JPH1036914A - Production of grain oriented electric steel sheet excellent in magnetic characteristic - Google Patents
Production of grain oriented electric steel sheet excellent in magnetic characteristicInfo
- Publication number
- JPH1036914A JPH1036914A JP8191856A JP19185696A JPH1036914A JP H1036914 A JPH1036914 A JP H1036914A JP 8191856 A JP8191856 A JP 8191856A JP 19185696 A JP19185696 A JP 19185696A JP H1036914 A JPH1036914 A JP H1036914A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel sheet
- annealing
- temperature
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、冷間圧延工程に
工夫を凝らすことにより磁気特性に優れる方向性電磁鋼
板の製造方法を提案するものである。The present invention proposes a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties by devising a cold rolling process.
【0002】[0002]
【従来の技術】方向性電磁鋼板を製造する際の冷間圧延
工程において、例えば、特開昭50−16610 号公報(特性
の優れた高磁束密度一方向性けい素鋼板(帯)を得る冷
間圧延法)に開示さているように、圧延中に冷延板を低
温で熱処理(以後、時効処理という)することにより、
鉄損の低下および磁束密度の向上等、磁気特性が向上す
ることが知られている。2. Description of the Related Art In a cold rolling process for producing a grain-oriented electrical steel sheet, for example, Japanese Unexamined Patent Publication No. 50-16610 (Colding to obtain a high magnetic flux density unidirectional silicon steel sheet (band) having excellent characteristics) is disclosed. As disclosed in the “Rolling method”, the cold-rolled sheet is heat-treated at a low temperature during rolling (hereinafter, referred to as aging treatment),
It is known that magnetic properties are improved, such as reduction of iron loss and improvement of magnetic flux density.
【0003】これは、C,Nの拡散現象を利用し圧延に
より発生した転位を固着させることにより、さらなるせ
ん断変形を進行させ圧延集合組織を改善する方法であ
る。しかしながら、タンデム圧延の場合、圧延途中の各
スタンド間で十分な加熱保持時間が得られないため、
C,Nの拡散が十分でなく、磁気特性の十分な改善は困
難であった。This is a method in which dislocations generated by rolling are fixed by utilizing the diffusion phenomena of C and N, whereby further shear deformation is advanced to improve the rolling texture. However, in the case of tandem rolling, a sufficient heating holding time cannot be obtained between the stands during the rolling,
The diffusion of C and N was not sufficient, and it was difficult to sufficiently improve the magnetic properties.
【0004】また、他の磁気特性の向上手段として、温
間圧延を行うことが知られている。これは上記したよう
な冷間圧延のパス間で時効処理を行う静的な時効とは異
なり、圧延中の鋼板温度を高温とすることにより、圧延
変形で発生した転位を直ちにC,Nによって固着させる
動的時効効果を利用した方法である。[0004] As another means for improving the magnetic properties, it is known to perform warm rolling. This is different from the static aging in which the aging treatment is performed between the cold rolling passes as described above. By increasing the temperature of the steel sheet during rolling, dislocations generated by rolling deformation are immediately fixed by C and N. This method uses the dynamic aging effect.
【0005】この動的時効を利用したタンデム圧延によ
る温間圧延法としては、特開平1−215925号公報(一方
向性電磁鋼板の冷間圧延方法)および特開平1−218705
号公報(冷間タンデム圧延方法)などに提案開示されて
おり、これらは、タンデム圧延機による冷間圧延過程
で、少なくとも1パスでワークロール対にかみ込む圧延
板の温度を300 〜500 ℃および100 〜500 ℃としてい
る。[0005] As a warm rolling method by tandem rolling utilizing dynamic aging, Japanese Patent Application Laid-Open No. 1-215925 (a method of cold rolling a grain-oriented electrical steel sheet) and Japanese Patent Application Laid-Open No. 1-218705 are disclosed.
In the cold rolling process by a tandem rolling mill, these are set to at least 300 to 500 ° C. in the temperature of a rolled sheet that bites into a work roll pair in at least one pass. 100 to 500 ° C.
【0006】鋼板の動的時効の最適温度は、その歪速度
に依存し、圧延速度が速くなるほど最適温度も高くな
る。タンデム圧延機で圧延する場合生産性を考慮しライ
ン速度を速くすると、必然的に最適温度も高くなり、ま
たタンデム圧延機のようにパス間時効が期待できない場
合には、その分高い温間圧延温度が必要となるが、鋼板
温度が300 ℃を超える場合には、圧延油が局所的に鋼板
表面に焼き付き、圧延時の摩擦係数が不安定となって仕
上げ板厚にばらつきを生じる。また、鋼板表面の圧延油
が焼き付いた部分では、その後の脱炭・1次再結晶焼鈍
において、表面酸化膜(サブスケール)が不均一とな
り、製品板での被膜の形成不良や模様の発生により外観
が劣化し、さらに被膜の密着性不良により磁気特性が劣
化するという問題がある。The optimum temperature for dynamic aging of a steel sheet depends on its strain rate, and the higher the rolling speed, the higher the optimum temperature. When rolling with a tandem rolling mill If the line speed is increased in consideration of productivity, the optimum temperature will inevitably increase, and if aging between passes cannot be expected as in a tandem rolling mill, a higher warm rolling will be required. Although a temperature is required, when the steel sheet temperature exceeds 300 ° C., the rolling oil is locally seized on the steel sheet surface, the friction coefficient at the time of rolling becomes unstable, and the finished sheet thickness varies. In the area where the rolling oil is burned on the surface of the steel sheet, the surface oxide film (subscale) becomes non-uniform in the subsequent decarburization and primary recrystallization annealing, resulting in poor film formation and patterns on the product sheet. There is a problem that the appearance is deteriorated and the magnetic properties are deteriorated due to poor adhesion of the coating.
【0007】上記の理由から、特開平4−120215号公報
(磁気特性および表面性状に優れた方向性けい素鋼板の
製造方法)には、圧延スタンド入側の鋼板表面温度を30
0 ℃未満とし、それによる磁気特性の劣化分を冷間圧延
前のスケール除去処理を管理することにより補う方法が
提案開示されている。しかし、このような方法で冷間圧
延前の前処理を行い、300 ℃未満の条件でタンデム圧延
を行ったところ、磁気特性の優れた製品を安定して得る
には、未だ十分とは云えなかった。For the above reasons, Japanese Patent Application Laid-Open No. 4-120215 (a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties and surface properties) discloses that the steel sheet surface temperature at the side of the rolling stand is 30 ° C.
There is proposed a method in which the temperature is set to less than 0 ° C. and the deterioration of the magnetic properties due to the temperature is controlled by controlling the scale removal treatment before cold rolling. However, when pretreatment before cold rolling is performed by such a method and tandem rolling is performed at a temperature lower than 300 ° C., it is still not sufficient to obtain a product having excellent magnetic properties stably. Was.
【0008】[0008]
【発明が解決しようとする課題】この発明は、生産性の
向上のために、タンデム温間圧延を行う上で、前記した
圧延油の焼き付きの問題を有利に解決し、安定して高い
磁束密度が得られる方向性電磁鋼板の製造方法を提案す
ることを目的とする。SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problem of rolling oil seizure in performing tandem warm rolling in order to improve productivity, and achieves a stable high magnetic flux density. It is an object of the present invention to propose a method for manufacturing a grain-oriented electrical steel sheet that can obtain the following.
【0009】[0009]
【課題を解決するための手段】この発明の要旨とすると
ころは以下の通りである。 方向性電磁鋼板用けい素鋼スラブを素材として熱間圧
延し、中間焼鈍を挟んでその前段および後段でそれぞれ
冷間圧延を行い、かつ、後段での冷間圧延を2回行って
最終冷延板厚とし、ついで、脱炭焼鈍後、焼鈍分離剤を
塗布してから、最終仕上げ焼鈍を施す一連の工程により
方向性電磁鋼板を製造するにあたり、中間焼鈍後段の1
回目の冷間圧延をタンデム圧延機で行い、少なくとも1
パス以上のかみ込み鋼板温度を100 ℃〜300 ℃の範囲と
し、かつ、最終スタンドの出側鋼板温度を100 ℃〜300
℃の範囲としてコイルに巻取り、20分間以上放置してか
ら、2回目の冷間圧延により最終冷延板厚にすることを
特徴とする磁気特性に優れる方向性電磁鋼板の製造方法
(第1発明)。The gist of the present invention is as follows. Hot rolling is performed using a silicon steel slab for grain-oriented electrical steel sheets as a raw material, cold rolling is performed before and after the intermediate annealing, respectively, and cold rolling is performed twice in the subsequent stage to final cold rolling. In order to manufacture a grain-oriented electrical steel sheet through a series of steps of applying an annealing separator after decarburizing annealing and then applying a final finishing annealing after decarburizing annealing, one step after the intermediate annealing is performed.
The first cold rolling is performed in a tandem rolling mill, and at least 1
Set the temperature of the steel plate above the pass in the range of 100 ° C to 300 ° C and the temperature of the steel plate on the exit side of the final stand at 100 ° C to 300 ° C.
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that it is wound around a coil in the range of ° C., left for 20 minutes or more, and then subjected to a second cold rolling to a final cold-rolled sheet thickness (first example) invention).
【0010】上記の工程にて最終スタンドの出側鋼板
温度を100 ℃〜300 ℃の範囲としてコイルに巻取ったの
ち、その巻取り温度範囲に20分間以上保持してから、2
回目の冷間圧延により最終冷延板厚とする磁気特性に優
れる方向性電磁鋼板の製造方法(第2発明)。[0010] In the above-mentioned process, the temperature of the steel sheet on the exit side of the final stand is set in the range of 100 ° C to 300 ° C, and the coil is wound around the coil.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties to make the final cold-rolled sheet thickness by the second cold rolling (second invention).
【0011】[0011]
【発明の実施の形態】まず、この発明を達成するに至っ
た実験例について以下に述べる。素材として、C:0.06
5 wt%(以下単に%であらわす)、Si:3.25%、sol.A
l:0.025 %、N:0.0080%、Se:0.024 %、Sb:0.029
%を含有する鋼塊を、高温加熱したのち板厚:2.3mm
に熱間圧延した。ついで、熱延板焼鈍を施したのち、冷
間圧延で1.6mm の中間板厚とし、1000℃・1分間の中間
焼鈍を行った。この中間焼鈍後1回目の冷間圧延をタン
デム圧延機により板厚:0.8mm にするに際し、最終パス
の入側鋼板温度を常温(クーラントと同程度の温度)お
よび200 ℃とし、さらに出側の鋼板温度が50℃〜350 ℃
の範囲になるように冷却水量を調整し、そのまままたは
直ちに常温まで一旦冷却したのちそれぞれコイルを巻取
った。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an experimental example which has achieved the present invention will be described below. As material, C: 0.06
5 wt% (hereinafter simply expressed as%), Si: 3.25%, sol.A
l: 0.025%, N: 0.0080%, Se: 0.024%, Sb: 0.029
%, After heating the steel ingot containing steel at a high temperature, the plate thickness: 2.3mm
Hot-rolled. Then, after performing hot-rolled sheet annealing, the sheet was cold-rolled to an intermediate sheet thickness of 1.6 mm and subjected to intermediate annealing at 1000 ° C. for 1 minute. When the first cold rolling after the intermediate annealing is performed to a sheet thickness of 0.8 mm by a tandem rolling mill, the temperature of the steel sheet on the incoming side of the final pass is set to room temperature (a temperature similar to the coolant) and 200 ° C. Steel plate temperature between 50 ℃ and 350 ℃
The cooling water amount was adjusted so as to fall within the range described above, and once cooled to room temperature as it was or immediately, the coils were wound.
【0012】これらのコイルのうちそのまま巻取ったコ
イルは出側鋼板温度と同等の温度でそれぞれ20分間およ
2時間保持し、他の冷却して巻取ったコイルは200 ℃の
温度に再加熱してそれぞれ20分間および2時間保持し
た。[0012] Of these coils, the coil wound as it is is kept at the same temperature as the exit side steel sheet for 20 minutes and 2 hours, respectively, and the other cooled and wound coil is reheated to a temperature of 200 ° C. For 20 minutes and 2 hours, respectively.
【0013】その後これらのコイルをさらに冷間圧延
(中間焼鈍後2回目の冷間圧延)しそれぞれ板厚:0.23
mmの最終冷延板厚に仕上げた。Thereafter, these coils were further cold-rolled (the second cold-rolling after the intermediate annealing) and each had a thickness of 0.23.
mm to a final cold rolled sheet thickness.
【0014】ついで、湿水素雰囲気中で840 ℃・2分間
の脱炭・1次再結晶焼鈍を施し、MgO を主成分とする焼
鈍分離剤を塗布してから2次再結晶焼鈍を行った。Next, decarburization and primary recrystallization annealing were performed at 840 ° C. for 2 minutes in a wet hydrogen atmosphere, and an annealing separator containing MgO as a main component was applied, followed by secondary recrystallization annealing.
【0015】かくして得られた各製品板について磁束密
度 (B8)を調査した。処理条件および磁束密度の測定結
果を表1にまとめて示す。The magnetic flux density (B 8 ) of each product sheet thus obtained was examined. Table 1 summarizes the processing conditions and the measurement results of the magnetic flux density.
【0016】[0016]
【表1】 [Table 1]
【0017】表1から明らかなように、最終スタンド入
側の鋼板温度を200 ℃とし、その出側鋼板温度を160 ℃
および250 ℃とした場合には磁束密度 (B8)が1.92T 以
上の値を示し、そして、コイルに巻取り後の保持時間ま
たは200 ℃の温度に再加熱したのちの保持時間が、20分
間より2時間とした方が磁束密度は向上している。As is clear from Table 1, the temperature of the steel sheet on the entrance side of the final stand was set at 200 ° C., and the temperature of the steel sheet on the exit side was set at 160 ° C.
And 250 ° C, the magnetic flux density (B 8 ) shows a value of 1.92T or more, and the holding time after winding on the coil or the holding time after reheating to a temperature of 200 ° C is 20 minutes. The magnetic flux density is improved when the time is set to 2 hours.
【0018】しかしながら、最終スタンド出側で一旦冷
却したのち再加熱した場合に比し、冷却することなくそ
のまま巻取った場合には特段に優れる磁束密度が得ら
れ、かつ、この場合にはコイル巻取り後の保持時間が20
分間であっても十分に高い磁束密度が得られることがわ
かる。However, as compared with the case where cooling is performed once on the exit side of the final stand and then reheating is performed, a particularly excellent magnetic flux density is obtained when the film is wound as it is without cooling. Hold time after taking 20
It can be seen that a sufficiently high magnetic flux density can be obtained even for minutes.
【0019】つぎに、上記実験結果にもとづき、この発
明の作用効果について述べる。冷間圧延−中間焼鈍後の
鋼板をタンデム圧延機で温間圧延する際、少なくとも1
パス以上にて、かみ込み鋼板温度を100 ℃〜300 ℃の範
囲とすることにより冷間圧延後および脱炭焼鈍後の集合
組織を改善することができる。なお、上記の実験例は、
タンデム圧延最終パス入側のみの鋼板温度の結果である
が、この発明では最終パスのみに限定されるものではな
い。Next, the operation and effect of the present invention will be described based on the above experimental results. Cold rolling-When the steel sheet after the intermediate annealing is warm-rolled by a tandem rolling mill, at least 1
The texture after cold rolling and after decarburizing annealing can be improved by setting the bite steel sheet temperature in the range of 100 ° C. to 300 ° C. in the pass and above. The above experimental example
Although the result is a result of the steel sheet temperature only on the entry side of the last pass of the tandem rolling, the present invention is not limited to only the last pass.
【0020】この集合組織改善のメカニズムは、必ずし
も、明らかではないが、その一つとして、動的時効効果
で圧延中のせん断変形が促進されることが考えられる。
かみ込み鋼板温度が100 ℃未満では動的時効効果が少な
く、この発明の場合のように巻取り後の静的時効効果を
組み合わせることによってもこれを補うことができない
ものと推測される。Although the mechanism of the texture improvement is not necessarily clear, one of the possible reasons is that the shear deformation during rolling is promoted by the dynamic aging effect.
If the bite steel sheet temperature is less than 100 ° C., the dynamic aging effect is small, and it is presumed that this cannot be compensated for by combining the static aging effect after winding as in the present invention.
【0021】一方、かみ込み鋼板温度は高いほど磁気特
性に対して有利であると考えられる。しかし、300 ℃超
えでは、前記したように、圧延油が局所的に鋼板表面に
焼き付いて、圧延時の摩擦係数が一定とならず仕上げ板
厚にばらつきを生じるばかりでなく、圧延油が焼き付い
た部分では、その後の脱炭・1 次再結晶焼鈍において表
面酸化膜(サブスケール)が不均一となり、製品板の被
膜の形成不良や模様の発生により外観が劣化し、また被
膜の密着性不良により磁気特性が劣化するという問題が
発生する。On the other hand, it is considered that the higher the bite steel sheet temperature, the more advantageous the magnetic properties. However, at temperatures exceeding 300 ° C., as described above, the rolling oil was locally seized on the steel sheet surface, and the coefficient of friction at the time of rolling was not constant, resulting in a variation in the finished plate thickness and also the rolling oil was seized. In the part, the surface oxide film (sub-scale) becomes non-uniform in the subsequent decarburization and primary recrystallization annealing, the appearance deteriorates due to the poor formation of the coating on the product plate and the occurrence of the pattern, and the poor adhesion of the coating There is a problem that the magnetic characteristics are deteriorated.
【0022】そこで、この発明では、タンデム圧延の最
終パス出側鋼板温度を100 ℃〜300℃の範囲として、こ
の温度範囲で巻取り保持することにより静的時効を促進
させ、その後さらに冷間圧延を行うことにより、優れた
磁気特性を維持したまま、かみ込み鋼板温度を300 ℃以
下の温度に抑えることができ、高温圧延時に問題となる
鋼板への圧延油の焼き付きを排除するものである。Therefore, in the present invention, the temperature of the steel sheet on the exit side of the final pass of the tandem rolling is set in the range of 100 ° C. to 300 ° C., and the aging is promoted by winding and holding in this temperature range. By doing so, it is possible to suppress the bite steel sheet temperature to a temperature of 300 ° C. or less while maintaining excellent magnetic properties, and to eliminate seizure of rolling oil on the steel sheet, which is a problem during high-temperature rolling.
【0023】ついで、タンデム圧延の最終パスの出側鋼
板温度についても、100 ℃未満であると長時間の保持が
必要であり、生産性の向上の点で不利となる。また、30
0 ℃を超える場合も磁気特性の劣化が認められる。この
理由として、出側温度が300℃超えと高すぎると、鋼中
のC,Nの拡散が進みすぎ、炭化物もしくは窒化物の析
出等が短時間で起こってしまうため、つづく冷間圧延で
の集合組織の形成もしくは脱炭焼鈍時の脱炭に悪影響を
及ぼし磁性を劣化させるものと考えられる。If the temperature of the exit side steel sheet in the final pass of the tandem rolling is less than 100 ° C., it is necessary to maintain the temperature for a long time, which is disadvantageous in terms of improving productivity. Also, 30
Even when the temperature exceeds 0 ° C., deterioration of the magnetic properties is observed. The reason for this is that if the exit temperature is too high, exceeding 300 ° C., the diffusion of C and N in the steel will proceed too much, and the precipitation of carbides or nitrides will occur in a short time. It is considered that this has an adverse effect on the formation of a texture or decarburization during decarburization annealing and deteriorates magnetism.
【0024】また、鋼板を一旦冷却後、再加熱して時効
させる場合に比し、高温のままコイルに巻取り保持して
時効させる場合の方が、短時間でしかも優れた磁気特性
を有する製品板が得られる理由については明らかでない
が、タンデム圧延最終スタンドを出たのち、高温のまま
コイルに巻取り保持することにより、静的時効時間が短
縮できるものと考えられ、かくして生産性を高めること
が可能になる。ここで、この発明においては、短時間の
保持で磁束密度が1.9Tを超える優れた製品が得られるた
め、コイルに巻取り後大気中に放置するだけで十分な磁
気特性が得られるが、さらなる高磁束密度・低鉄損の製
品を得るめには、巻取り温度100 ℃〜300 ℃の範囲で所
定時間保持することが有効である。Also, when the steel sheet is once cooled and then reheated to be aged, the product having a shorter time and superior magnetic properties is obtained when the steel sheet is wound and held at a high temperature and aged. Although it is not clear why the sheet is obtained, it is thought that the static aging time can be reduced by leaving the final stand in tandem rolling and winding and holding the coil at a high temperature, thus increasing productivity. Becomes possible. Here, in the present invention, an excellent product having a magnetic flux density exceeding 1.9 T can be obtained by holding for a short time, so that sufficient magnetic properties can be obtained only by leaving the coil and leaving it in the air, In order to obtain a product having a high magnetic flux density and a low iron loss, it is effective to maintain the winding temperature in a range of 100 ° C to 300 ° C for a predetermined time.
【0025】つぎに、この発明の対象とするけい素鋼素
材の好適成分組成範囲ならびに方向性電磁鋼板の好適製
造工程について以下に述べる。Next, the preferred composition range of the silicon steel material to which the present invention is applied and the preferred process for producing a grain-oriented electrical steel sheet will be described below.
【0026】・成分組成 通常の方向性けい素鋼板用素材の成分組織でよく、それ
らの好適範囲は以下の通りである。Component Composition The component structure of a material for a normal oriented silicon steel sheet may be used, and the preferred ranges thereof are as follows.
【0027】C:0.02〜0.15% Cは、熱間圧延時のγ−α変態を利用して結晶組織の改
善を行い、かつ、粒内微細カーバイドとして磁気特性の
改善に寄与する重要な成分であるが、含有量が0.02%未
満ではその効果に乏しく、0.15%を超えると、その後の
脱炭が難しくなる。したがって、その含有量は0.02〜0.
15%の範囲が好ましい。C: 0.02 to 0.15% C is an important component that improves the crystal structure by utilizing the γ-α transformation during hot rolling and contributes to the improvement of the magnetic properties as intragranular fine carbide. However, if the content is less than 0.02%, the effect is poor, and if it exceeds 0.15%, subsequent decarburization becomes difficult. Therefore, its content is 0.02--0.
A range of 15% is preferred.
【0028】Si:2.0 〜4.5 % Siは、電気抵抗を高めることにより、鉄損特性を向上す
る有用な成分であるが、含有量が2.0 %未満では鋼板の
電気抵抗が小さくなって過電流損が増大するため良好な
鉄損特性が得られず、4.5 %を超えると冷間圧延が困難
になる。したがって、その含有量は2.0 〜4.5 %の範囲
がよい。Si: 2.0 to 4.5% Si is a useful component for improving iron loss characteristics by increasing electric resistance. However, if the content is less than 2.0%, the electric resistance of the steel sheet becomes small, resulting in excessive current loss. As a result, good iron loss characteristics cannot be obtained, and if it exceeds 4.5%, cold rolling becomes difficult. Therefore, its content is preferably in the range of 2.0 to 4.5%.
【0029】これらのC,Siのほか、方向性けい素鋼板
用素材には、1次、2次再結晶組織の中からゴス方位以
外の粒成長を抑制することにより、ゴス粒のみを選択的
に成長させるという2次再結晶に不可欠の機能を有する
インヒビタの形成成分を含有させることが重要である。
このインヒビタにはAlN 系およびMnSe, MnS 系のように
粒内に析出して機能するものと、Sb, Sn等のように粒界
に偏析して機能するものの2つのタイプが知られてい
る。In addition to these C and Si, the material for grain-oriented silicon steel sheets can selectively remove only goss grains by suppressing grain growth other than the goss orientation from the primary and secondary recrystallized structures. It is important to include an inhibitor-forming component having a function essential for secondary recrystallization, ie, growth to a certain extent.
There are two types of inhibitors known: those that function by being precipitated in grains, such as AlN and MnSe, MnS, and those that function by segregating at grain boundaries, such as Sb and Sn.
【0030】AlN 系インヒビタを用いる場合 sol.Al:0.01〜0.05% sol.Alは、含有量が0.01%未満では磁束密度が低下し、
0.05%を超えると2次再結晶が不安定となる。したがっ
て、その含有量は0.01〜0.05%の範囲が好ましい。When an AlN-based inhibitor is used sol.Al: 0.01 to 0.05% When the content of sol.Al is less than 0.01%, the magnetic flux density decreases,
If it exceeds 0.05%, the secondary recrystallization becomes unstable. Therefore, the content is preferably in the range of 0.01 to 0.05%.
【0031】N:0.004 〜0.012 % Nは、含有量が0.004 %に満たないと、AlN インヒビタ
量が不足し磁束密度が低下する。また、0.012 %を超え
るとブリスタとよばれる表面欠陥が多発する。したがっ
て、その含有量は0.004 〜0.012 %の範囲がよい。N: 0.004 to 0.012% If the content of N is less than 0.004%, the amount of AlN inhibitor becomes insufficient and the magnetic flux density decreases. If it exceeds 0.012%, surface defects called blisters occur frequently. Therefore, its content is preferably in the range of 0.004 to 0.012%.
【0032】MnSe, MnS 系インヒビタを用いる場合 Mn:0.03〜0.30% Mnは、含有量が0.03%未満ではインヒビタ成分として絶
対量が不足し、0.30%を超えるとインヒビタ粒子径が粗
大化して結晶粒成長抑制力が低下する。したがって、そ
の含有量は0.03〜0.30%の範囲がよい。 Se+S:0.01〜0.05% SeおよびSは、それぞれ単独または合計の含有量が0.01
%に満たないとインヒビタ成分として絶対量が不足し、
0.05%を超えると仕上げ焼鈍での純化が困難となる。し
たがって、単独または併用のときの合計のいずれの場合
も含有量は0.01〜0.05%の範囲にすることが好ましい。When MnSe or MnS-based inhibitors are used: Mn: 0.03 to 0.30% When the content of Mn is less than 0.03%, the absolute amount is insufficient as an inhibitor component. The ability to suppress growth decreases. Therefore, its content is preferably in the range of 0.03 to 0.30%. Se + S: 0.01 to 0.05% Se and S are used alone or in a total content of 0.01.
%, The absolute amount is insufficient as an inhibitor component,
If it exceeds 0.05%, purification by finish annealing becomes difficult. Therefore, the content is preferably in the range of 0.01 to 0.05% in either case of a single use or a total use in combination.
【0033】さらに、この発明では、粒界偏析型のイン
ヒビタとして、Cu, Sn, Sb, Mo, Te, Bi, P等をそれぞ
れ単独または複合して併用することができる。特に優れ
る磁気特性を有する高級方向性電磁鋼板を製造するにあ
たっては、析出タイプだけでなく粒界偏析型の補助イン
ヒビタも併用して、これらのインヒビタ効果を最大限に
発揮させることが有利である。Further, in the present invention, Cu, Sn, Sb, Mo, Te, Bi, P and the like can be used alone or in combination as a grain boundary segregation type inhibitor. In manufacturing a high-grade grain-oriented electrical steel sheet having particularly excellent magnetic properties, it is advantageous to use not only a precipitation type but also an auxiliary inhibitor of a grain boundary segregation type to maximize these inhibitory effects.
【0034】・製造工程 従来からの製鋼法で上記好適成分組成に調整した溶鋼
を、連続鋳造法または造塊−分塊法により所定厚みのス
ラブとしたのち、インヒビタ成分であるAlやSe,Sなど
を完全に固溶させるため1350〜1450℃の温度域に加熱す
る。この加熱後、熱間圧延を行い、ついで組織を均一化
し、かつ2次再結晶を安定化させるための熱延板焼鈍を
必要に応じて行う。Manufacturing process The molten steel adjusted to the above-mentioned preferable composition by the conventional steelmaking method is converted into a slab having a predetermined thickness by a continuous casting method or an ingot-bulking method, and then the inhibitor components Al, Se, S Heat to a temperature range of 1350 to 1450 ° C to completely dissolve solids. After this heating, hot rolling is performed, and then, hot rolled sheet annealing for uniformizing the structure and stabilizing the secondary recrystallization is performed as necessary.
【0035】その後、前記したようにこの発明に従っ
て、中間焼鈍を挟んでその前段および後段でそれぞれ冷
間圧延を行い、かつ、後段での冷間圧延を2回行って最
終冷延板厚とする。Thereafter, according to the present invention, as described above, cold rolling is performed in each of the first and second stages with the intermediate annealing therebetween, and cold rolling is performed twice in the second stage to obtain a final cold-rolled sheet thickness. .
【0036】しかるのち、脱炭焼鈍後、鋼板表面にMgO
を主成分とする焼鈍分離剤を塗布してから最終仕上げ焼
鈍を施し製品板とする。また、その後に、りん酸塩系の
上塗りコーティングを施すことは有利である。Thereafter, after decarburizing annealing, MgO
After applying an annealing separating agent containing as a main component, final finishing annealing is performed to obtain a product plate. It is also advantageous to subsequently apply a phosphate-based overcoat.
【0037】[0037]
実施例1 表2に示す成分組成になる鋼塊A〜Dを、それぞれ板
厚:2.2mm に熱間圧延したのち、1000℃・1分間の加熱
後急冷する熱延板焼鈍を施した。Example 1 Steel ingots A to D having the component compositions shown in Table 2 were each hot-rolled to a sheet thickness of 2.2 mm, and then subjected to a hot-rolled sheet annealing of 1000 ° C. for 1 minute followed by rapid cooling.
【0038】[0038]
【表2】 [Table 2]
【0039】その後、板厚:1.5mm まで冷間圧延したの
ち、1100℃・2分間の加熱後急冷する中間焼鈍を行って
から、中間焼鈍後1回目の冷間圧延をタンデム温間圧延
で中間板厚:0.8mm まで圧延するにあたり、全4スタン
ドのタンデム圧延機の第3スタンド出側のロールクーラ
ントの流量を調整することにより第4スタンド入側の鋼
板温度を252 ℃とし、第4 スタンド出側でロールクーラ
ントの流量を制御することにより、その出側鋼板温度を
それぞれ84℃、238 ℃および351 ℃として、直ちにコイ
ルに巻取り、大気中に30分間放置した。しかるのち、タ
ンデム圧延により中間焼鈍後2回目の冷間圧延を行い、
それぞれ最終冷延板厚:0.22mmとした。Then, after cold rolling to a sheet thickness of 1.5 mm, intermediate annealing was performed after heating at 1100 ° C. for 2 minutes and then quenching. After the intermediate annealing, the first cold rolling was performed by tandem warm rolling. In rolling to a thickness of 0.8 mm, the temperature of the steel sheet on the entrance side of the fourth stand was adjusted to 252 ° C by adjusting the flow rate of the roll coolant on the exit side of the third stand of the tandem rolling mill with four stands. By controlling the flow rate of the roll coolant on the side, the exit side steel sheet temperature was set to 84 ° C., 238 ° C., and 351 ° C., respectively, immediately wound around a coil, and left in the atmosphere for 30 minutes. After that, the second cold rolling is performed after the intermediate annealing by tandem rolling,
Each final cold rolled sheet thickness: 0.22 mm.
【0040】ついで、湿水素中で840 ℃・2分間の脱炭
焼鈍を施したのち、5%TiO2を含むMgO を焼鈍分離剤と
して塗布してから、1200℃・10時間の最終仕上げ焼鈍を
行いそれぞれ製品板とした。Then, after decarburizing annealing at 840 ° C. for 2 minutes in wet hydrogen, MgO containing 5% TiO 2 was applied as an annealing separating agent, and final finishing annealing at 1200 ° C. for 10 hours was performed. Each product plate was obtained.
【0041】かくして得られた各製品板の磁気特性、被
膜外観および被膜の密着性等を調査した。これらの調査
結果を表3にまとめて示す。The magnetic properties, coating appearance, coating adhesion and the like of each product plate thus obtained were investigated. Table 3 summarizes the results of these investigations.
【0042】[0042]
【表3】 [Table 3]
【0043】表3から明らかなように、中間焼鈍後1回
目の圧延における第4スタンド出側鋼板温度を238 ℃と
したこの発明の適合例は、いずれの鋼塊を用いた場合に
も比較例に比し優れる磁気特性を示しており、被膜外観
および被膜の密着性も良好である。As is apparent from Table 3, the applicable example of the present invention in which the temperature of the steel sheet exiting from the fourth stand in the first rolling after the intermediate annealing was 238 ° C. was a comparative example when any steel ingot was used. It shows excellent magnetic properties as compared with that of the above, and the film appearance and the adhesion of the film are also good.
【0044】実施例2 前掲表2のDの成分組成になる鋼塊を板厚:3.0mm に熱
間圧延したのち、1000℃・1分間の加熱後急冷する熱延
板焼鈍を施した。Example 2 A steel ingot having the component composition of D in Table 2 was hot-rolled to a thickness of 3.0 mm, and then subjected to a hot-rolled sheet annealing at 1000 ° C. for 1 minute followed by rapid cooling.
【0045】その後、板厚:2.0mm まで冷間圧延したの
ち、1100℃・2分間の加熱後急冷する中間焼鈍を行って
から、中間焼鈍後1回目の冷間圧延を、タンデム温間圧
延で中間板厚:1.0mm まで圧延するにあたり、全4スタ
ンドのタンデム圧延機の第3スタンド出側のロールクー
ラントの流量を制御することにより第4スタンド入側鋼
板温度をそれぞれ90℃、198 ℃および330 ℃とし、第4
スタンド出側でロールクーラントの流量を調整すること
により、その出側鋼板温度を224 ℃とした。Then, after cold rolling to a sheet thickness of 2.0 mm, intermediate annealing was performed by heating at 1100 ° C. for 2 minutes followed by rapid cooling, and then the first cold rolling after the intermediate annealing was performed by tandem warm rolling. Intermediate plate thickness: When rolling to 1.0 mm, the temperature of the steel plate on the entrance to the fourth stand is controlled to 90 ° C., 198 ° C. and 330 ° C. by controlling the flow rate of the roll coolant on the exit side of the third stand of the tandem rolling mill of all four stands. ° C and the fourth
By adjusting the flow rate of the roll coolant on the outlet side of the stand, the temperature of the steel sheet on the outlet side was set to 224 ° C.
【0046】つづいて、直ちにコイルに巻取り大気中に
30分間放置したもの、直ちにコイルに巻取ったのち200
℃の温度の保温装置にて30分間保持したもの、および一
旦常温まで冷却してコイルに巻取ったのち200 ℃の温度
に再加熱して30分間保持したものの3通りの条件で製造
したコイルをさらにタンデム圧延によりそれぞれ最終冷
延板厚:0.30mmとした。Subsequently, the coil is immediately wound around a coil and is exposed to the air.
Left for 30 minutes, immediately wound on a coil, then 200
The coil manufactured under the following three conditions: one that was kept for 30 minutes in a heat retention device at a temperature of ℃, one that was once cooled to room temperature, wound around a coil, then reheated to a temperature of 200 ° C. and kept for 30 minutes. Furthermore, the final cold-rolled sheet thickness was each set to 0.30 mm by tandem rolling.
【0047】ついで、湿水素中で840 ℃・2分間の脱炭
焼鈍を施したのち、5% TiO2 を含むMgO を焼鈍分離剤
として塗布してから、1200℃・10時間の最終仕上げ焼鈍
を行いそれぞれ製品板とした。Then, after decarburizing annealing at 840 ° C. for 2 minutes in wet hydrogen, MgO containing 5% TiO 2 was applied as an annealing separating agent, and then final finishing annealing at 1200 ° C. for 10 hours was performed. Each product plate was obtained.
【0048】かくして得られた各製品板について、磁気
特性、被膜外観および被膜の密着性等を調査した。これ
らの調査結果を表4にまとめて示す。With respect to each of the product sheets thus obtained, the magnetic properties, the appearance of the coating, the adhesion of the coating, and the like were examined. Table 4 summarizes the results of these investigations.
【0049】[0049]
【表4】 [Table 4]
【0050】表4から明らかなように、中間焼鈍後1回
目の圧延における第4スタンド出側鋼板温度を198 ℃と
し、コイルに巻取って大気中に30分間放置したもの、お
よびコイルに巻取って200 ℃の温度で30分間保持したも
のの適合例は、磁気特性に優れるとともに、被膜外観お
よび被膜の密着性も良好である。As is clear from Table 4, the temperature of the steel sheet on the exit side of the fourth stand in the first rolling after the intermediate annealing was set at 198 ° C., wound on a coil and left in the atmosphere for 30 minutes, and wound on the coil. When the sample is kept at a temperature of 200 ° C. for 30 minutes, the conforming example has excellent magnetic properties, and also has good coating appearance and coating adhesion.
【0051】[0051]
【発明の効果】この発明は、中間焼鈍後に2回の冷間圧
延を行って最終冷延板厚として方向性電磁鋼板を製造す
るにあたり、中間焼鈍後の1回目の冷間圧延をタンデム
圧延機で行い、その圧延温度条件およびコイル巻取り後
の保持条件を特定するものであって、この発明によれ
ば、磁気特性ならびに被膜の外観および密着性に優れる
方向性電磁鋼板をタンデム圧延機により安定して製造す
ることができ、また生産性も高めることが可能である。According to the present invention, in producing a grain-oriented electrical steel sheet as a final cold-rolled sheet thickness by performing cold rolling twice after the intermediate annealing, the first cold rolling after the intermediate annealing is performed by a tandem rolling mill. The rolling temperature conditions and the holding conditions after coil winding are specified. According to the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties and coating appearance and adhesion is stabilized by a tandem rolling mill. It is possible to increase the productivity.
Claims (2)
として熱間圧延し、中間焼鈍を挟んでその前段および後
段でそれぞれ冷間圧延を行い、かつ、後段での冷間圧延
を2回行って最終冷延板厚とし、ついで、脱炭焼鈍後、
焼鈍分離剤を塗布してから、最終仕上げ焼鈍を施す一連
の工程により方向性電磁鋼板を製造するにあたり、 中間焼鈍後段の1回目の冷間圧延をタンデム圧延機で行
い、少なくとも1パス以上のかみ込み鋼板温度を100 ℃
〜300 ℃の範囲とし、かつ、最終スタンドの出側鋼板温
度を100 ℃〜300 ℃の範囲としてコイルに巻取り、20分
間以上放置してから、2回目の冷間圧延により最終冷延
板厚にすることを特徴とする磁気特性に優れる方向性電
磁鋼板の製造方法。1. A hot-rolling process using a silicon steel slab for grain-oriented electrical steel sheets as a raw material, performing cold rolling in each of a preceding stage and a subsequent stage with intermediate annealing therebetween, and performing cold rolling twice in a subsequent stage. Go to the final cold rolled sheet thickness, then, after decarburizing annealing
In producing a grain-oriented electrical steel sheet by a series of steps of applying an annealing separator and then performing a final finish annealing, the first cold rolling of the middle stage after the intermediate annealing is performed by a tandem rolling mill, and at least one pass is performed. 100 ℃
Up to 300 ° C and the temperature of the steel sheet on the exit side of the final stand in the range of 100 ° C to 300 ° C, wind it around a coil, leave it for 20 minutes or more, and then make the final cold-rolled sheet thickness by the second cold rolling. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.
として熱間圧延し、中間焼鈍を挟んでその前段および後
段でそれぞれ冷間圧延を行い、かつ、後段での冷間圧延
を2回行って最終冷延板厚とし、ついで、脱炭焼鈍後、
焼鈍分離剤を塗布してから、最終仕上げ焼鈍を施す一連
の工程により方向性電磁鋼板を製造するにあたり、 中間焼鈍後段の1回目の冷間圧延をタンデム圧延機で行
い、少なくとも1パス以上のかみ込み鋼板温度を100 ℃
〜300 ℃の範囲とし、かつ、最終スタンドの出側鋼板温
度を100 ℃〜300 ℃の範囲としてコイルに巻取り、その
巻取り温度範囲に20分間以上保持してから、2回目の冷
間圧延により最終冷延板厚にすることを特徴とする磁気
特性に優れる方向性電磁鋼板の製造方法。2. A hot-rolling process using a silicon steel slab for a grain-oriented electrical steel sheet as a raw material, performing cold rolling in each of a preceding stage and a subsequent stage with intermediate annealing therebetween, and performing cold rolling twice in a subsequent stage. Go to the final cold rolled sheet thickness, then, after decarburizing annealing,
In producing a grain-oriented electrical steel sheet by a series of steps of applying an annealing separator and then performing a final finish annealing, the first cold rolling of the middle stage after the intermediate annealing is performed by a tandem rolling mill, and at least one pass is performed. 100 ℃
The coil is wound around a coil with the temperature of the steel sheet on the exit side of the final stand in the range of 100 ° C to 300 ° C and maintained at the winding temperature range for at least 20 minutes. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8191856A JPH1036914A (en) | 1996-07-22 | 1996-07-22 | Production of grain oriented electric steel sheet excellent in magnetic characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8191856A JPH1036914A (en) | 1996-07-22 | 1996-07-22 | Production of grain oriented electric steel sheet excellent in magnetic characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1036914A true JPH1036914A (en) | 1998-02-10 |
Family
ID=16281652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8191856A Pending JPH1036914A (en) | 1996-07-22 | 1996-07-22 | Production of grain oriented electric steel sheet excellent in magnetic characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1036914A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262217A (en) * | 2004-03-16 | 2005-09-29 | Jfe Steel Kk | Method for producing grain oriented silicon steel sheet having excellent magnetic property |
JP2012184497A (en) * | 2011-02-17 | 2012-09-27 | Jfe Steel Corp | Method for producing grain-oriented electromagnetic steel sheet |
WO2022004752A1 (en) * | 2020-06-30 | 2022-01-06 | Jfeスチール株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
-
1996
- 1996-07-22 JP JP8191856A patent/JPH1036914A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005262217A (en) * | 2004-03-16 | 2005-09-29 | Jfe Steel Kk | Method for producing grain oriented silicon steel sheet having excellent magnetic property |
JP4568875B2 (en) * | 2004-03-16 | 2010-10-27 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheets with excellent magnetic properties |
JP2012184497A (en) * | 2011-02-17 | 2012-09-27 | Jfe Steel Corp | Method for producing grain-oriented electromagnetic steel sheet |
WO2022004752A1 (en) * | 2020-06-30 | 2022-01-06 | Jfeスチール株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
JP7081725B1 (en) * | 2020-06-30 | 2022-06-07 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2728112B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent iron loss | |
JP5300210B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6721135B1 (en) | Method for producing grain-oriented electrical steel sheet and cold rolling equipment | |
JPS5813606B2 (en) | It's hard to tell what's going on. | |
JP2001152250A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
JPH0885825A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property over entire length of coil | |
US5139582A (en) | Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics | |
US5330586A (en) | Method of producing grain oriented silicon steel sheet having very excellent magnetic properties | |
JPH0583612B2 (en) | ||
JP5920387B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JPH10130729A (en) | Production of grain-oriented silicon steel sheet having extremely low core loss | |
JP2648424B2 (en) | Method for manufacturing oriented silicon thin steel sheet with excellent magnetic properties | |
JPH1036914A (en) | Production of grain oriented electric steel sheet excellent in magnetic characteristic | |
JP3849146B2 (en) | Method for producing unidirectional silicon steel sheet | |
TWI779692B (en) | Manufacturing method and equipment row of grain-oriented electrical steel sheet | |
JPH0696743B2 (en) | Method for producing unidirectional silicon steel sheet having excellent magnetic properties | |
JPH10195537A (en) | Production of grain oriented silicon steel sheet having stably excellent magnetic property | |
JPH0433849B2 (en) | ||
JP2005279689A (en) | Method for producing grain oriented silicon steel sheet | |
JP2647323B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with low iron loss | |
JPH0533056A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3310004B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH06287639A (en) | Production of nonoriented silicon steel sheet excellent in all-around magnetic property | |
JPH0629461B2 (en) | Method for producing silicon steel sheet having good magnetic properties | |
JPH10259422A (en) | Production of grain-oriented silicon steel sheet good in core loss characteristic |