JP5564571B2 - Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5564571B2
JP5564571B2 JP2012530776A JP2012530776A JP5564571B2 JP 5564571 B2 JP5564571 B2 JP 5564571B2 JP 2012530776 A JP2012530776 A JP 2012530776A JP 2012530776 A JP2012530776 A JP 2012530776A JP 5564571 B2 JP5564571 B2 JP 5564571B2
Authority
JP
Japan
Prior art keywords
hot
rolled
steel sheet
annealing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012530776A
Other languages
Japanese (ja)
Other versions
JP2013505365A (en
Inventor
デ−ヒュン ソン、
チャン−ヒー ハン、
ジェ−スー リン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2013505365A publication Critical patent/JP2013505365A/en
Application granted granted Critical
Publication of JP5564571B2 publication Critical patent/JP5564571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Description

本発明は、発電機または変圧器の鉄心などの核心素材として使われる方向性電磁鋼板の製造に関し、高炭素含有珪素鋼スラブから製造されてインヒビターの固溶安全性が確保され、熱延板焼鈍と同時に行われる脱炭によってゴス集合組職核生成が増加して、極めて優れた磁気的特性を持つ低鉄損高磁束密度方向性電磁鋼板及びその製造方法に関する。 The present invention relates to the production of grain-oriented electrical steel sheets used as core materials such as iron cores of generators or transformers, and is manufactured from a high carbon content silicon steel slab to ensure the solid solution safety of inhibitors, and hot rolled sheet annealing. The present invention relates to a low iron loss high magnetic flux density grain-oriented electrical steel sheet having extremely excellent magnetic properties, and a manufacturing method thereof.

方向性電磁鋼板は圧延方向に対して鋼片の集合組職が{110}<001>であるゴス集合組職(Goss texture)を示しているので、一方向あるいは圧延方向に磁気的特性に優れた軟磁性材料である。このようなゴス集合組職を形成するためには、製鋼段階での成分制御、熱間圧延におけるスラブ再加熱及び熱間圧延工程の因子制御、熱延板の焼鈍、1次再結晶焼鈍、2次再結晶焼鈍などの色々の工程が非常に精密で厳格に管理されなければならない。 The grain-oriented electrical steel sheet exhibits a Goss texture where the aggregate structure of the slabs is {110} <001> with respect to the rolling direction, and thus has excellent magnetic properties in one direction or the rolling direction. Soft magnetic material. In order to form such goth assembly, component control in the steelmaking stage, slab reheating in hot rolling and factor control in hot rolling process, hot rolled sheet annealing, primary recrystallization annealing, Various processes, such as the next recrystallization annealing, must be controlled very precisely and strictly.

一方、ゴス集合組職を形成する因子の一つであるインヒビター(Inhibitor)、つまり1次再結晶粒の無分別な成長を抑制し、2次再結晶発生の際、ゴス集合組職だけが成長するようにする結晶粒成長抑制剤の制御も非常に重要である。2次再結晶焼鈍の後に優れたゴス集合組職を持つ最終鋼板を得るためには、2次再結晶が起こる直前まですべての1次再結晶粒の成長が抑制されなければならない。このために、十分な抑制力を得るためには、インヒビターの量が充分に多くなければならなく、その分布も均一ではなければならない。また、高温の2次再結晶焼鈍(最終焼鈍)のうち2次再結晶が共に起こるようにするためには、インヒビターが熱的安全性に優れて容易に分解されてはいけない。2次再結晶は、最終焼鈍の際、インヒビターが適正温度区間で分解されるか抑制力を失うことにより発生する現象であり、この場合、ゴス結晶粒のような特定の結晶粒が比較的短時間内に急激に成長することになる。   On the other hand, the inhibitor (Inhibitor), one of the factors forming the Goth aggregate organization, suppresses the indiscriminate growth of primary recrystallized grains, and only the Goth aggregate organization grows when secondary recrystallization occurs. It is also very important to control the grain growth inhibitor. In order to obtain a final steel sheet having an excellent goth aggregate structure after secondary recrystallization annealing, the growth of all primary recrystallized grains must be suppressed until just before secondary recrystallization occurs. For this reason, in order to obtain sufficient inhibitory power, the amount of inhibitor must be sufficiently large and its distribution must be uniform. Moreover, in order for secondary recrystallization to occur together in high-temperature secondary recrystallization annealing (final annealing), the inhibitor must be easily decomposed with excellent thermal safety. Secondary recrystallization is a phenomenon that occurs when the inhibitor is decomposed in an appropriate temperature interval or loses its inhibitory power during the final annealing. In this case, specific crystal grains such as goth crystal grains are relatively short. It will grow rapidly in time.

通常、方向性電磁鋼板の品質は代表的磁気的特性である磁束密度と鉄損で評価されることができ、ゴス集合組職の精度が高いほど磁気的特性に優れる。また、品質に優れた方向性電磁鋼板は、諸特性による高効率の電力器機の製造が可能であり、電力器機の小型化と共に高効率化を提供することができる。 Usually, the quality of grain- oriented electrical steel sheets can be evaluated by the magnetic flux density and iron loss, which are typical magnetic characteristics, and the higher the accuracy of goth assembly, the better the magnetic characteristics. Moreover, the grain-oriented electrical steel sheet having excellent quality can produce a highly efficient electric power device with various characteristics, and can provide high efficiency as well as downsizing of the electric power device.

方向性電磁鋼板の鉄損を低下させるための研究開発は、先に磁束密度を高めるための研究開発からなされている。初期の方向性電磁鋼板はM. F. Littmanが提案したMnSを結晶粒成長抑制剤として使い、2回冷間圧延法で製造される。これによれば、2次再結晶は安定的に形成されたが、磁束密度はあまり高くなく、鉄損も高い。 Research and development for reducing the iron loss of grain- oriented electrical steel sheets has been done from research and development for increasing the magnetic flux density. The initial grain-oriented electrical steel sheet is M.M. F. Manufactured by a cold rolling method twice using MitS proposed by Littman as a grain growth inhibitor. According to this, secondary recrystallization was formed stably, but the magnetic flux density was not so high and the iron loss was also high.

その後、タグチ(田口)、板倉によってAlN、MnS析出物を複合的に用い、冷間圧延率を80%以上、1回の強冷間圧延をする技術が提案されている。これによれば、強い結晶粒成長抑制剤と冷間圧延によって圧延方向への{110}<001>方位配向度を向上させて高磁束密度を得る技術であり、履歴損失が大幅に改善して低鉄損特性を得ることができる。   Subsequently, Taguchi (Taguchi) and Itakura have proposed a technique of using AlN and MnS precipitates in combination and performing a cold rolling at a cold rolling rate of 80% or more once. According to this, it is a technique for obtaining a high magnetic flux density by improving the {110} <001> orientation degree in the rolling direction by a strong grain growth inhibitor and cold rolling, and the history loss is greatly improved. Low iron loss characteristics can be obtained.

一方、電磁鋼板の珪素含量を増量することで、鋼板の比抵抗を高め、鋼板に流れる渦電流を抑制して鉄損を改善させる方法、2次再結晶後に鋼板に不要な不純物を除去する純化焼鈍を実施して鋼板の清浄性を高める方法、及び2次再結晶粒の大きさを適正大きさに制御して鉄損を減少させる方法が研究されている。 On the other hand, by increasing the silicon content of the electromagnetic steel sheet, the specific resistance of the steel sheet is increased, the eddy current flowing in the steel sheet is suppressed and iron loss is improved, and the purification is performed to remove unnecessary impurities in the steel sheet after secondary recrystallization. Research has been conducted on a method of increasing the cleanliness of a steel sheet by performing annealing and a method of reducing iron loss by controlling the size of secondary recrystallized grains to an appropriate size.

珪素含量を増量する方法は、比抵抗の高い珪素を添加して鉄損改善効果を得ようとするものであるが、添加量が増加するほど鋼板の脆性は大きく増加して加工性が非常に落ち、脱炭焼鈍の際、SiO酸化層が緻密に形成されてベースコーティングの形成が難しくなる。 The method of increasing the silicon content is to obtain iron loss improvement effect by adding silicon with high specific resistance. However, as the addition amount increases, the brittleness of the steel sheet greatly increases and the workability becomes very high. At the time of falling and decarburizing annealing, the SiO 2 oxide layer is formed densely, making it difficult to form the base coating.

また、不純物を除去する方法は、100%水素ガスを使って1200°で10時間以上純化焼鈍を実施して不純物の含量を減らすようにするものであるが、純化焼鈍は製造原価を大幅に上昇させる要因として作用する。   Moreover, the method for removing impurities is to reduce the impurity content by carrying out purification annealing at 1200 ° for 10 hours or more using 100% hydrogen gas. However, purification annealing significantly increases the manufacturing cost. It acts as a factor.

そして、2次再結晶粒の粒径を制御する方法は結晶粒成長抑制剤と冷間圧延及び1次再結晶制御によって2次再結晶形成過程を調節しなければならない非常に複雑な工程であって、これまでも画期的な製造技術は開発されることができなかった実情がある。 The method for controlling the grain size of the secondary recrystallized grains is a very complicated process in which the secondary recrystallization formation process must be controlled by a grain growth inhibitor, cold rolling and primary recrystallization control. Thus, there has been a situation where innovative manufacturing technology could not be developed so far.

一方、2次再結晶粒の磁区を微細化する方法によって鉄損を改善する研究が進んで相当な技術発展がなされている。磁区を微細化する方法には、鋼板の表面にレーザーを照射して鋼板の表面に一時的な応力を付与して{110}<001>方位の磁区を微細化する方法と、鋼板の表面に一定の変形を付与して焼鈍熱処理を実施することで磁区の構造的な変化を誘導して磁区を微細化する方法とがある。このような磁区微細化方法は、最終の2次再結晶焼鈍が終わった後、最終製品に対して追加して磁区微細化処理を実施しなければならないので、製造原価を上昇させる負担が伴う。   On the other hand, considerable technological development has been made with progress in research to improve iron loss by a method of refining the magnetic domains of secondary recrystallized grains. The method of refining the magnetic domain includes irradiating the surface of the steel sheet with a laser to apply a temporary stress to the surface of the steel sheet, thereby refining the magnetic domain in the {110} <001> orientation, There is a method of refining the magnetic domain by inducing structural change of the magnetic domain by performing an annealing heat treatment by applying a certain deformation. Such a magnetic domain refining method involves the burden of increasing the manufacturing cost because the magnetic domain refining process must be performed on the final product after the final secondary recrystallization annealing.

一般に、鋼板の厚さを減少させる技術は、冷間圧延の際に変形を引き起こして鉄損の代表的成分中の一つの渦電流損失を減らす方法である。しかし、この場合、結晶成長駆動力が増加することになり、元の結晶成長抑制剤によっては結晶成長駆動力を抑制することができなくて2次再結晶が不安定になる問題がある。   In general, a technique for reducing the thickness of a steel sheet is a method for reducing one eddy current loss in a typical component of iron loss by causing deformation during cold rolling. However, in this case, the crystal growth driving force increases, and there is a problem that the secondary recrystallization becomes unstable because the crystal growth driving force cannot be suppressed depending on the original crystal growth inhibitor.

このような結晶成長と結晶成長抑制力の均衡を取りながらも厚さを減らすためには、最終冷間圧延の際、適正の冷間圧延率で圧延しなければならないが、このような適正の冷間圧延率は結晶成長抑制剤の抑制力によって変わることになる。先にタグチが提案したAlN、MnS複合析出物を結晶成長抑制剤として用いるときには適正の冷間圧延率が約87%であり、Littmanが提案したMnSの析出物を結晶成長抑制剤として用いる場合には50〜70%の冷間圧延率が適正である。   In order to reduce the thickness while balancing the crystal growth and the crystal growth inhibiting force, the final cold rolling must be rolled at an appropriate cold rolling rate. The cold rolling rate varies depending on the restraining force of the crystal growth inhibitor. When the AlN and MnS composite precipitate proposed by Taguchi is used as a crystal growth inhibitor, the appropriate cold rolling ratio is about 87%. When the MnS precipitate proposed by Littman is used as a crystal growth inhibitor A cold rolling rate of 50 to 70% is appropriate.

また一つの理由としては、2次再結晶が不均一に形成されることであり、さらに他の一つは静磁気エネルギー的な側面で厚さ減少による磁区幅が広くなって任意の交流磁場の印加の際に磁区移動が容易でないからである。   One reason is that secondary recrystallization is formed non-uniformly, and the other is that the magnetic domain width is widened due to the thickness reduction on the side of magnetostatic energy, and an arbitrary AC magnetic field is generated. This is because magnetic domain movement is not easy during application.

一方、鋼板の厚さ0.1〜0.25mmの薄物方向性電磁鋼板の製造において、熱延板厚の制約と最終圧延率適正化を解決するために、熱延板を10〜50%の予備冷延を実施した後、熱延板焼鈍及び冷間圧延を行う方向性電磁鋼板の製造方法が提案されるが、この場合、2回の冷間圧延と2回の再結晶焼鈍によって製造原価が上昇する負担が生ずる。 On the other hand, the thickness 0.1~0.25mm of the steel sheet in the production of thin grain oriented electrical steel sheet, in order to solve the constraints and final rolling rate optimization of hot-rolled sheet thickness, the hot rolled sheet of 10-50% A method of manufacturing a grain-oriented electrical steel sheet that performs hot-rolled sheet annealing and cold rolling after pre-cold rolling is proposed. In this case, the production cost is reduced by two cold rollings and two recrystallization annealings. The burden of rising will arise.

したがって、製造原価の負担を減らし、1回の強冷間圧延による結晶成長抑制力の弱化を補強するための目的でB、Tiを添加する技術が提案されている。   Therefore, a technique of adding B and Ti has been proposed for the purpose of reducing the burden of manufacturing cost and reinforcing the weakening of the crystal growth suppressing force by one strong cold rolling.

しかし、Bを添加する技術の場合、微小量の添加のための製鋼段階での制御が極めて困り、添加後には鋼中に粗大なBNを形成しやすい。また、TiはTINとTiCを形成し、TINとTiCは固溶温度が1300℃より高くて2次再結晶の後にも残って鉄損をむしろ増加させる要因として作用することもある。   However, in the case of the technique of adding B, it is extremely difficult to control at the steelmaking stage for addition of a minute amount, and coarse BN is easily formed in the steel after the addition. Further, Ti forms TIN and TiC, and TIN and TiC have a solid solution temperature higher than 1300 ° C. and remain after the secondary recrystallization and may act as a factor to increase iron loss.

結晶粒成長抑制力を向上させるためのさらに他の提案として、Sn及びSbを複合して添加し、1200℃以下の温度でスラブ加熱して熱延し、80%以上の冷間圧延と脱炭焼鈍の後にアンモニアガスを使って窒化処理する、0.23mm以下の薄物方向性電磁鋼板の製造方法が提案されている。しかし、これは薄物方向性電磁鋼板を製造するための非常に厳格な製造基準を提案することによって、実際の生産で1200℃スラブ加熱による熱間圧延の負担が伴い、脱炭と硝化焼鈍を分離することによって製造原価が上昇し、優れた磁気特性を確保するのに困難さがある。 As another proposal for improving the crystal grain growth inhibiting power, Sn and Sb are added in combination, slab heated at a temperature of 1200 ° C. or less, hot rolled, and cold rolling and decarburization of 80% or more. There has been proposed a method of manufacturing a thin grain-oriented electrical steel sheet having a thickness of 0.23 mm or less, in which nitriding is performed using ammonia gas after annealing. However, by proposing a very strict manufacturing standard for manufacturing thin grain-oriented electrical steel sheets, there is a burden of hot rolling by 1200 ° C slab heating in actual production, separating decarburization and nitrification annealing. As a result, the manufacturing cost increases, and it is difficult to secure excellent magnetic properties.

一方、鋼板の厚さが0.23mm以下であり、かつ低鉄損高磁束密度の方向性電磁鋼板を製造するための合金成分系の調整と多段冷間圧延技術の外にも冷間圧延による増大した結晶成長駆動力を抑制するために微細なAlN、MnS析出物の分布を形成させることができる熱延板の焼鈍法が提案されている。この技術は酸可溶性アルミニウム含量による熱延板の加熱温度を制御しなければならないが、制御温度の範囲が非常に狭小で容易な製造に難しさがある。 On the other hand, in addition to the adjustment of the alloy component system and the multi-stage cold rolling technology for producing a directional electrical steel sheet having a thickness of 0.23 mm or less and a low iron loss and high magnetic flux density, cold rolling is also used. In order to suppress the increased crystal growth driving force, a method of annealing a hot-rolled sheet that can form a fine distribution of AlN and MnS precipitates has been proposed. This technique has to control the heating temperature of the hot-rolled sheet according to the acid-soluble aluminum content, but the control temperature range is very narrow and it is difficult to manufacture easily.

その外にも、0.23mm以下の方向性電磁鋼板を製造する方法についての特許文献として、焼鈍分離剤であるMgOを静電塗布する方法と、3回の冷間圧延と3回の真空焼鈍技術、及び圧延厚さによるワークロール(Work roll)の直径変更による極薄材の製造方法について提案されている。しかし、このような技術は現在商用化されている製造技術に比べて追加の設備投資と操業ノウハウを新たに蓄積しなければならないためとても難しい技術であり、品質に対し経済性が低下する欠点がある。 In addition, as a patent document on a method for producing a grain-oriented electrical steel sheet of 0.23 mm or less, a method of electrostatically applying MgO as an annealing separator, three cold rollings, and three vacuum annealings A technique and a method for producing an ultrathin material by changing the diameter of a work roll depending on the rolling thickness have been proposed. However, this technology is very difficult because it requires additional capital investment and operation know-how to be accumulated compared to the currently commercialized manufacturing technology. is there.

一方、方向性電磁鋼板の製造において、スラブ加熱温度は、主に結晶粒成長抑制剤として用いられるAlN、MnS析出物の固溶温度に非常に密接な関係がある。 On the other hand, in the manufacture of grain-oriented electrical steel sheets, the slab heating temperature has a very close relationship with the solid solution temperature of AlN and MnS precipitates mainly used as a crystal grain growth inhibitor.

例えば、高温スラブ加熱法は、スラブを1300℃以上の温度に加熱してAlNとMnS析出物が全て固溶されるようにする技術であり、これは全て固溶されたAlNとMnS析出物が、熱間圧延と以後の熱延板の焼鈍過程で微細に析出されるようにすることにより、強力な結晶成長抑制効果を発揮するように設計されたものである。   For example, the high-temperature slab heating method is a technique in which the slab is heated to a temperature of 1300 ° C. or higher so that all of the AlN and MnS precipitates are solid-dissolved. It is designed to exert a strong crystal growth suppressing effect by being finely precipitated in the hot rolling and subsequent annealing process of the hot rolled sheet.

これは純粋に3質量%の珪素を含む鋼板がフェライト相であると仮定したもので、この際のAlN固溶度はIWAYAMAが提案した次の式で表すことができる。 This is based on the assumption that a steel sheet containing pure 3 % by mass of silicon is a ferrite phase, and the AlN solid solubility at this time can be expressed by the following formula proposed by IWAYAMA.

Figure 0005564571
Figure 0005564571

これによれば、酸可溶性アルミニウムが0.028質量%、Nが0.0050質量%であると仮定した場合、IWAYAMA固溶度式による理論上の固溶温度は1258℃であり、このような電磁鋼板のスラブを加熱するためには約1300℃に加熱しなければならない。 According to this, when it is assumed that the acid-soluble aluminum is 0.028 mass% and N is 0.0050 mass% , the theoretical solid solution temperature according to the IWAYAMA solid solubility equation is 1258 ° C., In order to heat the slab of the electrical steel sheet, it must be heated to about 1300 ° C.

しかし、スラブを1280℃以上の温度に加熱すれば、鋼板に低融点の珪素と基地金属の鉄化合物である鉄かんらん石(FeSiO;fayalite)が生成しながら鋼板の表面がとけるため、熱間圧延を行うことがとても難しくなり、溶けた溶融鉄のため加熱炉を補修しなければならない問題が発生する。 However, if the slab is heated to a temperature of 1280 ° C. or higher, the surface of the steel sheet is melted while iron olivine (Fe 2 SiO 4 ; faylite), which is a low melting point silicon and a base metal iron compound, is generated on the steel sheet. It becomes very difficult to perform hot rolling, and the problem arises that the furnace must be repaired due to molten molten iron.

このような問題を解決するために、1250℃以下の低温度でスラブを加熱する技術についての研究開発が進んでいる。例えば、スラブを1270℃以下の温度に加熱して結晶粒成長抑制剤のAlNを完全固溶させない状態に熱間圧延し、以後に熱延板の焼鈍で完全に析出させ、冷間圧延以後の工程で窒化処理を行って結晶粒成長抑制力を確保する技術が提案されている。   In order to solve such a problem, research and development on a technique for heating a slab at a low temperature of 1250 ° C. or lower is in progress. For example, the slab is heated to a temperature of 1270 ° C. or lower and hot-rolled to a state where the grain growth inhibitor AlN is not completely dissolved, and then completely precipitated by annealing of the hot-rolled sheet. There has been proposed a technique for performing a nitriding treatment in a process to ensure a crystal grain growth suppressing power.

このような低温スラブ加熱法は、スラブ及び熱延段階で存在する析出物を抑制剤として用いないで、後工程で窒化処理によって鋼中に入った窒素イオンが酸可溶性アルミニウムと反応して新たに析出されたAlNのみを結晶成長抑制剤として用いるため、結晶成長駆動力に比べて抑制力が劣る欠点がある。   Such a low temperature slab heating method does not use precipitates present in the slab and hot rolling stages as inhibitors, and nitrogen ions that enter the steel by nitriding treatment in the subsequent process react with acid-soluble aluminum to newly Since only precipitated AlN is used as a crystal growth inhibitor, there is a drawback that the suppressive force is inferior to the crystal growth driving force.

今まで論議した従来の技術をまとめれば、高磁束密度特性の確保のための結晶成長抑制剤の開発、及び低鉄損確保のための珪素含量、及び鋼板の清浄性を高めるための不純物除去純化焼鈍、及び最終製品に対する磁区微細化処理と、最終的な鋼板の厚さ減少、結晶成長抑制剤の補強のためのB、Ti、Sn、Sbの添加、スラブ加熱温度、及び熱延板の焼鈍制御技術が提案されているが、実際に提案された条件が厳格な生産条件であって生産工程の負担として作用し、製造原価上昇要因となり、低温スラブ加熱法の場合、結晶成長抑制力が低くて磁性の向上に限界が伴う。   To summarize the conventional technologies discussed so far, the development of a crystal growth inhibitor to ensure high magnetic flux density characteristics, the silicon content to ensure low iron loss, and the impurity removal purification to enhance the cleanliness of the steel sheet. Annealing and domain refinement treatment for the final product, final steel sheet thickness reduction, addition of B, Ti, Sn, Sb to reinforce the crystal growth inhibitor, slab heating temperature, and hot rolled sheet annealing Although control technology has been proposed, the actual proposed conditions are strict production conditions that act as a burden on the production process, leading to an increase in manufacturing costs. In the case of the low-temperature slab heating method, the crystal growth inhibition power is low. Therefore, there is a limit to the improvement of magnetism.

本発明は、前述したような従来技術の諸般の問題点を解決するためになされたもので、高炭素含有珪素鋼スラブを用いて方向性電磁鋼板のゴス集合組職を向上させ、極薄圧延性とインヒビターの熱的安全性を向上させることで、極めて優れた磁気的特性を持つ低鉄損高磁束密度方向性電磁鋼板及びその製造方法を提供することを目的とする。 The present invention was made in order to solve the various problems of the prior art as described above, and improved goth assembly of grain-oriented electrical steel sheets using a high carbon content silicon steel slab, ultrathin rolling It is an object of the present invention to provide a low iron loss high magnetic flux density grain-oriented electrical steel sheet having extremely excellent magnetic properties and a method for producing the same, by improving the property and the thermal safety of the inhibitor.

上記課題を解決するための本発明の低鉄損高磁束密度方向性電磁鋼板の製造方法は、高炭素含有珪素鋼スラブを加熱して熱間圧延した後、熱延板の焼鈍と冷間圧延を実施し、脱炭及び硝化焼鈍を実施した後、2次再結晶焼鈍を実施して方向性電磁鋼板を製造する方法であって、熱延板の焼鈍と同時に脱炭を行う。 The manufacturing method of the low iron loss high magnetic flux density directional electrical steel sheet according to the present invention for solving the above-mentioned problems is as follows: a high-carbon silicon steel slab is heated and hot-rolled, and then hot-rolled sheet is annealed and cold-rolled. After performing decarburization and nitrification annealing, secondary recrystallization annealing is performed to produce a grain-oriented electrical steel sheet, which is decarburized simultaneously with the annealing of the hot-rolled sheet.

前記珪素鋼スラブは、質量%で、C:0.10〜0.30%、Si:2.0〜4.5%、Al:0.005〜0.040%、Mn:0.20%以下、N:0.010%以下、S:0.010%以下、P:0.005〜0.05%を含み、残部Fe及びその他の不可避な不純物からなることが好ましい。 The silicon steel slab is, by mass , C: 0.10 to 0.30%, Si: 2.0 to 4.5%, Al: 0.005 to 0.040%, Mn: 0.20% or less. , N: 0.010% or less, S: 0.010% or less, P: comprises from 0.005 to 0.05%, it is preferable that the balance of Fe and other inevitable impurities.

また、前記珪素鋼スラブは、Sn及びSbを単独であるいは複合で0.01〜0.3質量%をさらに含むことがより好ましい。 More preferably, the silicon steel slab further contains 0.01 to 0.3 % by mass of Sn and Sb alone or in combination.

前記珪素鋼スラブの加熱温度は1050〜1250℃であることが好ましい。   The heating temperature of the silicon steel slab is preferably 1050 to 1250 ° C.

前記熱間圧延工程は、熱間圧延されたスラブを秒当たり15℃以上で冷却し、580℃以下の温度で巻き取る工程を含むことが好ましく、前記熱延板の焼鈍温度は900〜1200℃であることが好ましい。   The hot rolling step preferably includes a step of cooling the hot-rolled slab at 15 ° C. or more per second and winding it at a temperature of 580 ° C. or less, and the annealing temperature of the hot rolled sheet is 900 to 1200 ° C. It is preferable that

また、前記熱延板の焼鈍は、熱延板を900〜1200℃に加熱した後、湿潤雰囲気で900〜1100℃に維持して実施することが特に好ましい。   Moreover, it is particularly preferable that the hot-rolled sheet is annealed after the hot-rolled sheet is heated to 900 to 1200 ° C and then maintained at 900 to 1100 ° C in a humid atmosphere.

前記熱延板の焼鈍は、熱延板焼鈍された鋼板を秒当たり15〜500℃の速度で冷却する工程を含むことがより好ましい。   More preferably, the annealing of the hot-rolled sheet includes a step of cooling the hot-rolled sheet-annealed steel sheet at a rate of 15 to 500 ° C. per second.

前記冷間圧延は、中間焼鈍を実施しない1回の強冷間圧延によって熱延板の焼鈍後の鋼板を板厚0.20mm以下に圧延することが好ましい。   In the cold rolling, it is preferable that the steel sheet after annealing of the hot-rolled sheet is rolled to a thickness of 0.20 mm or less by one strong cold rolling without intermediate annealing.

前記課題を解決するための本発明の低鉄損高磁束密度方向性電磁鋼板は、高炭素含有珪素鋼スラブを加熱して熱間圧延した後、熱延板の焼鈍及び冷間圧延して製造される方向性電磁鋼板であって、2次再結晶焼鈍後の平均結晶粒の粒径が10〜30mmである。 The low iron loss high magnetic flux density directional electrical steel sheet according to the present invention for solving the above problems is manufactured by heating and hot rolling a high carbon content silicon steel slab and then annealing and cold rolling the hot rolled sheet. In the grain- oriented electrical steel sheet, the average grain size after secondary recrystallization annealing is 10 to 30 mm .

前記珪素鋼スラブは、質量%で、C:0.10〜0.30%、Si:2.0〜4.5%、酸可溶性Al:0.005〜0.040%、Mn:0.20%以下、N:0.010%以下、S:0.010%以下、P:0.005〜0.05%を含み、残部Fe及びその他の不可避な不純物からなることが好ましい。 The silicon steel slab is, by mass , C: 0.10 to 0.30%, Si: 2.0 to 4.5%, acid-soluble Al: 0.005 to 0.040%, Mn: 0.20 %: N: 0.010% or less, S: 0.010% or less, P: 0.005 to 0.05%, and the balance is preferably composed of Fe and other inevitable impurities.

また、前記珪素鋼スラブは、Sn及びSbを単独であるいは複合で0.01〜0.3質量%をさらに含むことがより好ましい。 More preferably, the silicon steel slab further contains 0.01 to 0.3 % by mass of Sn and Sb alone or in combination.

前記鋼板のβ角度は3°以下であることが好ましい。   The β angle of the steel sheet is preferably 3 ° or less.

前記鋼板は、熱延板の焼鈍と同時に脱炭が行われて製造されることが好ましい。   It is preferable that the steel plate is manufactured by decarburization simultaneously with the annealing of the hot-rolled plate.

本発明によれば、高炭素含有珪素鋼スラブを用いてインヒビターの熱的安全性を強化することで、強力な結晶成長抑制力を持つようにするとともに熱延板の焼鈍と同時に脱炭を行って極めて配向度が高い{110}<001>方位の2次再結晶核を提供することにより、磁気特性に極めて優れた方向性電磁鋼板を製造することができる。 According to the present invention, a high carbon content silicon steel slab is used to strengthen the thermal safety of the inhibitor so that it has a strong crystal growth inhibiting force and simultaneously decarburizes while annealing the hot-rolled sheet. By providing secondary recrystallized nuclei with {110} <001> orientation having a very high degree of orientation, a grain-oriented electrical steel sheet having extremely excellent magnetic properties can be produced.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明者らは、方向性電磁鋼板の製造において、珪素鋼フェライト上での結晶粒成長抑制剤であるAlNあるいはMnS析出物が安定的に固溶及び析出されるようにする技術に対する多くの研究と実験を繰り返えしたところ、その結果として、3%珪素鋼は純粋なフェライト領域であるが炭素を添加する量が増加するほど所定の温度領域でオーステナイト相の分率が増加し、これによりオーステナイト相でのAlN固溶度がフェライト上での固溶度に比べて最小2倍以上に向上することができることを見出した。 The inventors of the present invention have made many researches on techniques for stably producing solid solution and precipitation of AlN or MnS precipitates as grain growth inhibitors on silicon steel ferrite in the production of grain-oriented electrical steel sheets. As a result, 3% silicon steel is a pure ferrite region, but as the amount of carbon added increases, the fraction of austenite phase increases in a predetermined temperature region. It has been found that the AlN solid solubility in the austenite phase can be improved by at least twice as much as the solid solubility on ferrite.

よって、本発明者らは、このような炭素のオーステナイト形成元素としての役目とAlNがオーステナイト相で固溶速度及び固溶量が高い点に着眼して研究した結果、スラブに炭素を通常の含量より高い範囲、つまり最小0.10質量%から最大0.30質量%まで添加した場合、スラブ加熱温度領域でのスラブ内オーステナイト相の分率が60%以上存在することになり(Al、Si、Mn)NまたはAlNのような窒化物がスラブの加熱中に十分に固溶されること、そして熱延板の焼鈍の際、脱炭を行い冷却過程を制御することによりゴス集合組職の核生成場所を増大させることで、極めて優れた磁気特性を持つ方向性電磁鋼板を製造することができることを最初に見出した。 Accordingly, the present inventors have studied the role of carbon as an austenite-forming element and the point that AlN is an austenite phase and has a high solid solution rate and a high solid solution amount. When added in a higher range, that is, from a minimum of 0.10 % by mass to a maximum of 0.30 % by mass , a fraction of the austenite phase in the slab in the slab heating temperature region will be 60% or more (Al, Si, The core of Goss collective organization by nitrides such as (Mn) N or AlN being sufficiently dissolved during the heating of the slab and by decarburizing and controlling the cooling process during annealing of the hot-rolled sheet It was first found that a grain-oriented electrical steel sheet having extremely excellent magnetic properties can be produced by increasing the number of generation sites.

オーステナイト相でのAlN固溶度の式は、次のようにDarken(Fe−0.1C−0.4Mn−0.01S)とLeslie(Al−killed鋼)によって求めることができる。   The formula of AlN solid solubility in the austenite phase can be obtained by Darken (Fe-0.1C-0.4Mn-0.01S) and Leslie (Al-killed steel) as follows.

Figure 0005564571
Figure 0005564571

これによれば、酸可溶性アルミニウムが0.028質量%、Nが0.0050質量%の場合、スラブ固溶温度はそれぞれ1112℃(Darken)、1002℃(Leslie)であり、フェライト相での固溶温度1258℃より非常に低い。 According to this, when the acid-soluble aluminum is 0.028 % by mass and N is 0.0050 % by mass , the slab solid solution temperatures are 1112 ° C. (Darken) and 1002 ° C. (Leslie), respectively. Melting temperature is much lower than 1258 ° C.

このように、スラブ内のオーステナイト相が多いほどAlNの固溶温度は低くなるので、スラブに多量の炭素を添加してオーステナイト分率を高めれば、AlNの固溶を極大化して十分な結晶粒成長抑制力を確保することができる。   Thus, the more the austenite phase in the slab, the lower the solid solution temperature of AlN. Therefore, if a large amount of carbon is added to the slab to increase the austenite fraction, the solid solution of AlN is maximized and sufficient crystal grains are obtained. Growth restraint power can be secured.

結局、スラブ加熱と熱延板の焼鈍によってオーステナイト相の形成を促進させることで、冷延後の鋼板内部に微細なAlN析出物分布を得ることができることになり、磁束密度が高く、鉄損を低めるのに有利な2次再結晶粒を得ることができる。   Eventually, by promoting the formation of the austenite phase by slab heating and hot-rolled sheet annealing, a fine AlN precipitate distribution can be obtained inside the cold-rolled steel sheet, resulting in high magnetic flux density and iron loss. Secondary recrystallized grains advantageous for lowering can be obtained.

また、熱延板内の0.10質量%以上0.30質量%以下の炭素によって熱延板焼鈍中にオーステナイトの量が増加し、これにより、前工程の熱間圧延によって発生した不均質で圧延方向に長く延伸された熱間圧延組職の十分な再結晶が可能なので、不均質な熱間圧延微細組職は全量消滅し、全方向に微細な結晶粒で構成されて微細な基地組職に析出物が均質に分散析出され、冷間圧延性も改善されて、1回の強冷間圧延によって板厚0.20mm以下まで圧延することも可能になる。 In addition, the amount of austenite during hot-rolled sheet annealing is increased by 0.10 % by mass or more and 0.30 % by mass or less of carbon in the hot-rolled sheet. Since sufficient recrystallization of the hot rolled structure stretched long in the rolling direction is possible, all the non-homogeneous hot rolled fine structures disappear, and the fine base structure is composed of fine crystal grains in all directions. Precipitates are uniformly dispersed and deposited in the job, the cold rolling property is improved, and the sheet thickness can be reduced to 0.20 mm or less by one strong cold rolling.

また、熱延板の焼鈍と同時に湿潤雰囲気での脱炭がなされて過剰炭素が除去されるとともに表層部に存在するゴス集合組職が深部に成長してゴス集合組職の分率が大幅に増加することになり、熱延焼鈍板を急冷させることで微細で均質なオーステナイトで構成された基地組職とオーステナイト結晶粒内または粒界に存在する微細分散された析出物を常温まで保存することができる。   At the same time as hot-rolled sheet annealing, excess carbon is removed by decarburization in a humid atmosphere, and the Goss collective organization existing in the surface layer grows deeply, greatly increasing the percentage of Goss collective organization. By rapidly cooling the hot-rolled annealed sheet, the base structure composed of fine and homogeneous austenite and the finely dispersed precipitates present in the austenite crystal grains or at the grain boundaries are stored up to room temperature. Can do.

一方、オーステナイト相は急冷過程で強度が非常に高い硬質のベイナイトあるいはマルテンサイト相または両相の混合変態が起こる。この際、1回の強冷間圧延の際、基地組職であるフェライトより数等強度が高いベイナイトあるいはマルテンサイトの周りに変形応力が大きく増加して鋼板の内部にせん断変形帯が増加することになり、さらに脱炭焼鈍を伴った熱延板の焼鈍によって残留されていた炭素が冷間圧延の際に転位の固着をより活性化させてせん断変形帯が増加するので、ゴス集合組職の核生成増加を誘導する効果を現す。   On the other hand, the austenite phase undergoes a hard bainite or martensite phase or a mixed transformation of both phases during the rapid cooling process. At this time, during one strong cold rolling, the deformation stress is greatly increased around bainite or martensite, which is several times as strong as ferrite, which is the base organization, and the shear deformation band is increased inside the steel sheet. Furthermore, the carbon remaining by annealing of the hot-rolled sheet accompanied with decarburization annealing further activates dislocation fixation during cold rolling and increases the shear deformation zone. It has the effect of inducing increased nucleation.

せん断変形帯の内部は2次再結晶の核である{110}<001>方位の結晶粒が容易に再結晶するので、1次再結晶集合組職において{110}<001>方位の集合組職が増加し、これにより2次再結晶された{110}<001>ゴス集合組職の集積度を増加させて高磁束密度を確保することができるようにし、2次再結晶粒の大きさを減少させて極低鉄損の磁気特性を確保することができる。   Inside the shear deformation zone, grains of {110} <001> orientation, which are the nuclei of secondary recrystallization, easily recrystallize, so in the primary recrystallization set organization, the set of {110} <001> orientation The number of jobs increases, thereby increasing the degree of integration of {110} <001> goth aggregates that have been secondary recrystallized to ensure a high magnetic flux density, and the size of secondary recrystallized grains The magnetic characteristics of extremely low iron loss can be secured.

このような本発明の方向性電磁鋼板は、2次再結晶焼鈍の後の結晶粒が磁性に有利な10〜30mmの適正な大きさに形成され、ゴス集合組職の核生成場所の増大によって最終鋼板のβ角度は3°以下になって極めて優れた磁気的特性を得ることができる。 Such a grain-oriented electrical steel sheet according to the present invention has a grain size after secondary recrystallization annealing formed to an appropriate size of 10 to 30 mm, which is advantageous for magnetism. The β angle of the final steel sheet is 3 ° or less, and extremely excellent magnetic properties can be obtained.

以下、本発明の成分限定の理由について説明する。   Hereinafter, the reason for limiting the components of the present invention will be described.

Siは電磁鋼板の基本組成で、素材の比抵抗を増加させて鉄損(core loss)を低める役目をする。Si含量が2.0%未満の場合、比抵抗が減少して鉄損特性が劣化し、高温焼鈍の際、相変態区間が存在して2次再結晶が不安定になり、4.5%を超えて含有されれば、電磁鋼板の脆性が増加して圧延中に板破断がひどくなり、2次再結晶の形成が不安定になる。したがって、Siは2.0〜4.5質量%に限定する。 Si is a basic composition of an electromagnetic steel sheet, and serves to increase the specific resistance of the material and lower the core loss. When the Si content is less than 2.0%, the specific resistance decreases and the iron loss characteristics deteriorate, and during high-temperature annealing, there is a phase transformation section and the secondary recrystallization becomes unstable. If the content exceeds V, the brittleness of the magnetic steel sheet increases, and the sheet breakage becomes severe during rolling, and the formation of secondary recrystallization becomes unstable. Therefore, Si is limited to 2.0 to 4.5 mass% .

Alは、熱間圧延と熱延板の焼鈍の際、微細に析出されたAlNの外にも、冷間圧延以後の焼鈍工程でアンモニアガスによって導入した窒素イオンが鋼中に固溶状態で存在するAl、Si、Mnと結合して(Al、Si、Mn)N形態の窒化物を形成することにより、強力な結晶成長抑制剤の役目をすることになり、その含量が0.005%未満の場合には、抑制剤による十分な効果を期待することができなく、0.040%を超える場合には、粗大なAlNを形成することにより結晶成長抑制力が落ちることになる。したがって、Alの含量は0.005〜0.040質量%に限定する。 In addition to the finely precipitated AlN during the hot rolling and annealing of the hot rolled sheet, Al is present in the steel in the form of a solid solution in which nitrogen ions introduced by ammonia gas in the annealing process after the cold rolling are present. By combining with Al, Si, Mn to form (Al, Si, Mn) N form nitride, it will act as a powerful crystal growth inhibitor, its content is less than 0.005% In this case, it is not possible to expect a sufficient effect by the inhibitor, and when it exceeds 0.040%, the crystal growth inhibiting power is reduced by forming coarse AlN. Therefore, the Al content is limited to 0.005 to 0.040 mass% .

MnはSiと同様に比抵抗を増加させて鉄損を減少させる効果もあり、Siとともに窒化処理によって導入する窒素と反応して(Al、Si、Mn)Nの析出物を形成することにより1次再結晶粒の成長を抑制して2次再結晶を引き起こすのに重要な元素である。しかし、0.20%を超えて添加されれば、鋼板の表面にFeSiO以外にMn Oxideが形成されて、高温焼鈍中に形成されるベースコーティングの形成を邪魔して表面の品質を低下させることになる。よって、Mnは0.20質量%以下にする。 Similar to Si, Mn also has the effect of increasing the specific resistance and decreasing the iron loss, and reacts with nitrogen introduced by nitriding with Si to form (Al, Si, Mn) N precipitates. It is an important element for causing secondary recrystallization by suppressing the growth of secondary recrystallized grains. However, if added in excess of 0.20%, Mn Oxide is formed on the surface of the steel plate in addition to Fe 2 SiO 4 , which interferes with the formation of the base coating formed during high-temperature annealing and improves the surface quality. Will be reduced. Therefore, Mn is 0.20 % by mass or less.

NはAlと反応してAlNを形成する重要な元素で、製鋼段階において0.010質量%以下で添加すること好ましい。0.01質量%を超えて添加されれば、熱延以後の工程で窒素拡散によるBlisterという表面欠陷をもたらすことになる。AlNを形成するためにさらに必要なNは冷間圧延以後の焼鈍工程でアンモニアガスを用いて鋼中に窒化処理を実施することで補強するようにする。 N is an important element that reacts with Al to form AlN, and is preferably added at 0.010 % by mass or less in the steelmaking stage. If it is added in excess of 0.01 % by mass, it will cause a surface defect called Blister due to nitrogen diffusion in the process after hot rolling. Further, N necessary for forming AlN is reinforced by performing nitriding treatment in steel using ammonia gas in an annealing process after cold rolling.

Cは本発明において重要な元素で、0.10%以上0.30%以下の炭素を添加して鋼板内オーステナイト分率を60%以上含むようにすることができる。このような高分率のオーステナイト変態によって、前工程である熱間圧延によって形成された不均質で長く延伸された圧延組職の相変態及び再結晶を活発に誘導することができ、これにより熱延焼鈍板の組職を均質で微細に制御することができる。一方、熱延板の焼鈍と同時に脱炭焼鈍を実施することにより、鋼板表層部のゴス集合組職が深部に成長することになり、1次再結晶焼鈍板のゴス結晶粒の分率を増加させて最終焼鈍板のゴス集積度を増加させ、結晶粒の粒径を減少させて高磁束密度及び極低鉄損を得ることができる。 C is an important element in the present invention, and 0.10% or more and 0.30% or less of carbon can be added to include 60% or more of the austenite fraction in the steel sheet. Such a high fraction austenite transformation can actively induce phase transformation and recrystallization of the inhomogeneous and long stretched roll formed by the hot rolling, which is the previous process. The composition of the spread annealed sheet can be controlled uniformly and finely. On the other hand, by carrying out decarburization annealing at the same time as annealing of hot-rolled sheet, the goth aggregate structure of the steel sheet surface layer part will grow deeper, increasing the fraction of goth crystal grains in the primary recrystallization annealed sheet Thus, the goth accumulation degree of the final annealing plate can be increased, and the grain size of the crystal grains can be decreased to obtain a high magnetic flux density and an extremely low iron loss.

また、所定の冷却速度制御によってオーステナイト相を強度の高いベイナイト相またはマルテンサイト相に変態させることができ、急冷によって変態されたベイナイトあるいはマルテンサイトは熱延板の焼鈍工程でオーステナイト相の核生成場所を提供して、熱延板の焼鈍熱処理の際に組職の均質化を促進することで、微細で均質な微細組職を確保することができ、それによりAlN析出物を微細にすることができ、熱延板の焼鈍が終わってから急冷させたとき、ベイナイトあるいはマテンサイトの形成を促進して、冷間圧延時の変形応力集中による{110}<001>方向への配向度が非常に高いゴス集合組職を形成することができる。一方、熱延板の焼鈍熱処理の後、鋼板内に存在する残留炭素によって冷間圧延中の転位の固着を活性化させて、せん断変形帯を増加させてゴス核の生成場所を増加させ、1次再結晶焼鈍板のゴス結晶粒の分率を増加させることになる。このような効果を得るためには、0.10質量%以上の炭素をスラブ内に含まなければならない。しかし、脱炭焼鈍工程で脱炭を充分に実施しなければ、最終製品を電力器機に適用するとき、自己時効による磁気的特性の劣化現象をもたらすことになり、スラブに炭素を0.30%を超えて含むことになれば、熱延板の焼鈍の際、十分な脱炭のために消耗される時間が増加することになり、焼鈍の時間の増加とともに表面に厚い酸化層が形成されるだけでなく、これにより脱炭遅延現象が発生するため、十分な脱炭を行うことができなくなる。したがって、Cの含量は0.10〜0.30質量%に限定することが好ましい。 In addition, the austenite phase can be transformed into a high-strength bainite phase or martensite phase by a predetermined cooling rate control, and the bainite or martensite transformed by rapid cooling is the nucleation site of the austenite phase during the annealing process of the hot-rolled sheet. To provide a uniform and fine structure in the annealing process of the hot-rolled sheet, thereby ensuring a fine and uniform fine structure, thereby making the AlN precipitate fine. When the steel sheet is rapidly cooled after the annealing of the hot-rolled sheet, the formation of bainite or martensite is promoted, and the degree of orientation in the {110} <001> direction due to deformation stress concentration during cold rolling is very high. A high Goss collective organization can be formed. On the other hand, after annealing heat treatment of the hot-rolled sheet, the residual carbon present in the steel sheet activates dislocation fixation during cold rolling, increases the shear deformation band, increases the generation site of goth nuclei, The fraction of goth crystal grains in the next recrystallization annealed plate will be increased. In order to obtain such an effect, 0.10 % by mass or more of carbon must be included in the slab. However, if decarburization is not sufficiently performed in the decarburization annealing process, when the final product is applied to an electric machine, it will cause a deterioration phenomenon of magnetic characteristics due to self-aging, and 0.30% of carbon is added to the slab. If it is included in excess of the above, when the hot-rolled sheet is annealed, the time consumed for sufficient decarburization increases, and a thick oxide layer is formed on the surface as the annealing time increases. Not only this, but a decarburization delay phenomenon occurs, so that sufficient decarburization cannot be performed. Therefore, the C content is preferably limited to 0.10 to 0.30 mass% .

Sは0.01%を超えて含有されれば、MnSの析出物がスラブ内に形成されて結晶粒成長を抑制することになり、鋳造時にスラブの中心部に偏析して、以後の工程での微細組職を制御しにくい。また、本発明においては、MnSを主な結晶粒成長抑制剤として使うものではないため、Sが不可避に添加される含量以上に添加されて析出されることは好ましくない。   If S is contained in an amount exceeding 0.01%, MnS precipitates are formed in the slab to suppress grain growth, and segregate at the center of the slab during casting. It is difficult to control the fine organization. Further, in the present invention, since MnS is not used as a main crystal grain growth inhibitor, it is not preferable that S is added and precipitated in an amount that is inevitably added.

Snは結晶粒界偏析元素で、結晶粒界の移動を邪魔する元素であるため、結晶成長抑制剤として知られている。また、{110}<001>方位のゴス結晶粒の生成を促進して2次再結晶がうまく発達するように助ける。したがって、本発明のように方向性電磁鋼板を製造するのにおいてSnの役目は結晶粒成長抑制剤としてのAlN、(Al、Si、Mn)N以外にも抑制力の補強に重要な元素である。 Sn is a grain boundary segregation element and is an element that hinders the movement of crystal grain boundaries, and is therefore known as a crystal growth inhibitor. In addition, it promotes the formation of goth crystal grains with {110} <001> orientation to help the secondary recrystallization develop well. Therefore, in the production of grain-oriented electrical steel sheets as in the present invention, the role of Sn is an important element for reinforcing the inhibitory force in addition to AlN and (Al, Si, Mn) N as the crystal grain growth inhibitor. .

SbはSnと同様に結晶粒界偏析元素で、結晶成長抑制の効果があり、2次再結晶時に形成される鋼板の表面酸化層の形成を抑制することで鋼板と酸化層の密着性を向上させて鉄損を改善する効果もある。本発明においては、Sn及びSbを単独であるいは複合で添加して結晶成長抑制効果を得て、{110}<001>方位のゴス結晶粒がより多く形成するように、Sn及びSbを単独であるいは複合で0.01%〜0.3質量%添加すること好ましい。 Sb is a grain boundary segregation element like Sn, and has the effect of suppressing crystal growth, and improves the adhesion between the steel sheet and the oxide layer by suppressing the formation of the surface oxide layer of the steel sheet formed during secondary recrystallization. This also has the effect of improving iron loss. In the present invention, Sn and Sb are added singly or in combination to obtain a crystal growth suppressing effect, and Sn and Sb are singly formed so that more goth crystal grains of {110} <001> orientation are formed. Alternatively, it is preferable to add 0.01% to 0.3 % by mass in combination.

Sn及びSbを単独であるいは複合で0.01質量%より少なく添加すれば、それによる効果を得にくいし、0.3質量%を超えて添加されれば、追加投入費用による効果が低いだけでなく、粒界偏析がひどく発生して鋼板の脆性が高くなることになる。したがって、Sn及びSbは単独であるいは複合で0.01〜0.3質量%添加することが好ましい。 If Sn and Sb are added alone or in combination in an amount of less than 0.01 % by mass , it is difficult to obtain the effect, and if added in excess of 0.3 % by mass , the effect of additional input cost is low. However, the grain boundary segregation is severely generated and the brittleness of the steel sheet becomes high. Therefore, it is preferable to add 0.01 to 0.3 % by mass of Sn and Sb alone or in combination.

PはSn及びSbと類似した効果を示す元素で、結晶粒界に偏析して結晶粒界の移動を邪魔すると同時に結晶粒の成長を抑制する補助的な役目が可能であり、微細組職の側面で{110}<001>集合組職を改善する効果がある。Pの含量が0.005質量%未満であれば添加効果がなく、0.05質量%を超えて添加されれば、脆性が増加して圧延性が悪くなるので、0.005〜0.05質量%に限定することが好ましい。 P is an element having an effect similar to that of Sn and Sb. It can segregate at the grain boundary to obstruct the movement of the grain boundary, and at the same time can serve as an auxiliary role for suppressing the growth of the crystal grain. From the side, {110} <001> has the effect of improving the collective organization. P is no effect of addition is less than 0.005 mass% content of, if it is added more than 0.05 mass%, the rolling property brittleness increases is deteriorated, 0.005 It is preferable to limit to mass% .

以下、本発明の低鉄損高磁束密度方向性電磁鋼板の製造方法について説明する。 Hereinafter, the manufacturing method of the low iron loss high magnetic flux density grain-oriented electrical steel sheet of this invention is demonstrated.

製鋼段階で柱状晶組織である鋳造組職を緩和させ、鋳造の後、常温まで凝固するうちに析出された粗大な析出物を再固溶させるあたり、炭素含量とスラブ再加熱条件は非常に重要である。一般的に、炭素含量が高いほど相変態が活発になって鋳造組職である柱状晶組織を緩和させる効果が向上する。また、スラブ再加熱温度及び熱間圧延作業は他の鋼種と類似した温度条件で製造することが生産性の側面で有利であり、よってスラブ加熱温度は1050〜1250℃に決めることが好ましい。   The carbon content and slab reheating conditions are very important in refining the coarse precipitates that have been solidified to room temperature after casting after relaxing the casting structure, which is a columnar crystal structure in the steelmaking stage. It is. In general, the higher the carbon content, the more active the phase transformation and the more effective the relaxation of the columnar crystal structure that is the casting structure. Moreover, it is advantageous in terms of productivity that the slab reheating temperature and the hot rolling operation are manufactured under temperature conditions similar to those of other steel types, and therefore, the slab heating temperature is preferably determined to be 1050 to 1250 ° C.

一方、方向性電磁鋼板の結晶粒の安全性を確保するために、酸可溶性Alと鋼窒素の含量が非常に重要である。酸可溶性Alと鋼窒素は凝固中に(Al、Si、Mn)NやAlNを析出させる重要な元素であり、次のような含量関係によって基地の内部に固溶されるか析出されることになる。すなわち、酸可溶性Alと鋼窒素は含量によって平衡定数Ksを有し、平衡定数において右側にかたよるほど析出が活発になり、左にかたよるほど基地の内部に固溶されることになる。また、スラブ再加熱温度が平衡定数Ksより低ければ、凝固中に析出された不安定な(Al、Si、Mn)NやAlNが基地内に再固溶されることができない。 On the other hand, the contents of acid-soluble Al and steel nitrogen are very important for ensuring the safety of crystal grains of grain-oriented electrical steel sheets. Acid-soluble Al and steel nitrogen are important elements that cause (Al, Si, Mn) N and AlN to precipitate during solidification. Become. That is, acid-soluble Al and steel nitrogen have an equilibrium constant Ks depending on their contents, and precipitation becomes more active as they move to the right in the equilibrium constant, and are dissolved in the base as they move toward the left. If the slab reheating temperature is lower than the equilibrium constant Ks, unstable (Al, Si, Mn) N and AlN precipitated during solidification cannot be re-dissolved in the matrix.

Figure 0005564571
Figure 0005564571

一方、スラブ再加熱温度があまり低くなれば、凝固時に生成された析出物があまりにも多くて圧延性を阻害することになる。したがって、酸可溶性Alと鋼窒素は必ず制御されなければならない。ここで、酸可溶性Alは0.005〜0.040%、鋼窒素は0.010%以下にしならなければならない。   On the other hand, if the slab reheating temperature is too low, the amount of precipitates produced during solidification is too much and hinders the rollability. Therefore, acid-soluble Al and steel nitrogen must be controlled. Here, the acid-soluble Al must be 0.005 to 0.040%, and the steel nitrogen must be 0.010% or less.

上記のような所定の温度にスラブを加熱した後、熱間圧延を実施する。熱間圧延された熱延板の厚さは1.5〜2.5mmに形成されるようにする。熱延板の厚さが2.5mmを超えれば、熱延後の急冷過程で冷却速度が落ちて粗大な炭化物が形成されて磁性が劣化する。また、1.5mm未満の厚さに熱間圧延することは圧延負荷の増加に難しさがあり、厚さの制御が困る。したがって、熱延板の厚さは1.5〜2.5mmに形成されることが好ましい。   After the slab is heated to the predetermined temperature as described above, hot rolling is performed. The hot-rolled sheet that has been hot-rolled is formed to have a thickness of 1.5 to 2.5 mm. If the thickness of the hot-rolled sheet exceeds 2.5 mm, the cooling rate decreases during the rapid cooling process after hot rolling, coarse carbide is formed, and magnetism deteriorates. Moreover, hot rolling to a thickness of less than 1.5 mm has difficulty in increasing the rolling load, and the thickness is difficult to control. Therefore, it is preferable that the thickness of the hot-rolled plate is formed to be 1.5 to 2.5 mm.

ついで、秒当たり15℃以上の冷却速度で冷却し、580℃以下の温度で巻き取る。秒当たり15℃未満の冷却速度で巻き取った場合、冷却過程で粗大な炭化物が形成されて磁性が劣化し、これとともに脆弱なセメンタイト(FeC)及びフェライトの層状構造であるパーライトが形成され、拡散変態のベイナイト及び無拡散変態のマルテンサイト変態が遅延されるため、熱延板の焼鈍におけるオーステナイト相の微細化及び組職の均質性の確保が容易でなくなる。したがって、熱間圧延の後、熱延板の冷却速度は秒当たり15℃以上にすることが好ましい。 Subsequently, it cools with the cooling rate of 15 degreeC or more per second, and winds up at the temperature of 580 degrees C or less. When it is wound at a cooling rate of less than 15 ° C. per second, coarse carbides are formed in the cooling process and the magnetism is deteriorated. At the same time, pearlite that is a layered structure of brittle cementite (Fe 3 C) and ferrite is formed. Further, since the bainite of the diffusion transformation and the martensitic transformation of the non-diffusion transformation are delayed, it becomes difficult to refine the austenite phase and ensure the homogeneity of the composition in the annealing of the hot rolled sheet. Therefore, after hot rolling, the cooling rate of the hot-rolled sheet is preferably 15 ° C. or more per second.

熱延された鋼板を580℃を超える温度で巻き取れば、やはり粗大な炭化物が形成されるので、巻取温度は580℃以下に限定することが好ましい。   If the hot-rolled steel sheet is wound at a temperature exceeding 580 ° C., coarse carbides are also formed. Therefore, the winding temperature is preferably limited to 580 ° C. or less.

熱間圧延された熱延板内には応力によって圧延方向に延伸された変形組職が存在し、熱延中にAlNやMnSなどが析出することになる。したがって、冷間圧延前に均一な再結晶微細組職と微細なAlNの析出物分布を持つためにはもう一度スラブ加熱温度以下まで熱延板を加熱して変形組職を再結晶させ、また十分なオーステナイト相を確保してAlN及びMnSのような結晶粒成長抑制剤の固溶を促進することが重要である。したがって、熱延板の焼鈍温度はオーステナイト分率を最大に持つために900〜1200℃まで加熱すること好ましい。   In the hot-rolled sheet that has been hot-rolled, there is a deformed structure stretched in the rolling direction by stress, and AlN, MnS, and the like are precipitated during hot-rolling. Therefore, in order to have a uniform recrystallized fine structure and fine AlN precipitate distribution before cold rolling, the deformed composition is recrystallized by heating the hot-rolled sheet once again below the slab heating temperature, and It is important to secure a solid austenite phase and promote solid solution of crystal grain growth inhibitors such as AlN and MnS. Therefore, the annealing temperature of the hot-rolled sheet is preferably heated to 900 to 1200 ° C. in order to have the maximum austenite fraction.

このように、熱延板を900〜1200℃まで加熱した後には900℃以上1100℃以下の温度で均熱処理を行うことが好ましい。均熱処理温度が900℃未満であれば、固溶された析出物が拡散することができなくて微細に析出され、均熱処理温度が1100℃を超えれば、析出物が均一化されなくて以後の冷却過程で析出される問題が発生することになる。したがって、900℃以上1100℃以下の温度で均熱処理を行って析出物の成長駆動を強化するようにする。   Thus, after heating a hot-rolled sheet to 900-1200 degreeC, it is preferable to perform a soaking process at the temperature of 900 degreeC or more and 1100 degrees C or less. If the soaking temperature is less than 900 ° C., the solid-dissolved precipitates cannot be diffused and are finely precipitated. If the soaking temperature exceeds 1100 ° C., the precipitates are not homogenized. The problem of precipitation during the cooling process will occur. Accordingly, the soaking process is performed at a temperature of 900 ° C. or higher and 1100 ° C. or lower to enhance the growth driving of the precipitate.

均熱処理は湿潤雰囲気で行って脱炭を同時に行うことが好ましい。これは、ゴス集合組職の核生成の増加を誘導すると同時に鋼板内の残留炭素量を減らして自己時効による品質劣化を防止するためである。   It is preferable that the soaking is performed in a humid atmosphere and decarburization is performed simultaneously. This is to prevent the deterioration of quality due to self-aging by inducing an increase in nucleation of Goss collective organization and at the same time reducing the amount of residual carbon in the steel sheet.

上記のように、熱延板を焼鈍熱処理してから冷却する際には急冷処理することが好ましい。徐冷されれば、AlN及びMnSなどのような結晶粒成長抑制剤の追加析出による酸可溶性アルミニウム量が減少し、相対的に強度の高いベイナイトやマルテンサイトのような相の代わりに粗大な層状構造のセメンタイト及びフェライトの混合組職であるパーライトが形成されて、以後の冷間圧延の際に加工硬化によるせん断変形帯の形成が弱くなる。また、パーライトに炭素がセメンタイトとして存在することになるだけでなく、結晶粒界に板状や球状の炭化物が単独で存在することになって組職不均一をもたらすことになる。しかし、冷却速度が秒当たり500℃を超えれば、オーステナイト相が全部強度の高いマルテンサイト相に変態されることにより、冷間圧延工程に負荷がかかり、冷間圧延板の品質が低下することになる。   As described above, when the hot-rolled sheet is cooled after being annealed, it is preferably subjected to a rapid cooling treatment. When slowly cooled, the amount of acid-soluble aluminum decreases due to the additional precipitation of grain growth inhibitors such as AlN and MnS, and instead of a relatively strong phase such as bainite or martensite, Pearlite, which is a mixed structure of cementite and ferrite having a structure, is formed, and the formation of shear deformation bands due to work hardening is weakened during subsequent cold rolling. Further, not only carbon is present as cementite in pearlite, but also plate-like or spherical carbides are present alone at the crystal grain boundaries, resulting in uneven organization. However, if the cooling rate exceeds 500 ° C. per second, the austenite phase is transformed into a high-strength martensite phase, which places a burden on the cold rolling process and reduces the quality of the cold rolled sheet. Become.

したがって、熱延板の焼鈍は、900℃以上1200℃以下の温度に加熱した後、900℃以上1100℃以下の温度で均熱処理、かつ湿潤雰囲気で脱炭焼鈍熱処理を行った後、秒当たり15℃以上500℃以下の冷却速度で冷却することが好ましい。この際、冷却法は、空冷、水冷または油冷の方式で行うことができ、あるいはこれらの中で2種以上の方式を組み合わせることも可能である。   Therefore, the annealing of the hot-rolled sheet is performed at a temperature of 900 ° C. or higher and 1200 ° C. or lower, followed by a soaking treatment at a temperature of 900 ° C. or higher and 1100 ° C. or lower and a decarburizing annealing heat treatment in a humid atmosphere, and then 15 It is preferable to cool at a cooling rate of not less than 500C and not more than 500C. At this time, the cooling method can be performed by air cooling, water cooling, or oil cooling, or two or more of them can be combined.

熱延板の焼鈍後には、リバース圧延機あるいはタンドム圧延機を用いて、0.10mm以上0.50mm以下の厚さに冷間圧延を実施する。この際、中間に変形された組職の焼鈍熱処理を行わず、初期熱延厚さからすぐ最終製品の厚さまで圧延する1回の強冷間圧延を行うことが好ましい。1回の強冷間圧延で{110}<001>方位の集積度の低い方位は変形方位に回転することになり、{110}<001>方位への配向度が高い2次再結晶核生成の場所を増加させることにより、磁性に有利なゴス結晶粒だけ冷間圧延板に存在することになる。2回以上の圧延方法においては、集積度が低い方位も冷間圧延板に存在して最終高温焼鈍の際に一緒に2次再結晶されるので、磁束密度と鉄損が劣化することになる。よって、冷間圧延は1回の強冷間圧延で冷間圧延率90%以上に圧延することが好ましい。   After the hot-rolled sheet is annealed, cold rolling is performed to a thickness of 0.10 mm or more and 0.50 mm or less using a reverse rolling mill or a tandem rolling mill. At this time, it is preferable to perform one strong cold rolling that performs rolling from the initial hot rolled thickness to the thickness of the final product immediately without performing the annealing heat treatment of the structure deformed in the middle. An orientation with a low accumulation degree of {110} <001> orientation is rotated to a deformation orientation in one strong cold rolling, and secondary recrystallization nucleation with a high orientation degree to {110} <001> orientation By increasing the number of locations, only goth crystal grains advantageous to magnetism are present in the cold-rolled sheet. In the rolling method of two or more times, the orientation with a low degree of integration also exists in the cold-rolled sheet and is recrystallized together during the final high-temperature annealing, so that the magnetic flux density and the iron loss are deteriorated. . Therefore, it is preferable that the cold rolling is performed at a cold rolling rate of 90% or more by one strong cold rolling.

このように冷間圧延された板は、脱炭、変形組職の再結晶及びアンモニアガスによる窒化処理を行って、熱延板の焼鈍の際に基材内に固溶された酸可溶性アルミニウムと窒素を反応させて強力な結晶粒成長抑制剤である、微細で均一な分布を持つ(Al、Si、Mn)N及びAlNなどの窒化物を多量析出させて、1次再結晶粒の結晶粒の成長を抑制する効果をより増加させる。   The cold-rolled plate is subjected to decarburization, recrystallization of the deformed composition and nitriding treatment with ammonia gas, and the acid-soluble aluminum dissolved in the base material during annealing of the hot-rolled plate and Nitrogen is reacted to deposit a large amount of nitrides such as (Al, Si, Mn) N and AlN, which are powerful grain growth inhibitors and have a fine and uniform distribution. Increase the effect of suppressing the growth of.

本発明の方向性電磁鋼板の製造において炭素の役目は非常に大きいが、最終製品に炭素が多く存在すれば、時間が経つにつれて微細な炭化物を形成して鉄損を大きく増加させる自己時効現象が現れるので、1次再結晶焼鈍工程で脱炭を行って炭素を一定の水準まで除去しなければならない。 The role of carbon in the production of the grain-oriented electrical steel sheet of the present invention is very large, but if there is a lot of carbon in the final product, the self-aging phenomenon that forms fine carbides and increases iron loss greatly over time will occur. As a result, decarburization must be performed in the primary recrystallization annealing step to remove carbon to a certain level.

窒化処理は、アンモニアガスをもって鋼板に窒素イオンを導入することで、主析出物である(Al、Si、Mn)Nを形成することができる。このような窒化処理は脱炭及び再結晶の後に行われるかあるいは脱炭と同時に行われるようにアンモニアガスを同時に使用して行うことができ、いずれでも本発明の効果を発揮するのに問題がない。   The nitriding treatment can form (Al, Si, Mn) N, which is the main precipitate, by introducing nitrogen ions into the steel sheet with ammonia gas. Such nitriding treatment can be performed after decarburization and recrystallization, or can be performed using ammonia gas at the same time as it is performed simultaneously with decarburization, and any of them has a problem in exerting the effect of the present invention. Absent.

脱炭及び窒化処理において、鋼板の焼鈍温度は800〜950℃の範囲内で熱処理することが好ましい。鋼板の焼鈍温度が800℃より低ければ、脱炭に時間が長くかかり、鋼板の表面にSiO酸化層が緻密に形成してベースコーティング欠陷が発生する。反対に鋼板を950℃を超える温度に加熱すれば、再結晶粒が粗大に成長して結晶成長駆動力が低下するため、安定した2次再結晶が形成されない。 In the decarburization and nitriding treatment, it is preferable that the annealing temperature of the steel plate is heat-treated within a range of 800 to 950 ° C. If the annealing temperature of the steel plate is lower than 800 ° C., it takes a long time for decarburization, and a SiO 2 oxide layer is densely formed on the surface of the steel plate, thereby causing a base coating defect. On the contrary, if the steel sheet is heated to a temperature exceeding 950 ° C., the recrystallized grains grow coarsely and the crystal growth driving force decreases, so that stable secondary recrystallization is not formed.

最後に、通常の方向性電磁鋼板の製造の際、鋼板にMgOを基にする焼鈍分離剤を塗布した後、長期間にわたって最終焼鈍して2次再結晶を引き起こすことで、鋼板の{110}面が圧延面に平行で、<001>方向が圧延方向に平行な{110}<001>集合組職を形成して、磁気特性に優れた方向性電磁鋼板を製造する。最終焼鈍の目的は、大きく見れば、2次再結晶による{110}<001>集合組職の形成、脱炭時に形成された酸化層とMgOの反応によるガラス質被膜の形成による絶縁性付与、磁気特性を害する不純物の除去である。最終焼鈍の方法としては、2次再結晶が起こる前の昇温区間で窒素と水素の混合ガスを維持して粒子成長抑制剤である窒化物を保護することで、2次再結晶がよく発達するようにすることにより、2次再結晶が完了した後には100%水素雰囲気で長期間維持して不純物を除去する。 Finally, in the production of a normal grain-oriented electrical steel sheet, after applying an annealing separator based on MgO to the steel sheet, it is finally annealed over a long period of time to cause secondary recrystallization, thereby {110} of the steel sheet. A {110} <001> aggregate is formed in which the surface is parallel to the rolling surface and the <001> direction is parallel to the rolling direction to produce a grain-oriented electrical steel sheet having excellent magnetic properties. The purpose of the final annealing can be broadly seen as {110} <001> aggregate formation by secondary recrystallization, imparting insulation by forming a vitreous film by reaction of the oxide layer formed during decarburization and MgO, It is the removal of impurities that impair the magnetic properties. As a method of final annealing, secondary recrystallization is well developed by maintaining a mixed gas of nitrogen and hydrogen in the temperature rising period before secondary recrystallization occurs to protect the nitride which is a particle growth inhibitor. By doing so, after the secondary recrystallization is completed, impurities are removed by maintaining in a 100% hydrogen atmosphere for a long period of time.

以下、実施例に基づいて本発明をより具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated more concretely.

[実施例1]
質量%で、Si:3.3%、C:0.15%、Mn:0.090%、S:0.003%、N:0.004%、Sol.Al:0.028%、P:0.030%、Sb:0.10%を含み、残部Feとその他の不可避に含有される不純物を含むスラブを真空溶解した後、インゴットを製作し、ついで1200℃の温度で加熱した後、厚さ2.0mmに熱間圧延し、冷却速度秒当たり50℃で巻取温度580℃まで冷却した。このように得られた熱延板を焼鈍すると同時に湿潤雰囲気で脱炭を行った。この際、熱延板の焼鈍は、1050℃に加熱した後、950℃で180秒間維持することで実施し、熱延板焼鈍された鋼板を秒当たり50℃の冷却速度で急冷させた。急冷させた熱延焼鈍板は酸洗した後、0.20mm厚さに1回の強冷間圧延を行った後、850℃の温度で多湿な水素と窒素及びアンモニア混合ガス雰囲気中で180秒間維持して、窒素含量が200ppmとなるように脱炭及び窒化焼鈍を実施した。この鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍を行った。最終焼鈍は、1200℃までは25%窒素+75%水素の混合雰囲気で行い、1200℃に到達した後には100%水素雰囲気で10時間以上維持した後、炉冷して最終鋼板を得て試験材とした。
[Example 1]
In mass% , Si: 3.3%, C: 0.15%, Mn: 0.090%, S: 0.003%, N: 0.004%, Sol. A slab containing Al: 0.028%, P: 0.030%, Sb: 0.10% and the balance Fe and other inevitable impurities contained therein was vacuum-melted, and then an ingot was manufactured. After heating at a temperature of ° C., it was hot-rolled to a thickness of 2.0 mm and cooled to a winding temperature of 580 ° C. at a cooling rate of 50 ° C. per second. The hot-rolled sheet thus obtained was annealed and decarburized in a wet atmosphere. At this time, annealing of the hot-rolled sheet was performed by heating to 1050 ° C. and then maintaining at 950 ° C. for 180 seconds, and the hot-rolled sheet annealed steel sheet was rapidly cooled at a cooling rate of 50 ° C. per second. The rapidly cooled hot-rolled annealed plate is pickled and then subjected to one cold rolling to a thickness of 0.20 mm, and then at a temperature of 850 ° C. in a humidified hydrogen, nitrogen and ammonia mixed gas atmosphere for 180 seconds. Maintaining, decarburization and nitridation annealing were performed so that the nitrogen content was 200 ppm. The steel sheet was coated with MgO, which is an annealing separator, and finally annealed into a coil shape. The final annealing is performed in a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., it is maintained in a 100% hydrogen atmosphere for 10 hours or more, then cooled in a furnace to obtain a final steel plate, and a test material It was.

一方、比較のために、一部に対しては、熱延板の焼鈍の際、脱炭を行わず熱延板の焼鈍を湿潤雰囲気ではない窒素雰囲気で実施したことのみを異にし、その他の条件は上記試験材の製造時と同様にして最終鋼板を得て比較材とした。   On the other hand, for the sake of comparison, in the case of annealing the hot-rolled sheet, only the difference was that the annealing of the hot-rolled sheet was performed in a nitrogen atmosphere that was not a wet atmosphere without decarburization. The conditions were the same as in the production of the test material, and a final steel plate was obtained and used as a comparative material.

また、スラブにCを0.05%含むものと、熱延板の焼鈍を窒素雰囲気で実施したことのみを異にし、その他の条件は上記試験材の製造時と同様にして最終鋼板を得て従来材とした。   Also, the difference between the slab containing 0.05% C and that the annealing of the hot-rolled sheet was carried out in a nitrogen atmosphere, and the other conditions were the same as in the production of the above test material to obtain the final steel sheet. Conventional materials were used.

それぞれの条件に対して磁気的特性を測定して表1に示した。   The magnetic characteristics were measured for each condition and are shown in Table 1.

Figure 0005564571
Figure 0005564571

表1に示すように、0.15%の高炭素含有スラブを用いて熱延板の焼鈍の際に脱炭を行った試験材の場合、C:0.05%含有スラブを用い、熱延板の焼鈍の際脱炭を行わなかった従来材に比べ、鉄損と磁束密度が非常に優れた。   As shown in Table 1, in the case of a test material that was decarburized during annealing of a hot-rolled sheet using a 0.15% high-carbon-containing slab, C: 0.05% -containing slab was used and hot-rolled Compared to the conventional material that was not decarburized during annealing of the plate, the iron loss and magnetic flux density were very excellent.

比較材の場合、0.15%の高炭素含有スラブを用いたが、熱延板の焼鈍の際に脱炭を行わなかったため、最終焼鈍板の残留Cが高くて磁束密度と鉄損が劣化した。   In the case of the comparative material, a slab having a high carbon content of 0.15% was used, but since decarburization was not performed during the annealing of the hot-rolled sheet, the residual C of the final annealed sheet was high, and the magnetic flux density and the iron loss were deteriorated. did.

[実施例2]
質量%で、Si:3.2%、C:0.080〜0.321%、Mn:0.090%、S:0.003%、N:0.004%、Sol.Al:0.030%、P:0.028%、Sn+Sb:0.10%を含み、残部Feとその他の不可避に含有される不純物を含むスラブを真空溶解した後、インゴットを製作し、ついで1200℃の温度に加熱した後、厚さ2.0mmに熱間圧延し、秒当たり50℃の冷却速度で冷却した後、580℃温度で巻き取った。熱間圧延された熱延板は1050℃の温度に加熱した後、950℃で180秒間維持して熱延板の焼鈍を行い、熱延板の焼鈍と同時に湿潤雰囲気で脱炭を行った。焼鈍された鋼板は秒当たり50℃の冷却速度で急冷させ、急冷された熱延焼鈍板は酸洗した後、0.20mm厚さに1回の強冷間圧延を行った。冷間圧延された板は850℃の温度で多湿な水素と窒素及びアンモニア混合ガス雰囲気で180秒間維持して窒素含量が200ppmになるようにすると同時に脱炭窒化焼鈍を行った。この鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍を行った。最終焼鈍は、1200℃までは25%窒素+75%水素の混合雰囲気で行い、1200℃に到達した後には100%水素雰囲気で10時間以上維持した後に炉冷した。それぞれの条件に対して磁気的特性と最終鋼板平均結晶粒の粒径、最終鋼板のβ角度を測定して下記表2に示した。
[Example 2]
In terms of mass% , Si: 3.2%, C: 0.080 to 0.321%, Mn: 0.090%, S: 0.003%, N: 0.004%, Sol. A slab containing Al: 0.030%, P: 0.028%, Sn + Sb: 0.10% and the balance Fe and other inevitable impurities contained therein was vacuum-melted, and then an ingot was manufactured. After heating to a temperature of ° C., it was hot-rolled to a thickness of 2.0 mm, cooled at a cooling rate of 50 ° C. per second, and wound up at a temperature of 580 ° C. The hot-rolled hot-rolled sheet was heated to a temperature of 1050 ° C., then maintained at 950 ° C. for 180 seconds to anneal the hot-rolled sheet, and decarburized in a humid atmosphere simultaneously with the annealing of the hot-rolled sheet. The annealed steel sheet was rapidly cooled at a cooling rate of 50 ° C. per second, and the rapidly cooled hot-rolled annealed sheet was pickled and then subjected to strong cold rolling once to a thickness of 0.20 mm. The cold-rolled sheet was maintained in a humid hydrogen, nitrogen and ammonia mixed gas atmosphere at a temperature of 850 ° C. for 180 seconds so that the nitrogen content became 200 ppm, and at the same time, decarbonitizing and annealing were performed. The steel sheet was coated with MgO, which is an annealing separator, and finally annealed into a coil shape. The final annealing was performed in a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., the furnace was cooled after being maintained in a 100% hydrogen atmosphere for 10 hours or more. The magnetic characteristics, the average grain size of the final steel sheet, and the β angle of the final steel sheet were measured for each condition and are shown in Table 2 below.

Figure 0005564571
Figure 0005564571

表2に示すように、炭素含量を本発明の範囲に属する0.1〜0.3質量%に制御した発明材は、鉄損が0.90(W17/50)以下、磁束密度が1.92(B10)以上で、本発明の範囲から外れる比較材に比べて磁気的特性が非常に優秀である。特に、炭素含量が0.3質量%を超える比較材の場合、磁気的特性が相当に劣化することが分かる。これは、過剰炭素含量によって脱炭が充分に起こらなくて最終製品の磁気的特性が劣化するからである。 As shown in Table 2, the inventive material in which the carbon content is controlled to 0.1 to 0.3 % by mass belonging to the scope of the present invention has an iron loss of 0.90 (W17 / 50) or less and a magnetic flux density of 1. 92 (B10) or more, the magnetic characteristics are very excellent as compared with a comparative material that is out of the scope of the present invention. In particular, it can be seen that in the case of a comparative material having a carbon content exceeding 0.3 % by mass , the magnetic properties are considerably deteriorated. This is because the excess carbon content does not cause sufficient decarburization and deteriorates the magnetic properties of the final product.

このように、炭素0.1〜0.3質量%を含むスラブを用い、熱延板の焼鈍と同時に脱炭されて製造された鋼板は、2次再結晶後の平均結晶粒が磁性に有利な10〜30mmの適正な大きさに形成された。2次再結晶後の平均結晶粒の粒径が10mm未満の場合、磁束密度が極めて低くて鉄損が非常に高くなり、平均結晶粒の粒径が30mmを超える場合においても磁束密度と鉄損が劣化した。 As described above, the steel sheet manufactured by decarburizing simultaneously with the annealing of the hot-rolled sheet using the slab containing 0.1 to 0.3 % by mass of carbon is advantageous in that the average crystal grain after the secondary recrystallization is magnetic. It was formed in a proper size of 10 to 30 mm. If the average crystal grains having a grain size after the secondary recrystallization is less than 10 mm, the iron loss is very high magnetic flux density is very low, the magnetic flux density and core loss even when the particle size of the average crystal grain exceeds 30mm Deteriorated.

さらに、炭素0.1〜0.3質量%を含むスラブを用いて熱延板の焼鈍と同時に脱炭されて製造され、2次再結晶後の平均結晶粒が10〜30mmの適正大きさに形成された発明材の場合、ゴス集合組職の核生成場所の増大効果によってゴス方位から外れた程度を示す最終鋼板のβ角度は3°未満で、従来の方向性電磁鋼板に比べて数等配向性が向上、これにより極めて優れた磁気特性を持つ方向性電磁鋼板を製造することができることが確認された。 Furthermore, it is manufactured by decarburizing simultaneously with annealing of hot-rolled sheet using a slab containing 0.1 to 0.3 % by mass of carbon, and the average grain size after secondary recrystallization is 10 to 30 mm. In the case of the formed invention material, the β angle of the final steel sheet showing the degree of deviation from the Goth orientation due to the effect of increasing the nucleation location of Goss collective organization is less than 3 °, which is several compared to the conventional grain-oriented electrical steel sheet It was confirmed that a grain-oriented electrical steel sheet having improved orientation and extremely excellent magnetic properties can be produced.

[実施例3]
質量%で、Si:3.1%、C:0.25%、Mn:0.10%、S:0.003%、N:0.004%、Sol.Al:0.028%、P:0.027%、Sn:0.10%を含み、残部Feとその他の不可避に含有される不純物を含むスラブを真空溶解した後、インゴットを製作し、ついでさまざまな温度に加熱した後、厚さ2.0mmに熱間圧延し、多様な冷却速度で冷却し、巻取温度を異にして巻き取った。熱間圧延された熱延板は多くの条件の温度で加熱して焼鈍し、冷却速度を変化させた。急冷された熱延焼鈍板は、酸洗した後、0.20mm厚さに1回の強冷間圧延を行った。冷間圧延された板は850℃の温度で多湿な水素と窒素及びアンモニア混合ガス雰囲気で180秒間維持して窒素含量が200ppmになるように脱炭及び窒化焼鈍を行った。この鋼板に焼鈍分離剤であるMgOを塗布してコイル状に最終焼鈍を行った。最終焼鈍は、1200℃までは25%窒素+75%水素の混合雰囲気で行い、1200℃に到達した後には100%水素雰囲気で10時間以上維持した後、炉冷した。それぞれの条件に対して磁気的特性を測定して下記表3に示した。
[Example 3]
In mass% , Si: 3.1%, C: 0.25%, Mn: 0.10%, S: 0.003%, N: 0.004%, Sol. A slab containing Al: 0.028%, P: 0.027%, Sn: 0.10%, and the balance Fe and other inevitable impurities contained therein was vacuum-melted, and then ingots were manufactured. After heating to a certain temperature, it was hot-rolled to a thickness of 2.0 mm, cooled at various cooling rates, and wound at different winding temperatures. The hot-rolled hot-rolled sheet was heated and annealed at temperatures of many conditions, and the cooling rate was changed. The rapidly cooled hot-rolled annealed sheet was pickled and then subjected to strong cold rolling once to a thickness of 0.20 mm. The cold-rolled plate was decarburized and nitrided and annealed at a temperature of 850 ° C. in a humidified hydrogen, nitrogen and ammonia mixed gas atmosphere for 180 seconds so that the nitrogen content was 200 ppm. The steel sheet was coated with MgO, which is an annealing separator, and finally annealed into a coil shape. The final annealing was performed in a mixed atmosphere of 25% nitrogen + 75% hydrogen up to 1200 ° C. After reaching 1200 ° C., it was maintained in a 100% hydrogen atmosphere for 10 hours or more and then cooled in the furnace. The magnetic characteristics were measured for each condition and are shown in Table 3 below.

Figure 0005564571
Figure 0005564571

表3に示すように、スラブを1250℃より高い温度に加熱した試験材Kは熱間圧延を行いにくく、1050℃より低い温度に加熱した試験材Hの場合、インヒビターの固溶が十分でなくて磁性が劣化した。   As shown in Table 3, the test material K in which the slab was heated to a temperature higher than 1250 ° C. was difficult to hot-roll, and in the case of the test material H heated to a temperature lower than 1050 ° C., the inhibitor was not sufficiently dissolved. The magnetism has deteriorated.

熱間圧延されたスラブを秒当たり15℃未満で冷却した試験材Gは粗大な炭化物形成と組職の均質性低下によって磁性が劣化し、熱間圧延された鋼板を580℃を超える温度で巻き取った試験材Cはやはり粗大な炭化物形成によって磁性が劣化した。   The test material G, in which the hot-rolled slab was cooled at less than 15 ° C per second, deteriorated in magnetism due to the formation of coarse carbides and a decrease in the homogeneity of the structure, and the hot-rolled steel sheet was wound at a temperature exceeding 580 ° C. The taken test material C also deteriorated in magnetism due to the formation of coarse carbides.

また、熱延板の焼鈍温度が900℃未満の試験材Aは十分なオーステナイト相が確保されないで結晶粒成長抑制剤の固溶度が低くなって磁性が劣化した。熱延板の焼鈍温度が1200℃を超過した試験材Kは冷間圧延性が落ち、磁性も劣化した。   In addition, the test material A having an annealing temperature of the hot-rolled sheet of less than 900 ° C. did not secure a sufficient austenite phase, and the solid solubility of the crystal grain growth inhibitor was lowered and the magnetism was deteriorated. The test material K in which the annealing temperature of the hot-rolled sheet exceeded 1200 ° C. deteriorated the cold rolling property and deteriorated the magnetism.

そして、熱延板焼鈍された鋼板を秒当たり15℃未満の速度で冷却した試験材Fにおいては、粗大な層状構造であるセメンタイトとフェライトの混合組職であるパーライトが形成されてせん断変形帯の形成が弱くなり、パーライトに炭素がセメンタイトとして存在するだけでなく、結晶粒界に板状や球状の炭化物として単独で存在することになって、組職不均一を引き起こして磁性が劣化した。熱延板焼鈍された鋼板を秒当たり500℃を超える速度で冷却した試験材Hの場合、冷間圧延が容易でなく、冷間圧延板の品質が劣化した。   In the test material F obtained by cooling the hot-rolled steel sheet at a rate of less than 15 ° C. per second, pearlite, which is a mixed structure of cementite and ferrite, which is a coarse layered structure, is formed and a shear deformation band is formed. The formation became weak, and not only carbon was present as cementite in the pearlite, but was also present alone as a plate-like or spherical carbide at the grain boundary, resulting in non-uniform organization and magnetism deterioration. In the case of the test material H in which the hot-rolled sheet annealed steel sheet was cooled at a rate exceeding 500 ° C. per second, cold rolling was not easy and the quality of the cold rolled sheet was deteriorated.

一方、本発明の範囲のように、スラブを1050〜1250℃に加熱し、熱間圧延されたスラブを秒当たり15℃以上で冷却し、580℃以下の温度で巻取し、熱延板を900〜1200℃温度で焼鈍し、熱延板焼鈍された鋼板を秒当たり15〜500℃の速度で冷却した試験材B、D、E、I、Jの場合、鉄損は0.90(W17/50)以下、磁束密度は1.92(B10)以上であって、磁気的特性が非常に優秀であった。   On the other hand, as in the scope of the present invention, the slab is heated to 1050 to 1250 ° C., the hot-rolled slab is cooled at 15 ° C. or more per second, and wound at a temperature of 580 ° C. or less, In the case of test materials B, D, E, I, and J, which were annealed at 900 to 1200 ° C. and cooled at a rate of 15 to 500 ° C. per second, the iron loss was 0.90 (W17 / 50) or less, the magnetic flux density was 1.92 (B10) or more, and the magnetic characteristics were very excellent.

Claims (9)

珪素鋼スラブを加熱して熱間圧延した後、熱延板の焼鈍と冷間圧延を実施し、脱炭及び窒化処理を実施した後、2次再結晶焼鈍を実施して方向性電磁鋼板を製造する方法であって、
前記珪素鋼スラブが質量%で、C:0.10〜0.30%、Si:2.0〜4.5%、Al:0.005〜0.040%、Mn:0.20%以下、N:0.010%以下、S:0.010%以下、P:0.005〜0.05%、残部Fe及びその他の不可避な不純物からなり、
前記珪素鋼スラブが1050〜1250℃に加熱されて熱間圧延され、
前記熱間圧延工程は、熱間圧延されたスラブを秒当たり15℃以上で冷却し580℃以下の温度で巻き取る工程を含み、
前記熱延板の焼鈍は、900〜1200℃の温度で実施され、焼鈍された鋼板を秒当たり15〜500℃の速度で冷却する工程を含み、
熱延板の焼鈍と同時に脱炭が実施され、2次再結晶焼鈍の後の平均結晶粒径が10〜30mmであり、β角度が3°以下である、低鉄損高磁束密度方向性電磁鋼板の製造方法。
After the silicon steel slab is heated and hot-rolled, the hot-rolled sheet is annealed and cold-rolled, decarburized and nitrided, and then subjected to secondary recrystallization annealing to obtain a grain-oriented electrical steel sheet. A method of manufacturing comprising:
The silicon steel slab is in mass%, C: 0.10 to 0.30%, Si: 2.0 to 4.5%, Al: 0.005 to 0.040%, Mn: 0.20% or less, N: 0.010% or less, S: 0.010% or less, P: 0.005-0.05%, balance Fe and other inevitable impurities,
The silicon steel slab is heated to 1050 to 1250 ° C. and hot-rolled,
The hot rolling step includes a step of cooling the hot-rolled slab at 15 ° C. or more per second and winding it at a temperature of 580 ° C. or less.
Annealing of the hot-rolled sheet is performed at a temperature of 900 to 1200 ° C., and includes a step of cooling the annealed steel sheet at a rate of 15 to 500 ° C. per second,
Low iron loss high magnetic flux density directional electromagnetic wave, in which decarburization is performed simultaneously with annealing of hot-rolled sheet, average grain size after secondary recrystallization annealing is 10 to 30 mm, and β angle is 3 ° or less A method of manufacturing a steel sheet.
前記珪素鋼スラブは、Sn及びSbを単独であるいは複合で0.01〜0.3質量%さらに含む、請求項1に記載の低鉄損高磁束密度方向性電磁鋼板の製造方法。   The method for producing a low iron loss high magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein the silicon steel slab further contains 0.01 to 0.3 mass% of Sn and Sb alone or in combination. 前記熱延板の焼鈍は、熱延板を900〜1200℃に加熱した後、湿潤雰囲気で900〜1100℃に維持して実施する、請求項1又は2に記載の低鉄損高磁束密度方向性電磁鋼板の製造方法。   The annealing of the hot-rolled plate is performed by heating the hot-rolled plate to 900 to 1200 ° C, and then maintaining the hot-rolled plate at 900 to 1100 ° C in a wet atmosphere. Method for producing an electrical steel sheet. 前記冷間圧延は、中間焼鈍を実施しない1回の強冷間圧延である、請求項1から3のいずれか一項に記載の低鉄損高磁束密度方向性電磁鋼板の製造方法。   The said cold rolling is a manufacturing method of the low iron loss high magnetic flux density directionality electrical steel plate as described in any one of Claim 1 to 3 which is one strong cold rolling which does not implement intermediate annealing. 前記冷間圧延は、焼鈍された鋼板を板厚0.20mm以下に圧延する、請求項4に記載の低鉄損高磁束密度方向性電磁鋼板の製造方法。   The said cold rolling is a manufacturing method of the low iron loss high magnetic flux density directionality electrical steel plate of Claim 4 which rolls the annealed steel plate to plate | board thickness 0.20 mm or less. 高炭素含有珪素鋼スラブを加熱して熱間圧延した後、熱延板の焼鈍及び冷間圧延し、脱炭及び窒化処理を実施した後、2次再結晶焼鈍を実施して製造される方向性電磁鋼板であって、
前記珪素鋼スラブが質量%で、C:0.10〜0.30%、Si:2.0〜4.5%、Al:0.005〜0.040%、Mn:0.20%以下、N:0.010%以下、S:0.010%以下、P:0.005〜0.05%、残部Fe及びその他の不可避な不純物からなり、
前記珪素鋼スラブが1050〜1250℃に加熱されて熱間圧延され、
前記熱間圧延工程は、熱間圧延されたスラブを秒当たり15℃以上で冷却し580℃以下の温度で巻き取る工程を含み、
前記熱延板の焼鈍は、900〜1200℃の温度で実施され、焼鈍された鋼板を秒当たり15〜500℃の速度で冷却する工程を含み、
前記脱炭が熱延板の焼鈍と同時に実施され、
2次再結晶焼鈍の後の平均結晶粒径が10〜30mmであり、β角度が3°以下である、低鉄損高磁束密度方向性電磁鋼板。
The direction in which the high-carbon silicon steel slab is heated and hot-rolled, then hot-rolled sheet is annealed and cold-rolled, decarburized and nitrided, and then subjected to secondary recrystallization annealing. Electrical steel sheet,
The silicon steel slab is in mass%, C: 0.10 to 0.30%, Si: 2.0 to 4.5%, Al: 0.005 to 0.040%, Mn: 0.20% or less, N: 0.010% or less, S: 0.010% or less, P: 0.005-0.05%, balance Fe and other inevitable impurities,
The silicon steel slab is heated to 1050 to 1250 ° C. and hot-rolled,
The hot rolling step includes a step of cooling the hot-rolled slab at 15 ° C. or more per second and winding it at a temperature of 580 ° C. or less.
Annealing of the hot-rolled sheet is performed at a temperature of 900 to 1200 ° C., and includes a step of cooling the annealed steel sheet at a rate of 15 to 500 ° C. per second,
The decarburization is performed simultaneously with the annealing of the hot-rolled sheet,
The average crystal grain diameter 10~30mm der after the secondary recrystallization annealing Ri, beta angle is 3 ° or less, low core loss and high magnetic flux density oriented electrical steel sheet.
前記珪素鋼スラブは、Sn及びSbを単独であるいは複合で0.01〜0.3質量%さらに含む、請求項6に記載の低鉄損高磁束密度方向性電磁鋼板。   The low iron loss high magnetic flux density grain-oriented electrical steel sheet according to claim 6, wherein the silicon steel slab further contains 0.01 to 0.3 mass% of Sn and Sb alone or in combination. 前記鋼板の板厚は0.20mm以下である、請求項6又は7に記載の低鉄損高磁束密度方向性電磁鋼板。 The low iron loss high magnetic flux density grain-oriented electrical steel sheet according to claim 6 or 7 , wherein a thickness of the steel sheet is 0.20 mm or less. 前記鋼板の鉄損(W17/50)は0.90W/Kg以下、磁束密度(B10)は1.92T以上である、請求項6又は7に記載の低鉄損高磁束密度方向性電磁鋼板。   The low iron loss high magnetic flux density directional electrical steel sheet according to claim 6 or 7, wherein the steel sheet has an iron loss (W17 / 50) of 0.90 W / Kg or less and a magnetic flux density (B10) of 1.92 T or more.
JP2012530776A 2009-10-01 2010-09-17 Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof Active JP5564571B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090094030A KR101149792B1 (en) 2009-10-01 2009-10-01 Grain-oriented electrical steel sheets with extremely low core loss and high flux density, and Method for manufacturing the same
KR10-2009-0094030 2009-10-01
PCT/KR2010/006396 WO2011040723A2 (en) 2009-10-01 2010-09-17 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor

Publications (2)

Publication Number Publication Date
JP2013505365A JP2013505365A (en) 2013-02-14
JP5564571B2 true JP5564571B2 (en) 2014-07-30

Family

ID=43826763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530776A Active JP5564571B2 (en) 2009-10-01 2010-09-17 Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5564571B2 (en)
KR (1) KR101149792B1 (en)
CN (1) CN102575314B (en)
WO (1) WO2011040723A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180072229A (en) * 2016-12-21 2018-06-29 주식회사 포스코 Method for manufacturing electrical steel sheet having high silicon and excellent cold rolling property

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094777A1 (en) * 2011-12-19 2013-06-27 주식회사 포스코 Grain-oriented electrical steel sheet having low core loss and high magnetic flux density, and method for manufacturing same
KR101509637B1 (en) 2013-06-26 2015-04-14 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR20150074933A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Grain oriented electrical steel and preparation method thereof
KR101642281B1 (en) 2014-11-27 2016-07-25 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR101633611B1 (en) * 2014-12-05 2016-06-27 주식회사 포스코 High silicon electrical steel sheet with superior magnetic properties, and method for fabricating the high silicon electrical steel
JP6228956B2 (en) * 2015-07-17 2017-11-08 ポスコPosco Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
KR101796234B1 (en) * 2015-12-22 2017-11-09 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet
KR101966370B1 (en) * 2016-12-21 2019-04-05 주식회사 포스코 Method for manufacturing grain oriented electrical steel sheet
KR102501748B1 (en) * 2018-03-23 2023-02-21 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel
CN110739821B (en) * 2019-11-06 2024-04-30 天津工业大学 Method for designing robustness of low-iron-loss variable-flux permanent magnet memory motor for electric automobile

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037134B2 (en) * 1972-10-11 1975-12-01
JPS59232227A (en) * 1983-06-15 1984-12-27 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet having superior magnetic characteristic
JPH0249023A (en) * 1988-05-25 1990-02-19 Mitsubishi Gas Chem Co Inc Resin composition
JPH0372027A (en) * 1989-08-11 1991-03-27 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss
JPH0742505B2 (en) * 1990-02-20 1995-05-10 川崎製鉄株式会社 Method for producing grain-oriented silicon steel sheet having excellent magnetic properties and bend properties
JPH04346622A (en) * 1991-05-23 1992-12-02 Nippon Steel Corp Manufacture of grain-oriented magnetic steel sheet excellent in magnetic characteristic
JPH05171371A (en) * 1991-12-16 1993-07-09 Nippon Steel Corp Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JP3336142B2 (en) * 1995-01-31 2002-10-21 川崎製鉄株式会社 Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH0949023A (en) * 1995-08-10 1997-02-18 Nippon Steel Corp Production of grain oriented silicon steel sheet excellent in iron loss
JP4873770B2 (en) 2000-01-11 2012-02-08 新日本製鐵株式会社 Unidirectional electrical steel sheet
JP2003253336A (en) * 2002-03-06 2003-09-10 Jfe Steel Kk Process for manufacturing grain-oriented magnetic steel sheet having excellent surface quality and high magnetic flux density
RU2378394C1 (en) * 2006-05-24 2010-01-10 Ниппон Стил Корпорейшн Manufacturing method of sheet of texturated electrical steel with high magnetic induction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180072229A (en) * 2016-12-21 2018-06-29 주식회사 포스코 Method for manufacturing electrical steel sheet having high silicon and excellent cold rolling property
KR101879077B1 (en) * 2016-12-21 2018-07-16 주식회사 포스코 Method for manufacturing electrical steel sheet having high silicon and excellent cold rolling property

Also Published As

Publication number Publication date
CN102575314A (en) 2012-07-11
KR20110036390A (en) 2011-04-07
WO2011040723A3 (en) 2011-07-07
KR101149792B1 (en) 2012-06-08
WO2011040723A2 (en) 2011-04-07
CN102575314B (en) 2014-12-17
JP2013505365A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5564571B2 (en) Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof
JP7068312B2 (en) Directional electrical steel sheet and its manufacturing method
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
KR102164329B1 (en) Grain oriented electrical steel sheet and method for manufacturing therof
KR20180113556A (en) Method for manufacturing directional electromagnetic steel sheet
KR20190075985A (en) Method for manufacturing directional electromagnetic steel sheet
KR20130014892A (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same
JP7221481B6 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR101051743B1 (en) Oriented electrical steel with excellent magnetic properties and manufacturing method thereof
KR101051744B1 (en) Oriented electrical steel with excellent magnetic properties and manufacturing method thereof
JP7037657B2 (en) Directional electrical steel sheet and its manufacturing method
KR101263795B1 (en) Grain-oriented electrical steel sheets with extremely low core loss and high flux density, Method for manufacturing the same, and a slab using therefor
KR20190075986A (en) Method for manufacturing directional electromagnetic steel sheet
KR101263842B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101059212B1 (en) Oriented electrical steel sheet with excellent magnetic properties omitted from annealing hot rolled sheet and its manufacturing method
KR101318275B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR101263848B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263846B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263843B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101263841B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
KR101263851B1 (en) Method for manufacturing grain-oriented electrical steel sheets with extremely low core-loss and high flux-density
KR101263847B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and method for manufacturing the same
KR101263798B1 (en) Grain-oriented electrical steel sheets with extremely low core-loss and high flux-density and Method for manufacturing the same
KR101459730B1 (en) Oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5564571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250