JP2005262217A - Method for producing grain oriented silicon steel sheet having excellent magnetic property - Google Patents

Method for producing grain oriented silicon steel sheet having excellent magnetic property Download PDF

Info

Publication number
JP2005262217A
JP2005262217A JP2004073695A JP2004073695A JP2005262217A JP 2005262217 A JP2005262217 A JP 2005262217A JP 2004073695 A JP2004073695 A JP 2004073695A JP 2004073695 A JP2004073695 A JP 2004073695A JP 2005262217 A JP2005262217 A JP 2005262217A
Authority
JP
Japan
Prior art keywords
rolling
annealing
hot
less
rolled sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004073695A
Other languages
Japanese (ja)
Other versions
JP4568875B2 (en
Inventor
Takashi Wada
崇志 和田
Minoru Takashima
高島  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004073695A priority Critical patent/JP4568875B2/en
Publication of JP2005262217A publication Critical patent/JP2005262217A/en
Application granted granted Critical
Publication of JP4568875B2 publication Critical patent/JP4568875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a cold-rolled sheet which is tandem rolled into a sheet in which strain is highly accumulated by utilizing molten carbon in steel or carbide which is finely precipitated and to make its texture into a structure which is suitable to development of grains in goss azimuth. <P>SOLUTION: When producing a grain oriented silicon steel sheet by a series of processes including the cold rolling with a tandem mill, the annealing of a hot-rolled sheet is performed by cooling the temperature range of 900-500°C at the rate of 30-250°C/s after heating the sheet to ≥ 900°C, next, cooling the temperature range of 500-200°C at the rate of 50-150°C/s and further continuing cooling. Interstand aging treatment is performed at the duration time of 1-60 s at 150-300°C in at least one succeeding place between stands after performing the rolling with the tandem mill at the cumulative draft of ≥ 30%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は方向性電磁鋼板の製造方法に係り、特に最終圧延工程にタンデム圧延機を用いる方向性電磁鋼板の製造方法に関する。   The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more particularly to a method for producing a grain-oriented electrical steel sheet using a tandem rolling mill in the final rolling process.

方向性電磁鋼板の磁気特性の向上を図るためには、鋼板を鉄の磁化容易軸である<001>方向が鋼板の圧延方向に高度に集積した結晶粒群をもつものとする必要がある。このような結晶粒群の生成は、最終仕上げ焼鈍時に、いわゆる{110}<001>方位(「ゴス方位」と称される)の結晶粒を二次再結晶粒として優先的に発達成長させることにより達成されている。   In order to improve the magnetic properties of grain-oriented electrical steel sheets, it is necessary that the steel sheets have a group of crystal grains in which the <001> direction, which is the easy axis of iron, is highly integrated in the rolling direction of the steel sheet. The generation of such a crystal grain group is to preferentially develop and grow the crystal grains of so-called {110} <001> orientation (referred to as “Goth orientation”) as secondary recrystallized grains during final finish annealing. Has been achieved.

二次再結晶粒をゴス方位に発達させるためには、二次再結晶過程で{110}<001>方位以外の方位を持つ結晶粒の成長を強く抑制するインヒビターを使用すること周知であり、かかるインヒビターとしてはMnS、MnSeあるいはAlN等の微細析出物が広く用いられている。さらに、上記の析出型のインヒビターに加えて、粒界偏析型の元素であるSb、Bi,Sn、Pb、Te等の複合添加により粒成長の抑制効果を補強する方法も周知である。また、このような析出型インヒビターを利用してゴス方位粒を発達させる方法のほかに、インヒビター形成成分を含有させることなく素材を高純度化してテクスチャーインヒビションを利用してゴス方位粒の選択的成長を図る手段が特許文献1等に記載されている。   In order to develop secondary recrystallized grains in the Goss orientation, it is well known to use an inhibitor that strongly suppresses the growth of grains having orientations other than {110} <001> orientation in the secondary recrystallization process, As such an inhibitor, fine precipitates such as MnS, MnSe or AlN are widely used. Furthermore, in addition to the precipitation type inhibitor described above, a method for reinforcing the effect of suppressing grain growth by a combined addition of grain boundary segregation type elements such as Sb, Bi, Sn, Pb, and Te is also well known. In addition to the method of developing goth-oriented grains using such precipitation type inhibitors, the selection of goth-oriented grains using texture inhibition by purifying the material without containing inhibitor-forming components. Means for achieving a desired growth is described in Patent Document 1 and the like.

ところで、方向性電磁鋼板は、出発素材スラブを熱間圧延し、得られた熱延板に熱延板焼鈍を施した後に冷間圧延を施して最終板厚の冷延板とし、これに脱炭焼鈍および最終仕上げ焼鈍を施すという工程により製造される。近年では、この製造に当たり、冷間圧延をタンデム圧延によって行なうことが生産性向上のキーポイントとなっている。   By the way, the grain-oriented electrical steel sheet is obtained by hot-rolling the starting material slab, subjecting the obtained hot-rolled sheet to hot-rolled sheet annealing, and then cold-rolling to obtain a cold-rolled sheet having a final thickness. Manufactured by a process of applying carbon annealing and final finishing annealing. In recent years, in this production, performing cold rolling by tandem rolling has become a key point for improving productivity.

タンデム圧延においても、上記インヒビターの作用あるいはテクスチャーインヒビションの作用は、冷間圧延された冷延板を一次再結晶させ、さらにそれを二次再結晶させる段階で現れる。したがって、一次再結晶焼鈍(通常脱炭焼鈍を兼ねる)前の段階において、ゴス方位粒が十分発達するように、タンデム圧延された冷延板の集合組織を整えておくことが必要である。このような集合組織を得るためには、タンデム圧延された内部に高度に歪が蓄積された集合組織を得ることが必要であることも周知である。   Also in tandem rolling, the action of the inhibitor or the texture inhibition appears at the stage where the cold-rolled cold-rolled sheet is recrystallized first and then recrystallized. Therefore, it is necessary to prepare the texture of the cold-rolled sheet that has been tandem-rolled so that the goth-oriented grains are sufficiently developed before the primary recrystallization annealing (which also serves as decarburization annealing). It is also well known that in order to obtain such a texture, it is necessary to obtain a texture in which tandem rolling is highly strained.

一般に冷延板内部に高度に歪を蓄積する手段としては、鋼中に固溶しているCあるいは微細に析出している炭化物を利用する手段が知られている。例えば、特許文献2には、中間焼鈍を挟んで2回の冷間圧延を行なって最終板厚とする工程に先立ち、熱延板を790℃以上の温度から540℃以下の温度に急冷したのち、310℃〜480℃の温度域に保持して結晶粒内に光学顕微鏡の可視サイズ(数μm)のレンズ状カーバイドを析出せしめる方法が提案開示されている。   In general, as means for accumulating highly strain in the cold-rolled sheet, means using C dissolved in steel or carbide precipitated finely is known. For example, Patent Document 2 discloses that a hot rolled sheet is rapidly cooled from a temperature of 790 ° C. or more to a temperature of 540 ° C. or less prior to the step of performing cold rolling twice with intermediate annealing to obtain a final sheet thickness. And a method of precipitating lens-shaped carbide having a visible size (several μm) of an optical microscope in crystal grains while being maintained in a temperature range of 310 ° C. to 480 ° C. has been proposed.

一方、特許文献3、4には、冷延工程において、結晶粒内の固溶Cまたは微細カーバイドを利用する方法として、析出型インヒビターとしてAlNを含有する熱延板を高温焼鈍後急冷し、これに最終冷間圧延圧下率が80%以上である強冷間圧延を施す際、冷間圧延のパス間で少なくとも1回以上の時効処理を施す方法が開示されている。また、特許文献5には、中間焼鈍後の600〜300℃の温度間を冷却速度150℃/min以上で冷却し、最終冷間圧延前の段階で時効処理を施す方法が開示されている。さらに、特許文献6には、最終冷間圧延前の焼鈍時の冷却に際し、300℃〜150℃の温度域の冷却時間を厳密に制御することによって、結晶粒内カーバイドを極微小の特定範囲内に制御し、これらを多量かつ均一に分散させることにより、一次再結晶集合組繊中の{110}〈001〉方位集積度を高め、その方位の二次再結晶粒を十分成長させることによって優れた磁気特性を得る方法が開示されている。加えて特許文献7には、強圧下率で行なう冷延を材料温度が50〜350℃の範囲で行いかつ、この冷延の前に行なわれる高温焼鈍終了後冷延開始時までの熱時効継続時間を上記材料温度に合わせて調整するという手段が提案されている。   On the other hand, in Patent Documents 3 and 4, as a method of using solid solution C or fine carbide in crystal grains in a cold rolling process, a hot rolled sheet containing AlN as a precipitation inhibitor is rapidly cooled after high-temperature annealing. Discloses a method of performing an aging treatment at least once between passes of cold rolling when performing strong cold rolling with a final cold rolling reduction of 80% or more. Patent Document 5 discloses a method in which a temperature of 600 to 300 ° C. after the intermediate annealing is cooled at a cooling rate of 150 ° C./min or more, and an aging treatment is performed at a stage before the final cold rolling. Further, Patent Document 6 discloses that in the annealing before the final cold rolling, by strictly controlling the cooling time in the temperature range of 300 ° C. to 150 ° C., the in-grain carbide is within a very specific range. By controlling these to a large amount and uniformly dispersing, the {110} <001> orientation accumulation degree in the primary recrystallized aggregate fiber is increased, and the secondary recrystallized grains in that orientation are sufficiently grown. A method for obtaining the magnetic characteristics is disclosed. In addition, Patent Document 7 discloses that cold rolling performed at a high rolling reduction is performed in a material temperature range of 50 to 350 ° C. and continuation of thermal aging from the end of high-temperature annealing performed before this cold rolling to the start of cold rolling. Means have been proposed for adjusting the time according to the material temperature.

特開2003-213339号公報JP2003-213339 特公昭38−14009号公報Japanese Patent Publication No. 38-14009 特公昭54−18846号公報Japanese Patent Publication No.54-18846 特公昭54−29182号公報Japanese Patent Publication No.54-29182 特公昭56−3892号公報Japanese Patent Publication No.56-3892 特公平2−4166S号公報Japanese Patent Publication No.2-4166S 特開昭48−46511号公報JP 48-46511 A

しかしながら、特許文献2に記載の手段は、熱延板中に形成された比較的大きなサイズのカーバイドを粗大な熱延伸長粒の分裂細分化のために用いるものであり、二次再結晶粒の発達に有害な{100}〜{110}<001>方位の結晶粒を冷延工程の初期段階で消滅させる役割を担うものと考えられるが、タンデム圧延のようなスタンド間(「パス間」ともいう)での経過時間が短い場合には歪が十分蓄積された集合組織を得ることができない。   However, the means described in Patent Document 2 uses a relatively large size carbide formed in a hot-rolled sheet for fragmentation of coarse hot-drawn long grains. It is thought that it plays a role of annihilating the grains of {100} to {110} <001> orientation, which are harmful to development, at the initial stage of the cold rolling process. In the case where the elapsed time is short, it is impossible to obtain a texture in which distortion is sufficiently accumulated.

また、特許文献3及び特許文献4に係る提案は、時効処理に50℃〜350℃の温度範囲で1分間以上(特許文献3の場合)あるいは300℃〜600℃の温度範囲で1〜30秒間(特許文献4の場合)の保定が必要であり、かつこれらを多数回施すことが要請されるが、タンデム圧延ではスタンド間においてかかる時効処理時間を確保することは困難であり、一方、中間焼鈍においてかかる時効処理を行なおうとすれば、冷間圧延能力の大幅な低下や鋼板加熱コストの増大を招き経済性を害するという問題がある。また、特許文献5に記載の手段も同様の問題がある。   In addition, the proposals related to Patent Document 3 and Patent Document 4 are for aging treatment in a temperature range of 50 ° C. to 350 ° C. for 1 minute or longer (in the case of Patent Document 3) or in a temperature range of 300 ° C. to 600 ° C. for 1 to 30 seconds. (In the case of Patent Document 4), it is necessary to hold these materials many times. However, it is difficult to secure an aging time between the stands in tandem rolling, while intermediate annealing is required. If the aging treatment is to be carried out, there arises a problem that the cold rolling ability is greatly reduced and the heating cost of the steel sheet is increased, thereby impairing the economy. The means described in Patent Document 5 has the same problem.

これに対し、特許文献6に記載の手段は、実験的には磁気特性向上効果認められるものの、タンデム圧延においては十分な集合組織改善果が得られない場合があるという問題がある。また、特許文献7に記載の提案は、高温焼鈍終了後冷延開始時までの熱時効継続時間が材料温度に依存しているため、高度の生産性を要求されるタンデム圧延を含む製造工程には採用しがたいという問題がある。   On the other hand, although the means described in Patent Document 6 is experimentally recognized as an effect of improving magnetic properties, there is a problem that sufficient texture improvement results may not be obtained in tandem rolling. In addition, the proposal described in Patent Document 7 depends on the material temperature for the duration of thermal aging from the end of high-temperature annealing to the start of cold rolling, and therefore, in a manufacturing process including tandem rolling that requires high productivity. Has a problem that it is difficult to adopt.

本発明は、これら従来技術に係る問題を解決し、鋼中に固溶しているCあるいは微細に析出している炭化物を利用してタンデム圧延された冷延板を高度に歪を蓄積されたものとし、その集合組織を二次再結晶の際にゴス方位粒が発達するのに適したものとする新たな提案をなすものである。   The present invention solves these problems related to the prior art, and highly strained accumulated cold-rolled sheets tandem-rolled using C or solidly precipitated carbides in steel. It is a new proposal to make the texture suitable for the growth of goth-oriented grains during secondary recrystallization.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、最終タンデム圧延前の焼鈍条件、特に冷却条件を調整して結晶粒内に超微細カーバイドが数多くかつ均一に分散した状態とし、これにタンデム圧延により圧下率を調整した圧延を施し、次いでスタンド間時効を行なって超微細カーバイドを結晶粒内に溶解させるとともに溶解したCを転位に固着させ、この状態でさらに圧下を加えることによって結晶粒を高度に歪が蓄積された状態とすることが可能であり、それによってタンデム圧延中に優れた磁気特性を有する方向性電磁鋼板を製造し得るとの知見を得た。   As a result of intensive research to solve the above problems, the present inventors have adjusted the annealing conditions before the final tandem rolling, especially the cooling conditions, and a state in which a large number of ultrafine carbides are uniformly dispersed in the crystal grains. This is subjected to rolling with the reduction ratio adjusted by tandem rolling, and then subjected to inter-stand aging to dissolve the ultrafine carbide in the crystal grains and to fix the dissolved C to the dislocation, and in this state, further reduction is applied. As a result, it has been found that it is possible to make the crystal grains in a highly strained state, whereby a grain-oriented electrical steel sheet having excellent magnetic properties can be produced during tandem rolling.

本発明は、質量比で、C:0.015〜0.15%、Si:2.0〜4.5%、Mn:0.01〜0.5%を含有し、残部Feおよび不可避的不純物からなる鋼スラブを出発素材とし、該出発素材に熱間圧延を施して熱延板を得、該熱延板に熱延板焼鈍を施した後にタンデム圧延機による冷間圧延を施して最終板厚の冷延板を得、得られた冷延板に脱炭焼鈍および最終仕上げ焼鈍を施す工程により方向性電磁鋼板を製造するにあたり、前記熱延板焼鈍が900℃以上1500℃以下に加熱後、900〜500℃の温度範囲を30℃/s以上250℃/s以下の速度で冷却し、次いで500〜200℃の温度範囲を50℃/s以上150℃/s以下の速度で冷却し、さらに冷却を継続するものでありかつ、前記タンデム圧延機による圧延が、累積圧下率30%以上の圧延を施した後、後続の少なくとも一つのスタンド間で150℃以上300℃以下において持続時間1〜60秒のスタンド間時効処理を施し、さらに圧延を継続して最終板厚とするものである。   The present invention includes, as a starting material, a steel slab containing, by mass ratio, C: 0.015-0.15%, Si: 2.0-4.5%, Mn: 0.01-0.5%, and the balance Fe and inevitable impurities, Is subjected to hot rolling to obtain a hot-rolled sheet, and the hot-rolled sheet is subjected to hot-rolled sheet annealing and then cold-rolled by a tandem rolling mill to obtain a cold-rolled sheet having a final thickness. In producing a grain-oriented electrical steel sheet by a process of decarburizing annealing and final finishing annealing on a rolled sheet, the hot rolled sheet annealing is heated to 900 ° C. or more and 1500 ° C. or less, and the temperature range of 900 to 500 ° C. is 30 ° C. / cooling at a rate of s to 250 ° C./s, then cooling to a temperature range of 500 to 200 ° C. at a rate of 50 ° C./s to 150 ° C./s, and continuing cooling, and the tandem After rolling with a rolling mill at a cumulative reduction rate of 30% or more, between 150 ° C and 300 ° C between at least one subsequent stand Applying interstand aging treatment duration 60 seconds in the lower is for a final sheet thickness by further continuing the rolling.

上記発明は、いわゆる冷延2回法等中間焼鈍を挟んで最終板厚に冷間圧延する場合にも適用でき、その場合には、中間焼鈍のうち最終の中間焼鈍条件を、加熱温度を900℃以上、900〜500℃超の温度範囲の冷却速度を30℃/s以上250℃/s以下および500〜200℃の温度範囲の冷却速度を50℃/s以上150℃/s以下であるものとする。   The above-described invention can also be applied to the case where cold rolling is performed to the final sheet thickness with an intermediate annealing such as a so-called cold rolling two-way method, in which case the final intermediate annealing condition of the intermediate annealing is set to a heating temperature of 900. A cooling rate in the temperature range of ≧ 900 ° C. and over 900 to 500 ° C. is 30 ° C./s to 250 ° C./s and a cooling rate in the temperature range of 500 to 200 ° C. is 50 ° C./s to 150 ° C./s And

上記各発明における出発素材は、さらにAl:0.01〜0.08%およびN:0.0015〜0.015%を含有するものあるいはSまたはSeを合計で0.01〜0.05%含有するものとすることができる。また、本発明は、素材を高純度化してテクスチャーインヒビションを利用してゴス方位粒の選択的成長を図る手段にも適用でき、その場合には出発素材をAl:100ppm未満、N:60ppm未満、S:50ppm未満およびSe:50ppm未満に制限されたものとする。これらの出発素材は、さらにCu、Sb、Sn、Bi、Mo、Cr、Niから選ばれた1種または2種以上をCu、Sb、Sn、Mo、Cr、Niについては0.01〜0.5%、Biについては0.001〜0.18%含有することが可能である。   The starting material in each of the above inventions may further contain Al: 0.01 to 0.08% and N: 0.0015 to 0.015%, or contain S or Se in a total of 0.01 to 0.05%. The present invention can also be applied to means for purifying the raw material and using texture inhibition to achieve selective growth of goth-oriented grains, in which case the starting material is Al: less than 100 ppm, N: 60 ppm. Less than, S: less than 50 ppm and Se: less than 50 ppm. These starting materials further include one or more selected from Cu, Sb, Sn, Bi, Mo, Cr, Ni, 0.01 to 0.5% for Cu, Sb, Sn, Mo, Cr, Ni, Bi About 0.001 to 0.18% can be contained.

本発明によって連続圧延機であるタンデム圧延機によって温間圧延を含む冷間圧延が可能になり、安定して優れた磁気特性を有する方向性電磁鋼板を経済的に製造することが可能になる。   According to the present invention, cold rolling including warm rolling can be performed by a tandem rolling mill which is a continuous rolling mill, and a grain-oriented electrical steel sheet having stable and excellent magnetic properties can be economically manufactured.

本発明に係る出発素材である鋼スラブは、基本的に質量比で、C:0.015〜0.15%、Si:2.0〜4.5%、Mn:0.01〜0.5%を含有し、残部Feおよび不可避的不純物からなる。Cは熱間圧延時のγ−α変態を利用して結晶構造の改善を行い、かつ粒内微細カーバイドとして磁気特性の改善に寄与する重要な成分であるが、含有量が0.015%未満ではその効果が乏しく、0.15%を超えるとその後の工程において十分な脱炭が困難になり粒界セメンタイト量が増えすぎて組織の不均一による磁性劣化が生じる。したがって、その含有量は0.015%以上0.15%以下の範囲とする。Siは、鋼板の比抵抗を高め、鉄損を低下させるのに有効な成分であるが、含有量が2.0%未満では鋼板の電気抵抗が小さく、渦電流損の増大するため良好な鉄損特性が得られない。一方、4.5%を超えると飽和磁束密度の低下、冷間加工性の低下を招く。したがって、Siは2.0%以上4.5%以下の範囲とする。Mnは、比抵抗を高め、鉄損低減に有効な成分である。また熱間加工性を良好にするために必要な元素であるが、0.01%未満であると効果がなく、0.5%を超えると磁束密度が低下するので、Mnの含有量は0.01%以上0.5%以下とする。   The steel slab, which is the starting material according to the present invention, basically contains, by mass ratio, C: 0.015-0.15%, Si: 2.0-4.5%, Mn: 0.01-0.5%, and the balance Fe and unavoidable impurities. Become. C is an important component that improves the crystal structure by utilizing the γ-α transformation during hot rolling and contributes to the improvement of magnetic properties as an intragranular fine carbide. However, if the content is less than 0.015%, The effect is poor, and if it exceeds 0.15%, sufficient decarburization becomes difficult in the subsequent process, and the amount of grain boundary cementite increases too much, resulting in magnetic deterioration due to uneven structure. Therefore, the content is in the range of 0.015% or more and 0.15% or less. Si is an effective component for increasing the specific resistance of steel sheets and reducing iron loss. However, when the content is less than 2.0%, the steel sheet has low electrical resistance and eddy current loss. Cannot be obtained. On the other hand, if it exceeds 4.5%, the saturation magnetic flux density is lowered and the cold workability is lowered. Therefore, Si should be in the range of 2.0% to 4.5%. Mn is a component that increases specific resistance and is effective in reducing iron loss. It is an element necessary for improving hot workability, but if it is less than 0.01%, there is no effect, and if it exceeds 0.5%, the magnetic flux density decreases, so the Mn content is 0.01% or more and 0.5%. The following.

その他の組成はFeを除き不可避的不純物とすることもできるが、以下のとおり析出型インヒビター形成元素を含有させることができ、また、これら元素の含有量を制限してテクスチャーインヒビションによる方向性電磁鋼板素材とすることもできる。これら各場合の追加組成は下記のとおりである。   Other compositions can be inevitable impurities except for Fe, but they can contain precipitation inhibitor-forming elements as shown below, and the content of these elements can be limited to direct by texture inhibition. An electromagnetic steel sheet material can also be used. The additional composition in each of these cases is as follows:

AlN系インヒビターを用いる場合
Al:0.01%〜0.08%、N:0.0015〜0.015%
AlNはインヒビターとしてその他のインヒビターよりも強い一次再結晶粒成長の抑制力を有する。しかしながら、Alが0.01%未満では抑制力不足となり、磁束密度が低下し、一方、0.08%を超えると二次再結晶が不安定となる。したがって、その含有量は0.01%以上0.08%以下の範囲が望ましい。Nは、AlN系インヒビターを構成する重要な元素であるが、含有量が0.015%を超えるとヒステリシス損を高め、ベンド不良の原因になる。また、ブリスタと呼ばれる表面欠陥が多発する原因になる。一方、0.0015%に満たないとAlN系インヒビター量が不足する原因になる。したがって、その含有量は0.0015%以上0.0150%以下の範囲がよい。
When using AlN inhibitors
Al: 0.01% to 0.08%, N: 0.0015 to 0.015%
As an inhibitor, AlN has a stronger ability to suppress primary recrystallized grain growth than other inhibitors. However, if Al is less than 0.01%, the restraining force is insufficient, and the magnetic flux density decreases. On the other hand, if it exceeds 0.08%, secondary recrystallization becomes unstable. Therefore, the content is desirably in the range of 0.01% to 0.08%. N is an important element that constitutes an AlN-based inhibitor. However, if the content exceeds 0.015%, the hysteresis loss is increased and a bend failure is caused. In addition, it causes frequent surface defects called blisters. On the other hand, if it is less than 0.0015%, the amount of the AlN inhibitor will be insufficient. Therefore, the content is preferably in the range of 0.0015% to 0.0150%.

Mn(Se,S)系インヒビターを用いる場合
S+Se:0.01%〜0.05%
SおよびSeは、何れも鋼中Mnを結合してMn(Se,S)系インヒビターの形成に寄与する。しかし、それらの合計の含有量が0.01%に満たないとインヒビター成分として絶対量が不足し、0.05%を超えるインヒビター不均一による磁性劣化、割れ発生特の不具合が生じる。したがって、単独または併用のいずれの場合においても合計の含有量は0.01%以上0.05%以下の範囲が好ましい。なお、上記Mn(Se,S)系インヒビターを形成するために必要なMnは、基本成分として含有されており、その含有量は、インヒビター形成元素としても0.01%以上0.5%以下の範囲にある。0.01%未満ではインヒビター成分として絶対量が不足し、熱延中に低融点化合物が形成され、割れが多発するなどの不具合が生じる。一方、0.5%を超えるとインヒビターの解離固溶のためのスラブ加熱温度が高くなるとともに、インヒビターが粗大化して結晶粒成長抑制力が低下する原因になる。
When using Mn (Se, S) inhibitors
S + Se: 0.01% to 0.05%
S and Se both bind Mn in steel and contribute to the formation of Mn (Se, S) inhibitors. However, if the total content thereof is less than 0.01%, the absolute amount of the inhibitor component is insufficient, and magnetic deterioration due to non-uniformity of the inhibitor exceeding 0.05% and crack generation are caused. Therefore, in either case of single or combined use, the total content is preferably in the range of 0.01% to 0.05%. In addition, Mn necessary for forming the Mn (Se, S) -based inhibitor is contained as a basic component, and the content thereof is in the range of 0.01% to 0.5% as an inhibitor-forming element. If it is less than 0.01%, the absolute amount as an inhibitor component is insufficient, and a low melting point compound is formed during hot rolling, causing problems such as frequent cracking. On the other hand, if it exceeds 0.5%, the slab heating temperature for dissociation and dissolution of the inhibitor becomes high, and the inhibitor becomes coarse and causes a decrease in the crystal grain growth inhibiting power.

なお、上記AlN系インヒビター及びMn(Se,S)系インヒビターは併用することができ、その場合の含有量の好適範囲は上記のとおりである。   The AlN-based inhibitor and the Mn (Se, S) -based inhibitor can be used in combination, and the preferred range of the content in that case is as described above.

テクスチャーインヒビションを利用する場合
本発明は、上記の析出型のインヒビターを用いることなくテクスチャーインヒビションによって二次再結晶粒を発達させる場合にも適用できる。その場合には、析出型インヒビターの存在が二次際結晶粒の発現の妨げとなるので、これら元素をAl:100ppm未満、N:60ppm未満、SおよびSeをそれぞれ50ppm未満に制限する。なお、Nについては純化焼鈍後のSi窒化物の生成を防止するために50ppm以下にすることが望ましい。また、窒化物形成元素であるTi、Nb、B、Ta、Vもそれぞれ50ppm以下に低減することが望ましい。本発明によるテクスチャーインヒビションの作用を妨害しないようにして鉄損の劣化を防ぎ、良好な加工性を確保するためである。
When Texture Inhibition is Used The present invention can also be applied to the case where secondary recrystallized grains are developed by texture inhibition without using the above precipitation-type inhibitor. In that case, since the presence of the precipitation type inhibitor hinders the expression of secondary crystal grains, these elements are limited to Al: less than 100 ppm, N: less than 60 ppm, and S and Se, respectively, less than 50 ppm. N is preferably 50 ppm or less in order to prevent the formation of Si nitride after purification annealing. It is also desirable to reduce the nitride forming elements Ti, Nb, B, Ta, and V to 50 ppm or less, respectively. This is because the deterioration of the iron loss is prevented so as not to interfere with the action of the texture inhibition according to the present invention, and good processability is ensured.

上記の成分のほか、Cu、Sb、Sn、Bi、Mo、Cr、Niから選ばれる1種または2種以上を、Cu、Sb、Sn、Mo、Cr、Niについては0.01〜0.5%、Biについては0.001〜0.1%含有さ含有させることもできる。このうちNiは、熱延板組織を改善して磁気特性を向上させる有用元素であるが、含有量が0.01%未満では磁気特性の向上量が小さく、一方、0.5%を超えると二次再結晶が不安定になり磁気特性が劣化するので添加する場合は0.01%以上0.5%以下とするのがよい。また、Cu、Sb、Sn、Bi、Crはそれぞれ鉄損値の改善に有用な元素であるが、いずれも上記範囲の下限値に満たないと鉄損の向上効果が小さく、一方上限量を超えると二次再結晶の発達が阻害される。したがって、これら元素は添加する場合にはCu、Sb、Sn、Crについては、0.01%以上0.5%以下とするのがよく、Biは0.001%以上0.1%以下とするのがよい。またMoは熱間圧延時の表面脆化に起因する表面欠陥を防止するのに有用であり、その有効範囲である0.01%以上0.5%以下で添加することができる。 In addition to the above components, one or more selected from Cu, Sb, Sn, Bi , Mo, Cr and Ni, 0.01 to 0.5% for Cu, Sb, Sn, Mo, Cr and Ni, about Bi May be contained in an amount of 0.001 to 0.1%. Of these, Ni is a useful element that improves the magnetic properties by improving the hot-rolled sheet structure. However, when the content is less than 0.01%, the amount of improvement in magnetic properties is small, while when it exceeds 0.5%, secondary recrystallization occurs. When it is added, the content is preferably 0.01% or more and 0.5% or less. Cu, Sb, Sn, Bi, and Cr are elements that are useful for improving the iron loss value, but if any of them does not reach the lower limit of the above range, the effect of improving the iron loss is small, while the upper limit is exceeded. And the development of secondary recrystallization is inhibited. Accordingly, when these elements are added, Cu, Sb, Sn, and Cr are preferably 0.01% to 0.5%, and Bi is preferably 0.001% to 0.1%. Mo is useful for preventing surface defects caused by surface embrittlement during hot rolling, and can be added in an effective range of 0.01% to 0.5%.

上記出発素材は上記組成成分を有する限り、特にその調整方法、あるいは形態を問わない。たとえば転炉、電気炉などの公知の方法で調整し、必要に応じて真空処理などを施し、通常の造塊法や連続鋳造法でスラブに製造すればよい。あるいは、直接鋳造法を用いて100mm以下の厚さの薄鋳片を出発素材としてもよい。   As long as the said starting material has the said composition component, it does not ask | require the adjustment method or form in particular. For example, it may be adjusted by a known method such as a converter or an electric furnace, subjected to vacuum treatment if necessary, and manufactured into a slab by a normal ingot-making method or a continuous casting method. Alternatively, a thin cast piece having a thickness of 100 mm or less may be used as a starting material by a direct casting method.

熱間圧延工程も公知の手段を自由に採用し得る。ただし、AlNあるいはMn(Se,S)など析出型インヒビターなどを利用する場合には、1350〜1450℃の温度域に加熱してこれら元素を完全に固溶させるのが望ましい。一方、テクスチャーインヒビションを利用する場合には、スラブ加熱温度をたとえば1250℃以下とすることが望ましい。これにより、スラブの高温加熱にもたらされるスケールの生成量を押さえ、歩留まりを向上させる効果が得られる。その他の熱間圧延条件は特に制限なく、公知の手段を採用し得る。   The hot rolling process can freely adopt known means. However, when using precipitation type inhibitors such as AlN or Mn (Se, S), it is desirable to heat these elements to a temperature range of 1350 to 1450 ° C. to completely dissolve these elements. On the other hand, when texture inhibition is used, it is desirable that the slab heating temperature be, for example, 1250 ° C. or lower. Thereby, the production amount of the scale brought about by the high temperature heating of the slab is suppressed, and the effect of improving the yield can be obtained. Other hot rolling conditions are not particularly limited, and known means can be employed.

得られた熱延板はタンデム圧延機による冷間圧延に付される。この際、本発明の第一の実施形態では、熱延板に熱延板焼鈍を施し、いわゆる1回法によりタンデム圧延機による圧延を施す。第二の実施形態では、熱延板に中間焼鈍を挟んで2回以上のタンデム圧延機による圧延を施す。これらいずれの場合にもタンデム圧延機による最終圧延前の焼鈍条件を以下に示すように行い、均一かつに超微細なカーバイドが粒内に存在する状態とする。具体的には、上記最終冷延前の焼鈍(第一の実施形態では熱延板焼鈍、第二の実施形態では最終冷延直前の中間焼鈍)を900℃以上に加熱後、900〜500℃の温度範囲を30℃/s以上250℃/s以下の速度で冷却し、次いで500〜200℃の温度範囲を50℃/s以上150℃/s以下の速度で冷却し、さらに冷却を継続するものとする。   The obtained hot rolled sheet is subjected to cold rolling by a tandem rolling mill. At this time, in the first embodiment of the present invention, the hot-rolled sheet is subjected to hot-rolled sheet annealing and is rolled by a tandem rolling mill by a so-called one-time method. In the second embodiment, the hot-rolled sheet is rolled by a tandem rolling mill twice or more with intermediate annealing. In any of these cases, the annealing conditions before the final rolling by the tandem rolling mill are performed as follows, so that uniform and ultrafine carbide exists in the grains. Specifically, the annealing before the final cold rolling (hot rolling sheet annealing in the first embodiment, intermediate annealing immediately before the final cold rolling in the second embodiment) is heated to 900 ° C. or higher, and then 900 to 500 ° C. The temperature range is cooled at a rate of 30 ° C./s to 250 ° C./s, then the temperature range of 500 to 200 ° C. is cooled at a rate of 50 ° C./s to 150 ° C./s, and further cooling is continued. Shall.

加熱温度を900℃以上とするのは、続く冷却過程で微細なカーバイドをできるだけ多く析出させるためには、フェライト相内に多くのCを固溶させる必要があるためであり、900℃未満では固溶が不十分となる。なお、加熱温度の上限は経済性の点から1150℃以下とするのが望ましい。   The reason why the heating temperature is set to 900 ° C. or higher is that in order to precipitate as much fine carbide as possible in the subsequent cooling process, it is necessary to dissolve a large amount of C in the ferrite phase. Insufficient dissolution. The upper limit of the heating temperature is desirably 1150 ° C. or less from the viewpoint of economy.

上記温度に加熱された鋼板は、まず900〜500℃超の温度範囲の冷却速度を30℃/s以上250℃/s以下とする第一段階の冷却に付される。この第一段階の冷却において900〜500℃超の温度範囲の冷却速度を30℃/s以上250℃/s以下とするのは、最終的に微細なカーバイドを析出させるためには上記温度範囲(900〜500℃)でのカーバイドの析出を抑制し続く第二段階までCの固溶状態を持続させるためである。冷却速度が30℃/s未満であると、粒径が70nmを超える大きさのカーバイドが認められるようになり、続くタンデム圧延の初期における硬化を不十分とし、またスタンド間時効でのカーバイドの溶解および固溶Cの転位への固着ができなくなり、最終板厚への圧延で歪が十分蓄積された集合組織が得られなくなるからである。しかしながら、冷却速度が250℃/sを超えると、上記効果が飽和するとともに、経済的に不利となるからである。   The steel plate heated to the above temperature is first subjected to a first stage cooling in which the cooling rate in the temperature range of 900 to 500 ° C. is set to 30 ° C./s or more and 250 ° C./s or less. In this first stage cooling, the cooling rate in the temperature range of 900 to 500 ° C. is set to 30 ° C./s or more and 250 ° C./s or less in order to finally precipitate fine carbide in the above temperature range ( This is because the precipitation of carbide at 900 to 500 ° C. is suppressed and the solid solution state of C is maintained until the subsequent second stage. When the cooling rate is less than 30 ° C./s, carbides having a particle size exceeding 70 nm are recognized, the curing at the initial stage of tandem rolling is insufficient, and the dissolution of carbides during inter-stand aging. This is because solid solution C cannot be fixed to dislocations, and a texture in which strain is sufficiently accumulated cannot be obtained by rolling to the final thickness. However, if the cooling rate exceeds 250 ° C./s, the above effect is saturated and economically disadvantageous.

上記第一段階の冷却に続き、500〜200℃の温度範囲の冷却速度を50℃/s以上150℃/s以下とする第二段階の冷却が行なわれ、この温度範囲でのカーバイドの析出駆動力が大きいことを利用して超微細なカーバイドの多量、均一析出が図られる。この温度範囲の冷却速度を50℃/s以上とするのは、冷却速度が50℃/s未満であるとカーバイドの析出駆動力が大きいため容易にカーバイド径が70nmを超えて粗大化してしまうためであり、一方150℃/s以下とするのは、150℃/s超の速い冷却ではCが固溶したまま残留し、微細カーバイドの析出量が不足し、続くタンデム圧延初期における硬化が進まないからである。   Following the first stage cooling, the second stage cooling is performed at a cooling rate in the temperature range of 500 to 200 ° C. to 50 ° C./s or more and 150 ° C./s or less, and carbide precipitation is driven in this temperature range. A large amount of ultrafine carbide and uniform precipitation can be achieved by utilizing the large force. The reason why the cooling rate in this temperature range is 50 ° C./s or more is that when the cooling rate is less than 50 ° C./s, the carbide driving force is large, and the carbide diameter easily exceeds 70 nm and becomes coarse. On the other hand, the reason why the temperature is set to 150 ° C./s or less is that when C is rapidly cooled to over 150 ° C./s, C remains in a solid solution, the precipitation amount of fine carbide is insufficient, and hardening at the initial stage of tandem rolling does not proceed. Because.

要するに、本発明では最終冷延前の焼鈍において、超微細カーバイドを冷却過程において析出させることが必要である。ここで、超微細カーバイドとは70nm以下のサイズのものをいう。このような超微細カーバイドは、一般に倍率5万倍程度の電子顕微鏡で観察可能である。しかしながら、倍率5万倍以上の電子顕微鏡観察によってもその存在が確認されない場合でも、上記焼鈍条件を満たす限り、本発明の効果が得られる。そのことは、十数〜70nm程度の超微細カーバイドが析出している場合と本発明の焼鈍条件を満たすが倍率5万倍以上の電子顕微鏡観察によってもその存在が確認されない場合との間に得られた特性の差が認められないことにより裏付けられており、これにより後者の場合にもこのような場合でも超微細カーバイドが析出しているものと推察されるのである。   In short, in the present invention, it is necessary to precipitate ultrafine carbide in the cooling process in the annealing before the final cold rolling. Here, the ultrafine carbide means a size of 70 nm or less. Such ultrafine carbide can be generally observed with an electron microscope having a magnification of about 50,000 times. However, even when the presence is not confirmed even by observation with an electron microscope at a magnification of 50,000 times or more, the effect of the present invention can be obtained as long as the annealing condition is satisfied. This is obtained between the case where ultrafine carbide of about 10 to 70 nm is precipitated and the case where the presence of the ultrafine carbide satisfies the annealing condition of the present invention but is not confirmed even by observation with an electron microscope at a magnification of 50,000 times or more. This is supported by the fact that the difference in the properties obtained is not recognized, and it is thus presumed that ultrafine carbide is precipitated in both cases.

このようにして超微細カーバイドを結晶粒内に析出させた鋼板は、次いでタンデム圧延に付される。この圧延は、冷間圧延とそれに続くスタンド間時効、さらに最終板厚への冷間圧延を含むものである。具体的には、累積圧下率30%以上の圧延を施した後、後続スタンド間で150℃以上300℃以下において持続時間1〜60秒のスタンド間時効処理を施し、さらに圧延を継続して最終板厚とする工程を含む。   The steel plate in which ultrafine carbide is precipitated in the crystal grains in this way is then subjected to tandem rolling. This rolling includes cold rolling, subsequent aging between stands, and further cold rolling to the final thickness. Specifically, after rolling with a cumulative reduction ratio of 30% or more, between the subsequent stands, perform aging treatment between the stands at 150 ° C or more and 300 ° C or less for a duration of 1 to 60 seconds, and further continue rolling to finish Including the step of thickness.

本発明において行なわれる圧延の冷延圧下率は30%以上でなければならない。冷延圧延圧下率が30%未満では、歪の蓄積が少ないため超微細カーバイドの溶解は促進されないためである。なお、この圧下率の条件は、引き続くスタンド間時効処理前の累積圧下率として達成されればよく、単独の圧延スタンドで達成されることは必ずしも必要でない。また、このとき、鋼板温度を150℃以上300℃とすることは、歪みの蓄積や圧延段階でCの再固溶が開始される点でも有利である。   The cold rolling reduction of the rolling performed in the present invention must be 30% or more. This is because when the cold rolling reduction ratio is less than 30%, the accumulation of ultrafine carbide is not promoted because the accumulation of strain is small. It should be noted that the condition of the rolling reduction may be achieved as a cumulative rolling reduction before the subsequent inter-stand aging treatment, and is not necessarily achieved by a single rolling stand. Further, at this time, setting the steel plate temperature to 150 ° C. or more and 300 ° C. is advantageous from the viewpoint of accumulation of strain and re-solution of C in the rolling stage.

上記の圧延に続いて、スタンド間時効処理が行なわれる。このスタンド間時効処理は、上記圧延が行なわれたスタンド以降のスタンド間において鋼板温度を150〜300℃に維持し、かつ当該スタンド間を鋼板が通過する時間(スタンド間時間、パス間時間)を1〜60秒とすることによって行なう。この温度範囲とすることにより、カーバイドの溶解(再固溶)が促進され、続いて転位への固着等を通じて結晶内への歪の蓄積が進行することになる。鋼板温度が150℃未満では、熱エネルギーが不足するため、超微細カーバイドであっても溶解が進まず、一方、300℃を超える高温では粗大カーバイドが生成し、その結晶粒内への溶解(再固溶)が不可能になる。その後、溶解(再固溶)されたCが圧延により生成した転位に再固着し、鋼板を時効硬化させる。   Subsequent to the above rolling, inter-stand aging treatment is performed. In this inter-stand aging treatment, the steel plate temperature is maintained at 150 to 300 ° C. between the stands after the above-described rolling, and the time for the steel plate to pass between the stands (inter-stand time, inter-pass time) Perform by setting 1 to 60 seconds. By setting this temperature range, dissolution (re-solid dissolution) of carbide is promoted, and subsequently, accumulation of strain proceeds in the crystal through fixing to dislocations and the like. When the steel plate temperature is less than 150 ° C, thermal energy is insufficient, so even ultra-fine carbides do not dissolve, while at temperatures higher than 300 ° C, coarse carbides are generated and dissolved in the crystal grains. Solid solution) becomes impossible. Thereafter, the dissolved (re-solidified) C re-adheres to the dislocations generated by rolling, and age hardens the steel sheet.

タンデム圧延機でのスタンド間時間が1秒未満では、時効硬化の進展が不十分であり、次工程の冷間圧延で十分な歪の蓄積ができなくなる。一方、60秒を超えても時効硬化が飽和するだけでなく、圧延速度が低下するため生産性が悪くなる。なお、上記パス間時間の確保は、前記圧延以降の何れかの圧延スタンド間において達成さればよいが、前記圧下率の条件を満たすスタンドの直後のスタンド間で達成するのが時効硬化後の圧下率が増加する点で最も好ましい。   If the time between stands in a tandem rolling mill is less than 1 second, the progress of age hardening is insufficient, and sufficient strain cannot be accumulated in the subsequent cold rolling. On the other hand, even if it exceeds 60 seconds, not only the age hardening is saturated, but also the rolling speed is lowered, resulting in poor productivity. The securing of the time between passes may be achieved between any of the rolling stands after the rolling, but the reduction after age hardening is achieved between the stands immediately after the stand satisfying the condition of the rolling reduction. Most preferred in terms of increased rate.

タンデム圧延機は、通常4〜6スタンドの連続圧延スタンドから構成されているが、本発明を実施するためには、その初期の段階で冷間圧延を行って所望の圧下率を確保し、さらにスタンド間時効を行なった後、最終スタンドを含む1又は2スタンドにおいて冷間圧延を行なう工程をとるのがよい。上記の工程をとることにより、最終冷延前の焼鈍において析出させた超微細なカーバイドが圧延の初期段階の硬化寄与し、歪の蓄積ひいては良好な集合組織形成に大きく寄与する。さらに、これらの均一で超微細カーバイドは、続く圧延過程で生じる高密度の格子欠陥に対してスタンド間時効で容易に溶解し、さらにスタンド間時効による硬化とそれに続く最終板厚への冷間圧延によって、良好な集合組織の形成が促進されるのである。本発明では、これらのメカニズムにより良好な磁気特性が得られたものと考えられる。   The tandem rolling mill is normally composed of 4 to 6 continuous rolling stands, but in order to carry out the present invention, cold rolling is performed at the initial stage to ensure a desired reduction rate, After performing inter-stand aging, it is preferable to take a step of cold rolling in one or two stands including the final stand. By taking the above-described steps, the ultrafine carbide precipitated in the annealing before the final cold rolling contributes to hardening at the initial stage of rolling, and greatly contributes to the accumulation of strain and hence the formation of a good texture. In addition, these uniform and ultra-fine carbides are easily dissolved by inter-stand aging for high-density lattice defects that occur in the subsequent rolling process, and further hardening by inter-stand aging followed by cold rolling to the final thickness. Thus, the formation of a good texture is promoted. In the present invention, it is considered that good magnetic properties were obtained by these mechanisms.

なお、スタンド間時効処理後の圧延は、30〜80%とすることが好ましい。30%以上とすることにより、時効処理後の圧延での転位増加による集合組織改善でより強くすることができる。また、時効前の圧下率を確保する点では時効後の圧下率を80%以下とするのがよい。   The rolling after the inter-stand aging treatment is preferably 30 to 80%. By setting it to 30% or more, it can be strengthened by improving the texture by increasing dislocations in rolling after aging treatment. In addition, in order to secure the rolling reduction before aging, the rolling reduction after aging should be 80% or less.

上記冷間圧延により最終板厚とされた冷延板は、次いで脱炭焼鈍に付される。この最終冷延後の脱炭焼鈍は、Cを磁気時効の起こらない50ppm以下、好ましくは30ppm以下に低減することを目的とし、湿潤雰囲気を使用して700〜1000℃の範囲で行うことが好適である。なお、脱炭焼鈍後に浸珪法によってSi量を増加させる手段を行うことも可能である。   The cold-rolled sheet having the final sheet thickness by the cold rolling is then subjected to decarburization annealing. The decarburization annealing after the final cold rolling is performed in a range of 700 to 1000 ° C. using a humid atmosphere for the purpose of reducing C to 50 ppm or less, preferably 30 ppm or less without causing magnetic aging. It is. It is also possible to perform means for increasing the amount of Si by decarburization after decarburization annealing.

このようにして、得られた脱炭済みの冷延鋼板は公知の手段によって、MgOを主成分とする焼鈍分離剤が塗布され、コイルに巻回されて二次再結晶焼鈍および純化焼純とからなる最終仕上焼鈍に付され製品板とされる。   Thus, the obtained decarburized cold-rolled steel sheet is coated with an annealing separator mainly composed of MgO by a known means, wound around a coil, and subjected to secondary recrystallization annealing and purification annealing. It is subjected to a final finish annealing consisting of to make a product plate.

Si:3.25%、C:0.04%、Mn:0.07%、Al:0.07%、N:0.0038%、S:0.0025%、Se:0.001%を含有した板厚2.2mmの熱延板に対して焼鈍温度と冷却速度を変化させて熱延板焼鈍を行った。得られた熱延板に対しロール径100mmの4パスのタンデム圧延機を用い、表1に記載のとおり圧下率及びパス間温度を変化させながら冷間圧延を行なって最終板厚0.3mmとした。なお、タンデム圧延機のパス間におけるパス間温度の調整はNo.2スタンドとNo.3スタンドの間において高周波誘導加熱装置を用いて行い、パス間時間の調整はスタンド間に加熱(保温)可能なルーパーを設けることによって行なった。その後、得られた冷延板を湿水素雰囲気中850℃で2分間の脱炭焼純及び1150℃で5時間の最終仕上焼鈍に付して製品板とした。   Annealing temperature for a hot-rolled sheet with a thickness of 2.2 mm containing Si: 3.25%, C: 0.04%, Mn: 0.07%, Al: 0.07%, N: 0.0038%, S: 0.0025%, Se: 0.001% Then, hot-rolled sheet annealing was performed while changing the cooling rate. Using a 4-pass tandem rolling mill with a roll diameter of 100 mm, the obtained hot-rolled sheet was cold-rolled while changing the rolling reduction and inter-pass temperature as shown in Table 1 to a final sheet thickness of 0.3 mm. . The temperature between passes of the tandem rolling mill is adjusted using a high-frequency induction heating device between the No. 2 stand and No. 3 stand, and the time between passes can be adjusted (heated) between the stands. This was done by providing a looper. Thereafter, the obtained cold-rolled sheet was subjected to decarburized pure at 850 ° C. for 2 minutes in a wet hydrogen atmosphere and final finish annealing at 1150 ° C. for 5 hours to obtain a product sheet.

得られた製品板の磁気特性を熱延板焼鈍条件、圧延条件とともに表1に示す。表1から明らかなように、本発明の条件に適合する場合は磁気特性が比較例に比し優れていることが分かる。   Table 1 shows the magnetic properties of the obtained product plate together with the hot-rolled sheet annealing conditions and rolling conditions. As is apparent from Table 1, it can be seen that the magnetic properties are superior to the comparative example when the conditions of the present invention are met.

Si:3.10%、C:0.06%、Mn:0.07%、Al:0.022%、N:0.008%、S:0.0025%、Se:0.020%を含有した板厚2.2mmの熱延板に対して熱延板焼鈍を行い、実施例1と同様にして製品板を得た。得られた製品板の磁気特性を熱延板焼鈍条件、圧延条件とともに表2に示す。表2から明らかなように、本発明の条件に適合する場合は磁気特性が比較例に比し優れていることが分かる。   Hot rolling for hot rolled sheet with 2.2mm thickness including Si: 3.10%, C: 0.06%, Mn: 0.07%, Al: 0.022%, N: 0.008%, S: 0.0025%, Se: 0.020% Plate annealing was performed, and a product plate was obtained in the same manner as in Example 1. Table 2 shows the magnetic properties of the obtained product plate together with hot-rolled sheet annealing conditions and rolling conditions. As is apparent from Table 2, it can be seen that the magnetic properties are superior to the comparative example when the conditions of the present invention are met.

表3に示す成分になる鋼スラブを熱間圧延して2.2mmとした。その後、1.5mmまでタンデム圧延機で冷間圧延した後、1000℃において中間焼鈍を行った。この中間焼鈍の際、冷却速度を900℃〜500℃超は35℃/sとし、500℃以下200℃までの間を60℃/sとした。このようにして中間焼鈍された鋼板をロール径100mmの4パスのタンデム圧延機にて最終圧延して板厚0.3mmの最終冷延板とした。その際、No.3スタンドまで73%の圧下を施し、最終スタンドとその直前スタンドの間で250℃に3秒間保持し、その後、最終(No.4)スタンドで圧下率50%の圧延を行った。   The steel slab having the components shown in Table 3 was hot-rolled to 2.2 mm. Then, after cold-rolling with a tandem rolling mill to 1.5 mm, intermediate annealing was performed at 1000 ° C. During this intermediate annealing, the cooling rate was set to 35 ° C./s for 900 ° C. to over 500 ° C., and 60 ° C./s to 500 ° C. or less and 200 ° C. The steel plate thus subjected to the intermediate annealing was finally rolled by a 4-pass tandem rolling mill having a roll diameter of 100 mm to obtain a final cold rolled sheet having a thickness of 0.3 mm. At that time, 73% reduction was applied to the No.3 stand, held at 250 ° C for 3 seconds between the last stand and the stand immediately before, and then rolling with a reduction rate of 50% was performed on the final (No.4) stand. It was.


表3に示すいずれの鋼も本発明にしたがう条件で処理されたので優れた磁気特性が得られている。


Since all the steels shown in Table 3 were processed under the conditions according to the present invention, excellent magnetic properties were obtained.

Claims (6)

質量比で、C:0.015〜0.15%、Si:2.0〜4.5%、Mn:0.01〜0.5%を含有し、残部Feおよび不可避的不純物からなる鋼スラブを出発素材とし、該出発素材に熱間圧延を施して熱延板を得、該熱延板に熱延板焼鈍を施した後にタンデム圧延機による圧延を施して最終板厚の冷延板を得、得られた冷延板に脱炭焼鈍および最終仕上げ焼鈍を施す工程により方向性電磁鋼板を製造するにあたり、
前記熱延板焼鈍が900℃以上1150℃以下に加熱後、900〜500℃の温度範囲を30℃/s以上250℃/s以下の速度で冷却し、次いで500〜200℃の温度範囲を50℃/s以上150℃/s以下の速度で冷却し、さらに冷却を継続するものでありかつ、
前記タンデム圧延機による圧延が、累積圧下率30%以上の圧延を施した後、後続の少なくとも一つスタンド間で150℃以上300℃以下において持続時間1〜60秒のスタンド間時効処理を施し、さらに圧延を継続して最終板厚とするものとするものであることを特徴とする磁気特性に優れた方向性電磁鋼板の製造方法。
A steel slab containing C: 0.015-0.15%, Si: 2.0-4.5%, Mn: 0.01-0.5% and the balance Fe and unavoidable impurities as a starting material, and hot rolling to the starting material To obtain a hot-rolled sheet, and then subjecting the hot-rolled sheet to hot-rolled sheet annealing, rolling with a tandem rolling mill to obtain a cold-rolled sheet having a final thickness, and decold-annealing the obtained cold-rolled sheet And in producing grain-oriented electrical steel sheets by the process of final finishing annealing,
After the hot-rolled sheet annealing is heated to 900 ° C. or more and 1150 ° C. or less, the temperature range of 900 to 500 ° C. is cooled at a rate of 30 ° C./s or more and 250 ° C./s or less, and then the temperature range of 500 to 200 ° C. is reduced to 50 ° C. Cooling at a rate of ℃ / s to 150 ℃ / s and continuing cooling, and
Rolling by the tandem rolling mill is subjected to rolling with a cumulative reduction ratio of 30% or more, and then subjected to aging treatment between stands at a temperature of 150 ° C. or more and 300 ° C. or less between at least one subsequent stand, A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that rolling is continued to a final thickness.
質量比で、C:0.015〜0.15%、Si:2.0〜4.5%、Mn:0.01〜0.5%を含有し、残部Feおよび不可避的不純物からなる鋼スラブを出発素材とし、該出発素材に熱間圧延を施して熱延板を得、該熱延板に中間焼鈍を挟んで2回以上のタンデム圧延機による冷間圧延を施して最終板厚の冷延板を得、得られた冷延板に脱炭焼鈍および最終仕上げ焼鈍を施す工程により方向性電磁鋼板を製造するにあたり、
前記中間焼鈍が900℃以上1150℃以下に加熱後、900〜500℃の温度範囲を30℃/s以上250℃/s以下の速度で冷却し、次いで500〜200℃の温度範囲を50℃/s以上150℃/s以下の速度で冷却し、さらに冷却を継続するものでありかつ、
前記タンデム圧延機による圧延が、累積圧下率30%以上の圧延を施した後、後続の少なくとも一つのスタンド間で150℃以上300℃以下において持続時間1〜60秒のスタンド間時効処理を施し、さらに圧延を継続して最終板厚とするものとするものであることを特徴とする磁気特性に優れた方向性電磁鋼板の製造方法。
A steel slab containing C: 0.015-0.15%, Si: 2.0-4.5%, Mn: 0.01-0.5% and the balance Fe and unavoidable impurities as a starting material, and hot rolling to the starting material To obtain a hot-rolled sheet, cold-rolled by a tandem rolling mill twice or more with intermediate annealing between the hot-rolled sheet to obtain a cold-rolled sheet having a final thickness, and to the obtained cold-rolled sheet In producing grain-oriented electrical steel sheets by the process of decarburization annealing and final finish annealing,
After the intermediate annealing is heated to 900 ° C. to 1150 ° C., the temperature range of 900 to 500 ° C. is cooled at a rate of 30 ° C./s to 250 ° C./s, and then the temperature range of 500 to 200 ° C. is set to 50 ° C. / cooling at a rate of not less than s and not more than 150 ° C./s, and continuing cooling, and
Rolling by the tandem rolling mill is subjected to rolling at a cumulative reduction rate of 30% or more, and then subjected to an aging treatment between the stands of 1 to 60 seconds at a temperature of 150 ° C. to 300 ° C. between at least one subsequent stand, A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized in that rolling is continued to a final thickness.
出発素材はさらにAl:0.01〜0.08%およびN:0.0015〜0.015%を含有することを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the starting material further contains Al: 0.01 to 0.08% and N: 0.0015 to 0.015%. 出発素材はさらにSまたはSeを合計で0.01〜0.05%含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the starting material further contains 0.01 to 0.05% of S or Se in total. 出発素材はAl:100ppm未満、N:60ppm未満、S:50ppm未満およびSe:50ppm未満に制限されていることを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。   The starting material is limited to Al: less than 100 ppm, N: less than 60 ppm, S: less than 50 ppm and Se: less than 50 ppm, The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2. 出発素材は、さらにCu、Sb、Sn、Bi、Mo、Cr、Niから選ばれた1種または2種以上をCu、Sb、Sn、Mo、Cr、Niについては0.01〜0.5%、Biについては0.001〜0.18%含有することを特徴とする請求項1〜5のいずれかに記載の方向性電磁鋼板の製造方法。
The starting material is one or more selected from Cu, Sb, Sn, Bi, Mo, Cr, Ni and 0.01 to 0.5% for Cu, Sb, Sn, Mo, Cr, Ni, and about Bi The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 5, characterized by comprising 0.001 to 0.18%.
JP2004073695A 2004-03-16 2004-03-16 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties Expired - Fee Related JP4568875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073695A JP4568875B2 (en) 2004-03-16 2004-03-16 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073695A JP4568875B2 (en) 2004-03-16 2004-03-16 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2005262217A true JP2005262217A (en) 2005-09-29
JP4568875B2 JP4568875B2 (en) 2010-10-27

Family

ID=35087298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073695A Expired - Fee Related JP4568875B2 (en) 2004-03-16 2004-03-16 Method for producing grain-oriented electrical steel sheets with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP4568875B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
WO2007029805A1 (en) 2005-09-09 2007-03-15 Nikon Corporation Projector-equipped electronic device
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
KR101560949B1 (en) 2013-12-25 2015-10-16 주식회사 포스코 Oriented electrical steel shhet having excellent rolling property and method of manufacturing the same
KR20200035765A (en) * 2018-09-27 2020-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet
WO2020218328A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113825847A (en) * 2019-04-23 2021-12-21 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN115066508A (en) * 2020-06-24 2022-09-16 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2022255259A1 (en) * 2021-05-31 2022-12-08 Jfeスチール株式会社 Method for manufacturing oriented electrical steel sheet
WO2022255258A1 (en) * 2021-05-31 2022-12-08 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP2023507438A (en) * 2019-12-20 2023-02-22 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and its magnetic domain refinement method
WO2024043063A1 (en) * 2022-08-22 2024-02-29 Jfeスチール株式会社 Annealing facility, and method for manufacturing grain-oriented electromagnetic steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110551886A (en) * 2019-08-07 2019-12-10 包头威丰新材料有限公司 Oriented silicon steel annealing process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157964A (en) * 1994-12-06 1996-06-18 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JPH1036914A (en) * 1996-07-22 1998-02-10 Kawasaki Steel Corp Production of grain oriented electric steel sheet excellent in magnetic characteristic
JPH10121213A (en) * 1996-10-21 1998-05-12 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
JPH10226819A (en) * 1996-12-13 1998-08-25 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in core loss characteristic
JPH10259422A (en) * 1997-03-21 1998-09-29 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet good in core loss characteristic
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2001198606A (en) * 2000-01-13 2001-07-24 Nippon Steel Corp Cold rolling method for obtaining grain oriented silicon steel sheet small in variation of magnetic property in cold rolling direction
JP2003096520A (en) * 2001-09-21 2003-04-03 Nippon Steel Corp Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP2003253341A (en) * 2002-03-05 2003-09-10 Jfe Steel Kk Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157964A (en) * 1994-12-06 1996-06-18 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property
JPH1036914A (en) * 1996-07-22 1998-02-10 Kawasaki Steel Corp Production of grain oriented electric steel sheet excellent in magnetic characteristic
JPH10121213A (en) * 1996-10-21 1998-05-12 Kawasaki Steel Corp Grain oriented silicon steel sheet excellent in iron loss characteristic in low magnetic field as compared with high magnetic field, and its production
JPH10226819A (en) * 1996-12-13 1998-08-25 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in core loss characteristic
JPH10259422A (en) * 1997-03-21 1998-09-29 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet good in core loss characteristic
JP2001107145A (en) * 1999-10-05 2001-04-17 Kawasaki Steel Corp Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2001198606A (en) * 2000-01-13 2001-07-24 Nippon Steel Corp Cold rolling method for obtaining grain oriented silicon steel sheet small in variation of magnetic property in cold rolling direction
JP2003096520A (en) * 2001-09-21 2003-04-03 Nippon Steel Corp Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP2003253341A (en) * 2002-03-05 2003-09-10 Jfe Steel Kk Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP4665417B2 (en) * 2004-03-29 2011-04-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
WO2007029805A1 (en) 2005-09-09 2007-03-15 Nikon Corporation Projector-equipped electronic device
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP2013139629A (en) * 2011-12-06 2013-07-18 Jfe Steel Corp Method for producing low iron loss grain-oriented magnetic steel sheet
KR101560949B1 (en) 2013-12-25 2015-10-16 주식회사 포스코 Oriented electrical steel shhet having excellent rolling property and method of manufacturing the same
KR20200035765A (en) * 2018-09-27 2020-04-06 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet
KR102139649B1 (en) * 2018-09-27 2020-07-30 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet
WO2020218328A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP6813143B1 (en) * 2019-04-23 2021-01-13 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
CN113710822A (en) * 2019-04-23 2021-11-26 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113825847A (en) * 2019-04-23 2021-12-21 杰富意钢铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
EP3960888A4 (en) * 2019-04-23 2022-06-08 JFE Steel Corporation Method for producing grain-oriented electromagnetic steel sheet
JP2023507438A (en) * 2019-12-20 2023-02-22 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and its magnetic domain refinement method
CN115066508A (en) * 2020-06-24 2022-09-16 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2022255259A1 (en) * 2021-05-31 2022-12-08 Jfeスチール株式会社 Method for manufacturing oriented electrical steel sheet
WO2022255258A1 (en) * 2021-05-31 2022-12-08 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP7439943B2 (en) 2021-05-31 2024-02-28 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
WO2024043063A1 (en) * 2022-08-22 2024-02-29 Jfeスチール株式会社 Annealing facility, and method for manufacturing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP4568875B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5991484B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
EP2880190B1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP5564571B2 (en) Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof
JP4568875B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP2007217744A (en) Non-oriented silicon steel sheet and its production method
JP2007154271A (en) Method for producing nonoriented magnetic steel sheet
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0873939A (en) Production of nonoriented silicon steel sheet excellent in magnetic characteristic
JP2883226B2 (en) Method for producing thin grain silicon steel sheet with extremely excellent magnetic properties
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0121851B2 (en)
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
CN114286871B (en) Method for producing non-oriented electromagnetic steel sheet
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4328037B2 (en) Method for producing high workability hot-rolled steel sheet without folding back and folds
JP4200526B2 (en) Method for producing unidirectional silicon steel sheet
JP2579863B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JP4626046B2 (en) Method for producing semi-processed non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4568875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees