JP2859093B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2859093B2
JP2859093B2 JP15712093A JP15712093A JP2859093B2 JP 2859093 B2 JP2859093 B2 JP 2859093B2 JP 15712093 A JP15712093 A JP 15712093A JP 15712093 A JP15712093 A JP 15712093A JP 2859093 B2 JP2859093 B2 JP 2859093B2
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
display
display electrode
auxiliary capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15712093A
Other languages
Japanese (ja)
Other versions
JPH0713164A (en
Inventor
徳夫 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP15712093A priority Critical patent/JP2859093B2/en
Publication of JPH0713164A publication Critical patent/JPH0713164A/en
Application granted granted Critical
Publication of JP2859093B2 publication Critical patent/JP2859093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ECB(Electrically
Controlled Birefringence:電圧制御復屈折)方式の
液晶表示装置に関し、特に、液晶分子の配向を制御する
ことにより、良好な視角特性と高表示品位を達成した液
晶表示装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to an ECB (Electrically
More particularly, the present invention relates to a liquid crystal display device that achieves good viewing angle characteristics and high display quality by controlling the alignment of liquid crystal molecules.

【0002】[0002]

【従来の技術】液晶表示装置は小型、薄型、低消費電力
などの利点があり、OA機器、AV機器などの分野で実
用化が進んでいる。特に、スイッチング素子として、薄
膜トランジスタ(以下、TFTと略す)を用いたアクテ
ィブマトリクス型の液晶表示装置は、精細な動画表示が
可能となりディスプレイなどに使用されている。
2. Description of the Related Art Liquid crystal display devices have advantages such as small size, thinness, and low power consumption, and have been put to practical use in fields such as OA equipment and AV equipment. In particular, an active matrix type liquid crystal display device using a thin film transistor (hereinafter abbreviated as TFT) as a switching element is capable of displaying fine moving images and is used for a display or the like.

【0003】液晶表示装置は、図8に示されるように、
透明基板上に所定の導体パターンが設けられてなるTF
T基板(2)及び対向基板(4)が、厚さ数μmの液晶
層(3)を挟んで貼り合わされ、更に、これらを偏光軸
が互いに直行するように配置された2枚の偏光板(1)
(5)で挟み込むことにより構成される。特に、両基板
(2)(4)の表面に垂直配向処理を行い、液晶層
(3)として負の誘電率異方性をもつ液晶を用いること
により、液晶分子の初期配向を基板に対して垂直方向に
設定したものは、DAP(Deformation of Vertically
Aligned Phases)型と呼ばれる。
[0003] As shown in FIG.
TF in which a predetermined conductor pattern is provided on a transparent substrate
A T-substrate (2) and a counter substrate (4) are attached to each other with a liquid crystal layer (3) having a thickness of several μm sandwiched therebetween, and furthermore, two polarizing plates ( 1)
It is constituted by sandwiching in (5). In particular, by performing vertical alignment treatment on the surfaces of both substrates (2) and (4) and using a liquid crystal having a negative dielectric anisotropy as the liquid crystal layer (3), the initial alignment of the liquid crystal molecules with respect to the substrates. The one set vertically is DAP (Deformation of Vertically
Aligned Phases) type.

【0004】例えばTFT基板(2)側から入射された
白色光は、第1の偏光板(1)により直線偏光に変化す
る。電圧無印加時には、この入射直線偏光は液晶層
(3)中で複屈折をうけないので、第2の偏光板(5)
によって遮断され表示は黒となる(ノーマリ・ブラック
・モード)。そして、液晶層(3)に所定の電圧を印加
して、液晶分子を傾斜させることにより、入射直線偏光
が複屈折を受け楕円偏光となり、光が第2の偏光板
(5)を透過するするようになる。
For example, white light incident from the TFT substrate (2) is changed to linearly polarized light by the first polarizing plate (1). When no voltage is applied, the incident linearly polarized light does not undergo birefringence in the liquid crystal layer (3), so that the second polarizing plate (5)
And the display becomes black (normally black mode). Then, by applying a predetermined voltage to the liquid crystal layer (3) to tilt the liquid crystal molecules, the incident linearly polarized light undergoes birefringence to become elliptically polarized light, and the light passes through the second polarizing plate (5). Become like

【0005】透過光強度は印加電圧に依存するため、印
加電圧を調整することにより、階調表示が可能となる。
そのため、更にカラーフィルターを液晶パネル内、また
は液晶パネル外の所定の位置に設けることにより、所望
のカラー表示が得られる。続いて、従来例を図9及び図
10を参照しながら説明する。図9は上面図であり、図
10は図9のC−C’線に沿う断面図である。ただし、
偏光板(1)(5)の図示は省略した。まずガラス基板
(10)上にゲート電極(11)、ゲート電極(11)
と一体のゲートライン(12)、補助容量電極(13)
及び補助容量電極(13)と一体の補助容量ライン(1
4)が、例えばCrで形成されている。そして、これら
を覆って、全面にSiNXなどのゲート絶縁膜(15)
が設けられている。
Since the intensity of the transmitted light depends on the applied voltage, gradation can be displayed by adjusting the applied voltage.
Therefore, a desired color display can be obtained by further providing a color filter inside the liquid crystal panel or at a predetermined position outside the liquid crystal panel. Next, a conventional example will be described with reference to FIGS. FIG. 9 is a top view, and FIG. 10 is a cross-sectional view taken along line CC ′ of FIG. However,
Illustration of the polarizing plates (1) and (5) is omitted. First, a gate electrode (11) and a gate electrode (11) are formed on a glass substrate (10).
Gate line (12) and auxiliary capacitance electrode (13) integrated with
And an auxiliary capacitance line (1) integrated with the auxiliary capacitance electrode (13).
4) is formed of, for example, Cr. Then, a gate insulating film (15) such as SiN x is formed on the entire surface so as to cover them.
Is provided.

【0006】前記ゲート電極(11)に対応するゲート
絶縁膜(15)上には、TFTのaーSi層(16)、
aーSi層(16)の両端上にN+aーSi層(18
d)(18s)、aーSi層(16)とN+aーSi層
(18d)(18s)の間に半導体保護膜(17)が設
けられている。また、表示領域のゲート絶縁膜(15)
上には、ITOの表示電極(19)が形成されている。
更に、前記ゲートライン(12)と交差するドレインラ
イン(21)、ドレインライン(21)と一体で前記N
+aーSi層(18d)上に被覆されるドレイン電極
(20)、前記表示電極(19)と接続し前記N+aー
Si層(18s)上に被覆されるソース電極(22)
が、例えばAl/Moの2層構造で形成されている。そ
して、全面にはSiNXなどの基板保護膜(23)、更
には、第1の垂直配向膜(24)が形成されて、TFT
基板(2)が構成される。
On the gate insulating film (15) corresponding to the gate electrode (11), an a-Si layer (16) of the TFT,
An N + a-Si layer (18) is provided on both ends of the a-Si layer (16).
d) (18s), a semiconductor protective film (17) is provided between the a-Si layer (16) and the N + a-Si layer (18d) (18s). Also, the gate insulating film (15) in the display area
A display electrode (19) of ITO is formed on the upper side.
Further, a drain line (21) intersecting with the gate line (12) and the N line are formed integrally with the drain line (21).
a drain electrode (20) coated on the + a-Si layer (18d), and a source electrode (22) connected to the display electrode (19) and coated on the N + a-Si layer (18s).
Is formed, for example, in a two-layer structure of Al / Mo. Then, a substrate protective film (23) such as SiN X and a first vertical alignment film (24) are formed on the entire surface, and a TFT is formed.
A substrate (2) is configured.

【0007】一方、対向ガラス基板(25)上には、T
FT基板(2)の非表示領域に対応する領域にCrなど
の遮光膜(26)が形成されており、遮光膜(26)を
被覆して、全面にはITOの対向表示電極(27)が設
けられている。更に全面に第2の垂直配向膜(28)が
形成されて、対向基板(4)となる。また、前記配向膜
(24)(28)としてポリイミド膜を用い、これにラ
ビング処理を行うことにより、液晶分子長軸が基板に垂
直な方向に対して、10度以内のプレチルト角を有する
構造になる。この構造では、液晶分子は所定の電圧を印
加することにより、配向膜(24)(28)表面に従っ
て、ラビング方向に沿った方向に傾斜する。
On the other hand, on the opposite glass substrate (25), T
A light-shielding film (26) of Cr or the like is formed in a region corresponding to the non-display region of the FT substrate (2), and covers the light-shielding film (26). Is provided. Further, a second vertical alignment film (28) is formed on the entire surface, and becomes a counter substrate (4). Further, a polyimide film is used as the alignment films (24) and (28), and a rubbing process is performed on the polyimide film to form a structure having a pretilt angle of 10 degrees or less with respect to the direction in which the major axis of the liquid crystal molecules is perpendicular to the substrate. Become. In this structure, by applying a predetermined voltage, the liquid crystal molecules are inclined in the direction along the rubbing direction according to the surfaces of the alignment films (24) and (28).

【0008】[0008]

【発明が解決しようとする課題】続いて、従来の液晶表
示装置の問題点について図11を参照しながら説明す
る。ガラス基板(10)側から入射された光は、一部が
補助容量電極(13)及び対向ガラス基板(25)上の
遮光膜(26)により遮断され、遮光領域(103)と
して黒色になり、残りが開口部(102)で透過率が制
御されて所望の表示が行われる。ところが、開口部(1
02)においても、ディスクリネーション(101a)
(101b)と呼ばれる黒領域が生じる問題がある。デ
ィスクリネーションとは、セル中で、液晶の配向ベクト
ルが互いに異なる領域が複数存在するとき、その境界線
上で、液晶分子の配向方向が乱れ、他の領域とは異なる
透過率を有する領域である。図11のように画素ごとに
異なる形状のディスクリネーション(101a)(10
1b)が多発すると、画面にざらつきが生じたり、期待
のカラー表示が得られないといった問題が招かれる。
Next, problems of the conventional liquid crystal display device will be described with reference to FIG. Part of the light incident from the glass substrate (10) is blocked by the auxiliary capacitance electrode (13) and the light shielding film (26) on the counter glass substrate (25), and turns black as a light shielding region (103). The remaining portion is controlled in transmittance by the opening (102), and a desired display is performed. However, the opening (1
02) also in the disclination (101a)
There is a problem that a black area called (101b) occurs. Disclination is a region in which, when a plurality of regions having different alignment vectors of liquid crystal are present in a cell, the alignment direction of liquid crystal molecules is disturbed on the boundary line, and has a transmittance different from other regions. . As shown in FIG. 11, disclinations (101a) (10
If 1b) occurs frequently, there are problems that the screen becomes rough and an expected color display cannot be obtained.

【0009】配向ベクトルが不均一になる原因として、
基板(10)上の配線やTFTによる段差のため、この
部分で配向処理が不完全になり、液晶の連続体性により
傾斜方向の異常が、ある領域にわたって存在することが
考えられる。また、セル内の電界に起因している場合も
ある。ドレインライン(21)と表示電極(19)が同
極性であるとき、セル中での電気力線は図12に示すよ
うになる。誘電率異方性が負の場合、液晶分子は印加電
圧が上がるにしたがって、分子長軸が電気力線に対して
垂直方向に傾斜していく。そのため、所定の電圧を印加
すると、液晶分子は表示電極(19)上では、図12に
おいて上が右方向へ、ドレインライン(21)上では左
方向へ傾斜していく。同様に、ドレインライン(21)
と表示電極(19)が異極性であるとき、電気力線は図
13のようになる。ドレインライン(21)と表示電極
(19)の間の電界に起因する液晶分子の傾斜方向は、
図9における表示電極(19)の左右両側の領域で逆に
なる。そのため、表示領域中に、配向ベクトルが異なる
領域の境界線が出現し、ディクリネーション(101
a)となる。
As a cause of the non-uniform orientation vector,
It is conceivable that the alignment process is incomplete at this portion due to a step formed by the wiring and the TFT on the substrate (10), and abnormalities in the tilt direction exist over a certain region due to the continuity of the liquid crystal. It may also be caused by an electric field in the cell. When the drain line (21) and the display electrode (19) have the same polarity, the lines of electric force in the cell are as shown in FIG. In the case where the dielectric anisotropy is negative, the liquid crystal molecules have their molecular long axes inclined in a direction perpendicular to the lines of electric force as the applied voltage increases. Therefore, when a predetermined voltage is applied, the liquid crystal molecules are inclined rightward on the display electrode (19) in FIG. 12 and leftward on the drain line (21) on the display electrode (19). Similarly, the drain line (21)
When the display electrodes (19) have different polarities, the lines of electric force are as shown in FIG. The tilt direction of the liquid crystal molecules caused by the electric field between the drain line (21) and the display electrode (19) is as follows:
The opposite is true in the left and right regions of the display electrode (19) in FIG. Therefore, in the display area, a boundary line of an area having a different orientation vector appears, and the declination (101) is performed.
a).

【0010】同様のことが、ゲートライン(12)と表
示電極(19)との間にできる電界によっても起こり得
る。この場合も、電気力線は極性の反転に伴って図12
及び図13に類似する形状になり、これにしたがって液
晶分子が表示電極(19)の中央へ向かって傾斜する。
そのため、図9における表示電極(19)の上下両側の
領域の境界線がディスクリネーション(101a)とな
る。
[0010] The same can be caused by an electric field generated between the gate line (12) and the display electrode (19). Also in this case, the lines of electric force are changed as shown in FIG.
13, and the liquid crystal molecules are inclined toward the center of the display electrode (19) accordingly.
Therefore, the boundary between the upper and lower regions of the display electrode (19) in FIG. 9 becomes the disclination (101a).

【0011】更に、以上で説明したように、配向ベクト
ルが異なる領域の境界線は、配線やTFTの領域に存在
しているが、基板上のこの部分は、段差により配向が乱
れやすい領域である。そのため、液晶分子の配向異常が
表示領域にまで及んで、図11に示されるように、開口
部(102)の端部にもディクリネーション(101
b)が生じる。特に、ゲートライン(12)の大きな負
電位のため、ゲートライン(12)に沿った部分にディ
クリネーション(101b)が生じやすくなっている。
Further, as described above, the boundary line between the regions having different orientation vectors exists in the region of the wiring or the TFT, but this portion on the substrate is a region where the orientation is easily disturbed by the step. . Therefore, the alignment abnormality of the liquid crystal molecules extends to the display region, and as shown in FIG.
b) results. In particular, due to the large negative potential of the gate line (12), declination (101b) is likely to occur in a portion along the gate line (12).

【0012】また、プレチルト角を有する構造では、液
晶分子の傾斜方向が、ラビング処理を受けたポリイミド
配向膜(24)(28)に従って、同一方向に傾斜す
る。そのため、画素中央部でのディスクリネーション
(101a)の発生は抑制されるが、基板の段差によっ
て生ずるディスクリネーション(101b)は、防げな
い。更に、ラビングの際に発生する静電気によって、T
FTの特性が変化し、静電破壊が起こることもある。ま
た、液晶分子の傾斜方向が一律に等しいため、コントラ
スト比の視角依存性が大きいという問題もある。
In the structure having a pretilt angle, the tilt direction of the liquid crystal molecules is tilted in the same direction according to the rubbed polyimide alignment films (24) and (28). Therefore, the occurrence of disclination (101a) at the pixel central portion is suppressed, but the disclination (101b) caused by the step of the substrate cannot be prevented. Furthermore, due to static electricity generated during rubbing, T
The characteristics of the FT may change and electrostatic breakdown may occur. Further, since the inclination directions of the liquid crystal molecules are uniformly equal, there is a problem that the viewing angle dependence of the contrast ratio is large.

【0013】[0013]

【課題を解決するための手段】本発明は前述の課題に鑑
みて成され、透明な絶縁性基板上にマトリクス状に配置
された表示電極と、前記表示電極に信号を供給する薄膜
トランジスタと、前記表示電極と補助容量を形成する補
助容量電極とを少なくとも有する薄膜トランジスタ基板
と、対向表示電極を少なくとも有する対向基板が、液晶
層を挟んで貼り合わされて成る液晶表示装置であって、
前記補助容量電極は前記表示電極と異なる電位であり、
前記表示電極の絶縁性基板側に重畳して設けられ、か
つ、一部が前記表示電極の対向する2辺に沿ってはみ出
して設けられ、前記表示電極の別の2辺に沿った液晶層
側には、前記表示電極と異なる電位の配向制御電極が設
けられた構造、前記構造において、前記対向表示電極に
は、前記表示電極に対応する領域において、所定の部分
が取り除かれた部分である配向制御窓が設けられた構
造、または、前記構造において、前記配向制御電極は前
記補助容量電極と同電位である構造により前記課題を解
決するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has a display electrode arranged in a matrix on a transparent insulating substrate; a thin film transistor for supplying a signal to the display electrode; A thin film transistor substrate having at least a display electrode and an auxiliary capacitance electrode forming an auxiliary capacitance, and a counter substrate having at least a counter display electrode, which is a liquid crystal display device in which a liquid crystal layer is sandwiched therebetween.
The auxiliary capacitance electrode has a different potential from the display electrode,
The display electrode is provided so as to overlap with the insulating substrate side and partly protrudes along two opposing sides of the display electrode, and the liquid crystal layer side along another two sides of the display electrode. A structure in which an orientation control electrode having a potential different from that of the display electrode is provided. In the structure, the opposite display electrode has an orientation in which a predetermined portion is removed in a region corresponding to the display electrode. The object is achieved by a structure provided with a control window or the above structure, wherein the alignment control electrode has the same potential as the auxiliary capacitance electrode.

【0014】[0014]

【作用】配向制御電極(6)に、表示電極(19)と異
なる極性の電圧を印加した場合、電気力線は図5に示さ
れるようような形状になり、これにしたがって、液晶分
子は表示電極(19)の両辺について、中央部へ向かっ
て同等に傾斜する。同様に、補助容量電極(13)と表
示電極(19)の間には、図6に示すような電気力線が
発生しており、液晶分子はこれにしたがって傾斜する。
これにより、表示電極(19)の4辺について、液晶分
子の配向方向が制御されて、TFTや配線の近傍で発生
していた、図11で示されるようなディスクリネーショ
ン(101b)の発生を防ぐことができる。
When a voltage having a polarity different from that of the display electrode (19) is applied to the alignment control electrode (6), the lines of electric force take on the shape as shown in FIG. Both sides of the electrode (19) are equally inclined toward the center. Similarly, electric lines of force as shown in FIG. 6 are generated between the auxiliary capacitance electrode (13) and the display electrode (19), and the liquid crystal molecules are tilted accordingly.
As a result, the orientation direction of the liquid crystal molecules is controlled for the four sides of the display electrode (19), and the occurrence of disclination (101b) as shown in FIG. Can be prevented.

【0015】また、対向表示電極(27’)に設けられ
た配向制御窓(7)は、ITOが除かれた部分であるた
め、配向制御窓(7)に対応する液晶層(3)中では、
電気力線が存在しない。よって、この領域の液晶分子は
傾斜せず、電圧無印加時の垂直配向状態を保つ。このた
め、液晶の連続体性により、従来不規則に発生していた
ディスクリネーションが、全画素について配向制御窓
(7)の位置に従って固定される。特に、図7に示され
るように配向制御窓(7)をX字形のパターンにとる
と、ディスクリネーションが、配向制御窓(7)と一致
する。これに、配向制御電極(6)及び、補助容量電極
(13)の作用も加わると、1画素における液晶分子の
傾斜方向が4方向について同等になる。そのため、透過
率の視角依存性が減少し、良好な視角特性が得られる。
Further, since the alignment control window (7) provided in the counter display electrode (27 ') is a portion from which ITO is removed, the alignment control window (7) is not provided in the liquid crystal layer (3) corresponding to the alignment control window (7). ,
There are no lines of electric force. Therefore, the liquid crystal molecules in this region do not tilt, and maintain the vertical alignment state when no voltage is applied. For this reason, due to the continuity of the liquid crystal, the disclination which has occurred irregularly in the past is fixed for all the pixels according to the position of the alignment control window (7). In particular, when the orientation control window (7) is formed in an X-shaped pattern as shown in FIG. 7, the disclination coincides with the orientation control window (7). When the functions of the alignment control electrode (6) and the auxiliary capacitance electrode (13) are added to this, the inclination directions of the liquid crystal molecules in one pixel become equal in four directions. Therefore, the viewing angle dependency of the transmittance is reduced, and good viewing angle characteristics are obtained.

【0016】[0016]

【実施例】以下で、本発明の第1の実施例を説明する。
図1は上面図、図3は図1のA−A’線に沿う断面図で
ある。共通するものについては、従来例の図9及び図1
0と同じ符号を使用している。ガラス基板(10)上
に、例えばCrをスパッタリングで約1500Åの厚さ
に積層して、所定のパターニングを行うことにより、ゲ
ート電極(11)、ゲートライン(12)、補助容量電
極(13)及び補助容量ライン(14)が形成される。
補助容量電極(13)は図1及び図3に示されるよう
に、後に形成される表示電極(19)の行方向に対向す
る2辺に沿って一部がはみでるように、H形の形状に形
成され、補助容量ライン(14)によって、同一行の画
素について互いに接続され、図示は省略したが、補助容
量ライン(14)は端子部において、互いに接続され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below.
FIG. 1 is a top view, and FIG. 3 is a sectional view taken along line AA ′ in FIG. 9 and FIG. 1 of a conventional example.
The same sign as 0 is used. A gate electrode (11), a gate line (12), an auxiliary capacitance electrode (13) and a gate electrode (11) are formed by laminating, for example, Cr on a glass substrate (10) to a thickness of about 1500 ° by sputtering and performing predetermined patterning. An auxiliary capacitance line (14) is formed.
As shown in FIGS. 1 and 3, the auxiliary capacitance electrode (13) has an H-shape so that a part thereof protrudes along two sides of the display electrode (19) which will be formed later in the row direction. The storage capacitor lines (14) are formed and connected to each other for pixels in the same row by a storage capacitor line (14). Although not shown, the storage capacitor lines (14) are connected to each other at a terminal portion.

【0017】次に、ゲート絶縁膜(15)としてSiN
xを2000Å〜4000Å、続いて、a−Siを10
00Å、SiNxを2500Åの膜厚で、CVDにより
連続で成膜する。そして、最上層のSiNxをパターニ
ングして、ゲート電極(11)に対応する領域に残すこ
とにより、半導体保護膜(17)が形成される。続い
て、燐がドープされたa−Si(以下、N+a−Siと
略す)を、CVDにより500Åの厚さに成膜し、N+
a−Si及びa−Siを同一のマスクパターンでエッチ
ングして、TFT部以外を除去することにより、a−S
i層(16)及びN+a−Si層(18d)(18s)
が形成される。続いて、ITOをスパッタリングで約1
000Åの厚さに積層して、パターニングで表示領域に
残すことにより、表示電極(19)が形成される。次
に、配線材料として、例えばAl/Moの2層膜をスパ
ッタリングにより、7000Å/1000Å程度の厚さ
に積層し、所定のパターニングによりN+a−Si層
(18d)上に被覆するドレイン電極(20)、ドレイ
ン電極(20)と一体のドレインライン(21)、N+
a−Si層(18s)上に被覆し、表示電極(19)に
接続されるソース電極(22)が形成される。そして、
ドレイン電極(20)及びソース電極(22)をマスク
に、N+a−Si(18)層のセンター部がエッチング
除去される。更に、全面にはSiNxの基板保護膜(2
4)が設けられる。
Next, SiN is used as the gate insulating film (15).
x is set in the range of 2000 to 4000 °, and then a-Si is set in the
A film of SiNx having a thickness of 2500 ° is continuously formed by CVD. Then, the semiconductor protective film (17) is formed by patterning the uppermost layer of SiNx and leaving it in a region corresponding to the gate electrode (11). Subsequently, a-Si doped with phosphorus (hereinafter abbreviated as N + a-Si) is formed to a thickness of 500 ° by CVD, and N +
a-Si and a-Si are etched with the same mask pattern to remove portions other than the TFT portion, so that a-S
i layer (16) and N + a-Si layer (18d) (18s)
Is formed. Then, ITO was sputtered for about 1
The display electrode (19) is formed by stacking the layers to a thickness of 000 mm and leaving them in the display area by patterning. Next, as a wiring material, for example, a two-layer film of Al / Mo is laminated by sputtering to a thickness of about 7000/1000 °, and a drain electrode (18d) is coated on the N + a-Si layer (18d) by predetermined patterning. 20), a drain line (21) integral with the drain electrode (20), N +
A source electrode (22) which covers the a-Si layer (18s) and is connected to the display electrode (19) is formed. And
Using the drain electrode (20) and the source electrode (22) as a mask, the center of the N + a-Si (18) layer is removed by etching. Further, the substrate protective film (2
4) is provided.

【0018】続いて、配向制御電極(6)の材料として
Cr、Al、Ta、ITOなどの導電性物質をスパッタ
リングなどにより、1000〜8000Å程度の厚さに
形成する。そして、パターニングを行って、前記補助容
量電極(13)が設けられた2辺と別の、表示電極(1
9)の2辺の外側にライン状に残すことにより、図1及
び図3に示される如く、ゲートライン(12)に並行な
配向制御電極(6)が形成される。図示は省略したが、
配向制御電極(6)は端子部で互いに接続され、更に、
補助容量ライン(14)に接続される。
Subsequently, a conductive substance such as Cr, Al, Ta, ITO or the like is formed as a material for the orientation control electrode (6) to a thickness of about 1000 to 8000 ° by sputtering or the like. Then, patterning is performed, and the display electrode (1) is separated from the two sides on which the auxiliary capacitance electrode (13) is provided.
By leaving a line outside the two sides of 9), an alignment control electrode (6) is formed in parallel with the gate line (12) as shown in FIGS. Although illustration is omitted,
The orientation control electrodes (6) are connected to each other at a terminal portion.
It is connected to the auxiliary capacitance line (14).

【0019】そして、全面に第1の垂直配向膜(24)
が設けられてTFT基板(2)が構成される。一方、対
抗ガラス基板(25)上に、例えばCrをスパッタリン
グにより積層し、開口部(102)となる予定の領域を
エッチング除去することにより、遮光膜(26)が設け
られる。遮光膜(26)を被覆して、全面にITOの対
向表示電極(27’)がスパッタリングにより形成され
る。対向表示電極(27’)は端子部において、TFT
基板(2)側の配向制御電極(6)及び補助容量電極
(13)に接続される。更に、対向表示電極(27’)
の、TFT基板(2)側の表示電極(19)の対角線に
対応する部分をエッチング除去することにより、対向表
示電極(27’)中に、X字形に切り抜かれた配向制御
窓(7)が設けられる。そして、全面に第2の垂直配向
膜(28)が設けられて、対向基板(4)が構成され
る。なお、配向膜(24)(28)は、いずれもラビン
グ処理は行わない。
Then, a first vertical alignment film (24) is formed on the entire surface.
Are provided to form a TFT substrate (2). On the other hand, a light-shielding film (26) is provided by stacking, for example, Cr on the opposing glass substrate (25) by sputtering, and etching away a region to be an opening (102). An opposing display electrode (27 ′) of ITO is formed on the entire surface by sputtering, covering the light shielding film (26). The opposite display electrode (27 ') has a TFT
It is connected to the orientation control electrode (6) and the auxiliary capacitance electrode (13) on the substrate (2) side. Further, a counter display electrode (27 ')
By etching away the portion corresponding to the diagonal line of the display electrode (19) on the TFT substrate (2) side, the X-shaped alignment control window (7) is cut out in the counter display electrode (27 '). Provided. Then, a second vertical alignment film (28) is provided on the entire surface to form a counter substrate (4). No rubbing treatment is performed on any of the alignment films (24) and (28).

【0020】以上に説明してきた構造の2枚の基板
(2)(4)が、図8に示されるように5〜8μmの間
隙をもって貼り合わされ、この間隙に負の誘電率異方性
をもつネマティック液晶の液晶層(3)が設けられる。
更に、これらを互いに直交する方向の偏光軸をもつ2枚
の偏光板(1)(5)で挟み込んで、本発明の第1の実
施例である液晶表示装置が構成される。
The two substrates (2) and (4) having the structure described above are bonded together with a gap of 5 to 8 μm as shown in FIG. 8, and the gap has a negative dielectric anisotropy. A liquid crystal layer (3) of nematic liquid crystal is provided.
Further, these are sandwiched between two polarizing plates (1) and (5) having polarizing axes in directions orthogonal to each other, thereby forming a liquid crystal display device according to the first embodiment of the present invention.

【0021】続いて、本発明の第2の実施例について説
明する。第1の実施例と重複する点については省略し、
事なる部分のみについて説明する。図2は上面図、図3
は図2のA−A’線に沿った断面図であり、第1の実施
例と同じである。また、図4は図2のB−B’線に沿っ
た断面図である。本実施例では図2に示される如く、基
板保護膜(24)上の配向制御電極(6)は、表示電極
(19)の、補助容量電極(13)が重畳していない側
の対向する2辺に沿って、画素ごとに独立して形成され
ている。そして、補助容量電極(13)との重畳部にお
いて、図4に示される如く、ゲート絶縁膜(15)と基
板保護膜(24)に設けられたコンタクトホールを介し
て、補助容量電極(13)に接続される。この構造で
は、配向制御電極(6)とドレインライン(21)が交
差することがないので、膜欠陥による短絡がなくなる。
Next, a second embodiment of the present invention will be described. The points overlapping with the first embodiment are omitted,
Only the differences will be described. FIG. 2 is a top view, FIG.
FIG. 3 is a sectional view taken along line AA ′ of FIG. 2 and is the same as in the first embodiment. FIG. 4 is a cross-sectional view along the line BB 'in FIG. In this embodiment, as shown in FIG. 2, the orientation control electrode (6) on the substrate protective film (24) is provided on the opposite side of the display electrode (19) on the side where the auxiliary capacitance electrode (13) does not overlap. It is formed independently for each pixel along the side. Then, as shown in FIG. 4, in the overlapping portion with the auxiliary capacitance electrode (13), through the contact hole provided in the gate insulating film (15) and the substrate protection film (24), the auxiliary capacitance electrode (13) is formed. Connected to. In this structure, since the alignment control electrode (6) and the drain line (21) do not intersect, a short circuit due to a film defect is eliminated.

【0022】第1及び第2の実施例では、特に、配向制
御電極(6)を対向表示電極(27’)及び補助容量電
極(13)に接続することにより、配向制御電極(6)
用の駆動回路が不要となる。この構造の液晶表示装置を
駆動すると、極性の反転に無関係に、配向制御電極
(6)、対向表示電極(27’)及び補助容量電極(1
3)が同電位で、表示電極(19)と逆極性となる。そ
のため、極性の反転に伴って電気力線の方向が変わるだ
けで、形状は図5及び図6に示される形に一定となる。
図5は、表示電極(19)、配向制御電極(6)及び対
向表示電極(27’)の間に発生する電気力線と、これ
に従って液晶分子が傾斜する様子を示した模式図であ
る。図から明らかなように、表示電極(19)の端部で
は、配向制御電極(6)の影響で、電気力線が表示電極
(19)から配向制御電極(6)及び対向表示電極(2
7’)へ向かって、表示領域内から表示領域外へ斜め上
方に伸びている。負の誘電率異方性をもつ液晶分子は、
電気力線に対して直角方向に傾斜するが、この部分にお
いては、特に、液晶の連続体性に起因する弾性のため
に、分子長軸と電気力線のなす角度が最短で直角に近付
くように、表示電極(19)の中央へ向かって傾斜する
ことによりエネルギー的に安定な状態となる。図6は、
表示電極(19)、補助容量電極(13)及び対向表示
電極(27’)の間に発生する電気力線と、これに従っ
て液晶分子が傾斜する様子を示した模式図である。この
場合も、表示電極(19)の端部では、表示電極(1
9)よりも下側に設けられた補助容量電極(13)の影
響のため、液晶層中においては、電気力線が表示電極
(19)から上方へ向かって、表示領域内から表示領域
外へ斜め方向に伸びている。従って、液晶分子は図5と
同様に、表示電極(19)の中央へ向かって傾斜する。
また、図5及び図6には対向表示電極(27’)中に、
電極が切り欠かれた部分である配向制御窓(7)が示さ
れており、この部分に対応する液晶層中では電気力線が
存在せず、液晶分子は電圧無印加時の垂直配向状態を保
っている。
In the first and second embodiments, in particular, by connecting the alignment control electrode (6) to the counter display electrode (27 ') and the auxiliary capacitance electrode (13), the alignment control electrode (6) is connected.
Drive circuit is not required. When the liquid crystal display device having this structure is driven, regardless of the reversal of the polarity, the alignment control electrode (6), the counter display electrode (27 '), and the auxiliary capacitance electrode (1).
3) has the same potential and has the opposite polarity to the display electrode (19). Therefore, the shape becomes constant as shown in FIGS. 5 and 6 only by changing the direction of the line of electric force with the reversal of the polarity.
FIG. 5 is a schematic diagram showing lines of electric force generated between the display electrode (19), the alignment control electrode (6), and the counter display electrode (27 '), and a state in which the liquid crystal molecules are tilted according to the lines. As is clear from the figure, at the end of the display electrode (19), the lines of electric force are moved from the display electrode (19) to the alignment control electrode (6) and the counter display electrode (2) due to the influence of the alignment control electrode (6).
7 '), it extends obliquely upward from inside the display area to outside the display area. Liquid crystal molecules having negative dielectric anisotropy
Although it is inclined at right angles to the lines of electric force, in this part, the angle between the long axis of the molecule and the lines of electric force is close to a right angle at the shortest, especially due to the elasticity caused by the continuity of the liquid crystal. In addition, by tilting toward the center of the display electrode (19), an energetically stable state is obtained. FIG.
FIG. 9 is a schematic diagram showing lines of electric force generated between a display electrode (19), an auxiliary capacitance electrode (13), and a counter display electrode (27 ′), and a state in which liquid crystal molecules are tilted according to the lines of electric force. Also in this case, the display electrode (1) is located at the end of the display electrode (19).
Due to the effect of the auxiliary capacitance electrode (13) provided below 9), in the liquid crystal layer, electric lines of force move upward from the display electrode (19) from the display area to the outside of the display area. It extends diagonally. Therefore, the liquid crystal molecules are inclined toward the center of the display electrode (19) as in FIG.
FIGS. 5 and 6 show that the opposing display electrode (27 ') has
An alignment control window (7), which is a portion where the electrode is cut out, is shown. In the liquid crystal layer corresponding to this portion, there are no lines of electric force, and the liquid crystal molecules change their vertical alignment state when no voltage is applied. I keep it.

【0023】以上に説明したように、表示電極(19)
の周縁部及び配向制御窓(7)の部分の液晶分子の配向
を制御することにより、液晶の連続体性のために、全画
素の全領域について、液晶分子は、配向制御窓(7)の
領域では基板に垂直に、表示領域では図7に示されるよ
うに4辺から同等に中央へ向かって傾斜する。そのた
め、ディスクリネーションは、全画素についてX字形の
配向制御窓(7)の部分に一致し、また、配向制御窓
(7)で4つに区切られた各表示部中では、液晶分子は
一律に同方向に傾斜するため、4方向から見た場合の条
件が等しくなる。
As described above, the display electrode (19)
By controlling the alignment of the liquid crystal molecules in the peripheral portion of the pixel and the portion of the alignment control window (7), the liquid crystal molecules in the entire region of all pixels are controlled by the alignment control window (7) due to the continuity of the liquid crystal. In the display area, the display area is inclined perpendicularly to the substrate, and in the display area, as shown in FIG. Therefore, the disclination coincides with the portion of the X-shaped alignment control window (7) for all the pixels, and the liquid crystal molecules are uniformly distributed in each of the four display sections divided by the alignment control window (7). , The conditions when viewed from four directions are equal.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、配向制
御電極(6)により、液晶分子の傾斜方向を、画素の各
辺に対して一定にし、かつ、傾斜方向の異なる領域の境
界線を配向制御窓(7)の上に固定することにより、画
素ごとに異なる不均一なディスクリネーションの出現が
防止され、特に、配向制御窓(7)をX字形にとった場
合は配向制御窓(7)以外の領域では、ディスクリネー
ションは完全に消滅した。また、1画素につき、液晶分
子の傾斜方向が異なる領域の面積が、4方向にわたって
同等になるので、コントラスト比の視角依存性が低減
し、視角特性が向上した。
As is apparent from the above description, the orientation control electrode (6) makes the tilt direction of the liquid crystal molecules constant with respect to each side of the pixel, and makes the boundaries of the regions having different tilt directions different. By fixing on the alignment control window (7), the appearance of non-uniform disclinations that differ from pixel to pixel is prevented. In particular, when the alignment control window (7) is formed in an X shape, the alignment control window (7) is formed. In the area other than 7), the disclination completely disappeared. Further, since the area of the region in which the tilt direction of the liquid crystal molecules is different per pixel is equal in four directions, the viewing angle dependency of the contrast ratio is reduced and the viewing angle characteristics are improved.

【0025】また、配向膜(24)(28)のラビング
処理が不要となるため、製造工程の削減、静電破壊の防
止などの効果も有する。
Further, since the rubbing treatment of the alignment films (24) and (28) is not required, the effects of reducing the number of manufacturing steps and preventing electrostatic breakdown can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例である液晶表示装置の上
面図である。
FIG. 1 is a top view of a liquid crystal display device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例である液晶表示装置の上
面図である。
FIG. 2 is a top view of a liquid crystal display device according to a second embodiment of the present invention.

【図3】図1及び図2のA−A’線に沿う断面図であ
る。
FIG. 3 is a cross-sectional view taken along line AA ′ of FIGS. 1 and 2.

【図4】図2のB−B’線に沿う断面図である。FIG. 4 is a sectional view taken along the line B-B 'of FIG.

【図5】本発明の作用効果を説明する図である。FIG. 5 is a diagram illustrating the operation and effect of the present invention.

【図6】本発明の作用効果を説明する図である。FIG. 6 is a diagram illustrating the operation and effect of the present invention.

【図7】本発明の作用効果を説明する図である。FIG. 7 is a diagram illustrating the operation and effect of the present invention.

【図8】DAP型の液晶表示装置の原理図である。FIG. 8 is a principle diagram of a DAP type liquid crystal display device.

【図9】従来の液晶表示装置の上面図である。FIG. 9 is a top view of a conventional liquid crystal display device.

【図10】図9のC−C’線に沿う断面図である。FIG. 10 is a sectional view taken along the line C-C 'of FIG.

【図11】従来の液晶表示装置の問題点を説明する図で
ある。
FIG. 11 is a diagram illustrating a problem of a conventional liquid crystal display device.

【図12】従来の液晶表示装置の問題点を説明する図で
ある。
FIG. 12 is a diagram illustrating a problem of a conventional liquid crystal display device.

【図13】従来の液晶表示装置の問題点を説明する図で
ある。
FIG. 13 is a diagram illustrating a problem of a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 第1の偏光板 2 TFT基板 3 液晶層 4 対向基板 5 第2の偏光板 6 配向制御電極 7 配向制御窓 10 ガラス基板 11 ゲート電極 12 ゲートライン 13 補助容量電極 14 補助容量ライン 15 ゲート絶縁膜 16 a−Si層 17 半導体保護膜 18 N+a−Si層 19 表示電極 20 ドレイン電極 21 ドレインライン 22 ソース電極 23 基板保護膜 24 第1の垂直配向膜 25 対向ガラス基板 26 遮光膜 27 対向表示電極 28 第2の垂直配向膜REFERENCE SIGNS LIST 1 first polarizing plate 2 TFT substrate 3 liquid crystal layer 4 counter substrate 5 second polarizing plate 6 alignment control electrode 7 alignment control window 10 glass substrate 11 gate electrode 12 gate line 13 auxiliary capacitance electrode 14 auxiliary capacitance line 15 gate insulating film Reference Signs List 16 a-Si layer 17 semiconductor protective film 18 N + a-Si layer 19 display electrode 20 drain electrode 21 drain line 22 source electrode 23 substrate protective film 24 first vertical alignment film 25 facing glass substrate 26 light shielding film 27 facing display electrode 28 Second vertical alignment film

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明な絶縁性基板上にマトリクス状に配
置された表示電極と、前記表示電極に信号を供給する薄
膜トランジスタと、前記表示電極と補助容量を形成する
補助容量電極とを有する薄膜トランジスタ基板と、 対向表示電極を有する対向基板が、 液晶層を挟んで貼り合わされて成る液晶表示装置であっ
て、 前記補助容量電極は前記表示電極と異なる電位であり、
前記表示電極の絶縁性基板側に重畳して設けられ、か
つ、一部が前記表示電極の対向する2辺に沿ってはみ出
して設けられ、 前記表示電極の別の2辺に沿った液晶層側には、前記表
示電極と異なる電位の配向制御電極が設けられているこ
とを特徴とする液晶表示装置。
1. A thin film transistor substrate having display electrodes arranged in a matrix on a transparent insulating substrate, a thin film transistor for supplying a signal to the display electrode, and an auxiliary capacitance electrode forming an auxiliary capacitance with the display electrode. A liquid crystal display device in which a counter substrate having a counter display electrode is bonded with a liquid crystal layer interposed therebetween, wherein the auxiliary capacitance electrode has a different potential from the display electrode;
The display electrode is provided so as to overlap with the insulating substrate side, and partly protrudes along two opposing sides of the display electrode, and the liquid crystal layer side along another two sides of the display electrode. A liquid crystal display device provided with an alignment control electrode having a potential different from that of the display electrode.
【請求項2】 前記対向表示電極には、前記表示電極に
対応する領域において、所定の部分が取り除かれて形成
された配向制御窓が設けられていることを特徴とする請
求項1記載の液晶表示装置。
2. The liquid crystal according to claim 1, wherein the opposed display electrode is provided with an alignment control window formed by removing a predetermined portion in a region corresponding to the display electrode. Display device.
【請求項3】 前記配向制御電極は、前記補助容量電極
と同電位であることを特徴とする請求項1または請求項
2記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the alignment control electrode has the same potential as the auxiliary capacitance electrode.
JP15712093A 1993-06-28 1993-06-28 Liquid crystal display Expired - Lifetime JP2859093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15712093A JP2859093B2 (en) 1993-06-28 1993-06-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15712093A JP2859093B2 (en) 1993-06-28 1993-06-28 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0713164A JPH0713164A (en) 1995-01-17
JP2859093B2 true JP2859093B2 (en) 1999-02-17

Family

ID=15642655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15712093A Expired - Lifetime JP2859093B2 (en) 1993-06-28 1993-06-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2859093B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148706A1 (en) 2010-05-27 2011-12-01 凸版印刷株式会社 Substrate for liquid crystal display device, and liquid crystal display device
WO2011158671A1 (en) 2010-06-18 2011-12-22 凸版印刷株式会社 Substrate for a semi-transmissive liquid-crystal display device, color-filter substrate, and liquid-crystal display device
WO2012014751A1 (en) 2010-07-29 2012-02-02 凸版印刷株式会社 Color filter substrate for liquid crystal display device, and liquid crystal display device
WO2012043620A1 (en) 2010-09-30 2012-04-05 凸版印刷株式会社 Color filter substrate and liquid crystal display device
WO2012077376A1 (en) 2010-12-10 2012-06-14 凸版印刷株式会社 Liquid crystal display substrate and liquid crystal display device
WO2012081456A1 (en) 2010-12-16 2012-06-21 凸版印刷株式会社 Color filter substrate for lateral electric field liquid crystal display devices, and liquid crystal display device
US8619228B2 (en) 2011-04-12 2013-12-31 Toppan Printing Co., Ltd. Liquid crystal display device and manufacturing method

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439014B2 (en) 1996-02-29 2003-08-25 三洋電機株式会社 Liquid crystal display
JP3087668B2 (en) * 1996-05-01 2000-09-11 日本電気株式会社 Liquid crystal display device, its manufacturing method and its driving method
US6642981B1 (en) 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
JP3966614B2 (en) 1997-05-29 2007-08-29 三星電子株式会社 Wide viewing angle LCD
AU6912798A (en) 1997-06-10 1998-12-30 Lg. Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
DE69841083D1 (en) 1997-06-12 2009-10-01 Sharp Kk Display device with vertically aligned liquid crystal
JP3549177B2 (en) * 1997-10-06 2004-08-04 シャープ株式会社 Liquid crystal display
KR100309918B1 (en) 1998-05-16 2001-12-17 윤종용 Liquid crystal display having wide viewing angle and method for manufacturing the same
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
JP3179410B2 (en) * 1998-06-01 2001-06-25 日本電気株式会社 Liquid crystal display
KR100357213B1 (en) 1998-07-23 2002-10-18 엘지.필립스 엘시디 주식회사 Multi-domain liquid crystal display device
KR20000009518A (en) 1998-07-25 2000-02-15 노봉규 Vertical aligned lcd having optical visual angle
WO2000008521A1 (en) 1998-08-06 2000-02-17 Konovalov Victor A Liquid-cristal display and the method of its fabrication
KR100313952B1 (en) * 1998-08-20 2002-11-23 엘지.필립스 엘시디 주식회사 Multi-domain liquid crystal display device
JP3957430B2 (en) 1998-09-18 2007-08-15 シャープ株式会社 Liquid crystal display
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
KR100662059B1 (en) * 1998-10-12 2006-12-27 샤프 가부시키가이샤 Liquid crystal display and method for fabricating the same
GB2343012B (en) * 1998-10-19 2003-05-28 Lg Philips Lcd Co Ltd A multi-domain liquid crystal display device
JP3969887B2 (en) * 1999-03-19 2007-09-05 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
KR100308161B1 (en) * 1999-05-07 2001-09-26 구본준, 론 위라하디락사 Multi-domain liquid crystal display device
JP2000352722A (en) 1999-06-11 2000-12-19 Nec Corp Liquid crystal display device
JP3636641B2 (en) 1999-08-20 2005-04-06 セイコーエプソン株式会社 Electro-optic device
KR100354906B1 (en) 1999-10-01 2002-09-30 삼성전자 주식회사 A wide viewing angle liquid crystal display
JP4753557B2 (en) * 2000-02-25 2011-08-24 シャープ株式会社 Liquid crystal display
US6924876B2 (en) 2000-02-25 2005-08-02 Sharp Kabushiki Kaisha Liquid crystal display device
KR100595295B1 (en) 2000-06-27 2006-07-03 엘지.필립스 엘시디 주식회사 Multi domain liquide crystal display device and method for fabricating the same
KR100595296B1 (en) 2000-06-27 2006-07-03 엘지.필립스 엘시디 주식회사 Muti domain liquid crystal display device and method for fabricating the same
JP2002139737A (en) 2000-07-31 2002-05-17 Matsushita Electric Ind Co Ltd Liquid crystal display device and its manufacturing method
KR20030042221A (en) 2001-11-22 2003-05-28 삼성전자주식회사 a thin film transistor array panel for a liquid crystal display
JP4068951B2 (en) * 2002-01-29 2008-03-26 セイコーエプソン株式会社 Liquid crystal display
KR100840326B1 (en) 2002-06-28 2008-06-20 삼성전자주식회사 a liquid crystal display and a thin film transistor array panel for the same
KR100878241B1 (en) 2002-09-27 2009-01-13 삼성전자주식회사 Thin film transistor substrate for multi-domain liquid crystal display
JP2006030613A (en) * 2004-07-16 2006-02-02 Casio Comput Co Ltd Liquid crystal display element
JP5299785B2 (en) * 2009-11-11 2013-09-25 群創光電股▲ふん▼有限公司 Liquid crystal display
JP5507738B2 (en) * 2013-05-17 2014-05-28 三洋電機株式会社 Liquid crystal display
CN107490903A (en) * 2017-09-04 2017-12-19 深圳市华星光电技术有限公司 A kind of display panel and preparation method thereof, liquid crystal display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148706A1 (en) 2010-05-27 2011-12-01 凸版印刷株式会社 Substrate for liquid crystal display device, and liquid crystal display device
WO2011158671A1 (en) 2010-06-18 2011-12-22 凸版印刷株式会社 Substrate for a semi-transmissive liquid-crystal display device, color-filter substrate, and liquid-crystal display device
WO2012014751A1 (en) 2010-07-29 2012-02-02 凸版印刷株式会社 Color filter substrate for liquid crystal display device, and liquid crystal display device
US9164311B2 (en) 2010-07-29 2015-10-20 Toppan Printing Co., Ltd. Color filter substrate for liquid crystal display device and liquid crystal display device
WO2012043620A1 (en) 2010-09-30 2012-04-05 凸版印刷株式会社 Color filter substrate and liquid crystal display device
US9223170B2 (en) 2010-09-30 2015-12-29 Toppan Printing Co., Ltd. Color filter substrate and liquid crystal display device
WO2012077376A1 (en) 2010-12-10 2012-06-14 凸版印刷株式会社 Liquid crystal display substrate and liquid crystal display device
WO2012081456A1 (en) 2010-12-16 2012-06-21 凸版印刷株式会社 Color filter substrate for lateral electric field liquid crystal display devices, and liquid crystal display device
EP2985654A1 (en) 2010-12-16 2016-02-17 Toppan Printing Co., Ltd. Color filter substrate for oblique electric field liquid crystal display devices, and a liquid crystal display device
US8619228B2 (en) 2011-04-12 2013-12-31 Toppan Printing Co., Ltd. Liquid crystal display device and manufacturing method

Also Published As

Publication number Publication date
JPH0713164A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
JP2859093B2 (en) Liquid crystal display
JP3234357B2 (en) Liquid crystal display
JP2975844B2 (en) Liquid crystal display
JP2701698B2 (en) Liquid crystal display
KR100482468B1 (en) Fringe field switching mode lcd
KR100246980B1 (en) Active matrix type liquid crystal display elements
JP3081607B2 (en) Liquid crystal display
KR100741890B1 (en) Liquid crystal display device of in-plane switching and method for fabricating the same
JP2701832B2 (en) Liquid crystal display
JP4557800B2 (en) Liquid crystal display
US20060012741A1 (en) Vertical alignment liquid crystal display device
US20050280761A1 (en) Liquid crystal display device
US6657694B2 (en) In-plane switching LCD device having slanted corner portions
JP2000292801A (en) Liquid crystal display device
JP2000039626A (en) Active matrix type liquid crystal display device
JPH11109391A (en) Liquid crystal display device
JP3754179B2 (en) Liquid crystal display
JP3819561B2 (en) Liquid crystal display
JP2002221732A (en) Liquid crystal display device
JP2001075103A (en) Liquid crystal display device
JP2006154080A (en) Liquid crystal display device
JP3282542B2 (en) Active matrix type liquid crystal display
JPH1096926A (en) Liquid crystal display device
KR100268008B1 (en) Liquid crystal display device
JP4750072B2 (en) Manufacturing method of liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081204

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20131204

EXPY Cancellation because of completion of term