JP2012184497A - Method for producing grain-oriented electromagnetic steel sheet - Google Patents

Method for producing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2012184497A
JP2012184497A JP2011174949A JP2011174949A JP2012184497A JP 2012184497 A JP2012184497 A JP 2012184497A JP 2011174949 A JP2011174949 A JP 2011174949A JP 2011174949 A JP2011174949 A JP 2011174949A JP 2012184497 A JP2012184497 A JP 2012184497A
Authority
JP
Japan
Prior art keywords
mass
rolling
steel sheet
grain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011174949A
Other languages
Japanese (ja)
Other versions
JP5835557B2 (en
Inventor
Yukihiro Aragaki
之啓 新垣
Tomoyuki Okubo
智幸 大久保
Takuya Takashita
拓也 高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011174949A priority Critical patent/JP5835557B2/en
Publication of JP2012184497A publication Critical patent/JP2012184497A/en
Application granted granted Critical
Publication of JP5835557B2 publication Critical patent/JP5835557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To propose a novel method for producing a grain-oriented electromagnetic steel sheet by which texture modification effect same as that of warm rolling can be attained.SOLUTION: Steel slab containing 0.01-0.10 mass% C, 2.0-4.5 mass% Si and 0.01-0.5 mass% Mn is hot-rolled to produce a hot-rolled plate, and the hot-rolled plate is annealed. Then, the hot-rolled plate is rolled at rolling-reduction ratio of 85% or more by one-time cold rolling, or it is rolled at rolling-reduction ratio of 80% or more by finish cold rolling comprising two or more times cold rolling with intermediate annealing, to produce a cold-rolled plate having a final plate thickness. The cold-rolled plate is subjected to primary recrystallize-annealing and secondary recrystallize-annealing to obtain the grain-oriented electromagnetic steel sheet. In the method for producing the grain-oriented electromagnetic steel sheet, low strain rate cold rolling of 150sor less in strain rate is conducted at least one pass or more in a step of the cold rolling in which a total rolling reduction is 50% or less.

Description

本発明は、磁気特性に優れた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties.

方向性電磁鋼板は、鉄の磁化容易軸である{110}<001>方位(Goss方位)を、鋼板の圧延方向に高度に集積させた結晶組織を有する磁気特性に優れた鋼板である。   A grain-oriented electrical steel sheet is a steel sheet having excellent magnetic properties having a crystal structure in which {110} <001> orientation (Goss orientation), which is an easy axis of iron, is highly integrated in the rolling direction of the steel sheet.

Goss方位への集積度をより高める方法としては、例えば、特許文献1には、冷間圧延中の冷延板を低温で熱処理し、時効処理を施す方法が開示されている。また、特許文献2には、熱延板焼鈍または最終冷間圧延前の中間焼鈍時の冷却速度を30℃/sec以上とし、さらに、最終冷間圧延中に、板温150〜300℃で2分間以上のパス間時効を2回以上行う技術が開示されている。さらに、特許文献3等には、圧延中の鋼板温度を高めて温間圧延することにより、圧延時に導入された転位を直ちにCやNで固着させる動的歪時効の効果を利用する技術が開示されている。   As a method for further increasing the degree of integration in the Goss orientation, for example, Patent Document 1 discloses a method in which a cold-rolled sheet being cold-rolled is heat-treated at a low temperature and subjected to an aging treatment. Patent Document 2 discloses that the cooling rate during hot-rolled sheet annealing or intermediate annealing before final cold rolling is set to 30 ° C./sec or more, and the plate temperature is 150 to 300 ° C. during final cold rolling. A technique for performing aging between passes of more than one minute twice or more is disclosed. Further, Patent Document 3 discloses a technique that utilizes the effect of dynamic strain aging in which dislocations introduced during rolling are immediately fixed by C or N by increasing the temperature of the steel sheet during rolling and performing warm rolling. Has been.

これら特許文献1〜3の技術は、いずれも圧延中あるいは圧延のパス間で鋼板温度を適正温度に保持することによって、固溶元素である炭素(C)や窒素(N)を低温で拡散させ、冷間圧延で導入された転位を固着して、それ以降の圧延での転位の移動を妨げ、剪断変形をより起こさせて、圧延集合組織を改善しようとするものである。これらの技術の適用によって、冷間圧延後の一次再結晶集合組織におけるαファイバーと呼ばれる<110>繊維組織、特に、{001}<110>方位を低減し、また、γファイバーと呼ばれる<111>繊維組織を低減しつつ、Goss方位{110}<001>の存在頻度を高めることによって、二次再結晶後のGoss方位への集積度を高めることが可能となるとしている。   In any of these techniques of Patent Documents 1 to 3, carbon (C) and nitrogen (N), which are solid solution elements, are diffused at a low temperature by maintaining the steel sheet temperature at an appropriate temperature during rolling or between rolling passes. It is intended to improve the rolling texture by fixing the dislocations introduced in the cold rolling, preventing the movement of the dislocations in the subsequent rolling, and causing more shear deformation. By applying these techniques, the <110> fiber structure called the α fiber in the primary recrystallization texture after cold rolling, in particular, the {001} <110> orientation is reduced, and the <111> called the γ fiber. Increasing the frequency of the Goss orientation {110} <001> while reducing the fiber structure makes it possible to increase the degree of integration in the Goss orientation after secondary recrystallization.

上記冷間圧延に用いられる圧延方法としては、リバース圧延(特許文献4等)とタンデム圧延(特許文献5等)とがあるが、後者のリバース圧延の方が、圧延と巻き取りを何回も繰り返して行うため、圧延中にコイル状態で適度な温度に保持され、いわゆる時効処理と同じ効果が得られるので、磁気特性上は有利とされている。   As the rolling method used for the cold rolling, there are reverse rolling (Patent Document 4 and the like) and tandem rolling (Patent Document 5 and the like), and the latter reverse rolling is performed many times by rolling and winding. Since it is repeatedly performed, it is maintained at an appropriate temperature in a coil state during rolling, and the same effect as a so-called aging treatment can be obtained, which is advantageous in terms of magnetic characteristics.

ところで、上記方向性電磁鋼板は、Siを4.5mass%程度以下含有し、さらに、インヒビターと呼ばれるAlNやMnS,MnSeなどを形成する成分を含有する鋼素材(鋼スラブ)を、熱間圧延し、冷間圧延し、一次再結晶焼鈍し、仕上焼鈍において二次再結晶させることにより製造するのが一般的である。   By the way, the grain-oriented electrical steel sheet hot-rolls a steel material (steel slab) containing about 4.5 mass% or less of Si, and further containing a component forming AlN, MnS, MnSe, or the like called an inhibitor. In general, it is manufactured by cold rolling, primary recrystallization annealing, and secondary recrystallization in finish annealing.

また、上記方法とは別に、インヒビター成分を含有させずに二次再結晶を起こさせる技術(インヒビターレス法)も提案されている(例えば、特許文献6等)。この技術は、インヒビター成分を固溶させるためのスラブ高温加熱が不要であり、仕上焼鈍での純化も不要なため、低コストで方向性電磁鋼板を製造することができるという利点を有する。しかし、この技術は、より高純度化した鋼を利用し、テクスチャー(集合組織)制御による正常粒成長抑制効果によって、二次再結晶を発現させる技術であるため、集合組織の作り込みには、より繊細な制御が必要とされる。
上記のように、インヒビターを利用する、しないに拘らず、磁気特性に優れる方向性電磁鋼板を製造する上では、冷間圧延時の集合組織制御は極めて重要である。
In addition to the above method, a technique (inhibitorless method) for causing secondary recrystallization without containing an inhibitor component has also been proposed (for example, Patent Document 6). This technique has the advantage that a grain-oriented electrical steel sheet can be produced at low cost because it does not require high-temperature slab heating to dissolve the inhibitor component, and does not require purification by finish annealing. However, this technology uses a higher purity steel and is a technology that expresses secondary recrystallization due to the effect of suppressing normal grain growth by texture (texture) control. More delicate control is required.
As described above, texture control during cold rolling is extremely important in producing grain-oriented electrical steel sheets having excellent magnetic properties regardless of whether or not an inhibitor is used.

また、特許文献7〜11には、脱炭焼鈍時に急速加熱や、脱炭焼鈍直前に急速加熱処理することで、一次再結晶集合組織を改善する技術が開示されており、これらの方法によっても、一次再結晶集合組織のγファイバーを低減させながら、Goss方位{110}<001>の存在頻度を高めることができる。例えば、特許文献8には、圧延中に温間圧延を実施した鋼板に対して、C:0.10wt%以下、Si:2.5〜7.0wt%ならびに通常のインヒビター成分を含有する冷延板を、一次再結晶焼鈍の昇温速度を50℃/secとして700℃以上まで加熱することで、良好な鉄損特性を有する一方向性電磁鋼板を製造する方法が開示されている。   Patent Documents 7 to 11 disclose techniques for improving the primary recrystallization texture by rapid heating at the time of decarburization annealing or rapid heating treatment immediately before the decarburization annealing. In addition, it is possible to increase the presence frequency of the Goss orientation {110} <001> while reducing the γ fiber of the primary recrystallization texture. For example, Patent Document 8 discloses cold rolling containing C: 0.10 wt% or less, Si: 2.5 to 7.0 wt%, and a normal inhibitor component, with respect to a steel sheet that has been subjected to warm rolling during rolling. A method of manufacturing a unidirectional electrical steel sheet having good iron loss characteristics by heating the plate to 700 ° C. or higher at a temperature increase rate of primary recrystallization annealing of 50 ° C./sec is disclosed.

特開昭50−016610号公報Japanese Patent Laid-Open No. 50-016610 特開平08−253816号公報Japanese Patent Laid-Open No. 08-253816 特開平01−215925号公報Japanese Patent Laid-Open No. 01-215925 特公昭54−013846号公報Japanese Patent Publication No. 54-013846 特公昭54−029182号公報Japanese Examined Patent Publication No. 54-029182 特開2000−129356号公報JP 2000-129356 A 特開平07−062436号公報Japanese Patent Laid-Open No. 07-062436 特開平07−062437号公報Japanese Patent Application Laid-Open No. 07-062437 特開平10−298653号公報Japanese Patent Laid-Open No. 10-298653 特開2000−204450号公報JP 2000-204450 A 特開2003−027194号公報JP 2003-027194 A

ところで、熱延板に生じた{001}<110>組織は、その後の冷間圧延や、一次再結晶によっても残留し、また、Goss粒によっても蚕食され難い組織として知られている。従って、この組織は、特許文献6の技術を利用し、テクスチャー(集合組織)制御によって二次再結晶を発現させる上では、極めて不利な結晶方位といえる。そのため、この方位の低減は、特に、インヒビター成分を低減し、テクスチャー制御によって二次再結晶を発現させる場合には、極めて重要である。   By the way, the {001} <110> structure generated in the hot-rolled sheet remains as a result of subsequent cold rolling and primary recrystallization, and is known as a structure that is hardly eroded by Goss grains. Therefore, this structure can be said to be a very disadvantageous crystal orientation when the technique of Patent Document 6 is used to develop secondary recrystallization by texture (texture texture) control. Therefore, this reduction in orientation is extremely important particularly when the inhibitor component is reduced and secondary recrystallization is caused by texture control.

一次再結晶焼鈍後の鋼板における{001}<110>組織を低減し、Goss核を形成させるためには、冷間圧延で最終板厚とするまでの間に、上述したCやNによる時効効果を有効に活用する、つまり、冷間圧延でのロール噛込温度を高めるとともにパス間でも高温状態に保持する、いわゆる温間圧延技術を適用することが有効である。   In order to reduce the {001} <110> structure in the steel sheet after the primary recrystallization annealing and form Goss nuclei, the aging effect by the above-described C and N until the final sheet thickness is obtained by cold rolling. It is effective to apply a so-called warm rolling technique in which the roll biting temperature in cold rolling is increased and the high temperature state is maintained even between passes.

温間圧延技術を適用するには、前述したように、巻取時効が可能なリバース圧延が有利である。しかし、リバース圧延はバッチ処理であるため、生産性に劣るという欠点がある。一方、生産性において優れるタンデム圧延は、パス間温度を高温化したり、ロール噛込温度を高温化したりすることによって同様の効果を得ることができる。しかし、その効果は限定的であり、リバース圧延ほどの効果を得るのは難しいのが実情である。   In order to apply the warm rolling technique, as described above, reverse rolling capable of winding aging is advantageous. However, since reverse rolling is a batch process, there is a drawback that productivity is inferior. On the other hand, tandem rolling, which is excellent in productivity, can achieve the same effect by increasing the interpass temperature or increasing the roll biting temperature. However, the effect is limited, and it is actually difficult to obtain the effect as much as reverse rolling.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、温間圧延と同様の集合組織改質効果が得られる方向性電磁鋼板の新規な製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to propose a novel method for producing grain-oriented electrical steel sheets that can provide the same texture modification effect as that of warm rolling. There is.

上記のように、良好な集合組織の形成に必要なCやNの転位固着効果(時効効果)を得るためには、それらの元素が拡散するための温度と時間が必要不可欠であり、この時効効果を、工業的に安定して実現するには問題が多い。そこで、発明者らは、CやNの時効効果と同じ効果、すなわち、熱延板で生じる{001}<110>組織の低減効果や、Goss核の形成効果が得られる他の冷間圧延条件について鋭意検討を重ねた。その結果、冷間圧延における総圧下率が50%以下の段階において、歪速度が150s−1以下となる低歪速度の圧延を少なくとも1パス以上施すことによって、時効効果と同様の効果が得られることを見出し、本発明を完成させた。 As described above, in order to obtain the dislocation fixing effect (aging effect) of C and N necessary for the formation of a good texture, the temperature and time for diffusing these elements are indispensable. There are many problems in realizing the effect industrially stably. Accordingly, the inventors have obtained the same effect as the aging effect of C and N, that is, other cold rolling conditions that can obtain the effect of reducing the {001} <110> structure generated in the hot-rolled sheet and the effect of forming Goss nuclei. We have been intensively studying. As a result, at the stage where the total rolling reduction in cold rolling is 50% or less, the same effect as the aging effect can be obtained by performing rolling at a low strain rate with a strain rate of 150 s -1 or less at least one pass. As a result, the present invention has been completed.

すなわち、本発明は、C:0.01〜0.10mass%、Si:2.0〜4.5mass%およびMn:0.01〜0.5mass%を含有する鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延で圧下率85%以上の圧延をし、あるいは、中間焼鈍を挟む2回以上の冷間圧延で最終冷延圧下率80%以上の圧延をして最終板厚の冷延板とし、その後、一次再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、上記冷間圧延における総圧下率が50%以下の段階において、歪速度150s−1以下の低歪速度冷間圧延を最低1パス以上施すことを特徴とする方向性電磁鋼板の製造方法である。 That is, the present invention hot-rolls a steel slab containing C: 0.01 to 0.10 mass%, Si: 2.0 to 4.5 mass%, and Mn: 0.01 to 0.5 mass%. After rolling and hot-rolled sheet annealing, rolling with a reduction ratio of 85% or more is performed by one cold rolling, or final cold rolling reduction ratio is 80 by two or more cold rolling sandwiching intermediate annealing. % Of rolled steel to obtain a cold-rolled sheet having a final thickness, and thereafter subjected to primary recrystallization annealing and secondary recrystallization annealing, the total rolling reduction in the cold rolling is 50%. In the following steps, a low-strain-rate cold rolling with a strain rate of 150 s −1 or less is performed at least one pass or more.

本発明の方向性電磁鋼板の製造方法は、上記歪速度を100s−1以下とすることを特徴とする。 The manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that the strain rate is 100 s −1 or less.

また、本発明の方向性電磁鋼板の製造方法は、上記低歪速度冷間圧延後の鋼板組織における{001}<110>強度を10以下とすることを特徴とする。   The grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that the {001} <110> strength in the steel sheet structure after the low strain rate cold rolling is 10 or less.

また、本発明の方向性電磁鋼板の製造方法は、上記冷間圧延における総圧下率が50%超え以降では、歪速度400s−1以上で圧延することを特徴とする。 Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized by rolling at a strain rate of 400 s −1 or more after the total rolling reduction in the cold rolling exceeds 50%.

また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍において、500〜700℃間の昇温速度を50℃/sec以上とすることを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that, in the primary recrystallization annealing, a temperature rising rate between 500 to 700 ° C. is set to 50 ° C./sec or more.

また、本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、AlN系インヒビター成分としてAl:0.01〜0.065mass%およびN:0.005〜0.012mass%、および/または、MnS・MnSe系インヒビター成分としてS:0.005〜0.03mass%および/またはSe:0.005〜0.03mass%を含有することを特徴とする。   Moreover, the steel slab in the method for producing a grain-oriented electrical steel sheet according to the present invention has Al: 0.01-0.065 mass% and N: 0.005-0. It is characterized by containing S: 0.005-0.03 mass% and / or Se: 0.005-0.03 mass% as 012 mass% and / or MnS · MnSe-based inhibitor component.

また、本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Al,N,SおよびSeをAl:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下を含有することを特徴とする。   Moreover, the steel slab in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Al, N, S, and Se in addition to the above component composition, Al: 0.0100 mass% or less, N: 0.0050 mass% or less, It contains S: 0.0050 mass% or less and Se: 0.0050 mass% or less.

また、本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%、Nb:0.0005〜0.010mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel slab in the manufacturing method of the grain-oriented electrical steel sheet of this invention has further Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3.0 mass%, P: 0.03-0.50 mass%, Mo: 0.005-0.10 mass%, Nb: 0.0005-0. It is characterized by containing 1 type (s) or 2 or more types selected from 010 mass% and Cr: 0.03-1.50 mass%.

本発明によれば、冷間圧延における総圧下率が50%以下の段階において、歪速度150s−1以下の低歪速度圧延を最低1パス以上施すことで、温間圧延と同様の集合組織改質効果が得られるので、磁気特性に優れた方向性電磁鋼板を有利に製造することが可能となる。 According to the present invention, in the stage where the total rolling reduction in cold rolling is 50% or less, low texture rolling at a strain rate of 150 s −1 or less is applied at least one pass, so that the texture modification similar to warm rolling is performed. Since a quality effect is obtained, it becomes possible to advantageously manufacture a grain-oriented electrical steel sheet having excellent magnetic properties.

1パス目の冷間圧延における温度と歪速度が集合組織に及ぼす影響を示す図である。It is a figure which shows the influence which the temperature and strain rate in the cold rolling of the 1st pass have on a texture. 1パス目の冷間圧延における歪速度が{001}<110>強度に及ぼす影響を示すグラフである。It is a graph which shows the influence which the strain rate in the cold rolling of the 1st pass has on {001} <110> strength. 実施例1における1スタンド目の冷延圧下率と製品板の磁束密度B8との関係を示すグラフである。It is a graph which shows the relationship between the cold rolling reduction rate of the 1st stand in Example 1, and magnetic flux density B8 of a product board.

まず、本発明を開発するに至った実験について説明する。
C:0.042mass%、Si:3.32mass%およびMn:0.06mass%を含有し、S,Se,Oを各々0.0050mass%未満、Nを0.0025mass%未満に低減し、残部がFeおよび不可避的不純物からなり、インヒビター成分を含有しない鋼スラブを1210℃に加熱後、熱間圧延して板厚2.5mmの熱延板とした。
次いで、上記熱延板から採取した試験片に、1000℃×60秒の熱延板焼鈍を施した後、1パスの冷間圧延で、板厚2.0mm(圧下率20%)の冷延板とした。なお、上記冷間圧延は、圧延温度を25℃と100℃の2水準、圧延時の歪速度を100s−1と250s−1の2水準に振り分けて行なった。また、圧延時の歪速度は、下記のEkelundの式を用いて算出した。

Figure 2012184497
ここで、vRはロール周速度(mm/s)、R´はロール半径(mm)、h1はロール入側板厚(mm)、rは圧下率(%)である。 First, the experiment that led to the development of the present invention will be described.
C: 0.042 mass%, Si: 3.32 mass% and Mn: 0.06 mass%, S, Se, O are each reduced to less than 0.0050 mass%, N is reduced to less than 0.0025 mass%, and the balance A steel slab composed of Fe and inevitable impurities and containing no inhibitor component was heated to 1210 ° C. and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.5 mm.
Next, the test piece taken from the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 60 seconds, and then cold-rolled with a thickness of 2.0 mm (20% reduction) by one-pass cold rolling. A board was used. The cold rolling was performed by assigning the rolling temperature to two levels of 25 ° C. and 100 ° C. and the strain rate during rolling to two levels of 100 s −1 and 250 s −1. The strain rate during rolling was calculated using the following Ekelund equation.
Figure 2012184497
Here, vR is the roll peripheral speed (mm / s), R ′ is the roll radius (mm), h1 is the roll entry side plate thickness (mm), and r is the rolling reduction (%).

斯くして得られた冷延板から、30mm×30mmの試験片を切り出し、試験片の片面から板厚の1/5まで機械研削して減厚し、さらに表面を化学研磨した後、5mass%硝酸で10秒間エッチングしてからX線測定により正極点図を作成し、圧延前後の集合組織の変化を調査した。なお、集合組織は、ADC法によって解析し、Euler空間(φ2=45°断面)のODF(crystallite Orientation Distribution Function)とし、その結果を図1に示した。図1から、圧延温度が25℃、歪速度が250s−1を基準(ベース)とした場合、歪速度を100s−1とすることで、圧延温度を100℃まで高めたのと同様の集合組織の変化が得られていることがわかる。   A 30 mm × 30 mm test piece was cut out from the cold-rolled plate thus obtained, and the thickness was reduced by mechanical grinding from one side of the test piece to 1/5 of the plate thickness. Further, the surface was chemically polished to 5 mass%. After etching with nitric acid for 10 seconds, a positive dot diagram was created by X-ray measurement, and changes in texture before and after rolling were investigated. The texture was analyzed by the ADC method to obtain ODF (crystallite orientation distribution function) in Euler space (φ2 = 45 ° cross section), and the result is shown in FIG. From FIG. 1, when the rolling temperature is 25 ° C. and the strain rate is 250 s-1 as a reference (base), the same texture as when the rolling temperature is increased to 100 ° C. by setting the strain rate to 100 s−1. It can be seen that the change is obtained.

上記のような集合組織の変化が起こる原因について、発明者らは以下のように考えている。まず、集合組織の変化が、CやNによる時効効果によるものではないことは、圧延温度が25℃であることから明らかである。また、転位の移動にCやNが動的に作用する動的歪時効も、歪速度がCやNの拡散速度に比べて100倍以上速いことから考え難い。
しかし、歪速度が低下すると、CRSS(臨界分解剪断応力)は上昇する。これは、同じ応力条件下では、転位が動きにくい状況にあることを示しており、CやNによって転位が固着された状態と、現象としては近い状態となっていることが推測される。また、転位のすべり面によって、CRSSの歪速度依存性は異なるため、通常の圧延における歪速度とは異なるすべり面が活性化し、変形挙動が変化している可能性もある。これらの原因によって、歪速度を低減した場合には、冷間圧延後の鋼板の集合組織における{001}<110>組織が減少し、Goss方位への集積度が高まったものと考えられる。
The inventors consider the cause of the change in texture as described above as follows. First, it is clear from the fact that the rolling temperature is 25 ° C. that the texture change is not due to the aging effect due to C or N. Also, dynamic strain aging in which C or N dynamically acts on dislocation movement is difficult to think because the strain rate is 100 times faster than the diffusion rate of C or N.
However, as the strain rate decreases, the CRSS (critical decomposition shear stress) increases. This indicates that dislocations are difficult to move under the same stress condition, and it is presumed that the dislocations are fixed by C and N and are close to each other as a phenomenon. Moreover, since the strain rate dependency of CRSS differs depending on the slip surface of dislocation, the slip surface different from the strain rate in normal rolling may be activated and the deformation behavior may be changed. For these reasons, it is considered that when the strain rate is reduced, the {001} <110> structure in the texture of the steel sheet after cold rolling is reduced, and the degree of accumulation in the Goss orientation is increased.

次に、{001}<110>強度が13.2である板厚2.5mmの熱延板に、25℃の温度で、様々な歪速度で1パスの圧延を施して板厚2.0mm(圧下率20%)の冷延板とし、上記実験と同様にして{001}<110>強度の変化を調査した。なお、{001}<110>方位の強度は、X線測定により正極点図を作成し、得られた正極点図を基に集合組織をADC法によって解析し、Euler空間(φ=45°断面)のODFにしたときのφ=0°、φ=0°の数値で表した。図2は、上記実験の結果を示したものであり、歪速度が小さくなるのに従って{001}<110>強度が低下し、歪速度が150s−1以下では、{001}<110>強度が10以下にまで低下していることがわかる。 Next, a hot-rolled sheet having a thickness of 13.2 and a {001} <110> strength of 13.2 is subjected to one pass rolling at various strain rates at a temperature of 25 ° C. Using a cold-rolled sheet with a rolling reduction of 20%, the change in {001} <110> strength was investigated in the same manner as in the above experiment. The intensity of the {001} <110> orientation is determined by preparing a positive point map by X-ray measurement, analyzing the texture by the ADC method based on the obtained positive point map, and then determining the Euler space (φ 2 = 45 ° When the ODF is (cross section), it is expressed by numerical values of φ = 0 ° and φ 1 = 0 °. FIG. 2 shows the results of the above experiment. As the strain rate decreases, the {001} <110> strength decreases. When the strain rate is 150 s −1 or less, the {001} <110> strength decreases. It turns out that it has fallen to 10 or less.

上記のように、冷間圧延における歪速度の低減は、集合組織の改善には有効な手段となり得る。しかし、歪速度の低減は、圧延速度の低下を招くことから、生産性の点からは好ましくない。そこで、発明者らは、歪速度低減による{001}<110>方位の減少効果と、Goss方位への集積度向上効果が発現する冷延圧下率の範囲について検討した。その結果、1回の冷間圧延で最終板厚とする場合、中間焼鈍を挟む2回以上の冷間圧延で最終板厚とする場合のいずれの場合であっても、冷間圧延における総圧下率が50%以下の範囲で、低速圧延を実施することが有効であることを見出した。   As described above, the reduction in strain rate in cold rolling can be an effective means for improving the texture. However, a reduction in strain rate is not preferable from the viewpoint of productivity because it causes a reduction in rolling speed. Therefore, the inventors examined the range of the cold rolling reduction ratio in which the effect of reducing the {001} <110> orientation by reducing the strain rate and the effect of improving the integration degree in the Goss orientation are exhibited. As a result, when the final sheet thickness is obtained by one cold rolling, the total reduction in the cold rolling is performed in any case where the final sheet thickness is obtained by two or more cold rolling sandwiching the intermediate annealing. It has been found that it is effective to perform low-speed rolling when the rate is in the range of 50% or less.

これは、冷延圧下率が高くなると、結晶粒内に多くの転位が存在する状態となり、転位のすべり面の活性度の差が得られ難くなるためと考えられる。従って、低歪速度の効果を得るためには、結晶粒内の転位が少ない状態、即ち、総圧下率が50%以下の段階で行なう必要がある。逆に、圧下率が50%を超えた段階では、生産性の観点から高歪速度圧延を行なった方が有利である。さらに、歪速度400s−1以上の高速圧延では、ロール周速が高くなってロールバイト内への圧延油の引込量が増加して潤滑性が向上し、圧延荷重が低下するので、鋼板形状を制御する上でも有利となる。特に、形状制御の観点からは、圧延の最終パスで実施するのが好ましい。
本発明は、上記の知見に基づいて開発したものである。
This is presumably because when the cold rolling reduction ratio is high, there are many dislocations in the crystal grains, and it becomes difficult to obtain a difference in the activity of slip planes of dislocations. Therefore, in order to obtain the effect of a low strain rate, it is necessary to carry out in a state where there are few dislocations in the crystal grains, that is, at a stage where the total rolling reduction is 50% or less. On the contrary, when the rolling reduction exceeds 50%, it is more advantageous to perform high strain rate rolling from the viewpoint of productivity. Furthermore, in high-speed rolling at a strain rate of 400 s -1 or higher, the roll peripheral speed is increased, the amount of rolling oil drawn into the roll bite is increased, the lubricity is improved, and the rolling load is reduced. This is also advantageous for control. In particular, from the viewpoint of shape control, it is preferable to carry out in the final pass of rolling.
The present invention has been developed based on the above findings.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明は、従来、温間圧延により集合組織の制御を行っていた方向性電磁鋼板の製造方法において、温間圧延に代わる方法で、温間圧延と同等あるいはそれ以上の磁気特性の改善効果が得られる冷間圧延技術を提供しようとするものである。従って、本発明の方向性電磁鋼板の製造に用いる鋼スラブ(鋼素材)は、従来公知の方法で製造されたものであれば、特に制限はない。例えば、転炉や電気炉等で得た溶鋼を真空脱ガス等の二次精錬を経て所望の成分組成とする通常公知の精錬プロセスで鋼を溶製し、その後、連続鋳造法あるいは造塊−分塊圧延法で鋼スラブとする方法等である。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The present invention is an alternative to warm rolling in a method for producing grain-oriented electrical steel sheets that has conventionally been controlled in texture by warm rolling, and has an effect of improving magnetic properties equivalent to or higher than that of warm rolling. It intends to provide the obtained cold rolling technology. Accordingly, the steel slab (steel material) used for producing the grain-oriented electrical steel sheet of the present invention is not particularly limited as long as it is produced by a conventionally known method. For example, molten steel obtained in a converter, electric furnace, etc. is subjected to secondary refining such as vacuum degassing to obtain a desired component composition, and then the steel is melted by a generally known refining process, and then continuous casting or ingot- For example, a method of forming a steel slab by a block rolling method.

また、鋼スラブが有する成分組成についても、方向性電磁鋼板の製造に適したものであれば、基本的に特に制限はないが、優れた磁気特性を有する方向性電磁鋼板を得るためには、基本成分としてC,SiおよびMnを、下記の範囲で含有することが必要である。
C:0.01〜0.10mass%
Cは、熱延鋼板の集合組織の改善のために必要な元素であり、0.01mass%未満では、スラブ加熱時に組織が粗大化し、以後の工程での再結晶が起こり難くなる。一方、Cが0.10mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.0050mass%以下に低減することが困難となる。よって、Cは0.01〜0.10mass%の範囲とする。好ましくは、0.01〜0.08mass%の範囲である。
In addition, the component composition of the steel slab is basically not particularly limited as long as it is suitable for the production of a grain-oriented electrical steel sheet, but in order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, It is necessary to contain C, Si and Mn as basic components in the following range.
C: 0.01-0.10 mass%
C is an element necessary for improving the texture of the hot-rolled steel sheet. If it is less than 0.01 mass%, the structure becomes coarse during slab heating, and recrystallization hardly occurs in the subsequent steps. On the other hand, when C exceeds 0.10 mass%, it becomes difficult to reduce to 0.0050 mass% or less at which no magnetic aging occurs due to decarburization annealing. Therefore, C is set to a range of 0.01 to 0.10 mass%. Preferably, it is the range of 0.01-0.08 mass%.

Si:2.0〜4.5mass%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0mass%未満では、十分な鉄損低減効果が得られない。一方、4.5mass%を超えると、加工性が著しく低下して圧延して製造することが難しくなる。よって、Siは2.0〜4.5mass%の範囲とする。
Si: 2.0 to 4.5 mass%
Si is an element effective for increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0 mass%, a sufficient effect of reducing iron loss cannot be obtained. On the other hand, if it exceeds 4.5 mass%, the workability is remarkably lowered and it is difficult to roll and manufacture. Therefore, Si is set to a range of 2.0 to 4.5 mass%.

Mn:0.01〜0.5mass%
Mnは、熱間加工性を改善するために必要な元素であるが、含有量が0.01mass%未満では、上記効果は得られず、一方、0.5mass%を超えると、一次再結晶集合組織が劣化し、Goss方位に高度に集積した二次再結晶粒が得難くなる。よって、Mnは0.01〜0.5mass%の範囲とする。好ましくは、0.01〜0.10mass%の範囲である。
Mn: 0.01 to 0.5 mass%
Mn is an element necessary for improving hot workability, but if the content is less than 0.01 mass%, the above effect cannot be obtained. On the other hand, if the content exceeds 0.5 mass%, primary recrystallization aggregates are obtained. The structure deteriorates, and it becomes difficult to obtain secondary recrystallized grains highly accumulated in the Goss orientation. Therefore, Mn is set to a range of 0.01 to 0.5 mass%. Preferably, it is the range of 0.01-0.10 mass%.

また、本発明の方向性電磁鋼板は、二次再結晶を起こさせるためにインヒビターを用いる場合には、例えば、AlN系インヒビターを利用するときには、AlおよびNをそれぞれAl:0.01〜0.065mass%、N:0.005〜0.012mass%の範囲で含有させることが好ましく、また、MnS・MnSe系インヒビターを利用するときには、Seおよび/またはSを、それぞれS:0.005〜0.03mass%、Se:0.005〜0.03mass%の範囲で含有させることが好ましい。   In the grain-oriented electrical steel sheet according to the present invention, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are each changed to Al: 0.01-0. 065 mass% and N: 0.005 to 0.012 mass% are preferably included. When a MnS · MnSe-based inhibitor is used, Se and / or S is changed to S: 0.005 to 0.005, respectively. It is preferable to make it contain in the range of 03mass%, Se: 0.005-0.03mass%.

一方、二次再結晶を起こさせるためにインヒビターを用いない場合には、インヒビター成分であるAl,N,SおよびSeは、それぞれAl:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Se:0.0050mass%以下に低減するのが好ましい。   On the other hand, when an inhibitor is not used for causing secondary recrystallization, the inhibitor components Al, N, S and Se are Al: 0.0100 mass% or less, N: 0.0050 mass% or less, S : 0.0050 mass% or less, preferably Se: 0.0050 mass% or less.

また、本発明の方向性電磁鋼板は、磁気特性の改善を目的として、上記成分組成に加えてさらに、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%、Nb:0.0005〜0.010mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を含有させてもよい。
Niは、熱延板組織を改善して磁気特性を向上させるのに有用な元素である。しかし、0.03mass%未満では上記効果が小さく、一方、1.50mass%を超えると二次再結晶が不安定となり磁気特性が劣化する。
また、Sn,Sb,Cu,P,Mo,NbおよびCrは、磁気特性の向上に有用な元素であるが、いずれも上記下限値未満では磁気特性向上効果が小さく、一方、上記した各上限値を超えると、二次再結晶粒の発達が阻害されるようになるため、それぞれ上記範囲で含有させることが好ましい。
なお、上記成分以外の残部は、Feおよび不可避的不純物である。
Further, the grain-oriented electrical steel sheet of the present invention is further provided with Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb in addition to the above component composition for the purpose of improving magnetic properties. : 0.005 to 1.50 mass%, Cu: 0.03 to 3.0 mass%, P: 0.03 to 0.50 mass%, Mo: 0.005 to 0.10 mass%, Nb: 0.0005 to 0 You may contain 1 type (s) or 2 or more types chosen from 0.010 mass% and Cr: 0.03-1.50 mass%.
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the amount is less than 0.03 mass%, the above effect is small. On the other hand, if it exceeds 1.50 mass%, the secondary recrystallization becomes unstable and the magnetic characteristics deteriorate.
Sn, Sb, Cu, P, Mo, Nb, and Cr are elements useful for improving the magnetic properties, but any of them is less effective in improving the magnetic properties if it is less than the above lower limit value. If it exceeds, the development of secondary recrystallized grains will be inhibited, so each content is preferably within the above range.
The balance other than the above components is Fe and inevitable impurities.

上記成分組成を有する鋼スラブは、その後、再加熱し、熱間圧延に供する。その際のスラブ加熱温度は、インヒビター成分を含有する場合には、インヒビター成分を完全に固溶させる必要性から1300℃以上とするのが好ましく、また、インヒビター成分を含有しない場合には、熱間圧延性を確保する観点から1050℃程度以上とするのが好ましい。なお、熱間圧延条件については、特に制限はなく、常法に準じて行うことができる。   The steel slab having the above component composition is then reheated and subjected to hot rolling. In this case, the slab heating temperature is preferably 1300 ° C. or higher when the inhibitor component is contained because it is necessary to completely dissolve the inhibitor component. From the viewpoint of securing the rollability, it is preferably about 1050 ° C. or higher. In addition, there is no restriction | limiting in particular about hot rolling conditions, It can carry out according to a conventional method.

熱間圧延して得た熱延板は、その後、熱延板焼鈍を施した後、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。この際の冷間圧延は、1回の冷間圧延の場合には総圧下率85%以上、中間焼鈍を挟む2回以上の冷間圧延の場合には、最終冷延の圧下率を80%以上とすることが必要である。冷延圧下率が、これらの値未満では、一次再結晶集合組織のテクスチャーの先鋭性(Goss方位に蚕食させる組織;{111}<112>や{12 4 1}<014>等の集積度)が低下し、良好な二次再結晶を起こさせることが難しくなる。   The hot-rolled sheet obtained by hot rolling is then subjected to hot-rolled sheet annealing and then cold-rolled sheet having a final sheet thickness by one or more cold rolling or two or more cold rolling sandwiching intermediate annealing. To do. The cold rolling at this time is a total rolling reduction of 85% or more in the case of one cold rolling, and the final cold rolling reduction of 80% in the case of two or more cold rolling sandwiching the intermediate annealing. This is necessary. When the cold rolling reduction ratio is less than these values, the sharpness of the texture of the primary recrystallized texture (structure that is phagocytosed in Goss orientation; accumulation degree such as {111} <112> or {12 4 1} <014>) Decreases and it becomes difficult to cause good secondary recrystallization.

また、本発明の上記冷間圧延では、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延に拘わらず、熱延板の板厚を基準として、総圧下率が50%を超えるまでの間、即ち、下記式;
総圧下率={(熱延板板厚−冷延板板厚)/熱延板板厚}×100(%)
で表される総圧下率が50%以下の段階において、歪速度が150s−1以下の低歪速度冷間圧延を最低1パス以上行うことが必要である。
In the cold rolling of the present invention, the total rolling reduction is 50% on the basis of the thickness of the hot-rolled sheet, regardless of one cold rolling or two or more cold rollings with intermediate annealing. Until it exceeds, that is, the following formula:
Total rolling reduction = {(Hot rolled plate thickness−Cold rolled plate thickness) / Hot rolled plate thickness} × 100 (%)
It is necessary to perform low strain rate cold rolling with a strain rate of 150 s −1 or less at least one pass at a stage where the total rolling reduction represented by

本発明では、{001}<110>方位は、熱延で形成され、冷間圧延前の主方位に当たるため、冷間圧延の総圧下率が50%以下で低歪速度圧延を実施することで、{001}<110>方位を低減し、Goss方位の強度を効果的に高めることができる。すなわち、上記総圧下率が50%を超える段階で低歪速度冷間圧延を行うと、導入された転位密度が高いため、歪速度の低下による転位のすべり面の変化が起こらず、{001}<110>組織の低減やGoss核の増加等の集合組織の改善効果が得られなくなる。上記観点から、歪速度が150s−1以下の低歪速度冷間圧延は、転位が存在していない1パス目に行うのが最も効果的である。 In the present invention, the {001} <110> orientation is formed by hot rolling and corresponds to the main orientation before cold rolling. Therefore, by carrying out low strain rate rolling with the total rolling reduction of cold rolling being 50% or less. , {001} <110> orientation can be reduced, and the strength of the Goss orientation can be effectively increased. That is, when low strain rate cold rolling is performed at a stage where the total rolling reduction exceeds 50%, the introduced dislocation density is high, and therefore the change of the slip surface of the dislocation due to the decrease in strain rate does not occur. {001} <110> Texture improvement effects such as reduction of texture and increase of Goss nuclei cannot be obtained. From the above viewpoint, it is most effective to perform the low strain rate cold rolling with a strain rate of 150 s −1 or less in the first pass where no dislocation exists.

また、歪速度が150s−1を超えると、図1や図2に示したように、{001}<110>の低減効果や、Goss核の形成効果が十分に得られない。上記効果をさらに高めるには、歪速度を100s−1以下とするのがより好ましい。ただし、歪速度が20s−1未満では、集合組織改善効果が飽和し、却って生産性を低下させるだけであるので、下限は20s−1程度とするのが好ましい。さらに、歪速度が150s−1以下の低歪速度冷間圧延では、1パスの圧下率を10%以上として行うのが好ましい。圧下率が10%未満では、結晶回転が十分ではなく、Goss核の強度増加が十分に得られないおそれがあるからである。 If the strain rate exceeds 150 s −1 , as shown in FIGS. 1 and 2, the effect of reducing {001} <110> and the effect of forming Goss nuclei cannot be obtained sufficiently. In order to further enhance the above effect, it is more preferable to set the strain rate to 100 s −1 or less. However, if the strain rate is less than 20 s −1 , the texture improving effect is saturated and only the productivity is lowered. Therefore, the lower limit is preferably about 20 s −1 . Furthermore, in the low strain rate cold rolling with a strain rate of 150 s −1 or less, it is preferable that the rolling reduction of one pass is 10% or more. This is because if the rolling reduction is less than 10%, the crystal rotation is not sufficient, and the strength of Goss nuclei may not be sufficiently increased.

また、150s−1以下あるいは100s−1以下の低歪速度で冷間圧延された鋼板の圧延集合組織は、二次再結晶に不利に働く{001}<110>方位の強度(X線測定により正極点図を作成し、得られた集合組織をADC法によって解析し、Euler空間(φ=45°断面)のODFとしたφ=0°、φ=0°の値)が10以下であることが好ましい。{001}<110>方位の強度が10以上では、二次再結晶後の結晶方位が劣化するからでる。
なお、冷間圧延における圧延温度は、特に限定されるものではないが、温間圧延が可能な場合には、それを実施することで、本発明の効果と相乗されるので好ましい。
In addition, the rolling texture of a steel sheet cold-rolled at a low strain rate of 150 s −1 or less or 100 s −1 or less has a strength of {001} <110> orientation (advantageous to secondary recrystallization) A positive point diagram is created, and the resulting texture is analyzed by the ADC method. The ODF of the Euler space (φ 2 = 45 ° cross section) is φ = 0 °, φ 1 = 0 °) is 10 or less. Preferably there is. This is because if the intensity of the {001} <110> orientation is 10 or more, the crystal orientation after secondary recrystallization deteriorates.
In addition, the rolling temperature in the cold rolling is not particularly limited. However, when the warm rolling is possible, it is preferable to implement the rolling because it is synergistic with the effect of the present invention.

上記条件を満たして最終板厚まで圧延した冷延板は、その後、通常の一次再結晶焼鈍を施しても、集合組織の改善効果が得られる。しかし、500〜700℃間の昇温速度を50℃/sec以上とする一次再結晶焼鈍を施すことによって、さらにGoss方位の存在量を高め、二次再結晶後の結晶粒径を微細化し、鉄損特性を改善することが可能となる。   A cold-rolled sheet that has been rolled to the final sheet thickness that satisfies the above conditions can obtain an effect of improving the texture even if it is subjected to normal primary recrystallization annealing. However, by performing primary recrystallization annealing with a heating rate between 500 and 700 ° C. being 50 ° C./sec or more, the amount of Goss orientation is further increased, and the crystal grain size after secondary recrystallization is refined, It is possible to improve the iron loss characteristics.

本発明は、上記のように、冷間圧延を適正に制御することによって、効果的に{001}<110>組織を低減し、Goss方位の強度を高める技術であるが、一次再結晶焼鈍の昇温過程において500〜700℃間の昇温速度を50℃/sec以上で急速加熱した場合には、γファイバー(<111>繊維組織)をやや低減しながら、Goss方位の存在割合を高めることができる。一次再結晶焼鈍の昇温速度を50℃/sec以上に高めることは、{001}<110>組織の低減には寄与しないが、Goss方位の存在割合を高める効果があるため、最終製品の二次再結晶粒径を微細化し、低鉄損を得ることが可能となる。なお、上記急速加熱は、冷間圧延後の組織の回復に相当する温度域を急熱し、再結晶させることが目的であるため、その温度域は、組織の回復域である500〜700℃間とする。しかし、昇温速度が50℃/sec未満では、上記温度域での回復を十分に抑制することができない。   As described above, the present invention is a technique for effectively reducing the {001} <110> structure and increasing the strength of the Goss orientation by appropriately controlling the cold rolling. When rapidly heating at a heating rate of 500 to 700 ° C. at 50 ° C./sec or higher in the temperature raising process, increasing the existence ratio of the Goss orientation while slightly reducing the γ fiber (<111> fiber structure). Can do. Increasing the temperature increase rate of primary recrystallization annealing to 50 ° C./sec or more does not contribute to the reduction of {001} <110> structure, but has the effect of increasing the existence ratio of Goss orientation. It becomes possible to refine the next recrystallized grain size and obtain a low iron loss. The rapid heating is intended to rapidly reheat and recrystallize the temperature range corresponding to the recovery of the structure after cold rolling, so the temperature range is between 500 to 700 ° C., which is the recovery range of the structure. And However, if the rate of temperature rise is less than 50 ° C./sec, recovery in the above temperature range cannot be sufficiently suppressed.

一次再結晶焼鈍は、一般に脱炭焼鈍を兼ねることが多く、この場合は、焼鈍時の雰囲気は適正な酸化雰囲気(例えば、PHO/PH>0.1)とするのが好ましい。なお、高い昇温速度が求められる500〜700℃間については、設備などの制約により酸化雰囲気とすることが困難な場合が考えられるが、当該温度範囲における雰囲気はPHO/PH≦0.1であってもよく、また、一次再結晶焼鈍とは別に、改めて脱炭焼鈍を実施してもよい。 In general, primary recrystallization annealing often serves also as decarburization annealing. In this case, the atmosphere during annealing is preferably an appropriate oxidizing atmosphere (for example, PH 2 O / PH 2 > 0.1). Note that the inter-500 to 700 ° C. required high heating rate, it is considered can be difficult to oxidizing atmosphere by constraints such as facilities, the atmosphere in the temperature range PH 2 O / PH 2 ≦ 0 1 may be used, and decarburization annealing may be performed again separately from the primary recrystallization annealing.

一次再結晶焼鈍を施した鋼板は、その後、鋼板表面に焼鈍分離剤を塗布した後、二次再結晶させる仕上焼鈍を施す。上記焼鈍分離剤としては、従来公知のものを用いることができ、例えば、MgOを主成分とし、必要に応じて、TiOなどを添加したものや、SiOやAlを主成分としたものを用いることができる。 The steel sheet subjected to primary recrystallization annealing is then subjected to finish annealing for applying secondary annealing to the steel sheet surface after applying an annealing separator. As the annealing separator, conventionally known ones can be used. For example, MgO is the main component, and if necessary, TiO 2 or the like is added, or SiO 2 or Al 2 O 3 is the main component. Can be used.

上記仕上焼鈍後の鋼板は、その後、鋼板表面に絶縁被膜を塗布し焼き付けた後、必要に応じて、平坦化焼鈍して鋼板形状を整えるのが好ましい。なお、上記絶縁被膜の種類については、特に制限はないが、鋼板表面に引張張力を付与する絶縁被膜を形成する場合には、特開昭50−79442号公報や特開昭48−39338号公報等に記載されているリン酸塩−クロム酸−コロイダルシリカを含有する塗布液を用いて、800℃程度で焼き付けるのが好ましい。また、上記焼鈍分離剤としてSiOやAlを主成分とするものを用いる場合には、仕上焼鈍後の鋼板表面にはフォルステライト被膜が形成されないので、改めてMgOを主成分とする水スラリーを塗布し、フォルステライト被膜を形成する焼鈍を施してもから、絶縁被膜を被成してもよい。 The steel sheet after the above-mentioned finish annealing is then preferably applied with an insulating film on the steel sheet surface and baked, and then flattened and annealed to adjust the steel sheet shape as necessary. The type of the insulating coating is not particularly limited. However, when forming an insulating coating that imparts tensile tension to the steel sheet surface, Japanese Patent Laid-Open Nos. 50-79442 and 48-39338 are disclosed. It is preferable to bake at about 800 ° C. using a coating solution containing phosphate-chromic acid-colloidal silica described in the above. In addition, when a material mainly composed of SiO 2 or Al 2 O 3 is used as the annealing separator, a forsterite film is not formed on the surface of the steel sheet after finish annealing, so that water containing MgO as a main component is newly formed. The insulating film may be formed after the slurry is applied and annealed to form a forsterite film.

C:0.050mass%、Si:3.3mass%およびMn:0.04mass%を含有し、さらに、S,SeおよびOを各々0.0050mass%未満、Nを0.0025mass%未満含有し、残部がFeおよび不可避的不純物の成分組成からなる、インヒビター成分を含有しない鋼スラブを1100℃に加熱後、熱間圧延して板厚:2.0mmの熱延板とした。次いで、上記熱延板に1000℃×70秒の熱延板焼鈍を施した後、ロール径:300mmφの4スタンドのタンデム圧延機で冷間圧延し、最終板厚が0.29mm(総圧下率86%)の冷延板とした。上記冷間圧延では、表1に示したように、最初の1スタンドの圧延を圧下率35%とし、歪速度を80s−1、120s−1、160s−1および200s−1の4水準に変化させた。なお、2スタンド以降の歪速度は、1スタンドの歪速度と2スタンド以降の圧下率配分が決まれば、自ずと決まる。 C: 0.050 mass%, Si: 3.3 mass%, and Mn: 0.04 mass%, S, Se, and O are each contained less than 0.0050 mass%, N is contained less than 0.0025 mass%, and the balance A steel slab having a composition of Fe and inevitable impurities and containing no inhibitor component was heated to 1100 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm. Subsequently, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 70 seconds, and then cold-rolled with a 4-stand tandem rolling mill having a roll diameter of 300 mmφ, and the final sheet thickness was 0.29 mm (total rolling reduction) 86%). In the cold rolling, as shown in Table 1, the rolling of the first one stand and 35% rate reduction, changing the strain rate 80s -1, the four levels of 120s -1, 160s -1 and 200 s -1 I let you. Note that the strain rate after 2 stands is naturally determined if the strain rate of 1 stand and the reduction rate distribution after 2 stands are determined.

Figure 2012184497
Figure 2012184497

上記冷延板は、その後、均熱温度を840℃、均熱時間を100秒とする脱炭焼鈍を兼ねた一次再結晶焼鈍を施してから、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布した後、仕上焼鈍を施して二次再結晶させ、次いで、上記二次再結晶焼鈍後の鋼板表面に、リン酸塩−クロム酸塩−コロイダルシリカを重量比3:1:2で含有する塗布液を塗布し、800℃×30秒の平坦化焼鈍を施し、製品コイルとした。   The cold-rolled sheet is then subjected to primary recrystallization annealing also serving as decarburization annealing with a soaking temperature of 840 ° C. and a soaking time of 100 seconds, and then an annealing separator mainly composed of MgO on the steel sheet surface. Then, finish annealing is performed to perform secondary recrystallization, and then the surface of the steel sheet after the secondary recrystallization annealing contains phosphate-chromate-colloidal silica in a weight ratio of 3: 1: 2. The coating liquid to be applied was applied, and flattening annealing was performed at 800 ° C. for 30 seconds to obtain a product coil.

その後、上記各製品コイルの長さ方向中央部かつ幅方向中央部より幅30mm×長さ280mmのエプスタイン試験片を総重量で500g以上を切り出し、エプスタイン試験によりGoss方位への集積度の指標となる磁束密度Bを測定した。
上記測定の結果を図3に示した。図3から、1スタンド、即ち、総圧下率が50%以下の段階において、歪速度150s−1以下の圧延を施すことにより、磁束密度Bが大きく向上していることがわかる。
Thereafter, an Epstein test piece having a width of 30 mm and a length of 280 mm is cut out from the center in the length direction and the width in the center of each product coil, and a total weight of 500 g or more is cut out. the magnetic flux density B 8 were measured.
The result of the measurement is shown in FIG. From FIG. 3, it can be seen that the magnetic flux density B 8 is greatly improved by rolling at one stand, that is, at a stage where the total rolling reduction is 50% or less, at a strain rate of 150 s −1 or less.

実施例1で製造した冷延コイルから、試料を切り出し、500〜700℃間の昇温速度を30℃/secと100℃/secの2水準に振り分けて加熱し、PHO/PH=0.32の雰囲気下で、900℃×50秒の均熱処理する一次再結晶焼鈍を施した。なお、一部の試料については、PHO/PH=0.01の雰囲気で900℃×50秒の一次再結晶焼鈍を施したが、この場合には、一次再結晶焼鈍の後、別途、PHO/PH=0.30で、820℃×30秒の脱炭焼鈍を施した。
その後、上記試料(鋼板)表面にMgOを主成分とする焼鈍分離剤を塗布した後、仕上焼鈍を施して二次再結晶させ、次いで、上記二次再結晶焼鈍後の鋼板表面に、リン酸塩−クロム酸塩−コロイダルシリカを重量比3:1:2で含有する塗布液を塗布し、800℃×30秒の平坦化焼鈍を施し、製品コイルとした。
その後、上記各製品コイルの長さ方向中央部かつ幅方向中央部より幅30mm×長さ280mmのエプスタイン試験片を総重量で500g以上を切り出し、エプスタイン試験により磁束密度Bおよび鉄損W17/50を測定し、その結果を表2に示した。
A sample was cut out from the cold-rolled coil produced in Example 1, and the heating rate between 500 to 700 ° C. was divided into two levels of 30 ° C./sec and 100 ° C./sec and heated, and PH 2 O / PH 2 = In an atmosphere of 0.32, primary recrystallization annealing was performed by soaking at 900 ° C. for 50 seconds. Note that some samples were subjected to primary recrystallization annealing at 900 ° C. for 50 seconds in an atmosphere of PH 2 O / PH 2 = 0.01. In this case, separately after the primary recrystallization annealing, PH 2 O / PH 2 = 0.30, and decarburization annealing was performed at 820 ° C. for 30 seconds.
Then, after applying an annealing separator mainly composed of MgO to the surface of the sample (steel plate), finish annealing is performed to cause secondary recrystallization, and then the surface of the steel plate after the secondary recrystallization annealing is subjected to phosphoric acid. A coating solution containing salt-chromate-colloidal silica at a weight ratio of 3: 1: 2 was applied, and flattening annealing was performed at 800 ° C. for 30 seconds to obtain a product coil.
Thereafter, an Epstein test piece having a width of 30 mm and a length of 280 mm from the center in the length direction and the center in the width direction of each product coil was cut out in a total weight of 500 g or more, and magnetic flux density B 8 and iron loss W 17 / 50 was measured and the results are shown in Table 2.

表2から、総圧下率50%以下に相当する圧延スタンドで150s−1以下の低歪速度圧延を実施した本発明に適合する条件では、磁束密度Bが良好であり、特に、一次再結晶焼鈍の昇温速度を50℃/sec以上とした条件では、鉄損W17/50も極めて良好となることがわかる。 From Table 2, the magnetic flux density B 8 is good under the conditions suitable for the present invention in which the low strain rate rolling of 150 s −1 or less was performed on a rolling stand corresponding to a total rolling reduction of 50% or less, and in particular, primary recrystallization. It can be seen that the iron loss W 17/50 is very good under the conditions where the temperature elevation rate of annealing is 50 ° C./sec or more.

Figure 2012184497
Figure 2012184497

C:0.030mass%、Si:3.34mass%およびMn:0.08mass%を含有し、Al:0.0250mass%およびN:0.0080mass%を含有し、さらに、インヒビター成分を含有する鋼スラブを1350℃に加熱後、熱間圧延して板厚2.4mmの熱延板とした後、1060℃×10秒の熱延板焼鈍を施した熱延コイルを6コイル用意した。次いで、上記熱延コイルを、表3に示したように、ロール径が60mmφのリバース圧延機と、ロール径が300mmφの4スタンドタンデム圧延機を用いて、1.2mm(圧下率50%)の中間板厚とする前半の冷間圧延を施した。なお、上記リバース圧延では、歪速度を150s−1以上の2パスの圧延で、また、タンデム圧延では、各パスの歪速度を100s−1以下として圧延した。
上記のようにして得た中間板厚のコイル幅中央部から100mm角の試料を切り出し、X線測定し、得られた正極点図からADC法によって解析を行い、Euler空間(φ=45°断面)のODFとしたφ=0°、φ=0°の値を、{001}<110>方位の強度とした。
Steel slab containing C: 0.030 mass%, Si: 3.34 mass% and Mn: 0.08 mass%, Al: 0.0250 mass% and N: 0.0080 mass%, and further containing an inhibitor component After heating to 1350 ° C. and hot rolling to obtain a hot-rolled sheet having a thickness of 2.4 mm, six hot-rolled coils subjected to hot-rolled sheet annealing at 1060 ° C. × 10 seconds were prepared. Next, as shown in Table 3, the hot-rolled coil was 1.2 mm (rolling ratio 50%) using a reverse rolling mill having a roll diameter of 60 mmφ and a 4-stand tandem rolling mill having a roll diameter of 300 mmφ. The first half was cold-rolled to an intermediate thickness. In the reverse rolling, rolling was performed by two-pass rolling with a strain rate of 150 s −1 or more, and in tandem rolling, the strain rate of each pass was 100 s −1 or less.
A sample of 100 mm square was cut out from the coil width center part of the intermediate plate thickness obtained as described above, X-ray measurement was performed, and analysis was performed by the ADC method from the obtained positive electrode dot diagram, and Euler space (φ 2 = 45 ° The values of φ = 0 ° and φ 1 = 0 ° as the ODF of the (cross section) were taken as the intensity of the {001} <110> orientation.

Figure 2012184497
Figure 2012184497

次いで、上記中間板厚の冷延板コイルに、1050℃×20秒の中間焼鈍を施した後、あるいは施すことなく、ロール径60mmφのリバース圧延機を用いて後半の冷間圧延(5パス)を施して最終板厚が0.22mm(圧下率82%)の冷延板とした。なお、この後半の冷間圧延は、歪速度を、400s−1以上の高速圧延と、150s−1以下の低速圧延の2水準に振り分けたて行った。
次いで、上記最終板厚とした冷延板に、均熱温度900℃、均熱時間20秒の一次再結晶焼鈍を施した後、鋼板表面にAlを主成分とする焼鈍分離剤を塗布してから、仕上焼鈍して二次再結晶させた。なお、上記仕上焼鈍後の鋼板は、表面にフォルステライト被膜が形成されていないため、MgOを主成分とするスラリーを塗布し、被膜形成焼鈍を施した後、さらに、リン酸塩−クロム酸塩−コロイダルシリカを重量比3:1:2で含有する塗布液を塗布し、800℃×30秒の平坦化焼鈍を施して製品コイルとした。
Next, the cold rolled sheet coil (5 passes) in the latter half using a reverse rolling mill with a roll diameter of 60 mmφ after or without performing intermediate annealing at 1050 ° C. for 20 seconds on the cold rolled sheet coil having the intermediate sheet thickness. To obtain a cold-rolled sheet having a final sheet thickness of 0.22 mm (rolling ratio 82%). In the latter half of the cold rolling, the strain rate was divided into two levels: high speed rolling at 400 s −1 or higher and low speed rolling at 150 s −1 or lower.
Next, after subjecting the cold-rolled sheet having the above final thickness to primary recrystallization annealing at a soaking temperature of 900 ° C. and a soaking time of 20 seconds, an annealing separator containing Al 2 O 3 as a main component is applied to the steel sheet surface. After the application, finish annealing was performed for secondary recrystallization. In addition, since the forsterite film is not formed on the surface of the steel sheet after the finish annealing, after applying a slurry containing MgO as a main component and performing film formation annealing, the phosphate-chromate is further added. -The coating liquid which contains colloidal silica by weight ratio 3: 1: 2 was apply | coated, and the flattening annealing of 800 degreeC x 30 second was given, and it was set as the product coil.

上記のようにして得た各製品コイルの長さ方向中央部かつ幅方向中央部から、幅30mm×長さ280mmのエプスタイン試験片を500g以上切り出し、エプスタイン試験により磁束密度Bを測定した。
上記の結果を表3に併記した。表3から、総圧下率が50%以下の段階を低歪速度(<100s−1)で冷間圧延したNo.1〜3の鋼板は、高歪速度(>150s−1)で冷間圧延したNo.4〜6の鋼板と比較して、良好な磁束密度Bを示していることがわかる。ただし、No.3の鋼板は、圧延途中の{001}<110>強度は低く、製品板の磁気特性(B)も良好であるが、後半の冷延速度が低いため、潤滑性が悪く、形状不良が発生した。
From the longitudinal central portion and the widthwise central portion of each product coil obtained as described above, cut out above 500g Epstein test piece width 30 mm × length 280 mm, the magnetic flux density was measured B 8 by Epstein test.
The results are shown in Table 3. From Table 3, No. was obtained by cold rolling a stage with a total rolling reduction of 50% or less at a low strain rate (<100 s −1 ). The steel plates 1 to 3 were No. 1 cold-rolled at high strain rates (> 150 s −1 ). 4-6 in comparison with steel, it can be seen that show good magnetic flux density B 8. However, no. The steel plate No. 3 has a low {001} <110> strength during rolling and good magnetic properties (B 8 ) of the product plate, but has a poor lubricity and poor shape due to the low cold rolling speed in the latter half. Occurred.

C:0.040mass%、Si:3.3mass%、Mn:0.05mass%、Se:0.02mass%を含有し、その他の成分として、Ni,Sn,Sb,Cu,P,Mo,NbおよびCrを、表4に示す組成で含有する鋼を溶製し、鋼スラブとし、1400℃に加熱後、熱間圧延して板厚2.2mmの熱延板とし、1000℃×60秒の熱延板焼鈍を施した。次いで、上記熱延板を、ロール径が280mmφの4スタンドタンデム圧延機を用いて、1スタンド目の歪速度を100s−1未満として前半の冷間圧延を施し、1.5mm(圧下率32%)の中間板厚とした。この際、比較例として、Ni,Sn,Sb,Cu,P,Mo,NbおよびCrを含まないコイルのうちの1つを、2.2mmの熱延板から中間板厚0.8mmまで、ロール径100mmφのリバース圧延機で圧延した。
次いで、1050℃×20秒の中間焼鈍を施した後、ロール径が100mmφのリバース圧延機を用いて後半の冷間圧延を行い、最終板厚0.22mm(圧下率85%)の冷延板とした。なお、リバース圧延機の歪速度は、5パスで圧延し、いずれのパスも歪速度は400−1以上とした。
その後、上記冷延板に850℃×40秒の一次再結晶焼鈍を施した後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を施し、得られた二次再結晶後の鋼板に、リン酸塩−クロム酸円塩−コロイダルシリカを質量比3:1:2で含有する塗布液を塗布し、850℃×30秒の焼付けと平坦化を兼ねた平坦化焼鈍を施し、製品コイルとした。
C: 0.040 mass%, Si: 3.3 mass%, Mn: 0.05 mass%, Se: 0.02 mass%, and other components include Ni, Sn, Sb, Cu, P, Mo, Nb and Steel containing Cr with the composition shown in Table 4 is melted to form a steel slab, heated to 1400 ° C., hot-rolled to a hot-rolled sheet having a thickness of 2.2 mm, and heat at 1000 ° C. for 60 seconds. The steel sheet was annealed. Subsequently, the hot rolled sheet was subjected to cold rolling in the first half using a 4-stand tandem rolling mill having a roll diameter of 280 mmφ, with the strain rate of the first stand being less than 100 s −1 , and 1.5 mm (reduction rate of 32% ) Intermediate plate thickness. At this time, as a comparative example, one of the coils not containing Ni, Sn, Sb, Cu, P, Mo, Nb, and Cr was rolled from a 2.2 mm hot rolled plate to an intermediate plate thickness of 0.8 mm. It rolled with the reverse rolling mill of diameter 100mmphi.
Next, after intermediate annealing at 1050 ° C. × 20 seconds, cold rolling in the latter half was performed using a reverse rolling mill having a roll diameter of 100 mmφ, and a cold-rolled sheet having a final sheet thickness of 0.22 mm (reduction rate of 85%) It was. Incidentally, the strain rate of the reverse rolling mill, rolling in five passes, each pass is also the strain rate was 400 -1.
Then, after subjecting the cold-rolled sheet to primary recrystallization annealing at 850 ° C. for 40 seconds, an annealing separator mainly composed of MgO is applied to the steel sheet surface, finish annealing is performed, and the obtained secondary recrystallization is performed. A coating solution containing phosphate-chromic acid salt-colloidal silica in a mass ratio of 3: 1: 2 is applied to the steel plate, and subjected to flattening annealing that combines baking and flattening at 850 ° C. for 30 seconds. The product coil.

Figure 2012184497
Figure 2012184497

上記のようにして得た各製品コイルの長さ方向中央部かつ幅方向中央部の位置から30mm×280mmの試験片を総重量が500gとなるよう切り出し、エプスタイン試験により磁束密度Bを測定し、得られた結果を、表4に併記した。
表4から、補助インヒビターとして、Ni,Sn,Sb,Cu,P,Mo,NbおよびCrのいずれか1種以上を添加した鋼板は、添加しない鋼板より磁束密度が向上していることがわかる。
A test piece of 30 mm × 280 mm was cut out from the position of the center in the length direction and the center in the width direction of each product coil obtained as described above so that the total weight was 500 g, and the magnetic flux density B 8 was measured by the Epstein test. The results obtained are also shown in Table 4.
From Table 4, it can be seen that the steel sheet to which any one or more of Ni, Sn, Sb, Cu, P, Mo, Nb, and Cr are added as an auxiliary inhibitor has a higher magnetic flux density than the steel sheet not added.

本発明の技術は、{001}<110>方位を低減することができるので、ステンレス鋼板等で生じるリジングを改善する方法としても利用することができる。   Since the technique of the present invention can reduce the {001} <110> orientation, it can also be used as a method for improving ridging that occurs in a stainless steel plate or the like.

Claims (8)

C:0.01〜0.10mass%、Si:2.0〜4.5mass%およびMn:0.01〜0.5mass%を含有する鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延で圧下率85%以上の圧延をし、あるいは、中間焼鈍を挟む2回以上の冷間圧延で最終冷延圧下率80%以上の圧延をして最終板厚の冷延板とし、その後、一次再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、
上記冷間圧延における総圧下率が50%以下の段階において、歪速度150s−1以下の低歪速度冷間圧延を最低1パス以上施すことを特徴とする方向性電磁鋼板の製造方法。
A steel slab containing C: 0.01 to 0.10 mass%, Si: 2.0 to 4.5 mass%, and Mn: 0.01 to 0.5 mass% is hot-rolled to form a hot-rolled sheet. After sheet annealing, rolling at a reduction rate of 85% or more in one cold rolling, or rolling at a final cold rolling reduction rate of 80% or more in two or more cold rollings with intermediate annealing. In the method for producing a grain-oriented electrical steel sheet, which is a cold-rolled sheet having a final sheet thickness, and then subjected to primary recrystallization annealing and secondary recrystallization annealing,
A method for producing a grain - oriented electrical steel sheet, wherein a low strain rate cold rolling at a strain rate of 150 s -1 or less is applied at least one pass at a stage where the total rolling reduction in the cold rolling is 50% or less.
上記歪速度を100s−1以下とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the strain rate is 100 s -1 or less. 上記低歪速度冷間圧延後の鋼板組織における{001}<110>強度を10以下とすることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the {001} <110> strength in the steel sheet structure after the low strain rate cold rolling is 10 or less. 上記冷間圧延における総圧下率が50%超え以降では、歪速度400s−1以上で圧延することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein rolling is performed at a strain rate of 400 s -1 or more after the total rolling reduction in the cold rolling exceeds 50%. 上記一次再結晶焼鈍において、500〜700℃間の昇温速度を50℃/sec以上とすることを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 In the said primary recrystallization annealing, the temperature increase rate between 500-700 degreeC shall be 50 degrees C / sec or more, The manufacturing method of the grain-oriented electrical steel sheet of any one of Claims 1-4 characterized by the above-mentioned. 上記鋼スラブは、上記成分組成に加えてさらに、AlN系インヒビター成分としてAl:0.01〜0.065mass%およびN:0.005〜0.012mass%、および/または、MnS・MnSe系インヒビター成分としてS:0.005〜0.03mass%および/またはSe:0.005〜0.03mass%を含有することを特徴とする請求項1〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel slab further includes Al: 0.01 to 0.065 mass% and N: 0.005 to 0.012 mass%, and / or MnS / MnSe inhibitor component as an AlN inhibitor component. The grain-oriented electrical steel sheet according to any one of claims 1 to 5, wherein S: 0.005-0.03 mass% and / or Se: 0.005-0.03 mass% are contained. Production method. 上記鋼スラブは、上記成分組成に加えてさらに、Al,N,SおよびSeをAl:0.0100mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下を含有することを特徴とする請求項1〜5のいずれか1項に記載の方向性電磁鋼板の製造方法。 In the steel slab, in addition to the above component composition, Al, N, S and Se are further Al: 0.0100 mass% or less, N: 0.0050 mass% or less, S: 0.0050 mass% or less, and Se: 0.0050 mass. % Or less is contained, The manufacturing method of the grain-oriented electrical steel sheet of any one of Claims 1-5 characterized by the above-mentioned. 上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%、Nb:0.0005〜0.010mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜7のいずれか1項に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel slab further includes Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.00. 03-3.0 mass%, P: 0.03-0.50 mass%, Mo: 0.005-0.10 mass%, Nb: 0.0005-0.010 mass% and Cr: 0.03-1.50 mass% 1 or 2 types or more chosen from among these are contained, The manufacturing method of the grain-oriented electrical steel sheet of any one of Claims 1-7 characterized by the above-mentioned.
JP2011174949A 2011-02-17 2011-08-10 Method for producing grain-oriented electrical steel sheet Active JP5835557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174949A JP5835557B2 (en) 2011-02-17 2011-08-10 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011032050 2011-02-17
JP2011032050 2011-02-17
JP2011174949A JP5835557B2 (en) 2011-02-17 2011-08-10 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012184497A true JP2012184497A (en) 2012-09-27
JP5835557B2 JP5835557B2 (en) 2015-12-24

Family

ID=47014805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174949A Active JP5835557B2 (en) 2011-02-17 2011-08-10 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5835557B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173098A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
JP2014196558A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet
JP2014208895A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
JP2015168869A (en) * 2014-03-10 2015-09-28 Jfeスチール株式会社 Cold rolled steel sheet, grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet
WO2016084378A1 (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
JP2016156070A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
JP2016156069A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
CN109477186A (en) * 2016-07-29 2019-03-15 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate hot rolled steel plate and its manufacturing method and orientation electromagnetic steel plate
CN112195399A (en) * 2012-12-12 2021-01-08 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet
CN112752623A (en) * 2018-09-28 2021-05-04 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet and cold rolling facility
CN112916615A (en) * 2021-01-22 2021-06-08 内蒙古工业大学 High-performance oriented silicon steel cold rolling process
CN113366124A (en) * 2019-01-24 2021-09-07 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
WO2022004678A1 (en) 2020-06-30 2022-01-06 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet production method and equipment line
CN116460139A (en) * 2023-03-23 2023-07-21 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323607B2 (en) * 1981-11-16 1991-03-29 Nippon Steel Corp
JPH09157745A (en) * 1995-12-01 1997-06-17 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPH1036914A (en) * 1996-07-22 1998-02-10 Kawasaki Steel Corp Production of grain oriented electric steel sheet excellent in magnetic characteristic
JPH10121213A (en) * 1996-10-21 1998-05-12 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP2010280970A (en) * 2009-06-05 2010-12-16 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet with good magnetic flux density

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323607B2 (en) * 1981-11-16 1991-03-29 Nippon Steel Corp
JPH09157745A (en) * 1995-12-01 1997-06-17 Kawasaki Steel Corp Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPH1036914A (en) * 1996-07-22 1998-02-10 Kawasaki Steel Corp Production of grain oriented electric steel sheet excellent in magnetic characteristic
JPH10121213A (en) * 1996-10-21 1998-05-12 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP2010280970A (en) * 2009-06-05 2010-12-16 Nippon Steel Corp Method for producing grain-oriented electromagnetic steel sheet with good magnetic flux density

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195399A (en) * 2012-12-12 2021-01-08 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet
JP2014173098A (en) * 2013-03-06 2014-09-22 Jfe Steel Corp Method of producing grain-oriented magnetic steel sheet
JP2014196558A (en) * 2013-03-07 2014-10-16 Jfeスチール株式会社 Method of producing grain-oriented electrical steel sheet
JP2014208895A (en) * 2013-03-27 2014-11-06 Jfeスチール株式会社 Method of producing grain oriented electrical steel
JP2015168869A (en) * 2014-03-10 2015-09-28 Jfeスチール株式会社 Cold rolled steel sheet, grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet
WO2016084378A1 (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet
JP6098772B2 (en) * 2014-11-27 2017-03-22 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JPWO2016084378A1 (en) * 2014-11-27 2017-04-27 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
RU2665649C1 (en) * 2014-11-27 2018-09-03 ДжФЕ СТИЛ КОРПОРЕЙШН Method of making plate of textured electrical steel
US10428403B2 (en) 2014-11-27 2019-10-01 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
JP2016156070A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
JP2016156069A (en) * 2015-02-25 2016-09-01 Jfeスチール株式会社 Method of manufacturing grain-oriented electrical steel sheet
CN109477186A (en) * 2016-07-29 2019-03-15 杰富意钢铁株式会社 The manufacturing method of orientation electromagnetic steel plate hot rolled steel plate and its manufacturing method and orientation electromagnetic steel plate
CN109477186B (en) * 2016-07-29 2020-11-27 杰富意钢铁株式会社 Hot-rolled steel sheet for grain-oriented electrical steel sheet, method for producing same, and method for producing grain-oriented electrical steel sheet
CN112752623A (en) * 2018-09-28 2021-05-04 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet and cold rolling facility
EP3854891A4 (en) * 2018-09-28 2021-07-28 JFE Steel Corporation Method for producing grain-oriented electromagnetic steel sheet, and cold rolling equipment
CN113366124A (en) * 2019-01-24 2021-09-07 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
CN113366124B (en) * 2019-01-24 2023-01-17 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
WO2022004678A1 (en) 2020-06-30 2022-01-06 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet production method and equipment line
CN112916615A (en) * 2021-01-22 2021-06-08 内蒙古工业大学 High-performance oriented silicon steel cold rolling process
CN116460139A (en) * 2023-03-23 2023-07-21 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof
CN116460139B (en) * 2023-03-23 2024-01-02 首钢智新迁安电磁材料有限公司 Ultrathin high-magnetic-induction oriented silicon steel and rolling method thereof

Also Published As

Publication number Publication date
JP5835557B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5835557B2 (en) Method for producing grain-oriented electrical steel sheet
KR101508082B1 (en) Method of producing non-oriented electrical steel sheet
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
EP2963130B1 (en) Method for producing grain-orientated electrical steel sheets
WO2013039193A1 (en) Process for producing grain-oriented electromagnetic steel sheet with excellent core loss characteristics
JP2014152392A (en) Method for producing grain-oriented magnetic steel sheet
JP6191826B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
WO2017155057A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2014114499A (en) Grain oriented silicon steel plate
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP5206017B2 (en) Method for producing high silicon steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
JP7028215B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5434524B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP6143010B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
WO2024053628A1 (en) Method for producing grain-oriented electromagnetic steel sheet, and induction heater
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
WO2024053627A1 (en) Method for producing grain-oriented electromagnetic steel sheet, and induction heater
JP7081725B1 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151020

R150 Certificate of patent or registration of utility model

Ref document number: 5835557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250