエッチング液でエッチング
した非晶質シリコン膜の表面を出す。ポジレジストをは
くりせずにPHガスをもとにしたイオンシャワードー
ピングで1015個/cm程度非晶質シリコンにリン
をドーピングする。そのあとエキシマレーザーにより活
性化処理をおこなう。イオンシャワードーピングのかわ
りに、PHガスを用いたプラズマ放電処理により非晶
質シリコン層の表面にリンを吸着させ、その後エキシマ
レーザーによりシリコン層を溶融させる時にリンを溶融
拡散活性化することでも良い。これらの処理によりレー
ザー照射を受けた領域は、抵抗の低いポリシリコン層に
なる。ポジレジストをはくりした後、次は薄膜トランジ
スタのソース電極とドレイン電極▲32▼と液晶駆動電
極▲S▼を同時にドライエッチングによって形成しま
す。液晶駆動電極を抵抵抗のシリコン膜で形成する利点
は、このドライエッチングによる微細パターン加工が可
能な点にあります。横電界方式の液晶表示装置は、応答
速度が遅いという指摘がなされているが、液晶駆動電極
と、共通電極との電極間距離を3μ程度にまで微細化し
てくると応答速度も速くなり、動画にも十分対応可能で
ある。3μ程度までならば従来のウェットエッチングで
加工可能であるがウェットエッチングでは線幅のコント
ロール精度が十分ではない。その点ドライエッチングで
は、加工精度の再現性は、すでにICで証明済みであ
る。不純物をドープしたポリシリコンは、ドライエッチ
ング加工しやすい材質なので、大画面液晶表示装置には
最も適した電極材料である。次に映像信号配線を形成
した後、保護絶縁膜で完全におおう。共通電極を最
後に形成するが、この共通電極もドライエッチングで加
工可能な材料(Mo,Ti,Nb,Taなどの高融点金
属とこれらの合金または、これらのシリサイド化合物な
ど)を用いることで高速応答可能な横電界方式液晶表示
を作ることができる。
[Embodiment 6] FIGS. 42, 43, 44, 57, 64, 65 and 24 show an example in which the thin film semiconductor layer is doped with an impurity, activated to reduce the resistance, and used as a liquid crystal drive electrode. It is sectional drawing and a top view of a unit pixel of an example. A scanning signal wiring (gate electrode) is formed on a glass substrate (10), a gate insulating film is formed so as to cover the scanning signal wiring (gate electrode), and then an amorphous silicon film is formed. A film BP is continuously formed.
At this time, the amorphous silicon film preferably has a thickness of about 300 ° to 700 °. A back channel protective edge film of about 2000 ° is sufficient. Except for the back channel protective insulating film {BP}, the surface of the amorphous silicon film etched with a hydrofluoric acid based etchant is exposed. About 10 15 / cm 2 of amorphous silicon is doped with phosphorus by ion shower doping based on PH 3 gas without removing a positive resist. After that, an activation process is performed by an excimer laser. Instead of ion shower doping, phosphorus may be adsorbed on the surface of the amorphous silicon layer by plasma discharge treatment using PH 3 gas, and then, when the silicon layer is melted by excimer laser, the phosphorus may be melt-diffused and activated. . A region irradiated with the laser by these processes becomes a polysilicon layer having a low resistance. After removing the positive resist, the next step is to simultaneously form the thin film transistor source and drain electrodes (32) and the liquid crystal drive electrode (S) by dry etching. The advantage of forming the liquid crystal drive electrode with a resistive silicon film is that fine pattern processing by dry etching is possible. It has been pointed out that the response speed of the in-plane switching type liquid crystal display device is slow. However, when the distance between the liquid crystal drive electrode and the common electrode is reduced to about 3 μm, the response speed also increases, and the moving image becomes higher. It is possible to cope with it. If it is up to about 3 μm, it can be processed by conventional wet etching, but the precision of line width control is not sufficient in wet etching. In this regard, in dry etching, reproducibility of processing accuracy has already been proven by IC. Polysilicon doped with impurities is a material that is easy to dry-etch, and is therefore the most suitable electrode material for large-screen liquid crystal display devices. Next, after forming the video signal wiring, it is completely covered with a protective insulating film. The common electrode is formed last, and the common electrode is also formed by using a material that can be processed by dry etching (a high melting point metal such as Mo, Ti, Nb, Ta and an alloy thereof, or a silicide compound thereof). A responsive in-plane switching liquid crystal display can be produced.

【0042】図44では、不純物をドーピングしてレー
ザー活性化したドレイン電極の上に、さらに抵抗をさげ
るために、Moをスパッタリングやイオンブレーティン
グ法を用いて、うすく形成し、表面反応により、MoS
ix(モリブデンシリサイド)を作った場合の断面図で
ある。図57では、非晶質シリコン膜の上に、プラズマ
CVD法を用いて不純物をドープしたアモルファスシリ
コン膜を形成した後、エキシマレーザーにより、不純物
アモルファスシリコン層を抵抗の低い不純物ポリシリコ
ン層にかえた場合の断面図である。モリブデンシリサイ
ドもドライエッチングしやすい材料のひとつである。M
oだけでなく他の高融点金属をスパッタリングしても同
様のシリサイドは形成される。
In FIG. 44, Mo is thinly formed on the drain electrode activated by doping impurities and laser-activated by sputtering or ion plating to further reduce the resistance, and MoS is formed by a surface reaction.
ix (molybdenum silicide). FIG. In FIG. 57, after an amorphous silicon film doped with an impurity is formed on the amorphous silicon film by a plasma CVD method, the impurity amorphous silicon layer is changed to a low-resistance impurity polysilicon layer by excimer laser. It is sectional drawing in the case. Molybdenum silicide is also one of the materials that is easy to dry-etch. M
Similar silicide is formed by sputtering not only o but also other refractory metals.

【0043】〔実施例7〕図52,図19,図21,図
31,図33,は、映像信号配線と画素電極(液晶駆動
電極と液晶駆動電極に対向している共通電極の一部)が
液晶配向方向に対し、±1度から±45度の角度の範囲
で屈曲している構造の場合の平面図である。液晶分子の
誘電率異方性は、正である。図52にあるように共通電
極と液晶駆動電極▲S▼に電圧が印加され電極間に電
界が発生した時に、液晶分子は、屈曲部を境にして左
回転と右回転の2通りの回転運動をする。単位画素内部
で2通りの回転運動が可能になることでプレチルト角の
大きさによらず視野角特性のかたよりが発生しなくな
る。
Seventh Embodiment FIGS. 52, 19, 21, 31, and 33 show a video signal wiring and a pixel electrode (a liquid crystal driving electrode and a part of a common electrode facing the liquid crystal driving electrode). Is a plan view in the case of a structure bent at an angle of ± 1 degree to ± 45 degrees with respect to the liquid crystal alignment direction. The dielectric anisotropy of the liquid crystal molecules is positive. As shown in FIG. 52, when a voltage is applied to the common electrode and the liquid crystal drive electrode (S) and an electric field is generated between the electrodes, the liquid crystal molecules rotate in two ways, left and right, at the bent portion. do. Since two kinds of rotational movements can be performed inside the unit pixel, the angle of the viewing angle characteristic does not occur regardless of the magnitude of the pretilt angle.

【0044】〔実施例8〕図52,図20,図22,図
23,図32,図34,図35は、走査信号配線と画素
電極とが、液晶配向方向に対して、±1度から±45度
の角度の範囲で屈曲している構造の場合の平面図であ
る。液晶分子の誘電率異方性は正である。実施例7と同
様に単位画素内部で左回転と右回転の2通りの液晶分子
回転運動が発生する。プレチルト角の大きさによらず視
野角特性のかたよりが発生しなくなる。
[Embodiment 8] FIGS. 52, 20, 22, 23, 32, 34, and 35 show that the scanning signal wiring and the pixel electrode are at ± 1 degrees with respect to the liquid crystal alignment direction. It is a top view in the case of the structure bent in the angle range of ± 45 degrees. The dielectric anisotropy of the liquid crystal molecules is positive. As in the case of the seventh embodiment, two kinds of liquid crystal molecule rotational movements, that is, left rotation and right rotation occur inside the unit pixel. The viewing angle characteristic is no longer generated regardless of the magnitude of the pretilt angle.

【0045】〔実施例9〕図53,図19,図21,図
31,図33は、映像信号配線と画素電極が、液晶配向
方向に対し、90度をのぞく45度から135度の範囲
で屈曲している構造の場合の平面図である。液晶分子の
誘電率異方性は負である。図53にあるように、共通電
極と液晶駆動電極▲S▼に電圧が印加され電極間に電
界が発生すると、液晶分子▲22▼は、屈曲部を境にし
て左回転と、右回転の2通りの回転運動をする。単位画
素内部で2通りの回転運動が可能になることで、プレチ
ルト角の大きさによらず視野角特性のかたよりが発生し
なくなる。
[Embodiment 9] FIGS. 53, 19, 21, 31, and 33 show that the video signal wiring and the pixel electrode are in the range of 45 ° to 135 ° except 90 ° with respect to the liquid crystal alignment direction. It is a top view in the case of a bent structure. The dielectric anisotropy of the liquid crystal molecules is negative. As shown in FIG. 53, when a voltage is applied to the common electrode and the liquid crystal drive electrode {S} and an electric field is generated between the electrodes, the liquid crystal molecules {22} are rotated leftward and rightward at the bent portion. Make a street rotation. Since two kinds of rotational movements are possible inside the unit pixel, the viewing angle characteristic is not generated regardless of the magnitude of the pretilt angle.

【0046】〔実施例10〕図53,図20,図22,
図23,図32,図34図35は、走査信号配線と画素
電極とが、液晶配向方向に対して、90度をのぞく45
度から135度の範囲で屈曲している構造の場合の平面
図である。液晶分子の誘電率異方性は負である。実施例
9と同様に単位画素内部で、左回転と右回転の2通りの
液晶分子回転運動が、発生する。プレチルト角の大きさ
によらず、視野角特性のかたよりが発生しなくなる。
Embodiment 10 FIG. 53, FIG. 20, FIG.
FIG. 23, FIG. 32, FIG. 34 and FIG. 35 show that the scanning signal wiring and the pixel electrode
It is a top view in the case of the structure bent in the range of 135 degrees from 135 degrees. The dielectric anisotropy of the liquid crystal molecules is negative. As in the ninth embodiment, two kinds of liquid crystal molecule rotational movements, that is, left rotation and right rotation occur inside the unit pixel. Irrespective of the magnitude of the pretilt angle, the viewing angle characteristic is no longer generated.

【0047】実施例7,実施例8,実施例9,実施例1
0ともに、上下基板との界面での液晶分子の配向は、互
いに、ほぼ平行になるようにラビング処理してある。偏
光板の偏光軸(光学軸)は、上下ともに、ほぼ直交配置
になるようにしてあり、無電界時には、画素から光が通
過しないノーマリーブラックモードを用いている。これ
らのカラーフィルターに用いるブラックマスクは、図3
6図37,図38,図39にあるように映像信号配線
や、走査信号配線が屈曲している角度と同じ角度で、B
Mの一部が屈曲しているところに特徴がある。
Embodiment 7, Embodiment 8, Embodiment 9, Embodiment 1
In both cases, the rubbing treatment is performed so that the alignment of the liquid crystal molecules at the interface with the upper and lower substrates is substantially parallel to each other. The polarizing axis (optical axis) of the polarizing plate is arranged so as to be substantially perpendicular to both the upper and lower sides, and a normally black mode in which light does not pass from the pixel when no electric field is applied is used. The black mask used for these color filters is shown in FIG.
6. As shown in FIGS. 37, 38, and 39, at the same angle as the angle at which the video signal wiring and the scanning signal wiring are bent,
The feature is that a part of M is bent.

【0048】〔実施例11〕図45,図46,図47は
横電界方式の液晶表示装置のカラーフィルター基板の断
面図である。ガラス基板▲11▼の上にR,G,Bのカ
ラーフィルターを形成する。次に平坦化と液晶プロセス
中での静電気帯電防止のために有機や無機の高抵抗材
(10Ω・cm〜1011Ω・cm)を形成する。図
56にあるように、横電界方式では、液晶比抵抗が10
Ω・cm程度まで低下しても電圧保持率がほとんど低
下しないという実験結果がある。図45,図46では、
透明ITOを全面形成してから電着法によりR,G,B
のカラーフィルター層を形成している。この場合には、
上記高抵抗材の膜厚とカラーフィルター層の膜厚と液晶
層の厚みを合計したものが、液晶駆動電極と共通電極と
の電極間距離の2倍以上必要となる。電極間距離の2倍
以上これらの総合計厚みがあれば液晶駆動電極と共通電
極の間に発生する電界はカラーフィルター側に全面形成
された透明導電膜(ITO)▲36▼の影響をあまりう
けず、基板と平行な方向に横電界を発生させることがで
きる。
[Embodiment 11] FIGS. 45, 46 and 47 are sectional views of a color filter substrate of an in-plane switching mode liquid crystal display device. R, G, and B color filters are formed on the glass substrate (11). Next, an organic or inorganic high-resistance material (10 9 Ω · cm to 10 11 Ω · cm) is formed for flattening and preventing electrostatic charging during the liquid crystal process. As shown in FIG. 56, in the lateral electric field method, the liquid crystal specific resistance is 10
There is an experimental result that the voltage holding ratio hardly decreases even when the voltage drops to about 9 Ω · cm. 45 and 46,
After forming the transparent ITO on the entire surface, R, G, B
Is formed. In this case,
The sum of the thickness of the high resistance material, the thickness of the color filter layer, and the thickness of the liquid crystal layer is required to be at least twice the distance between the liquid crystal drive electrode and the common electrode. If the total thickness is at least twice the distance between the electrodes, the electric field generated between the liquid crystal drive electrode and the common electrode is largely affected by the transparent conductive film (ITO) formed on the color filter side. Instead, a horizontal electric field can be generated in a direction parallel to the substrate.

【0049】〔実施例12〕図48,図49は、横電界
方式の液晶表示装置のカラーフィルター基板の断面図で
ある。ガラス基板▲11▼の上にR,G,Bのカラーフ
ィルターを形成する。このままでは液晶プロセスで発生
する静電気のためにいろいろな問題が発生するので、絶
縁膜▲41▼の上にさらに静電気をにがすためのブラッ
クマスク▲42▼を形成する。図49にあるようにすで
に樹脂ブラックマスクが形成されてある場合には、ブラ
ックマスクと同じパターンで透明導電電極▲40▼を形
成してもよい。
[Embodiment 12] FIGS. 48 and 49 are cross-sectional views of a color filter substrate of an in-plane switching mode liquid crystal display device. R, G, and B color filters are formed on the glass substrate (11). In this state, various problems occur due to static electricity generated in the liquid crystal process. Therefore, a black mask (42) for removing static electricity is formed on the insulating film (41). When a resin black mask has already been formed as shown in FIG. 49, the transparent conductive electrode (40) may be formed in the same pattern as the black mask.

【0050】実施例11,実施例12にあるようにカラ
ーフィルター基板側になんらかの導電性電極が形成され
ていないと横電界方式の液晶表示装置では外部からの静
電気による電界の影響を受けるので実用化することがで
きないという大問題が発生する。図67のように、カラ
ーフィルター側ガラス基板の外界側に透明導電膜▲36
▼を形成する方法もあるがこの場合には、絶縁性の高い
カラーフィルター層や平坦化膜に液晶プロセス中で発生
した静電気がトラップされたまま除却できない場合があ
り、配向不良の原因となるので、よくない。
As in the eleventh and twelfth embodiments, if any conductive electrode is not formed on the color filter substrate side, the in-plane switching mode liquid crystal display device is affected by an electric field due to external static electricity. The big problem that cannot be done arises. As shown in FIG. 67, the transparent conductive film
There is also a method of forming ▼, but in this case, static electricity generated during the liquid crystal process in the highly insulating color filter layer or flattening film may not be able to be removed while trapped, which may cause poor alignment. ,not good.

【0051】〔実施例13〕図50,図51にあるよう
に液晶駆動電極と共通電極がただたんに平行に配置され
ているだけでは、液晶のプレチルト角が大きい場合に視
角特性に片よりが生じてしまう。従来の縦電界方式の液
晶表示装置に用いられていた配向膜のプレチルト角は3
°〜7°とプレチルト角が大きいので視角特性にどうし
ても片よりが発生してしまう。同じ配向膜を使用してプ
レチルト角を1度以下に低下させる方法としてポリイミ
ド配向膜焼成後、UV照射処理や、He,Ne,Ar,
,Oなどのガスをイオン化してイオンプランテー
ション処理する方法が開発されている。リアクティブイ
オンエッチング装置を用いたOガスを用いたプラズマ
処理でも同じ効果がある。これらの処理をした後ラビン
グ配向処理することで、プレチルト角を1度以下にし
て、液晶分子を一軸方向に配向させることが可能であ
る。図54,図55にあるように上記のUV処理やイオ
ンプランテーション処理、プラズマ処理を、ホトマスク
やホトレジストを用いたマスクにより1画素内の半分に
限定することも可能である。本実施例を用いることで、
従来用いていた配向膜を横電界方式の液晶表示装置に使
用しても視角特性の片よりは発生しなくなる。
[Thirteenth Embodiment] As shown in FIGS. 50 and 51, if the liquid crystal driving electrode and the common electrode are simply arranged in parallel with each other, the viewing angle characteristic is not larger than that of the liquid crystal when the pretilt angle of the liquid crystal is large. Will happen. The pretilt angle of the alignment film used in the conventional vertical electric field type liquid crystal display device is 3
Since the pretilt angle is as large as 7 ° to 7 °, the viewing angle characteristic is inevitably generated from one side. As a method of reducing the pretilt angle to 1 degree or less using the same alignment film, after baking the polyimide alignment film, UV irradiation treatment, He, Ne, Ar,
A method of ionizing a gas such as N 2 or O 2 to perform an ion plantation process has been developed. The same effect is obtained by plasma processing using an O 2 gas using a reactive ion etching apparatus. By performing the rubbing alignment treatment after performing these treatments, the pretilt angle can be reduced to 1 degree or less, and the liquid crystal molecules can be uniaxially oriented. As shown in FIGS. 54 and 55, the UV treatment, the ion plantation treatment, and the plasma treatment can be limited to half of one pixel by using a photomask or a mask using a photoresist. By using this embodiment,
Even if the conventionally used alignment film is used for a liquid crystal display device of a horizontal electric field type, it does not occur more than a piece of viewing angle characteristics.

【0052】〔実施例14〕図62は、実施例2にある
ように、共通電極が映像信号配線に、そう方向で連結さ
れており、有効表示画面内部では、共通電極が映像信号
配線を横ぎって互いに連結されていない。共通電極は、
奇数群と偶数群にわかれており奇数群どうし、偶数群ど
うしは、有効表示画面外で互いに連結されている。実施
例2と異なるのは、映像信号配線が中央で上下に2分割
されている点である。映像信号配線を駆動するためのI
Cと接合される端子もそれぞれ上下2ケ所にわかれてお
り、端子の数も2倍に増加している。OA用のSXGA
やUXGAのように、走査信号線の数が大幅に増加する
場合、本実施例の構造では、映像信号配線の抵抗が小さ
くなることと、走査信号線と交差する数が半分に低下す
るために、結合容量が低減するので映像信号配線の駆動
負荷が大幅に低減する。
[Embodiment 14] FIG. 62 shows that the common electrode is connected to the video signal wiring in the same direction as in the second embodiment. Are not connected to each other. The common electrode is
The odd-numbered group and the even-numbered group are separated from each other, and the odd-numbered groups and the even-numbered groups are connected to each other outside the effective display screen. The difference from the second embodiment is that the video signal wiring is vertically divided into two at the center. I for driving the video signal wiring
The terminals to be joined to C are also divided into two upper and lower portions, respectively, and the number of terminals is doubled. SXGA for OA
When the number of scanning signal lines is greatly increased, as in the case of UXGA or UXGA, the structure of this embodiment reduces the resistance of the video signal wiring and reduces the number of intersections with the scanning signal lines by half. Since the coupling capacitance is reduced, the driving load of the video signal wiring is greatly reduced.

【0053】〔実施例15〕図63は、実施例14にあ
る構造の横電界方式の液晶表示装置を駆動するための駆
動電圧波形である。走査信号配線は、同時に2本、上半
分領域と下半分領域で動作するようになっている。共通
電極は、上半分領域と下半分領域で連結されているの
で、走査信号配線の駆動周期にあわせて極性を反転させ
る方式で駆動される。共通電極は奇数群と偶数群に分離
されそれぞれ共通連結電極▲44▼と▲45▼に連結さ
れている。奇数群と偶数群には極性の異なる逆相の電圧
が走査信号配線の周期にあわせて反転印加される。映像
信号配線は奇数群と偶数群にわかれており、それぞれが
対応している奇数群と偶数群の共通電極と極性の異なる
逆相の信号電圧が印加される。奇数群と偶数群の映像信
号配線は上半分と下半分に2分割され、それぞれ同相の
異なる映像信号が印加される。2走査線同時アクセスド
ット反転駆動方式である。コンピューターなどのOA用
表示装置の場合、フレームメモリーが用意されているの
でこのフレームメモリーから同時に2本の走査信号配線
分の画像データをとり出せるようにすればよい。SXG
AやUXGAのように走査信号配線の数やフレーム周波
数が大幅に増加する場合、走査信号配線の選択時間が従
来の1走査信号配線アクセス方式のままでは10μse
c以下になってしまう。10μsec以下になってしま
うとアモルファスシリコン薄膜トランジスタの駆動能力
の限界にちかくなり、映像信号電圧を正確に液晶駆動電
極に伝達できなくなる。本発明の2走査線同時アクセス
ドット反転駆動方式ならば選択時間が従来の2倍にのび
るので、アモルファスシリコン薄膜トランジスタでも十
分な映像信号書き込み時間がかくほできる。映像信号配
線の材料の自由度も大幅に広くなる。
[Embodiment 15] FIG. 63 shows a drive voltage waveform for driving the in-plane switching mode liquid crystal display having the structure of the embodiment 14. Two scanning signal lines are simultaneously operated in the upper half region and the lower half region. Since the common electrode is connected in the upper half region and the lower half region, it is driven by a method in which the polarity is inverted in accordance with the driving cycle of the scanning signal wiring. The common electrode is divided into an odd group and an even group and connected to common connection electrodes (44) and (45), respectively. Opposite-phase voltages having different polarities are applied to the odd-numbered group and the even-numbered group in reverse according to the period of the scanning signal wiring. The video signal wiring is divided into an odd-numbered group and an even-numbered group, and opposite-phase signal voltages having polarities different from those of the corresponding odd-numbered group and even-numbered group common electrodes are applied. The odd-numbered group and the even-numbered group of video signal wirings are divided into an upper half and a lower half, and different video signals having the same phase are applied. This is a two-scan line simultaneous access dot inversion drive system. In the case of a display device for OA such as a computer, a frame memory is provided, so that image data for two scanning signal wirings may be simultaneously extracted from the frame memory. SXG
When the number of scanning signal lines and the frame frequency are greatly increased as in A and UXGA, the selection time of the scanning signal lines is 10 μsec if the conventional one-scan signal line access method is used.
c or less. If the time is less than 10 μsec, the driving capability of the amorphous silicon thin film transistor is approached and the video signal voltage cannot be accurately transmitted to the liquid crystal driving electrode. According to the two-scanning-line simultaneous access dot inversion driving method of the present invention, the selection time is twice as long as that of the conventional method, so that a sufficient video signal writing time can be shortened even with an amorphous silicon thin film transistor. The degree of freedom of the material for the video signal wiring is greatly increased.

【0054】[0054]

【発明の効果】本発明によれば第1に、画像の階調反転
のない視角特性の良好な画像を、得ることができる。第
2に映像信号駆動ICに安価な5VICを利用でき、従
来の液晶部材を使用できるのでコストの安い信頼性の高
い画像表示装置を提供できる。第3に、外部からの静電
気の影響を受けない動画対応の高速動作可能な横電界液
晶表示装置を作れる。第4に、超高精細・大画面液晶表
示装置をアモルファスシリコン薄膜トランジスタを用い
て実現できる。
According to the present invention, firstly, it is possible to obtain an image having good viewing angle characteristics without reversing the gradation of the image. Secondly, an inexpensive 5 VIC can be used for the video signal driving IC and a conventional liquid crystal member can be used, so that a highly reliable image display device with low cost can be provided. Third, a horizontal electric field liquid crystal display device capable of operating at high speed and capable of responding to moving images without being affected by static electricity from the outside can be manufactured. Fourth, an ultra-high-definition, large-screen liquid crystal display device can be realized using amorphous silicon thin film transistors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の横電界方式液晶表示装置の単位画素の
断面図
FIG. 1 is a sectional view of a unit pixel of a conventional in-plane switching mode liquid crystal display device.

【図2】 従来の横電界方式液晶表示装置の単位画素の
平面図
FIG. 2 is a plan view of a unit pixel of a conventional in-plane switching mode liquid crystal display device.

【図3】 横電界液晶表示装置の電極間距離による透過
率と駆動電圧特性図
FIG. 3 is a graph showing transmittance and driving voltage characteristics depending on a distance between electrodes of a lateral electric field liquid crystal display device.

【図4】 本発明の横電界方式液晶表示装置の単位画素
の断面図
FIG. 4 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図5】 本発明の横電界方式液晶表示装置の単位画素
の平面図
FIG. 5 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図6】 本発明の横電界方式液晶表示装置の単位画素
の平面図
FIG. 6 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図7】 本発明の横電界方式電極間距離の配置組み合
せ図
FIG. 7 is a layout combination diagram of the distance between electrodes in the in-plane switching method according to the present invention.

【図8】 本発明の横電界方式液晶表示装置の単位画素
の平面図
FIG. 8 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図9】 本発明の横電界方式電極間距離の配置組み合
せ図
FIG. 9 is a layout combination diagram of the distance between electrodes in the in-plane switching method according to the present invention.

【図10】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 10 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図11】 本発明の横電界方式電極間距離の配置組み
合せ図
FIG. 11 is a layout combination diagram of the distance between electrodes in the in-plane switching method according to the present invention.

【図12】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 12 is a cross-sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図13】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 13 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図14】 本発明の横電界方式液晶表示装置の画素配
列の平面図
FIG. 14 is a plan view of a pixel array of the in-plane switching mode liquid crystal display device of the present invention.

【図15】 本発明の横電界方式液晶表示装置の画素配
列の平面図
FIG. 15 is a plan view of a pixel array of the in-plane switching mode liquid crystal display device of the present invention.

【図16】 本発明横電界方式表示装置の画素の映像信
号データ極性配列平面図
FIG. 16 is a plan view of a polarity arrangement of video signal data of pixels of the in-plane switching display device of the present invention.

【図17】 本発明横電界方式表示装置の画素の映像信
号データ極性配列平面図
FIG. 17 is a plan view of the polarity arrangement of video signal data of pixels of the in-plane switching display device of the present invention.

【図18】 本発明の横電界方式画素配列の平面図FIG. 18 is a plan view of a lateral electric field type pixel array of the present invention.

【図19】 本発明の横電界方式画素配列の平面図FIG. 19 is a plan view of a lateral electric field type pixel array of the present invention.

【図20】 本発明の横電界方式画素配列の平面図FIG. 20 is a plan view of a lateral electric field type pixel array of the present invention.

【図21】 本発明の横電界方式画素配列の平面図FIG. 21 is a plan view of a horizontal electric field type pixel array of the present invention.

【図22】 本発明の横電界方式画素配列の平面図FIG. 22 is a plan view of a lateral electric field type pixel array of the present invention.

【図23】 本発明の横電界方式画素配列の平面図FIG. 23 is a plan view of a lateral electric field type pixel array of the present invention.

【図24】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 24 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図25】 本発明横電界方式表示装置の画素の映像信
号データ極性配列平面図
FIG. 25 is a plan view of a polarity arrangement of video signal data of pixels of the in-plane switching display device of the present invention.

【図26】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 26 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図27】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 27 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図28】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 28 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device according to the present invention.

【図29】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 29 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図30】 本発明の横電界方式画素配列の平面図FIG. 30 is a plan view of a horizontal electric field type pixel array of the present invention.

【図31】 本発明の横電界方式画素配列の平面図FIG. 31 is a plan view of a lateral electric field type pixel array of the present invention.

【図32】 本発明の横電界方式画素配列の平面図FIG. 32 is a plan view of a lateral electric field type pixel array of the present invention.

【図33】 本発明の横電界方式画素配列の平面図FIG. 33 is a plan view of a lateral electric field type pixel array of the present invention.

【図34】 本発明の横電界方式画素配列の平面図FIG. 34 is a plan view of a lateral electric field type pixel array of the present invention.

【図35】 本発明の横電界方式画素配列の平面図FIG. 35 is a plan view of a lateral electric field type pixel array of the present invention.

【図36】 本発明の横電界方式液晶表示装置のカラー
フィルターブラックマスク(BM)の配列平面図
FIG. 36 is an arrangement plan view of a color filter black mask (BM) of the in-plane switching mode liquid crystal display device of the present invention.

【図37】 本発明の横電界方式液晶表示装置のカラー
フィルターブラックマスク(BM)の配列平面図
FIG. 37 is an arrangement plan view of a color filter black mask (BM) of the in-plane switching mode liquid crystal display device of the present invention.

【図38】 本発明の横電界方式液晶表示装置のカラー
フィルターブラックマスク(BM)の配列平面図
FIG. 38 is an arrangement plan view of a color filter black mask (BM) of the in-plane switching mode liquid crystal display device of the present invention.

【図39】 本発明の横電界方式液晶表示装置のカラー
フィルターブラックマスク(BM)の配列平面図
FIG. 39 is an arrangement plan view of a color filter black mask (BM) of the in-plane switching mode liquid crystal display device of the present invention.

【図40】 本発明の横電界方式液晶表示装置の駆動電
圧波形
FIG. 40 shows a driving voltage waveform of the in-plane switching mode liquid crystal display device of the present invention.

【図41】 本発明の横電界方式液晶表示装置の駆動電
圧波形
FIG. 41 shows a driving voltage waveform of the in-plane switching mode liquid crystal display device of the present invention.

【図42】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 42 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図43】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 43 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図44】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 44 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図45】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 45 is a cross-sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図46】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 46 is a cross-sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図47】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 47 is a cross-sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図48】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 48 is a cross-sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図49】 本発明の横電界方式液晶表示装置用カラー
フィルターの断面図
FIG. 49 is a cross-sectional view of a color filter for an in-plane switching mode liquid crystal display device according to the present invention.

【図50】 横電界方式液晶表示装置の液晶分子のプレ
チルト角と視角特性分布図
FIG. 50 is a distribution diagram of pretilt angles and viewing angle characteristics of liquid crystal molecules of an in-plane switching mode liquid crystal display device.

【図51】 横電界方式画素電極内の正の誘電率異方性
液晶の配向方向図
FIG. 51 is an orientation view of a positive dielectric anisotropic liquid crystal in a lateral electric field type pixel electrode.

【図52】 本発明の横電界方式屈曲画素電極内の正の
誘電率異方性液晶の配向方向図
FIG. 52 is a view showing an orientation direction of a positive dielectric anisotropic liquid crystal in a bent pixel electrode of an in-plane switching method according to the present invention.

【図53】 本発明の横電界方式屈曲画素電極内の負の
誘電率異方性液晶の配向方向図
FIG. 53 is a view showing an orientation direction of a negative dielectric anisotropy liquid crystal in a bent pixel electrode of an in-plane switching method according to the present invention.

【図54】 本発明横電界方式表示装置のポリイミド配
向膜に局部的UV照射処理をほどこした画素配列の平面
FIG. 54 is a plan view of a pixel array obtained by subjecting a polyimide alignment film of the in-plane switching display according to the present invention to a local UV irradiation process;

【図55】 本発明横電界方式表示装置のポリイミド配
向膜に局部的UV照射処理をほどこした画素配列の平面
FIG. 55 is a plan view of a pixel array obtained by subjecting a polyimide alignment film of the in-plane switching mode display device to local UV irradiation processing.

【図56】 横電界方式液晶表示装置の液晶比抵抗値と
電圧保持率の特性図
FIG. 56 is a characteristic diagram of a liquid crystal specific resistance value and a voltage holding ratio of an in-plane switching mode liquid crystal display device.

【図57】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 57 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図58】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 58 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図59】 本発明の横電界方式液晶表示装置の画素配
列と共通電極駆動用連結電極の配置平面図
FIG. 59 is a plan view showing the arrangement of pixels and connection electrodes for driving a common electrode in the in-plane switching mode liquid crystal display device of the present invention.

【図60】 横電界方式液晶表示装置の画素配列と共通
電極駆動用端子部の配置平面図
FIG. 60 is a plan view showing the arrangement of pixels and a terminal portion for driving a common electrode of an in-plane switching mode liquid crystal display device.

【図61】 横電界方式液晶表示装置の駆動電圧波形FIG. 61 shows a driving voltage waveform of an in-plane switching mode liquid crystal display device.

【図62】 本発明の横電界方式液晶表示装置の画素配
列と共通電極駆動用連結電極の配置平面図
FIG. 62 is a plan view showing the arrangement of pixels and connection electrodes for driving a common electrode in the in-plane switching mode liquid crystal display device of the present invention.

【図63】 本発明の横電界方式液晶表示装置の駆動電
圧波形
FIG. 63 shows a driving voltage waveform of the in-plane switching mode liquid crystal display device of the present invention.

【図64】 本発明の横電界方式液晶表示装置の単位画
素の平面図
FIG. 64 is a plan view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図65】 本発明の横電界方式液晶表示装置の単位画
素の断面図
FIG. 65 is a sectional view of a unit pixel of the in-plane switching mode liquid crystal display device of the present invention.

【図66】 本発明の横電界方式液晶表示装置の単位画
素保持容量形成部の断面図
FIG. 66 is a cross-sectional view of a unit pixel storage capacitor forming portion of the in-plane switching mode liquid crystal display device of the present invention.

【図67】 従来の横電界方式液晶表示装置用カラーフ
ィルターの断面図
FIG. 67 is a cross-sectional view of a conventional color filter for an in-plane switching mode liquid crystal display device.

【符号の説明】[Explanation of symbols]

1―走査信号配線 2―映像信号配線 3―共通電極 4―液晶駆動電極 5―ゲート絶縁膜 6―保護絶縁膜 7―液晶配向膜(TFT基板側) 8―液晶配向膜(対向基板側…カラーフィルター基板
側) 9―液晶分子(正の誘電率異方性液晶) 10―TFT側ガラス基板 11―対向ガラス基板 12―TFT基板側偏光板 13―対向基板側偏光板 14―上層絶縁膜 15―ドレインスルーホール 16―保持容量形成領域 17―陽極酸化膜 18―走査信号配線と同じ材料で同時に形成された共通
電極(中央線) 19―共通電極スルーホール 20―共通電極スルーホールで共通電極(中央線)と、
コンタクトしている画素電極 21―カラーフィルターのブラックマスク 22―液晶分子(負の誘電率異方性液晶) 23―走査信号配線駆動波形 24―奇数番映像信号波形 25―偶数番映像信号波形 26―奇数番共通電極駆動波形 27―偶数番共通電極駆動波形 28―(n−1)番走査信号配線駆動波形 29−n番走査信号配線駆動波形 30−映像信号波形 31―共通電極電位 32―不純物イオン打ち込み後活性化させ低抵抗化した
polysiドレイン電極 33―不純物イオン打ち込み後活性化させたpolys
i半導体層の上にメタルシリサイドを形成したドレイン
電極 34―ノンドープアモルファスシリコン層の上に不純物
ドープした半導体ドレイン電極 35―反射防止膜をつけたブラックマスク 36―透明導電膜層 37−カラーフィルター層 38―高抵抗平坦化膜 39―樹脂ブラックマスク 40―帯電防止用反射防止膜付ブラックマスク電極 41―平坦化絶縁膜 42―帯電防止用ブラックマスク電極 43―静電気対策用素子 44―奇数番共通電極駆動用連結電極 45―偶数番共通電極駆動用連結電極 46―静電気対策用連結電極 47―n番共通電極駆動波形 48―上半分領域n番走査信号配線駆動波形 49―下半分領域n番走査信号配線駆動波形 50―上半分領域M番映像信号波形 51―下半分領域M番映像信号波形 52―M番共通電極駆動波形 53―上半分領域映像信号配線 54―下半分領域映像信号配線 55―上半分領域走査信号配線 56―下半分領域走査信号配線 57―付加容量コンタクトスルーホール A―P型液晶分子の配向方向と画素電極(共通電極と液
晶駆動電極)の交差する角度 B―N型液晶分子の配向方向と画素電極(共通電極と液
晶駆動電極)の交差する角度 BP―バックチャネル側保護絶縁膜 P―液晶分子の配向方向と偏光板の偏光軸方向(光学
軸) Q―偏光板の偏光軸方向(光学軸) D―映像信号配線と同時に形成されたトランジスタ・ド
レイン電極 S―不純物をイオン打ち込み後レーザーアニールによっ
て活性化させ低抵抗になったpoly−si液晶駆動電
極 T―半導体層 U―配向膜にUV照射してラビング処理した低プレチル
ト化領域 J―不純物をイオン打ち込み後レーザーアニール処理に
てpoly−si化した不純物半導体層の上にメタルシ
リサイドを形成した液晶駆動電極 K―ノンドープアモルファスシリコン層の上に不純物ド
ープした半導体液晶駆動電極 a―共通電極と液晶駆動電極の電極間距離 b―共通電極と液晶駆動電極の電極間距離 c―共通電極と液晶駆動電極の電極間距離 sc―映像信号配線と同時に形成された液晶駆動用付加
容量電極
1-scanning signal wiring 2-video signal wiring 3-common electrode 4-liquid crystal drive electrode 5-gate insulating film 6-protective insulating film 7-liquid crystal alignment film (TFT substrate side) 8-liquid crystal alignment film (opposite substrate side ... color 9-Liquid crystal molecules (positive dielectric anisotropy liquid crystal) 10-TFT side glass substrate 11-Opposite glass substrate 12-TFT substrate side polarizing plate 13-Opposite substrate side polarizing plate 14-Upper insulating film 15- Drain through hole 16-Storage capacitance forming area 17-Anodized film 18-Common electrode (center line) formed simultaneously with the same material as scanning signal wiring 19-Common electrode through hole 20-Common electrode through common electrode (center) Lines and,
Contacting pixel electrode 21-Black mask of color filter 22-Liquid crystal molecule (negative dielectric anisotropy liquid crystal) 23-Scan signal wiring drive waveform 24-Odd number video signal waveform 25-Even number video signal waveform 26- Odd-numbered common electrode drive waveform 27-even-numbered common electrode drive waveform 28- (n-1) -th scan signal wiring drive waveform 29-n-th scan signal wiring drive waveform 30-video signal waveform 31-common electrode potential 32-impurity ion Polysi drain electrode activated after implantation and reduced in resistance 33-polys activated after implantation of impurity ions
i-Drain electrode with metal silicide formed on semiconductor layer 34-Semiconductor drain electrode doped with impurities on non-doped amorphous silicon layer 35-Black mask with anti-reflection film 36-Transparent conductive film layer 37-Color filter layer 38 -High resistance flattening film 39-Resin black mask 40-Black mask electrode with anti-reflection film for antistatic 41-Flattening insulating film 42-Black mask electrode for antistatic 43-Electrostatic countermeasure element 44-Odd number common electrode drive Connection electrode 45-Connection electrode for driving even-numbered common electrode 46-Connection electrode for preventing static electricity 47-Nth common electrode drive waveform 48-Upper half area nth scan signal wiring drive waveform 49-Lower half area nth scan signal wiring Drive waveform 50-Upper half area M-th video signal waveform 51-Lower half area M-th video signal waveform 52-M common Electrode drive waveform 53-Upper half area video signal wiring 54-Lower half area video signal wiring 55-Upper half area scanning signal wiring 56-Lower half area scanning signal wiring 57-Additional capacitance contact through hole A-P type liquid crystal molecule alignment The angle at which the direction intersects with the pixel electrode (common electrode and liquid crystal drive electrode) The angle at which the alignment direction of the BN type liquid crystal molecules intersects with the pixel electrode (common electrode and liquid crystal drive electrode) BP—back channel side protective insulating film P— The orientation direction of liquid crystal molecules and the polarization axis direction (optical axis) of the polarizing plate Q-The polarization axis direction (optical axis) of the polarizing plate D-Transistor / drain electrode formed simultaneously with video signal wiring S-Laser after ion implantation of impurities Poly-si liquid crystal drive electrode activated and reduced in resistance by annealing T-semiconductor layer U-alignment film irradiated with UV and rubbed to reduce pretilt Region J-Liquid crystal drive electrode with metal silicide formed on impurity semiconductor layer poly-si-formed by laser annealing after ion implantation of impurity K-Semiconductor liquid crystal drive electrode with impurity doped on non-doped amorphous silicon layer a- The distance between the common electrode and the liquid crystal drive electrode b-The distance between the common electrode and the liquid crystal drive electrode c-The distance between the common electrode and the liquid crystal drive electrode sc-The additional capacitance electrode for liquid crystal drive formed simultaneously with the video signal wiring

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 基板上に走査信号配線と映像信号配線と
前記走査信号配線と映像信号配線との各交差部に形成さ
れた薄膜トランジスタと、前記薄膜トランジスタに接続
された液晶駆動電極と、少なくとも一部が、前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と、前記アクティブマトリックス
基板に対向する対向基板と、前記アクティブマトリック
ス基板と前記対向基板に挾持された液晶層とからなる液
晶表示装置において、前記液晶駆動電極と、前記共通電
極との電極間距離が、1画素内ですべて均一でなく2種
類以上の電極間距離の組み合せで形成されていることを
特徴とする液晶表示装置。
1. A thin film transistor formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring and the video signal wiring, a liquid crystal drive electrode connected to the thin film transistor, and at least a part thereof. An active matrix substrate having a common electrode formed to face the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. Wherein the distance between the liquid crystal drive electrode and the common electrode is not uniform within one pixel but is formed by a combination of two or more types of electrode distance. Display device.
【請求項2】 特許請求の範囲第1項において液晶駆動
電極と共通電極との電極間距離が、1画素内で2種類以
存在し、画素の中央を境にして異なる電極間距離が左右
対称または、上下対称に配置されていることを特徴とす
る液晶表示装置。
2. The method according to claim 1, wherein two or more types of electrode distances are provided between the liquid crystal drive electrode and the common electrode within one pixel, and different electrode distances are symmetrical at the center of the pixel. Alternatively, a liquid crystal display device, which is vertically symmetrically arranged.
【請求項3】 基板上に走査信号配線と映像信号配線
と、前記走査信号配線と映像信号配線との各交差部に形
成された薄膜トランジスタと、前記薄膜トランジスタに
接続された液晶駆動電極と、少なくとも一部が前記液晶
駆動電極と対向して形成された共通電極とを有する、ア
クティブマトリックス基板と前記アクティブマトリック
ス基板に対向する対向基板と、前記アクティブマトリッ
クス基板と前記対向基板に挾持された液晶層とからなる
液晶表示装置において、共通電極が映像信号配線にそう
方向で連結され、有効表示画面内部では、共通電極が映
像信号配線を横ぎって互いに連結されていないことを特
徴とする液晶表示装置。
3. At least one of a scanning signal wiring and a video signal wiring on a substrate, a thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring, and a liquid crystal driving electrode connected to the thin film transistor. An active matrix substrate having a common electrode formed so as to face the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. A liquid crystal display device according to claim 1, wherein the common electrode is connected to the video signal wiring in that direction, and the common electrode is not connected to each other across the video signal wiring inside the effective display screen.
【請求項4】 特許請求の範囲第3項において、映像信
号配線に、そう方向で連結された共通電極を、奇数群と
偶数群に分離し、走査信号の周期にあわせて奇数群、偶
数群の共通電極に、それぞれ逆相の電圧波形を印加さ
せ、かつ奇数群、偶数群の共通電極に対向している液晶
駆動電極に、共通電極とは、逆相の映像信号波形をそれ
ぞれ印加することを特徴とする液晶表示装置。
4. The method according to claim 3, wherein the common electrode connected to the video signal wiring in the direction is divided into an odd group and an even group, and the odd group and the even group are synchronized with the period of the scanning signal. To apply a voltage waveform having a phase opposite to that of the common electrode, and apply a video signal waveform having a phase opposite to that of the common electrode to the liquid crystal drive electrodes facing the common electrodes of the odd and even groups. A liquid crystal display device characterized by the above-mentioned.
【請求項5】 基板上に走査信号配線と映像信号配線
と、前記走査信号配線と映像信号配線との各交差部に形
成された薄膜トランジスタと、前記薄膜トランジスタに
接続された液晶駆動電極と、少なくとも一部が、前記液
晶駆動電極と対向して形成された共通電極とを有するア
クティブマトリックス基板と、前記アクティブマトリッ
クス基板に対向する対向基板と、前記アクティブマトリ
ックス基板と前記対向基板に挾持された液晶層とからな
る液晶表示装置において、前記液晶駆動電極と前記共通
電極とが絶縁膜を介して重畳されることで形成された付
加容量よりも、前記液晶駆動電極と前記走査信号配線と
が絶縁膜を介して重畳されることで形成された付加容量
の方が大きいことを特徴とする液晶表示装置。
5. At least one of a scanning signal wiring and a video signal wiring on a substrate, a thin film transistor formed at each intersection of the scanning signal wiring and the video signal wiring, and a liquid crystal driving electrode connected to the thin film transistor. An active matrix substrate having a common electrode formed so as to face the liquid crystal drive electrode, a counter substrate facing the active matrix substrate, a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate, In the liquid crystal display device, the liquid crystal drive electrode and the scanning signal wiring are disposed between the liquid crystal drive electrode and the scanning signal wiring via the insulating film, rather than the additional capacitance formed by overlapping the liquid crystal drive electrode and the common electrode via the insulating film. A liquid crystal display device characterized in that the additional capacitance formed by superimposing the liquid crystal and the liquid crystal is larger.
【請求項6】 特許請求の範囲第5項において、共通電
極電位は、固定しておき、液晶駆動電極には、走査信号
の周期にあわせて共通電極電位に対して正、負の映像信
号電圧を交互に書きこみ、かつ前記液晶組成物層に印加
される電圧がより高まるように、絶縁膜を介して液晶駆
動電極と重畳されている走査信号配線にも電圧信号波形
を印加する容量結合駆動方式を用いた液晶表示装置。
6. A liquid crystal driving electrode according to claim 5, wherein the common electrode potential is fixed, and the liquid crystal drive electrode is supplied with a positive or negative video signal voltage with respect to the common electrode potential in accordance with the period of the scanning signal. , And a voltage signal waveform is also applied to a scanning signal line superimposed on a liquid crystal driving electrode via an insulating film so that a voltage applied to the liquid crystal composition layer is further increased. Liquid crystal display device using the system.
【請求項7】 基板上に、走査信号配線と映像信号配線
と前記走査信号配線と映像信号配線との各交差部に形成
された薄膜トランジスタと、前記薄膜トランジスタに接
続された液晶駆動電極と、少なくとも一部が、前記液晶
駆動電極と対向して形成された共通電極とを有するアク
ティブマトリックス基板と前記アクティブマトリックス
基板に対向する対向基板と、前記アクティブマトリック
ス基板と、前記対向基板に挾持された液晶層とからなる
液晶表示装置において、薄膜半導体層に不純物をドーピ
ングし、活性化して低抵抗化して、液晶駆動電極に用い
ることを特徴とする液晶表示装置。
7. A thin film transistor formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring and the video signal wiring, and at least one liquid crystal driving electrode connected to the thin film transistor. An active matrix substrate having a common electrode formed to face the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, the active matrix substrate, and a liquid crystal layer sandwiched by the counter substrate. A liquid crystal display device comprising: a thin film semiconductor layer doped with an impurity, activated to reduce the resistance, and used for a liquid crystal drive electrode.
【請求項8】 特許請求の範囲第7項において、前記映
像信号配線と画素電極(液晶駆動電極と、液晶駆動電極
に対向している共通電極の一部)が、液晶配向方向に対
し、±1度から±45度の角度の範囲で、屈曲している
構造配置を特徴とする液晶表示装置。
8. The liquid crystal display device according to claim 7, wherein the video signal wiring and the pixel electrode (the liquid crystal driving electrode and a part of the common electrode facing the liquid crystal driving electrode) are arranged with respect to the liquid crystal alignment direction. A liquid crystal display device characterized by a bent structural arrangement in an angle range of 1 degree to ± 45 degrees.
【請求項9】 特許請求の範囲第7項において、前記走
査信号配線と画素電極が、液晶配向方向に対し±1度か
ら±45度の角度の範囲で、屈曲している構造配置を特
徴とする液晶表示装置。
9. The structure according to claim 7, wherein the scanning signal wiring and the pixel electrode are bent at an angle of ± 1 ° to ± 45 ° with respect to the liquid crystal alignment direction. Liquid crystal display device.
【請求項10】 特許請求の範囲第7項において、前記
映像信号配線と画素電極が、液晶配向方向に対し、90
度をのぞく45度から135度の範囲で、屈曲している
構造配置を特徴とする液晶表示装置。
10. The liquid crystal display device according to claim 7, wherein the video signal wiring and the pixel electrode are positioned at 90 degrees with respect to a liquid crystal alignment direction.
A liquid crystal display device characterized by a bent structural arrangement in a range of 45 degrees to 135 degrees except for the degree.
【請求項11】 特許請求の範囲第7項において、前記
走査信号配線と、画素電極が、液晶配向方向に対し、9
0度をのぞく45度から135度の範囲で、屈曲してい
る構造配置を特徴とする液晶表示装置。
11. The liquid crystal display device according to claim 7, wherein the scanning signal wiring and the pixel electrode are arranged at a distance of 9 with respect to a liquid crystal alignment direction.
A liquid crystal display device characterized by a bent structural arrangement in a range from 45 degrees to 135 degrees except for 0 degree.
【請求項12】 基板上に走査信号配線と映像信号配線
と前記走査信号配線と、映像信号配線との各交差部に形
成された薄膜トランジスタと、前記薄膜トランジスタに
接続された液晶駆動電極と、少なくとも一部が前記液晶
駆動電極と対向して形成された共通電極とを有するアク
ティブマトリックス基板と、前記アクティブマトリック
ス基板に対向する対向基板と、前記アクティブマトリッ
クス基板と前記対向基板に挾持された液晶層とからなる
液晶表示装置において、前記対向基板に形成されたカラ
ーフィルター層の上をおおうオーバーコート層に、高抵
抗材(10Ω・cm〜1011Ω・cm)を用いたこ
とを特徴とくる液晶表示装置。
12. A thin film transistor formed at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring, and the video signal wiring on a substrate, and at least one liquid crystal driving electrode connected to the thin film transistor. An active matrix substrate having a common electrode formed so as to face the liquid crystal driving electrode, a counter substrate facing the active matrix substrate, and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. In the liquid crystal display device, a high resistance material (10 9 Ω · cm to 10 11 Ω · cm) is used for an overcoat layer covering the color filter layer formed on the counter substrate. Display device.
【請求項13】 特許請求の範囲第12項において、カ
ラーフィルター層と、オーバーコート層と、液晶層の厚
みを合計したものが液晶駆動電極と共通電極との電極間
距離の2倍以上であることを特徴とする液晶表示装置。
13. The method according to claim 12, wherein the total thickness of the color filter layer, the overcoat layer, and the liquid crystal layer is at least twice the distance between the liquid crystal drive electrode and the common electrode. A liquid crystal display device characterized by the above-mentioned.
【請求項14】 前記対向基板に形成されたカラーフィ
ルター層の上をおおうオーバーコート層に絶縁膜を用
い、R,G,Bカラーフィルターの境界のオーバーコー
ト絶縁膜上に、導電性、または半導体の電極をブラック
マスクとして形成したことを特徴とする液晶表示装置。
14. An insulating film is used as an overcoat layer overlying the color filter layer formed on the counter substrate, and a conductive or semiconductor film is formed on the overcoat insulating film at the boundary between the R, G, and B color filters. A liquid crystal display device, wherein the electrodes are formed as black masks.
【請求項15】 基板上に走査信号配線と映像信号配線
と前記走査信号配線と映像信号配線との各交差部に形成
された薄膜トランジスタと、前記薄膜トランジスタに接
続された液晶駆動電極と、少なくとも一部が前記液晶駆
動電極と対向して形成された共通電極とを有するアクテ
ィブマトリックス基板と前記アクティブマトリックス基
板に対向する対向基板と前記アクティブマトリックス基
板と前記対向基板に挾持された液晶層とからなる液晶表
示装置を作る工程において、液晶を配向させるための配
向膜を塗布し、焼成後、配向膜にUV照射処理またはH
e,Ne,Ar,N,Oなどのイオンインプラテー
ション処理やプラズマ処理をした後、ラビング処理する
ことで、液晶プレチルト角を1度以下に低下させること
を特徴とする製造工程。
15. A thin film transistor formed on a substrate at each intersection of a scanning signal wiring, a video signal wiring, the scanning signal wiring and the video signal wiring, a liquid crystal driving electrode connected to the thin film transistor, and at least a part thereof. A liquid crystal display comprising: an active matrix substrate having a common electrode formed to face the liquid crystal drive electrode; a counter substrate facing the active matrix substrate; and a liquid crystal layer sandwiched between the active matrix substrate and the counter substrate. In the process of manufacturing the device, an alignment film for aligning the liquid crystal is applied, and after firing, the alignment film is subjected to UV irradiation treatment or H
A manufacturing process characterized in that a liquid crystal pretilt angle is reduced to 1 degree or less by performing rubbing treatment after performing ion implantation treatment or plasma treatment of e, Ne, Ar, N 2 , O 2, and the like.
【請求項16】 特許請求の範囲第3項において、映像
信号配線にそう方向で連結された共通電極を、奇数群と
偶数群に分離し、かつ映像信号配線を画面の中央で上下
に2分割したことを特徴とする液晶表示装置。
16. A device according to claim 3, wherein the common electrode connected in the direction to the video signal wiring is separated into an odd group and an even group, and the video signal wiring is vertically divided into two at the center of the screen. A liquid crystal display device characterized in that:
【請求項17】 特許請求の範囲第16項において、画
面の中央で上下の群に2分割された走査信号配線を同時
に上群と下群とで駆動し上下の映像信号配線には、奇数
群と偶数群とで逆相の映像信号電圧波形を印加し、共通
電極の奇数群と偶数群にはそれぞれの映像信号配線の電
圧波形と逆相の共通電極駆動波形を印加することで、同
時に画面の上下の2本の水平ラインに異なる映像信号を
書きこむ駆動方式を特徴とする液晶表示装置。
17. The scanning signal wiring according to claim 16, wherein the scanning signal wiring divided into two groups at the center of the screen is divided into an upper group and a lower group at the same time, and the upper and lower video signal wirings are provided with an odd group. By applying video signal voltage waveforms of opposite phase to the even group and the odd group and even group of common electrodes, the voltage waveform of the video signal wiring and the common electrode driving waveform of opposite phase are applied to the screen simultaneously. A liquid crystal display device characterized in that different video signals are written in two upper and lower horizontal lines.
JP27279296A 1996-08-19 1996-08-19 Liquid crystal display Expired - Fee Related JP3567183B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27279296A JP3567183B2 (en) 1996-08-19 1996-08-19 Liquid crystal display
PCT/JP1997/002862 WO1998008134A1 (en) 1996-08-19 1997-08-18 Liquid crystal display device
TW86111895A TW406206B (en) 1996-08-19 1997-08-20 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27279296A JP3567183B2 (en) 1996-08-19 1996-08-19 Liquid crystal display

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003205102A Division JP2005010721A (en) 2003-06-16 2003-06-16 Liquid crystal display device
JP2003205585A Division JP2004094221A (en) 2003-06-17 2003-06-17 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH1062802A true JPH1062802A (en) 1998-03-06
JP3567183B2 JP3567183B2 (en) 2004-09-22

Family

ID=17518813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27279296A Expired - Fee Related JP3567183B2 (en) 1996-08-19 1996-08-19 Liquid crystal display

Country Status (3)

Country Link
JP (1) JP3567183B2 (en)
TW (1) TW406206B (en)
WO (1) WO1998008134A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083510A (en) * 1998-04-27 1999-11-25 가나이 쓰도무 Active matrix liquid crystal display
JP2001033758A (en) * 1999-07-26 2001-02-09 Nec Corp Liquid crystal display device
KR100315919B1 (en) * 1998-11-12 2002-06-20 윤종용 LCD and its manufacturing method
US6469765B1 (en) 1999-06-16 2002-10-22 Nec Corporation Liquid crystal display and method of performing display operation
JP2002323706A (en) * 2001-02-23 2002-11-08 Nec Corp Active matrix liquid crystal display device of transverse electric field system and method for manufacturing the same
US6583839B2 (en) 1996-11-06 2003-06-24 Nec Corporation In-plane-switching liquid crystal display unit having tinting compensation
JP2004361949A (en) * 2003-05-30 2004-12-24 Samsung Electronics Co Ltd Thin film transistor display plate and liquid crystal display device including the same
JP2005346064A (en) * 2004-05-31 2005-12-15 Lg Phillips Lcd Co Ltd In-plane switching liquid crystal display and driving method therefor
JP2006018231A (en) * 2004-06-30 2006-01-19 Lg Phillips Lcd Co Ltd In-plane switching mode liquid crystal display device and fabricating method thereof
JP2007334317A (en) * 2006-05-16 2007-12-27 Semiconductor Energy Lab Co Ltd Liquid crystal display device and semiconductor device
JP2008070688A (en) * 2006-09-15 2008-03-27 Epson Imaging Devices Corp Liquid crystal device, and electronic apparatus
US7420642B2 (en) 2003-12-11 2008-09-02 Lg Display Co., Lcd Array substrate for in-plane switching mode liquid crystal display device
JP2009080288A (en) * 2007-09-26 2009-04-16 Nec Lcd Technologies Ltd Display device, and portable device using them, and terminal device
JP2010107943A (en) * 2008-09-30 2010-05-13 Epson Imaging Devices Corp Liquid crystal device, and electronic device
JP2010107945A (en) * 2008-09-30 2010-05-13 Epson Imaging Devices Corp Liquid crystal device, and electronic apparatus
WO2011007598A1 (en) 2009-07-13 2011-01-20 シャープ株式会社 Liquid crystal display device
JP2011013655A (en) * 2008-09-30 2011-01-20 Sony Corp Liquid crystal device, electronic apparatus, and method for manufacturing liquid crystal device
KR101112584B1 (en) * 2004-12-27 2012-02-15 엘지디스플레이 주식회사 In-Plane Switching mode Liquid crystal display device
KR101158116B1 (en) * 2005-03-04 2012-06-19 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
US8339555B2 (en) 2004-09-30 2012-12-25 Lg Display Co., Ltd. In-plane switching liquid crystal display device having improved brightness and aperture ratio
US8338865B2 (en) 2006-05-16 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
JP2013007956A (en) * 2011-06-27 2013-01-10 Japan Display Central Co Ltd Liquid crystal display device
KR101256660B1 (en) * 2005-08-31 2013-04-19 엘지디스플레이 주식회사 In-Plane-Switching mode Liquid Crystal Display Device and the fabrication method thereof
JP2013097190A (en) * 2011-11-01 2013-05-20 Japan Display Central Co Ltd Liquid crystal display device
US8760479B2 (en) 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
JP2014178714A (en) * 2009-12-18 2014-09-25 Samsung Display Co Ltd Liquid crystal display device
US9207504B2 (en) 2006-04-06 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
JP2016057592A (en) * 2014-09-12 2016-04-21 株式会社ジャパンディスプレイ Liquid crystal display device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064740B2 (en) 2001-11-09 2006-06-20 Sharp Laboratories Of America, Inc. Backlit display with improved dynamic range
JP4154598B2 (en) 2003-08-26 2008-09-24 セイコーエプソン株式会社 Liquid crystal display device driving method, liquid crystal display device, and portable electronic device
US7872631B2 (en) 2004-05-04 2011-01-18 Sharp Laboratories Of America, Inc. Liquid crystal display with temporal black point
US7777714B2 (en) 2004-05-04 2010-08-17 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive width
US7602369B2 (en) 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
US8395577B2 (en) 2004-05-04 2013-03-12 Sharp Laboratories Of America, Inc. Liquid crystal display with illumination control
FR2870947B1 (en) * 2004-05-31 2008-02-01 Lg Philips Lcd Co Ltd LIQUID CRYSTAL DISPLAY AND CONTROL METHOD
US7023451B2 (en) 2004-06-14 2006-04-04 Sharp Laboratories Of America, Inc. System for reducing crosstalk
US7898519B2 (en) 2005-02-17 2011-03-01 Sharp Laboratories Of America, Inc. Method for overdriving a backlit display
US8050511B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8050512B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8121401B2 (en) 2006-01-24 2012-02-21 Sharp Labortories of America, Inc. Method for reducing enhancement of artifacts and noise in image color enhancement
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
KR101096356B1 (en) * 2007-11-14 2011-12-20 하이디스 테크놀로지 주식회사 In-plane switching mode liquid crystal display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619030A (en) * 1979-07-25 1981-02-23 Sharp Corp Production of liquid crystal display element
JPS5952802B2 (en) * 1980-04-01 1984-12-21 大日本印刷株式会社 Aligned substrate for liquid crystal display and its manufacturing method
JPS63234203A (en) * 1987-03-23 1988-09-29 Toshiba Corp Production of color filter
JPS6484221A (en) * 1987-09-28 1989-03-29 Matsushita Electric Ind Co Ltd Production of liquid crystal display device
JP2906470B2 (en) * 1989-08-23 1999-06-21 セイコーエプソン株式会社 Active matrix substrate
JP2982877B2 (en) * 1990-12-25 1999-11-29 日本電気株式会社 Active matrix liquid crystal display
JPH05143020A (en) * 1991-11-18 1993-06-11 Nec Gumma Ltd Driving method for matrix type liquid crystal display device
JP2914851B2 (en) * 1992-12-04 1999-07-05 富士通株式会社 Liquid crystal display device and method of manufacturing the same
JP3210443B2 (en) * 1992-09-29 2001-09-17 シチズン時計株式会社 Liquid crystal display
JP2701698B2 (en) * 1993-07-20 1998-01-21 株式会社日立製作所 Liquid crystal display
JP3294689B2 (en) * 1993-11-09 2002-06-24 株式会社日立製作所 Liquid crystal display
JPH07191336A (en) * 1993-12-27 1995-07-28 Toshiba Corp Liquid crystal display device
CN1055769C (en) * 1994-03-17 2000-08-23 株式会社日立制作所 Active matrix type liquid crystal display device and its driving method
JPH085990A (en) * 1994-06-24 1996-01-12 Toshiba Corp Active matrix type liquid crystal display device and its driving method
JP3564704B2 (en) * 1994-06-24 2004-09-15 株式会社日立製作所 Active matrix type liquid crystal display device and driving method thereof

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583839B2 (en) 1996-11-06 2003-06-24 Nec Corporation In-plane-switching liquid crystal display unit having tinting compensation
US6987551B2 (en) 1996-11-06 2006-01-17 Nec Corporation In-plane switching liquid crystal display unit having tinting compensation
KR19990083510A (en) * 1998-04-27 1999-11-25 가나이 쓰도무 Active matrix liquid crystal display
KR100315919B1 (en) * 1998-11-12 2002-06-20 윤종용 LCD and its manufacturing method
US6469765B1 (en) 1999-06-16 2002-10-22 Nec Corporation Liquid crystal display and method of performing display operation
JP2001033758A (en) * 1999-07-26 2001-02-09 Nec Corp Liquid crystal display device
US6646691B1 (en) 1999-07-26 2003-11-11 Nec Lcd Technologies, Ltd. Active-matrix in-plane switching mode LCD panel having multiple common electrode voltage sources
US7446833B2 (en) 2001-02-23 2008-11-04 Nec Lcd Technologies, Ltd. In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
JP2002323706A (en) * 2001-02-23 2002-11-08 Nec Corp Active matrix liquid crystal display device of transverse electric field system and method for manufacturing the same
US7619710B2 (en) 2001-02-23 2009-11-17 Nec Lcd Technologies, Ltd. In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
JP2004361949A (en) * 2003-05-30 2004-12-24 Samsung Electronics Co Ltd Thin film transistor display plate and liquid crystal display device including the same
JP2011138158A (en) * 2003-05-30 2011-07-14 Samsung Electronics Co Ltd Thin film transistor display panel and liquid crystal display device including the panel
US7420642B2 (en) 2003-12-11 2008-09-02 Lg Display Co., Lcd Array substrate for in-plane switching mode liquid crystal display device
DE102004031108B4 (en) * 2003-12-11 2009-09-10 Lg Display Co., Ltd. In-plane switching liquid crystal display and array substrate for such
US7502087B2 (en) 2004-05-31 2009-03-10 Lg Display Co., Ltd. In-plane switching liquid crystal display and driving method thereof
JP2005346064A (en) * 2004-05-31 2005-12-15 Lg Phillips Lcd Co Ltd In-plane switching liquid crystal display and driving method therefor
DE102005024656B4 (en) * 2004-05-31 2010-07-01 Lg Display Co., Ltd. Horizontal switching liquid crystal display and driving method for such
JP2006018231A (en) * 2004-06-30 2006-01-19 Lg Phillips Lcd Co Ltd In-plane switching mode liquid crystal display device and fabricating method thereof
US7679704B2 (en) 2004-06-30 2010-03-16 Lg Display Co., Ltd. Method of fabricating an in-plane switching mode liquid crystal display comprising rubbing and applying a beam to set pre-tilt angles
US8339555B2 (en) 2004-09-30 2012-12-25 Lg Display Co., Ltd. In-plane switching liquid crystal display device having improved brightness and aperture ratio
KR101112584B1 (en) * 2004-12-27 2012-02-15 엘지디스플레이 주식회사 In-Plane Switching mode Liquid crystal display device
KR101158116B1 (en) * 2005-03-04 2012-06-19 엘지디스플레이 주식회사 In plane switching mode liquid crystal display device
KR101256660B1 (en) * 2005-08-31 2013-04-19 엘지디스플레이 주식회사 In-Plane-Switching mode Liquid Crystal Display Device and the fabrication method thereof
US11442317B2 (en) 2006-04-06 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US9958736B2 (en) 2006-04-06 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US10684517B2 (en) 2006-04-06 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US11073729B2 (en) 2006-04-06 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US11921382B2 (en) 2006-04-06 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US11644720B2 (en) 2006-04-06 2023-05-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US9213206B2 (en) 2006-04-06 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US9207504B2 (en) 2006-04-06 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
US9709861B2 (en) 2006-05-16 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US10001678B2 (en) 2006-05-16 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
JP2007334317A (en) * 2006-05-16 2007-12-27 Semiconductor Energy Lab Co Ltd Liquid crystal display device and semiconductor device
US11061285B2 (en) 2006-05-16 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a dogleg-like shaped pixel electrode in a plane view having a plurality of dogleg-like shaped openings and semiconductor device
US10509271B2 (en) 2006-05-16 2019-12-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising a semiconductor film having a channel formation region overlapping with a conductive film in a floating state
US8841671B2 (en) 2006-05-16 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11726371B2 (en) 2006-05-16 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. FFS-mode liquid crystal display device comprising a top-gate transistor and an auxiliary wiring connected to a common electrode in a pixel portion
US8872182B2 (en) 2006-05-16 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11106096B2 (en) 2006-05-16 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US8338865B2 (en) 2006-05-16 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US9268188B2 (en) 2006-05-16 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
US11435626B2 (en) 2006-05-16 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and semiconductor device
JP2008070688A (en) * 2006-09-15 2008-03-27 Epson Imaging Devices Corp Liquid crystal device, and electronic apparatus
JP2009080288A (en) * 2007-09-26 2009-04-16 Nec Lcd Technologies Ltd Display device, and portable device using them, and terminal device
US8368861B2 (en) 2007-09-26 2013-02-05 Nlt Technologies, Ltd. Liquid crystal display device comprising periodically changed permutations of at least two types of electrode-pattern pairs
US8681303B2 (en) 2007-09-26 2014-03-25 Nlt Technologies, Ltd. Liquid crystal display device comprising periodically changed permutations of at least two types of electrode-pattern pairs
US9348188B2 (en) 2008-06-16 2016-05-24 Samsung Display Co., Ltd. Liquid crystal display
US8760479B2 (en) 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
JP2011013655A (en) * 2008-09-30 2011-01-20 Sony Corp Liquid crystal device, electronic apparatus, and method for manufacturing liquid crystal device
JP2010107943A (en) * 2008-09-30 2010-05-13 Epson Imaging Devices Corp Liquid crystal device, and electronic device
JP2010107945A (en) * 2008-09-30 2010-05-13 Epson Imaging Devices Corp Liquid crystal device, and electronic apparatus
WO2011007598A1 (en) 2009-07-13 2011-01-20 シャープ株式会社 Liquid crystal display device
US10488726B2 (en) 2009-12-18 2019-11-26 Samsung Display Co., Ltd. Liquid crystal display device
US11150529B2 (en) 2009-12-18 2021-10-19 Samsung Display Co., Ltd. Liquid crystal display device
US9664968B2 (en) 2009-12-18 2017-05-30 Samsung Display Co., Ltd. Liquid crystal display device
JP2014178714A (en) * 2009-12-18 2014-09-25 Samsung Display Co Ltd Liquid crystal display device
US11803090B2 (en) 2009-12-18 2023-10-31 Samsung Display Co., Ltd. Liquid crystal display device
JP2013007956A (en) * 2011-06-27 2013-01-10 Japan Display Central Co Ltd Liquid crystal display device
JP2013097190A (en) * 2011-11-01 2013-05-20 Japan Display Central Co Ltd Liquid crystal display device
JP2016057592A (en) * 2014-09-12 2016-04-21 株式会社ジャパンディスプレイ Liquid crystal display device

Also Published As

Publication number Publication date
JP3567183B2 (en) 2004-09-22
TW406206B (en) 2000-09-21
WO1998008134A1 (en) 1998-02-26

Similar Documents

Publication Publication Date Title
JP3567183B2 (en) Liquid crystal display
JP3831863B2 (en) Liquid crystal display
US6421039B1 (en) Liquid crystal display in-plane structure and method of manufacturing the same
EP1398658B1 (en) Color active matrix type vertically aligned mode liquid cristal display and driving method thereof
JP2701698B2 (en) Liquid crystal display
JP2859093B2 (en) Liquid crystal display
JP3234357B2 (en) Liquid crystal display
US8305538B2 (en) Low-cost large-screen wide-angle fast-response liquid crystal display apparatus
US8174658B2 (en) Thin film transistor substrate including a horizontal part passing through a central region between the gate lines and dividing each of the pixel regions into an upper half and a lower half
JP2590693B2 (en) Liquid crystal display
JP3194873B2 (en) Active matrix type liquid crystal display device and driving method thereof
KR960014824B1 (en) Active matrix liquid crystal display apparatus
KR100430376B1 (en) Liquid crystal display
JP2005010721A (en) Liquid crystal display device
JP3724163B2 (en) Liquid crystal display element and liquid crystal display device
JPH0973064A (en) Liquid crystal display device
JP3071648B2 (en) Liquid crystal display device
JP2002122841A (en) Method for driving liquid crystal display device, and liquid crystal display device
JPH1184417A (en) Active matrix type display element and its driving method
JP2000035593A (en) Active matrix type liquid crystal display device and its driving method
JP2004094221A (en) Liquid crystal display
JP3592704B2 (en) Active matrix type liquid crystal display
JP2000111953A (en) Active matrix type liquid crystal display device
JP3490361B2 (en) Active matrix type liquid crystal display
JP3759426B2 (en) Liquid crystal display element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370