JPH1062350A - ガス反応性色素を用いたガス検知方法及びガス検知装置 - Google Patents

ガス反応性色素を用いたガス検知方法及びガス検知装置

Info

Publication number
JPH1062350A
JPH1062350A JP8214736A JP21473696A JPH1062350A JP H1062350 A JPH1062350 A JP H1062350A JP 8214736 A JP8214736 A JP 8214736A JP 21473696 A JP21473696 A JP 21473696A JP H1062350 A JPH1062350 A JP H1062350A
Authority
JP
Japan
Prior art keywords
gas
detecting
detection
group
reactive dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8214736A
Other languages
English (en)
Inventor
Kazunari Tanaka
一成 田中
Chiaki Igarashi
千秋 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8214736A priority Critical patent/JPH1062350A/ja
Priority to EP97113747A priority patent/EP0824212B1/en
Priority to DE69701495T priority patent/DE69701495T2/de
Priority to TW086111439A priority patent/TW486567B/zh
Priority to SG1997002891A priority patent/SG55360A1/en
Priority to US08/910,231 priority patent/US6096557A/en
Priority to KR1019970038499A priority patent/KR100502368B1/ko
Publication of JPH1062350A publication Critical patent/JPH1062350A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/15Inorganic acid or base [e.g., hcl, sulfuric acid, etc. ]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/15Inorganic acid or base [e.g., hcl, sulfuric acid, etc. ]
    • Y10T436/153333Halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • Y10T436/177692Oxides of nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/19Halogen containing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】 【課題】 ガス反応性色素を用いたガス検知材により被
検知ガスの濃度を検知する方法において、検知濃度のダ
イナミックレンジを調整できる技術を提供する。 【解決手段】 ハロゲンガス、ハロゲン化水素ガス等の
被検知ガスを、検知部に配置された一般式(1)で表さ
れるテトラフェニルポルフィリンもしくはその誘導体ま
たは一般式(2)で表されるテトラフェニルポルフィリ
ンもしくはその誘導体の金属錯体からなるガス反応性色
素を有するガス検知材に接触させ、前記ガス検知材に検
出光を照射し、前記ガス検知材が生ずる色変化を測定す
ることにより前記被検知ガスの濃度を検知するガス検知
方法において、前記検知部の温度を40〜80℃の温度
範囲として測定をすることを特徴とするガス反応性色素
を用いたガス検知方法、及び検知装置。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、ハロゲンガス、ハ
ロゲン化水素ガス、酸性ガス、酸化性ガス、塩基性ガ
ス、有機酸ガスの内少なくとも1を含む混合ガスから前
記ガスを検出し、そのガス濃度を測定するためのガス検
知材を用いて行うガス検知方法とそのガス濃度を測定す
るための検知装置に関する。
【0002】
【従来の技術】従来から空気などのような混合ガス中に
含まれる有害ガスを検出するためには種々の手段が提案
されている。混合ガス中の成分ガスの検出は液中の成分
の検出の場合と違って比較的難しく、特に精度が高くか
つ広いガス濃度範囲にわたる測定は難しい。混合ガス中
の、例えば空気中の、有害成分を迅速・簡便に、広い濃
度範囲にわたって高い精度で検出できるようにすること
は従来から強く要望されてきたところであり、特に半導
体製造装置などにおいて、排出される排ガス中の有害成
分、例えばハロゲンやハロゲン化水素の成分を、広いガ
ス濃度範囲にわたって、迅速かつ簡便に精度良く有害成
分を検出できる手段を提供することが望まれている。
【0003】最近発明者らは、テトラフェニルポルフィ
リンやテトラフェニルポルフィリン誘導体あるいはそれ
らの金属錯体がハロゲンガス、ハロゲン化水素ガス、酸
性ガス、酸化性ガス、塩基性ガス、有機酸ガス(以下、
ハロゲンガス、ハロゲン化水素ガスなどと略記すること
がある。)に対するガス反応性色素であることを見出
し、このガス反応性色素を用いて、ハロゲンガス、ハロ
ゲン化水素ガスなどと接触することによるガス反応性色
素の発色スペクトルの変化とガス濃度との関係から一次
直線的な検量線を作成して、ガス濃度を検知する技術に
ついて検討した。
【0004】
【発明が解決しようとする課題】しかし、ハロゲンガス
やハロゲン化水素ガスなどと例えばテトラフェニルポル
フィリンを接触させ、テトラフェニルポルフィリンの発
色スペクトルのピークの高さの変化からハロゲンガスや
ハロゲン化水素ガスなどのガスの濃度を検知しようとす
ると、飽和に達した発色スペクトルピークの高さが低
く、また発色スペクトルピーク変化量と被検ガスの濃度
変化量との関係が一次直線的になる被検ガスの濃度範囲
が非常に狭いので、十分精度の高い検量線を広い濃度範
囲にわたって作成することができないことが判明した。
従って、対象ガスについてガス濃度と発色スペクトルピ
ークの高さから検量線を作成しても、正確な検量線を利
用できる濃度範囲が狭いため測定したい濃度範囲と合致
しない等の問題があった。
【0005】このため、ハロゲンガスやハロゲン化水素
ガスなどの対象ガスの濃度を検量線が利用できる濃度に
まで希釈あるいは濃縮して調整せざるを得ないが、ガス
の場合濃度を正確に調整することは困難であり、まして
ガスの濃度を調整しながら、連続して測定しようとする
ことは極めて困難であった。本発明者らは、先に、ガス
反応性色素を含むガス検知材を用いるハロゲンガスなど
のガス濃度測定方法において、ガス検知材中に含有させ
るガス反応性色素の濃度を変えた複数のガス検知材を用
いて測定できるガス濃度の範囲を広げる方法についても
検討した。しかし、この方法は複数のガス検知材を使用
するという不便があった。ガス検知材としては、通常そ
の検知物質をガスとの接触面積を大きくするため、それ
を担持するよう担体の上に載置して使用されている。そ
こで、ここでは、ガス検知物質だけでなく、それを担体
に担持したものを単に「ガス検知材」という。
【0006】本発明は、前記従来の技術の欠点を克服
し、測定範囲(ダイナミックレンジ)を広くし、応答速
度が大きい、発色スペクトルピーク変化量と被検ガスの
濃度変化量との関係が一次直線的になる被検ガスの濃度
範囲を広くできる検知方法および検知装置を提供しよう
とするものである。さらに、本発明は、単に被検知ガス
の検知できる濃度範囲を広くするだげではなく、その広
い濃度範囲において高い感度で測定できる検知方法およ
び検知装置を提供しようとするものである。
【0007】
【課題を解決するための手段】本発明者らは、先にガス
検知材に添加する感度調節剤の種類と量を検討して、飽
和に達した発色スペクトルピークの高さが高い(感度の
改良された。)ガス検知材を開発した。本発明者らは、
さらに前記ガス検知材を用いてハロゲンガスなどのガス
検知方法について検討を続けた結果次の様な事実を見出
した。すなわち、ガス検知材と被検知ガスを接触させ、
その接触部に検出光を照射しながら該ガス検知材を検出
光が透過する部分、または該ガス検知材から検出光が反
射する部分、すなわち前記ガス検知部の温度を変動する
と発色スペクトルピークが飽和する被検ガスの濃度範囲
が変化することを見出し、この事実に基づいて本発明に
達した。
【0008】すなわち、本発明は、下記の手段により前
記の課題を解決することができた。 (1)ハロゲンガス、ハロゲン化水素ガス、酸性ガス、
酸化性ガス、塩基性ガス、有機酸ガスの内少なくとも1
の被検知ガスを、検知部に配置されている下記一般式
(1)で表されるテトラフェニルポルフィリンもしくは
その誘導体または下記一般式(2)で表されるテトラフ
ェニルポルフィリンもしくはその誘導体の金属錯体から
なるガス反応性色素を有してなるガス検知材に接触さ
せ、それとともに前記ガス検知材に光を照射し、前記ガ
ス検知材が生ずる色変化を測定することにより前記被検
知ガスの濃度を検知するガス検知方法において、前記検
知部の温度を40〜80℃の温度範囲として測定をする
ことを特徴とするガス反応性色素を用いたガス検知方
法。
【0009】
【化3】
【0010】
【化4】
【0011】ただし、前記一般式(1)において、Rは
水素原子、ハロゲン原子、ニトロ基、シアノ基、アルコ
キシル基の中から選ばれるいずれか1種の置換基を表
し、Gは存在する4個のフェニル基に置換しているハロ
ゲン原子、水酸基、スルホン酸基、カルボキシル基、ア
ルコキシル基、アミン基の中から選ばれるいずれか1種
の置換基を表し、a、b、c、dは0〜5の間の整数で
あってそれぞれ同じであっても異なっても良く、Gの各
フェニル基における置換位置も同じであっても異なって
も良く、また前記一般式(2)において、Mは遷移金属
を表し、Rは水素原子、ハロゲン原子、ニトロ基、シア
ノ基、アルコキシル基の中から選ばれるいずれか1種の
置換基を表し、G及びa、b、c、dに関しては前記一
般式(1)におけるのと同じである。
【0012】(2)前記ガス検知材が少なくともマトリ
クスポリマ及び可塑剤を有してなることを特徴とする前
記(1)項記載のガス反応性色素を用いたガス検知方
法。 (3)前記(1)項記載のガス反応性色素を用いたガス
検知方法を行うためのガス検知装置において、ハロゲン
ガス、ハロゲン化水素ガス、酸性ガス、酸化性ガス、塩
基性ガス、有機酸ガスの内少なくとも1のガスを含む被
検知ガスの通路に、前記ガス反応性色素を有するガス検
知材をもつ検知部を設け、前記検知部の温度を40〜8
0℃の温度範囲に維持することをことを特徴とするガス
検知装置。 (4)前記ガス検知材が少なくともマトリクスポリマ及
び可塑剤を有してなることを特徴とする前記(3)項記
載のガス反応性色素を用いたガス検知装置。
【0013】本発明では、そのガス検知方法及び検知装
置では、検知できるガス濃度の範囲を広くすることがで
き、しかもそれだけではなく、ガス検知における応答も
早くすることができる。このため、本発明では、その検
知部における温度を調整することにより、ガス検知材の
被検知ガスの測定可能濃度範囲を調整することができ
る。ここで、「被検知ガスの測定可能濃度範囲を調整す
る」とは、本発明のガス検知材のダイナミックレンジを
調整して、該ガス検知材を用いて狭い濃度範囲である
が、精度よく被検知ガスの濃度を測定できるように調整
したり、あるいは該ガス検知材を用いて精度は悪くな
るが、広い濃度範囲にわたって被検知ガスの濃度を測定
できるように調整したりすることができる。さらに詳し
く説明すれば、本発明のガス検知材を用いて、ガス検知
材に濃度の異なる被検知ガスを接触させ、ガス検知材の
色濃度(スペクトル)と被検ガスの濃度との関係を特性
曲線として表した場合、被検知ガスの濃度の僅かな変
化によりスペクトル変化量が一次直線的に大きく変化す
るように調整(ガス検知材の感度を良くする。)した
り、あるいは被検知ガスの濃度の変化とスペクトル変
化量との関係が一次直線的になる被検ガスの濃度範囲を
広くなるように調整することもできる。
【0014】
【発明の実施の形態】本発明のガス検知材に使用される
ガス反応性色素の分子構造を示す一般式(A)について
説明すると、一般式(1)のポルフィリン核に属する4
つのピロール環に置換している置換基Rは水素原子、ハ
ロゲン原子、ニトロ基、シアノ基、アルコキシ基を表
し、ポルフィリン核についている4つのフェニル基に置
換している置換基をそれぞれ(G)a 、(G)b
(G)c 、(G)d とすると、置換基の数a、b、c、
dは0〜5の間の整数であり、同じであっても異なって
も良い。また4つのフェニル基に置換している置換基の
位置も同じであっても異なっても良い。またGとしては
水素原子、ハロゲン原子、水酸基、スルホン酸基、カル
ボキシル基、アルコキシル基、アミン基の中から選ばれ
るいずれか1種の置換基が挙げられる。前記RおよびG
が共に水素原子である時、ガス反応性色素はテトラフェ
ニルポルフィリンであることはいうまでもない。
【0015】また、本発明のガス検知材に使用されるガ
ス反応性色素の分子構造を示す一般式(2)についてす
ると、一般式(2)のポルフィリン核に属する4つのピ
ロール環に置換している置換基Rは水素原子、ハロゲン
原子、ニトロ基、シアノ基、アルコキシ基を表す。また
Mは遷移金属原子を表し、遷移金属としては亜鉛、銅、
鉄、ニッケル、コバルト、マンガン、チタン、アルミニ
ウム等を表し、特に亜鉛、コバルト、鉄、が好ましい。
ここで、ハロゲン原子とはF、Cl、Br、I、Atを
いう。また、G及びa、b、c、dについては一般式
(1)におけるのと同じである。
【0016】本発明のガス検知材に使用されるガス反応
性色素は、ハロゲンガス、ハロゲン化水素ガス、酸性ガ
ス、酸化性ガス、塩基性ガス、有機酸ガスのようなガス
(被検知ガス)と反応することにより、色素分子の電子
状態に変化を生じるため、前記ガス反応性色素をマトリ
クスポリマおよび前記ポリマの可塑剤を主体とする媒体
とともに溶媒に溶解し、該溶液を適当な担体上に塗布
し、乾燥してガス検知材を製作し、該ガス検知材に被検
知ガスを接触させ、担体上に担持されているガス検知材
中に含まれる反応性色素に生ずる色の変化を、前記ガス
検知材に検出光を照射しつつ、照射した検出光の検知材
透過光若しくはガス検知材からの反射光のスペクトルの
変化として測定する。以下には、これを単に反応性色素
のスペクトルの変化を測定するという。このようにして
ガス反応性色素を含むガス検知材がガスと接触した際の
色の変化および色濃度の変化は反応性色素のスペクトル
のピークの位置の変化およびスペクトルのピークの高さ
の変化として測定できる。本発明において、反応性色素
に生ずる変化を、ガス検知材透過光若しくはガス検知材
反射光のスペクトルの変化として測定するために、ガス
検知材に照射する検出光は、自然白色光、ハロゲンラン
プ光の外、単色光(複数の単色光)であっても良い。
【0017】ガス反応性色素の「元の色」、すなわち前
記ガスと接触していない時の色素のスペクトルピークの
位置及びその高さ、及び「反応により変わる色」、すな
わち前記ガスと接触した際に起こる色素のスペクトルピ
ークの位置及びその高さの変化はガス反応性色素の種類
によって相違する。さらに、本発明のガス検知材に使用
されるガス反応性色素は、その種類により、また被検知
ガスの種類により、その色素のスペクトルピークの位置
及びその高さは変化するが、その変化は可逆的であり、
従ってガス反応性色素のスペクトルピークの位置及びそ
の高さの変化は可逆的であり、かつ回復が早いために連
続測定をすることができる。ガス検知材の色濃度の測定
によって、測定対象中の被検物質の濃度を測定する場
合、測定値の再現性が非常に重要な因子であるが、再現
性の良い測定値を得るには、検出光の波長を変えて被検
物質による検出光の光濃度の変化を観測し、すなわち被
検物質による検出光の透過あるいは反射のスペクトルを
観測してスペクトルのピークを見出し、そのピーク値を
示す波長の光を検出光として被検物質の色濃度を測定す
ると再現性の良い測定値が得られるのが一般的である。
【0018】本発明のガス検知材は、ガス反応性色素を
マトリクスポリマおよび前記ポリマの可塑剤を主体とす
る媒体とともに溶媒に溶解し、該溶液を適当な担体上に
塗布し、乾燥して製作する。ガス検知材の感度はガス反
応性色素の濃度の他、マトリクスポリマと可塑剤との組
成比によって変わることが知られている。本発明におい
ては使用するガス検知材の感度が高い方が望ましい。
【0019】本発明のガス検知材に使用されるマトリク
スポリマや可塑剤としては、ガス反応性色素を溶解する
溶媒に溶解し、透明でガス反応性色素の吸収波長に特別
の吸収ピークをもたない高分子物質や可塑剤ならば特に
制限されない。このような高分子物質を例示すると、ナ
フィオン、エチルセルロース、エトオキシエチルセルロ
ース、セルロースアセテート、セルロースアセテートブ
チレート、変性澱粉、ポリビニルピロリドン、ビニルピ
ロリドン共重合体、ポリメチルビニルエーテル、メチル
ビニルエーテル共重合体などを挙げることができる。ま
た、前記高分子物質と混合・希釈する可塑剤としては、
フタル酸ジブチルやフタル酸ジエチルヘキシル(フタル
酸ジオクチルともいう。)等のフタル酸系、エチルフタ
リルエチルグリコレートやブチルフタリルエチルグリコ
レート等のグリコレート系、リン酸トリブチルやリン酸
トリクレジル等のリン酸系等の可塑剤を挙げることがで
きる。
【0020】本発明のガス検知材の形態としては、少な
くともガス反応性色素、マトリクスポリマおよび可塑剤
を有するものであれば、特に限定されず、樹脂様組成物
そのものであってもよく、また、該樹脂様組成物を担体
に担持させたものであってもよい。使用する担体として
は、アルミナ基板、ガラス板、光ファイバの他、紙、ガ
ラスビーズ、シリカゲルが好ましいがこれらに限定され
るものではない。本発明の検知材を用いた被検知ガスの
検知方法としては、被検知ガスに、該ガス検知材を接触
させ、該ガス検知材が生ずる色変化を測定することによ
り、ハロゲンガス、ハロゲン化水素ガス、酸性ガス、酸
化性ガス、塩基性ガス、有機酸ガスの内少なくとも1の
ガスを検知することを特徴とする方法であれば特に限定
されない。
【0021】色変化を測定する方法としては、該検知材
の発色濃度を肉眼観察により比較することもできるが、
好ましくは、以下の方法が挙げられる。 (1)前記ガス反応性色素において生ずる色の変化の測
定を、前記検知材に照射する光のスペクトルの変化とし
て測定する方法。 (2)前記ガス反応性色素において生ずる色の変化の測
定を、前記検知材に光を照射した状態で行い、生じる吸
光量変化を透過光若しくは反射光として測定するか、又
は蛍光量変化を測定する方法。 (3)前記ガス反応性色素の色の変化の測定を、前記検
知材に光を照射した状態で行い、透過光若しくは反射光
として測定する際に、複数の波長における色変化を測定
する方法。 (4)前記ガス反応性色素の色の変化の測定を、前記検
知材に光を照射した状態で行い、透過光若しくは反射光
として複数の波長における色変化を測定する際に、複数
の波長の色変化の差を測定することにより行う方法。
【0022】本発明のガス検知材を用いた検知装置とし
ては、被検知ガスの通路に該ガス検知材を配置した構成
のものであれば特に限定されないが、具体的には図2に
示す検知装置のように、外部温度調節器10により温度
を調整できるヒータ9を備えた測定セル1中の担体であ
る基板2の上にガス検知材3を設置し、そのガス検知材
3の担体である基板2の正面にハロゲンランプ6からの
光を光ファイバー8で導いて照射する投光受光部7を設
け、そこから投光し、ガス検知材3を通って基板2で反
射する光をその受光部で受け、その受光部からの信号を
マルチ測光検出器11に導くように構成し、40〜80
℃の範囲の温度に設定された測定セル1へ試料ガス4を
通し、ガス検知材3に含まれたTPPとの反応にともな
う、反射スペクトルの変化をマルチ測光検出器11で測
定し、その測定結果をパソコン12へ導入して処理する
装置が好ましいものとして挙げられる。
【0023】また、別の検知装置としては、例えば図3
に示すように、ガス反応性色素を含む前記溶液を光ファ
イバー8上に塗布してガス検知材を構成し、これをガス
導管13内に設けて、ガス導管内に被検ガスを通し、ハ
ロゲンランプ6からの検出光を投光部14から光ファイ
バー8内に入射して、光ファイバー8から出た光を受光
部15で受け、それをマルチ測光検出器11で測定する
形式の検知装置とすることもできる。或いはまた、1台
でこれらの機能を兼備させることもできる。以下、被検
知ガス出入管、検知材3、その基板2、保温手段、検出
光の出入窓等を含む部分を測定セル1といい、測定セル
1が置かれている部分は検知部である。
【0024】以下には、前記図2に示したガス検知材か
らの反射光をマルチ測光検出器で測定する形式の検知装
置について本発明を説明するが、本発明は図3に示すガ
ス導管を検知部とする形式の検知装置を使用して検知し
ても良い。前記図2に示す検知装置の測定セル1が配備
されている検知部においては、図1に示すような外部温
度調節器10により温度を調整できるヒータ9を備えた
測定セル1中にアルミナ基板2の上に設けた前記ガス検
知材3を収納し、付属させたヒータ9を外部の温度調節
器10により設定温度に加温して、設定温度に保たれた
測定セル1中で、そのガス導入口から導入した被検知ガ
スと接触状態にあるガス検知材3に、光ファイバーで導
いて照射する投光受光部7からの光を照射し、ガス検知
材3からの反射光を投光受光部7で受光し、それを光フ
ァイバー8で導いてマルチ測光検出器11で測定する。
測定セル1中の被検知ガスはガス導出口から排ガスとし
て排出する。
【0025】
【実施例】以下に、前記本発明のガス検知装置を用いた
本発明のガス検知方法を実施例により詳細に説明する
が、本発明は以下の実施例に限定されるものではない。 実施例1 テトラフェニルポルフィリン(TPP)、マトリックス
ポリマとしてエチルセルロース(EC)と可塑剤として
フタル酸ジエチルヘキシルを用い、エチルセルロース1
gに対しフタル酸ジエチルヘキシルを0.33g添加
し、可塑化したマトリックスにTPPを1.0×10-5
モル添加して調製したガス検知材をアルミナ基板上に設
けた。温度の設定を変更し、変更した温度に保つことが
できる測定セル中に、前記ガス検知材を収納し、測定セ
ルの温度を30℃、45℃および60℃に設定して、各
温度の測定セル中に0、1、2、5、10、15、2
0、30、40および50ppmの塩化水素を含有する
ガスを逐次導入し、導入した塩化水素含有ガスにガス検
知材を接触させ、450nmの検出光で測定し、ガス検
知材からの反射光をマルチ測光検出器で測定した結果を
図4に示す。図4より、測定セルの温度が30℃であっ
た従来の測定では、0ppmから10ppmまでの塩化
水素ガスの濃度を測定できるに過ぎなかったのにもかか
わらず、測定セルの温度を40℃にすることにより0p
pmから30ppmまでの塩化水素ガスの濃度が測定で
き、60℃で測定することにより0ppmから50pp
mまでの塩化水素ガスの濃度が測定できることがわか
る。
【0026】
【発明の効果】テトラフェニルポルフィリンやテトラフ
ェニルポルフィリン誘導体あるいはそれらの金属錯体か
らなるガス反応性色素を含むガス検知材に被検知ガスを
接触させることにより、被検知ガスを検知するガス検知
方法及び検知装置において、ガス検知部における温度を
40〜80℃の温度範囲に高めることにより、検知する
ガスの濃度範囲を広げることができ、またその検知速度
を高めることができ、応答速度が早くなるという利点を
有する。
【図面の簡単な説明】
【図1】本発明で用いる測定セルの1例の断面構造を示
す説明図
【図2】本発明の温度を調整できるガス検知装置の1例
の構造を示す説明図
【図3】本発明の温度を調整できるガス検知装置の他の
1例の構造を示す説明図
【図4】テトラフェニルポルフィリンを含むガス検知材
が塩化水素含有窒素ガスと反応した際の、3段階の温度
における塩化水素含有量と検知光の反射率との関係を示
すグラフ。
【符号の説明】
1 測定セル 2 基板 3 検知材 4 試料ガス 5 排ガス 6 ハロゲンランプ 7 投光受光部 8 光ファイバー 9 ヒータ 10 外部温度調節器 11 マルチ測光検出器 12 パソコン 13 ガス通路 14 投光部 15 受光部

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 ハロゲンガス、ハロゲン化水素ガス、酸
    性ガス、酸化性ガス、塩基性ガス、有機酸ガスの内少な
    くとも1の被検知ガスを、検知部に配置されている下記
    一般式(1)で表されるテトラフェニルポルフィリンも
    しくはその誘導体または下記一般式(2)で表されるテ
    トラフェニルポルフィリンもしくはその誘導体の金属錯
    体からなるガス反応性色素を有してなるガス検知材に接
    触させ、それとともに前記ガス検知材に光を照射し、前
    記ガス検知材が生ずる色変化を測定することにより前記
    被検知ガスの濃度を検知するガス検知方法において、前
    記検知部の温度を40〜80℃の温度範囲として測定を
    することを特徴とするガス反応性色素を用いたガス検知
    方法。 【化1】 【化2】 ただし、前記一般式(1)において、Rは水素原子、ハ
    ロゲン原子、ニトロ基、シアノ基、アルコキシル基の中
    から選ばれるいずれか1種の置換基を表し、Gは存在す
    る4個のフェニル基に置換しているハロゲン原子、水酸
    基、スルホン酸基、カルボキシル基、アルコキシル基、
    アミン基の中から選ばれるいずれか1種の置換基を表
    し、a、b、c、dは0〜5の間の整数であってそれぞ
    れ同じであっても異なっても良く、Gの各フェニル基に
    おける置換位置も同じであっても異なっても良く、また
    前記一般式(2)において、Mは遷移金属を表し、Rは
    水素原子、ハロゲン原子、ニトロ基、シアノ基、アルコ
    キシル基の中から選ばれるいずれか1種の置換基を表
    し、G及びa、b、c、dに関しては前記一般式(1)
    におけるのと同じである。
  2. 【請求項2】 前記ガス検知材が少なくともマトリクス
    ポリマ及び可塑剤を有してなることを特徴とする請求項
    1記載のガス反応性色素を用いたガス検知方法。
  3. 【請求項3】 請求項1記載のガス反応性色素を用いた
    ガス検知方法を行うためのガス検知装置において、ハロ
    ゲンガス、ハロゲン化水素ガス、酸性ガス、酸化性ガ
    ス、塩基性ガス、有機酸ガスの内少なくとも1のガスを
    含む被検知ガスの通路に、前記ガス反応性色素を有する
    ガス検知材をもつ検知部を設け、前記検知部の温度を4
    0〜80℃の温度範囲に維持することをことを特徴とす
    るガス検知装置。
  4. 【請求項4】 前記ガス検知材が少なくともマトリクス
    ポリマ及び可塑剤を有してなることを特徴とする請求項
    3記載のガス反応性色素を用いたガス検知装置。
JP8214736A 1996-08-14 1996-08-14 ガス反応性色素を用いたガス検知方法及びガス検知装置 Pending JPH1062350A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8214736A JPH1062350A (ja) 1996-08-14 1996-08-14 ガス反応性色素を用いたガス検知方法及びガス検知装置
EP97113747A EP0824212B1 (en) 1996-08-14 1997-08-08 Gas detection method and apparatus using gas reactive pigment
DE69701495T DE69701495T2 (de) 1996-08-14 1997-08-08 Verfahren zum Nachweisen von Gas und Gasdetektionsgerät unter Verwendung eines mit Gas reagierenden Pigments
TW086111439A TW486567B (en) 1996-08-14 1997-08-09 Gas detection method and apparatus using gas reactive pigment
SG1997002891A SG55360A1 (en) 1996-08-14 1997-08-11 Gas detection method and apparatus using gas reactive agent
US08/910,231 US6096557A (en) 1996-08-14 1997-08-13 Gas detection method and apparatus using gas reactive pigment
KR1019970038499A KR100502368B1 (ko) 1996-08-14 1997-08-13 가스반응성안료를사용하는가스검출방법및가스반응장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8214736A JPH1062350A (ja) 1996-08-14 1996-08-14 ガス反応性色素を用いたガス検知方法及びガス検知装置

Publications (1)

Publication Number Publication Date
JPH1062350A true JPH1062350A (ja) 1998-03-06

Family

ID=16660759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8214736A Pending JPH1062350A (ja) 1996-08-14 1996-08-14 ガス反応性色素を用いたガス検知方法及びガス検知装置

Country Status (7)

Country Link
US (1) US6096557A (ja)
EP (1) EP0824212B1 (ja)
JP (1) JPH1062350A (ja)
KR (1) KR100502368B1 (ja)
DE (1) DE69701495T2 (ja)
SG (1) SG55360A1 (ja)
TW (1) TW486567B (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082049A (ja) * 2000-09-06 2002-03-22 Seiko Epson Corp 赤外吸収分光器を用いた温室効果ガス測定方法
JP2002535332A (ja) * 1999-01-25 2002-10-22 ナショナル・ジュウィッシュ・メディカル・アンド・リサーチ・センター 置換ポルフィリン
JP2005265860A (ja) * 2005-06-13 2005-09-29 Seiko Epson Corp 赤外吸収分光器を用いた温室効果ガス測定方法
JP2005265861A (ja) * 2005-06-13 2005-09-29 Seiko Epson Corp 赤外吸収分光器を用いた温室効果ガス測定方法
JP2006250890A (ja) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp 揮発性有機物センサ
JP2010503864A (ja) * 2006-09-18 2010-02-04 スリーエム イノベイティブ プロパティズ カンパニー 蛍光化学センサ
JP2011085576A (ja) * 2009-09-15 2011-04-28 Mitsubishi Cable Ind Ltd 光ファイバ水素センサ及びそれを備えた光ファイバ水素センサシステム
WO2012124269A1 (ja) 2011-03-11 2012-09-20 パナソニックヘルスケア株式会社 窒素酸化物濃度測定装置
JP2016008820A (ja) * 2014-06-22 2016-01-18 株式会社 京都モノテック ガスセンサとガス検出装置
JPWO2017188340A1 (ja) * 2016-04-27 2018-12-13 国立研究開発法人産業技術総合研究所 希薄ガス濃度測定方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT407090B (de) 1998-09-15 2000-12-27 Joanneum Research Forschungsge Opto-chemischer sensor sowie verfahren zu seiner herstellung
US7615373B2 (en) * 1999-02-25 2009-11-10 Virginia Commonwealth University Intellectual Property Foundation Electroprocessed collagen and tissue engineering
US6947138B2 (en) * 2003-06-16 2005-09-20 Advanced Technology Materials, Inc. Optical sensor system and method for detection of hydrides and acid gases
SG120277A1 (en) * 2004-08-27 2006-03-28 Zellweger Analytics Ag Extended life mineral acid detection tape
US20090074612A1 (en) * 2007-09-18 2009-03-19 Gross Karl J Gas Sorption Tester For Rapid Screening of Multiple Samples
JP5339305B2 (ja) * 2008-11-26 2013-11-13 パナソニック株式会社 窒素酸化物検出エレメント
TWI410273B (zh) * 2009-09-15 2013-10-01 Ind Tech Res Inst 擔載金屬氧化物之奈米結構材料及含磷化合物之檢測方法
CN102656439B (zh) * 2009-12-15 2015-07-01 菲利尔探测公司 多分析物检测系统和方法
TWI460426B (zh) * 2011-06-21 2014-11-11 Univ Nat Central 應用於毒品偵測的酸性氣體偵測方法及裝置
CN103529176A (zh) * 2013-10-29 2014-01-22 杨云生 动态吸附氨气测试台
DE102018200615A1 (de) * 2018-01-16 2019-07-18 Osram Gmbh Verfahren zur Detektions eines Gases und Gasdetektionssystem
EP3889599A1 (en) * 2020-04-01 2021-10-06 Christian-Albrechts-Universität zu Kiel Analytical process for detecting peroxide-, nitrate- and nitramine-based explosives
US11733157B2 (en) 2020-07-06 2023-08-22 Honeywell International Inc. Cabin air sensor for ozone detection

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030420A (en) * 1982-12-23 1991-07-09 University Of Virginia Alumni Patents Foundation Apparatus for oxygen determination
JPH01242630A (ja) * 1988-03-24 1989-09-27 Mitsubishi Kasei Corp ポルフィリン構造を有する単分子膜もしくは単分子累積膜
GB2239705B (en) * 1989-11-08 1993-05-12 Nat Res Dev Gas sensors and compounds suitable therefor
JP3153548B2 (ja) * 1989-11-08 2001-04-09 ビーティージー・インターナショナル・リミテッド ガスセンサーおよびそのための適切な化合物
US5102625A (en) * 1990-02-16 1992-04-07 Boc Health Care, Inc. Apparatus for monitoring a chemical concentration
JPH0474964A (ja) * 1990-07-17 1992-03-10 Tosoh Corp 過酸化水素の定量法および該方法に用いる装置
JP3090979B2 (ja) * 1990-09-04 2000-09-25 株式会社リコー 基板付薄膜積層デバイスおよびその製法
JPH055456A (ja) * 1991-06-28 1993-01-14 Nippondenso Co Ltd 車載制御用コンピユータの制御装置
JPH07243973A (ja) * 1994-03-04 1995-09-19 Ebara Res Co Ltd 酸性ガスまたはアルカリ性ガスの検知材及びその製造方法並びに検知装置
JPH09171011A (ja) * 1995-03-20 1997-06-30 Ebara Corp ガス反応性色素、同反応性色素を用いるガス検知材、ガス検知方法又はガス検知装置
JP3156960B2 (ja) * 1995-10-18 2001-04-16 株式会社荏原製作所 ガス濃度検知方法における検知ガス濃度領域調整方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535332A (ja) * 1999-01-25 2002-10-22 ナショナル・ジュウィッシュ・メディカル・アンド・リサーチ・センター 置換ポルフィリン
JP2002082049A (ja) * 2000-09-06 2002-03-22 Seiko Epson Corp 赤外吸収分光器を用いた温室効果ガス測定方法
JP2006250890A (ja) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp 揮発性有機物センサ
JP2005265860A (ja) * 2005-06-13 2005-09-29 Seiko Epson Corp 赤外吸収分光器を用いた温室効果ガス測定方法
JP2005265861A (ja) * 2005-06-13 2005-09-29 Seiko Epson Corp 赤外吸収分光器を用いた温室効果ガス測定方法
JP2010503864A (ja) * 2006-09-18 2010-02-04 スリーエム イノベイティブ プロパティズ カンパニー 蛍光化学センサ
JP4861479B2 (ja) * 2006-09-18 2012-01-25 スリーエム イノベイティブ プロパティズ カンパニー 蛍光化学センサ
JP2011085576A (ja) * 2009-09-15 2011-04-28 Mitsubishi Cable Ind Ltd 光ファイバ水素センサ及びそれを備えた光ファイバ水素センサシステム
WO2012124269A1 (ja) 2011-03-11 2012-09-20 パナソニックヘルスケア株式会社 窒素酸化物濃度測定装置
JP2016008820A (ja) * 2014-06-22 2016-01-18 株式会社 京都モノテック ガスセンサとガス検出装置
JPWO2017188340A1 (ja) * 2016-04-27 2018-12-13 国立研究開発法人産業技術総合研究所 希薄ガス濃度測定方法

Also Published As

Publication number Publication date
KR100502368B1 (ko) 2005-10-25
EP0824212B1 (en) 2000-03-22
SG55360A1 (en) 1998-12-21
EP0824212A1 (en) 1998-02-18
KR19980018630A (ko) 1998-06-05
TW486567B (en) 2002-05-11
US6096557A (en) 2000-08-01
DE69701495D1 (de) 2000-04-27
DE69701495T2 (de) 2000-08-24

Similar Documents

Publication Publication Date Title
JPH1062350A (ja) ガス反応性色素を用いたガス検知方法及びガス検知装置
Safavi et al. Optical sensor for high pH values
Lee et al. Photostable optical oxygen sensing material: Platinumtetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene
von Bültzingslöwen et al. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology
Oter et al. Characterization of a newly synthesized fluorescent benzofuran derivative and usage as a selective fiber optic sensor for Fe (III)
Amao et al. Optical CO2 sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference fluorescent porphyrin dye
Preininger et al. Ammonia fluorosensors based on reversible lactonization of polymer-entrapped rhodamine dyes, and the effects of plasticizers
Chang et al. A fluorescence lifetime-based solid sensor for water
Glenn et al. Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane
Ge et al. High-stability non-invasive autoclavable naked optical CO2 sensor
Vander Donckt et al. Fibre-optic oxygen sensor based on luminescence quenching of a Pt (II) complex embedded in polymer matrices
JP3156960B2 (ja) ガス濃度検知方法における検知ガス濃度領域調整方法
Trinkel et al. Study of the performance of an optochemical sensor for ammonia
Zhao et al. Luminescence ratiometric oxygen sensor based on gadolinium labeled porphyrin and filter paper
Nakamura et al. Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye
Santoro et al. Development of oxygen and temperature sensitive membranes using molecular probes as ratiometric sensor
Kostov et al. Ratiometric oxygen sensing: detection of dual-emission ratio through a single emission filter
JPH09171011A (ja) ガス反応性色素、同反応性色素を用いるガス検知材、ガス検知方法又はガス検知装置
McGaughey et al. Development of a fluorescence lifetime-based sol–gel humidity sensor
Geddes Halide sensing using the SPQ molecule
JPS62190445A (ja) 物質中に含まれる成分の濃度を求めるための方法
Amao et al. Optical CO2 sensor of the combination of colorimetric change of α-naphtholphthalein in poly (isobutyl methacrylate) and fluorescent porphyrin in polystyrene
Gao et al. A new technique to quantify oxygen diffusion in polymer films
Wang et al. Double-enhanced multipass cell-based wavelength modulation spectroscopy CH 4 sensor for ecological applications
Oige et al. Effect of long-term aging on oxygen sensitivity of luminescent Pd-tetraphenylporphyrin/PMMA films