JPH05171371A - Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet - Google Patents

Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Info

Publication number
JPH05171371A
JPH05171371A JP33195491A JP33195491A JPH05171371A JP H05171371 A JPH05171371 A JP H05171371A JP 33195491 A JP33195491 A JP 33195491A JP 33195491 A JP33195491 A JP 33195491A JP H05171371 A JPH05171371 A JP H05171371A
Authority
JP
Japan
Prior art keywords
plane
sheet
annealing
steel sheet
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33195491A
Other languages
Japanese (ja)
Inventor
Shozaburo Nakajima
正三郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33195491A priority Critical patent/JPH05171371A/en
Publication of JPH05171371A publication Critical patent/JPH05171371A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To stably manufacture a grain-oriented silicon steel sheet having extremely high magnetic flux density, at the time of manufacturing a grain-oriented silicon steel sheet, by regulating the product of the extreme density of the (110) plane and the (111) plane in the parallel face of the specified sheet thickness part into specified value. CONSTITUTION:A high Si steel slab is heated and is subjected to hot rolling, and after that, this hot rolled sheet is annealed in an N2 atmosphere, is cooled and is thereafter subjected to cold rolling into a thin steel sheet having a final sheet thickness, which is subjected to decarburization annealing serving also as primary recrystallization annealing in a hydrogen- nitrogen mixed gas. Successively, this steel sheet is coated with a separation agent for annealing, is subjected to secondary recrystallization annealing and purification annealing, is finally subjected to stress release annealing and is finished. At this time, by using a primary recrystallization annealed sheet in which the product P of the extreme density of the (110) plane and the extreme density of the (111) plane to the random azimuth in the parallel face of the sheet face at the 1/4 position of the sheet thickness after the primary recrystallization annealing is regulated so as to satisfy the inequality, the objective grain oriented silicon steel sheet having extremely high magnetic flux density can stably be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として電力用変圧器
の鉄芯材料に用いられる一方向性電磁鋼板製造用の中間
材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intermediate material for producing a grain-oriented electrical steel sheet mainly used as an iron core material of a power transformer.

【0002】[0002]

【従来の技術】一方向性電磁鋼板については、これまで
に多くの製造方法が開示され、製品の磁気特性が改善さ
れてきた。しかし、年々、深刻化するエネルギー問題、
環境問題を反映して、電力用変圧器鉄芯の主要材料であ
る一方向性電磁鋼板の磁気特性向上に対する要求は一段
と強まってきている。
2. Description of the Related Art Many manufacturing methods have been disclosed so far for unidirectional electrical steel sheets, and the magnetic properties of products have been improved. However, the energy problem that gets worse year by year,
Reflecting environmental problems, the demand for improvement of magnetic properties of unidirectional electrical steel sheets, which is a main material of iron cores for power transformers, has been further strengthened.

【0003】[0003]

【発明が解決しようとする課題】本発明は磁束密度の著
しく高い一方向性電磁鋼板を安定して製造することので
きる中間材としての一次再結晶焼鈍板を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a primary recrystallization annealed sheet as an intermediate material capable of stably producing a grain-oriented electrical steel sheet having a remarkably high magnetic flux density.

【0004】[0004]

【課題を解決するための手段】一方向性電磁鋼板は、二
次再結晶により、圧延面に{110}面を、圧延方向に
<001>軸を揃えた、いわゆるGoss方位の集合組
織を得ることにより製造される。この場合、一次再結晶
の集合組織とインヒビターが重要である。すなわち、イ
ンヒビターがマトリックスの正常粒成長を抑止する中
で、Goss核がマトリックスを蚕食して異常粒成長
し、Goss方位の二次再結晶集合組織が得られる。本
発明者は一次再結晶の集合組織とインヒビターに着目し
て鋭意検討した結果、析出物の分散及び表面から板厚の
中心層に向かう全板厚の1/4の位置の板面平行面にお
けるランダム方位に対する{110}面の極密度と{1
11}面の極密度の積の値が次式を満足するように制御
された一次再結晶焼鈍板を用いることにより、磁束密度
の著しく高い一方向性電磁鋼板を安定して製造できると
いう新しい知見を得、本発明を完成した。
Means for Solving the Problems In the grain-oriented electrical steel sheet, a so-called Goss-oriented texture is obtained by secondary recrystallization, in which the {110} plane is aligned with the rolling surface and the <001> axis is aligned with the rolling direction. It is manufactured by In this case, the texture of primary recrystallization and the inhibitor are important. That is, while the inhibitor suppresses the normal grain growth of the matrix, the Goss nuclei eclipse the matrix to cause abnormal grain growth, and a secondary recrystallization texture in the Goss orientation is obtained. As a result of intensive studies by the present inventor focusing on the texture of primary recrystallization and the inhibitor, as a result, dispersion of precipitates and a plate surface parallel plane at a position ¼ of the total plate thickness from the surface toward the central layer of the plate thickness Polar density of {110} plane and {1 for random orientation
A new finding that a unidirectional electrical steel sheet having a remarkably high magnetic flux density can be stably produced by using a primary recrystallization annealed sheet in which the product value of the pole density of the 11} plane is controlled so as to satisfy the following equation. And completed the present invention.

【0005】1.5≦50Z+P≦2.5 Z≧0.015 P≧0.40 Z=(3/2)×(ρ/D)(μm-1) ρ ; 析出物の体積分率 D ; 析出物の平均粒子径(μm) P ; {110}面の極密度と{111}面の極密度
の積 以下に、本発明に至った経緯を実験1の結果に基づいて
説明する。
1.5 ≦ 50Z + P ≦ 2.5 Z ≧ 0.015 P ≧ 0.40 Z = (3/2) × (ρ / D) (μm −1 ) ρ; Volume fraction of precipitate D; Average particle size of precipitates (μm) P; Product of polar density of {110} plane and polar density of {111} plane Hereinafter, the background of the present invention will be described based on the results of Experiment 1.

【0006】(実験1)重量%で、C:0.070%、
Si:3.00%、Mn:0.080%、S:0.00
02〜0.0500%、酸可溶性Al:0.0002〜
0.0500%、N:0.0002〜0.0120%を
含有し、残部はFe及び不可避的混入元素から成る各種
成分の40mm厚みの多数のスラブを製造した。次いで1
100〜1450℃の範囲の各種温度で均熱30分 の
スラブ加熱を行い、スラブ加熱後熱間圧延開始までの時
間を50秒とし、熱間圧延により1.0〜5.0mmの各
種板厚の熱延板とした。次いでN2 雰囲気で、1150
℃で均熱120秒の焼鈍を行い、焼鈍後、1〜300℃
/秒の各種の平均冷却速度で常温まで冷却した。次いで
冷間圧延により0.30mmの板厚とした。この場合、冷
間圧延の途中では、時効処理を行わなかった。次いでH
2 75vol%、N2 25vol%、露点65℃の雰囲
気で、850℃で均熱150秒の脱炭焼鈍を兼ねた一次
再結晶焼鈍を行い、焼鈍分離剤を塗布して、二次再結晶
焼鈍を行った。二次再結晶焼鈍においては、Ar雰囲気
で、加熱速度25℃/時間で1200℃まで加熱し、H
2 雰囲気で、1200℃で均熱20時間の純化焼鈍を行
った。次いでN2 雰囲気で、800℃で均熱2時間の歪
取焼鈍を行った。次いで磁束密度B8 を測定した。
(Experiment 1) C: 0.070% by weight,
Si: 3.00%, Mn: 0.080%, S: 0.00
02-0.0500%, acid-soluble Al: 0.0002-
A large number of 40 mm thick slabs containing various components of 0.0500%, N: 0.0002 to 0.0120% and the balance being Fe and unavoidable mixed elements were manufactured. Then 1
The slab is heated for 30 minutes soaking at various temperatures in the range of 100 to 1450 ° C, and the time from the heating of the slab to the start of hot rolling is set to 50 seconds. It was used as a hot rolled sheet. Then, in N 2 atmosphere, 1150
1-300 ℃ after annealing at 120 ℃ for 120 seconds
The sample was cooled to room temperature at various average cooling rates of / sec. Then, it was cold-rolled to a plate thickness of 0.30 mm. In this case, the aging treatment was not performed during the cold rolling. Then H
In the atmosphere of 2 75 vol%, N 2 25 vol%, and dew point of 65 ° C, primary recrystallization annealing that also serves as decarburization annealing at 850 ° C for 150 seconds of soaking is performed, an annealing separator is applied, and secondary recrystallization annealing is performed. I went. In the secondary recrystallization annealing, heating in an Ar atmosphere at a heating rate of 25 ° C./hour to 1200 ° C.
Purification annealing was performed at 1200 ° C. for 20 hours in two atmospheres. Then, stress relief annealing was performed at 800 ° C. for 2 hours in a N 2 atmosphere. Then, the magnetic flux density B 8 was measured.

【0007】一次再結晶焼鈍後、MnS量、AlN量及
び析出物の分散状況を調査した。MnS量は、試料を定
電位電解法により溶解し、濾過し、残渣をHClとHN
3 の混合溶液で溶解し、濾過し、濾過液のMn含有量
をICP法で定量して求めた。AlN量は、試料をヨウ
素メタノール溶液で溶解し、濾過し、残渣をNaOH溶
液で溶解し、濾過し、濾過液のAl含有量をICP法で
定量して求めた。析出分散相については、地金をSel
ective PotentiostaticEtch
ing by Electrolytic Disso
lutionMethod(SPEED法)により電解
し、電解面に露出した析出物をアセチルセルローズフィ
ルムを貼って剥ぎ取り、抽出レプリカを作成し、透過電
子顕微鏡で観察した。析出物の粒子径については、透過
電子顕微鏡で、レプリカの6μm×8μmの部分を一万
倍に拡大して観察し、代表的な8視野を撮影し、画像解
析法により求めた。この場合、粒子像を等面積の円とみ
なして粒子径を計算した。また、各サイズの析出物は、
1/2×粒子径に相当する試料の厚みから抽出されるも
のとした。MnS量及びAlN量から析出物の体積分率
を求めた。この場合、MnS及びAlNの密度を、それ
ぞれ4.0g/cm3 及び3.3g/cm3 (理化学辞典第
4版−岩波書店参照)として計算した。析出物の体積分
率(ρ)及び平均粒子径(D)から、Z値{(3/2)
×(ρ/D)}を計算した。
After the primary recrystallization annealing, the amount of MnS, the amount of AlN and the dispersed state of the precipitate were investigated. The amount of MnS was determined by dissolving the sample by the potentiostatic electrolysis method, filtering the residue, and adding the residue to HCl and HN.
It was dissolved in a mixed solution of O 3 , filtered, and the Mn content of the filtrate was determined by the ICP method. The amount of AlN was determined by dissolving the sample in an iodine-methanol solution, filtering, dissolving the residue in a NaOH solution, filtering, and quantifying the Al content of the filtrate by the ICP method. For the precipitated dispersed phase, use Sel
active Potentiostatic Etch
ing by Electronic Disso
Electrolysis was carried out by the solution method (SPEED method), and the precipitate exposed on the electrolysis surface was peeled off by attaching an acetyl cellulose film, and an extraction replica was prepared and observed with a transmission electron microscope. The particle size of the precipitate was determined by observing a 6 μm × 8 μm portion of the replica with a transmission electron microscope at a magnification of 10,000 times, photographing 8 representative visual fields, and obtaining the image by an image analysis method. In this case, the particle size was calculated by regarding the particle image as a circle having the same area. In addition, the precipitate of each size,
It was assumed to be extracted from the thickness of the sample corresponding to ½ × particle diameter. The volume fraction of the precipitate was determined from the amount of MnS and the amount of AlN. In this case, the density of MnS and AlN, respectively 4.0 g / cm 3 and 3.3 g / cm 3 (Dictionary of Physics and Chemistry 4th ed. - see Iwanami Shoten) was calculated as. From the volume fraction (ρ) of the precipitate and the average particle diameter (D), Z value {(3/2)
× (ρ / D)} was calculated.

【0008】また、一次再結晶焼鈍後、表面から板厚の
中心層に向かう全板厚の1/4の位置の板面平行面にお
けるランダム方位に対する{110}面のX線極密度と
{111}面のX線極密度の積の値(P値)を測定し
た。図1に、Z値、P値と磁束密度B8 の関係を示す。
すなわち、横軸はZ値であり、縦軸はP値である。図中
の符号○、△、×等は磁束密度B8 のレベルを示す。た
だし、Z値の0.070超、P値の3.00超について
は、図示を省略した。図1から明らかなように、直線
a、直線b、直線c及び直線dで囲まれた領域で著しく
高い磁束密度が得られる。ここで、各直線は、Z値、P
値について次の関係を示す。
After the primary recrystallization annealing, the X-ray pole density of the {110} plane and the {111} plane with respect to the random orientation in the plane parallel to the plate at a position ¼ of the total plate thickness from the surface to the central layer of the plate thickness. The value (P value) of the product of the X-ray polar densities of the {} plane was measured. FIG. 1 shows the relationship between the Z value and P value and the magnetic flux density B 8 .
That is, the horizontal axis is the Z value and the vertical axis is the P value. Symbols ◯, Δ, × and the like in the figure indicate the level of the magnetic flux density B 8 . However, illustration is omitted for Z values exceeding 0.070 and P values exceeding 3.00. As is apparent from FIG. 1, a remarkably high magnetic flux density is obtained in the region surrounded by the straight line a, the straight line b, the straight line c, and the straight line d. Here, each straight line is Z value, P
The following relationships are shown for the values.

【0009】直線a : Z=0.015 直線b : N=0.40 直線c : 50Z+P=1.5 直線d : 50Z+P=2.5 すなわち、析出物の分散及び表面から板厚の中心層に向
かう全板厚の1/4の位置の板面平行面におけるランダ
ム方位に対する{110}面の極密度と{111}面の
極密度の積の値が次式を満足するように制御された一次
再結晶焼鈍板を用いることにより磁束密度の著しく高い
一方向性電磁鋼板が安定して製造できることが判明し
た。
Straight line a: Z = 0.015 Straight line b: N = 0.40 Straight line c: 50Z + P = 1.5 Straight line d: 50Z + P = 2.5 That is, dispersion of precipitates and from the surface to the central layer of plate thickness The linear value was controlled so that the product of the polar density of the {110} plane and the polar density of the {111} plane with respect to the random orientation in the plane parallel to the plate at a position of 1/4 of the total plate thickness that satisfies the following equation It was found that a grain-oriented electrical steel sheet having a remarkably high magnetic flux density can be stably manufactured by using a recrystallization annealed sheet.

【0010】1.5≦50Z+P≦2.5 Z≧0.015 P≧0.40 Z=(3/2)×(ρ/D)(μm-1) ρ ; 析出物の体積分率 D ; 析出物の平均粒子径(μm) P ; {110}面の極密度と{111}面の極密度
の積 上式を満足するように制御する方法としては、C、M
n、S、酸可溶性Al、N、Sn等の材料成分、スラブ
加熱条件、熱間圧延条件、熱延板焼鈍条件(特に均熱温
度と冷却条件)、冷間圧延条件(特に圧下率と時効処理
条件)、一次再結晶焼鈍条件等の調整が挙げられる。ま
た、適当な工程において、浸硫黄、浸窒素等の処理を行
ってもよい。
1.5 ≦ 50Z + P ≦ 2.5 Z ≧ 0.015 P ≧ 0.40 Z = (3/2) × (ρ / D) (μm −1 ) ρ; Volume fraction of precipitate D; Average particle size of precipitates (μm) P; C and M are controlled so as to satisfy the product formula of the polar density of {110} plane and the polar density of {111} plane.
n, S, acid-soluble Al, N, Sn, and other material components, slab heating conditions, hot rolling conditions, hot-rolled sheet annealing conditions (especially soaking temperature and cooling conditions), cold rolling conditions (especially rolling reduction and aging) Treatment conditions), primary recrystallization annealing conditions and the like can be mentioned. Moreover, you may perform a process of sulfur immersion, nitrogen immersion, etc. in an appropriate process.

【0011】Z値は、微細析出物による結晶粒の粒界移
動抑止力の指標と考えられる。{110}面の極密度、
{111}面の極密度は、各々Goss方位、{11
1}<112>方位の量の指標と考えることができる。
{111}<112>方位は、Goss方位に対し、T
D軸回りに約35°の回転関係にあり、対応方位Σ9に
近く、Goss方位に食われ易い方位として知られてい
る。{110}面の極密度と{111}面の極密度の積
の値はGoss核とGoss核に食われ易い方位粒の遭
遇チャンスの指標と考えることができる。
The Z value is considered to be an index of the grain boundary migration inhibiting force of crystal grains due to fine precipitates. Pole density of {110} plane,
The pole densities of the {111} plane are Goss orientation and {11}, respectively.
1} <112> can be considered as an index of the amount of orientation.
The {111} <112> orientation is T with respect to the Goss orientation.
It is known to have a rotational relationship of about 35 ° around the D axis, close to the corresponding azimuth Σ9, and easily eroded by the Goss azimuth. The value of the product of the pole density of the {110} plane and the pole density of the {111} plane can be considered as an index of the encounter chance of Goss nuclei and oriented grains that are easily eaten by Goss nuclei.

【0012】[0012]

【実施例】下記以外については実験1と同じ条件で処理
した。スラブの成分を重量%で、S:0.0270%、
酸可溶性Al:0.0290%、N:0.0085%、
Sn:無添加(0.001%以下)及び0.25%と
し、スラブ加熱温度を1400℃とし、スラブ加熱後熱
間圧延開始までの時間を3秒、60秒及び150秒と
し、熱間圧延後の板厚を2.0mm、3.0mm及び4.0m
mとし、熱延板焼鈍後の平均冷却速度を30℃/秒と
し、冷間圧延の途中で時効処理無し及び時効処理有りと
した。この場合の時効処理条件は等圧下率の板厚で10
回行い、各々250℃で均熱10分 保持した。一次再
結晶焼鈍後のZ値、P値及び磁束密度B8 を表1に示
す。表1から明らかなように本発明の場合に著しく高い
磁束密度が得られる。
[Example] Except for the following, processing was performed under the same conditions as in Experiment 1. Ingredients of slab in wt%, S: 0.0270%,
Acid-soluble Al: 0.0290%, N: 0.0085%,
Sn: no addition (0.001% or less) and 0.25%, the slab heating temperature was 1400 ° C., the time until hot rolling start after slab heating was 3 seconds, 60 seconds and 150 seconds, and hot rolling Later plate thickness of 2.0mm, 3.0mm and 4.0m
m, the average cooling rate after hot-rolled sheet annealing was 30 ° C./sec, and there was no aging treatment and there was aging treatment during the cold rolling. The aging treatment condition in this case is 10 at the plate thickness of equal rolling reduction.
This was repeated once, and each was kept at 250 ° C. for 10 minutes. Table 1 shows the Z value, P value and magnetic flux density B 8 after the primary recrystallization annealing. As is clear from Table 1, in the case of the present invention, a remarkably high magnetic flux density is obtained.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】析出物の分散及び表面から板厚の中心層
に向かう全板厚の1/4の位置の板面平行面におけるラ
ンダム方位に対する{110}面の極密度と{111}
面の極密度の積の値が次式を満足するように制御された
一次再結晶焼鈍板を用いることにより磁束密度の著しく
高い一方向性電磁鋼板が安定して製造することができる
ようになった。
EFFECTS OF THE INVENTION Dispersion of precipitates and polar density of {110} plane and {111} with respect to random orientation in parallel plane of plate surface at a position of ¼ of total plate thickness from surface to center layer of plate thickness
By using a primary recrystallization annealed sheet whose surface polar density product value is controlled so as to satisfy the following equation, it becomes possible to stably produce unidirectional electrical steel sheets with extremely high magnetic flux density. It was

【0015】1.5≦50Z+P≦2.5 Z≧0.015 P≧0.40 Z=(3/2)×(ρ/D)(μm-1) ρ ; 析出物の体積分率 D ; 析出物の平均粒子径(μm) P ; {110}面の極密度と{111}面の極密度
の積
1.5 ≦ 50Z + P ≦ 2.5 Z ≧ 0.015 P ≧ 0.40 Z = (3/2) × (ρ / D) (μm −1 ) ρ; Volume fraction of precipitate D; Average particle size of precipitates (μm) P; Product of polar density of {110} plane and polar density of {111} plane

【図面の簡単な説明】[Brief description of drawings]

【図1】析出物の分散状況を示すZ値、{110}面の
極密度と{111}面の極密度の積の値であるP値と磁
束密度B8 の関係を示す。すなわち、横軸はZ値であ
り、縦軸はP値である。図中の符号○、△、×等は磁束
密度B8 のレベルを示す。
FIG. 1 shows a relationship between a magnetic flux density B 8 and a P value, which is a product of a Z value showing a dispersion state of precipitates, a polar density of {110} plane and a polar density of {111} plane. That is, the horizontal axis is the Z value and the vertical axis is the P value. Symbols ◯, Δ, × and the like in the figure indicate the level of the magnetic flux density B 8 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 析出物の分散及び表面から板厚の中心層
に向かう全板厚の1/4の位置の板面平行面におけるラ
ンダム方位に対する{110}面の極密度と{111}
面の極密度の積の値が次式を満足するように制御された
高磁束密度一方向性電磁鋼板製造用一次再結晶焼鈍板。 1.5≦50Z+P≦2.5 Z≧0.015 P≧0.40 Z=(3/2)×(ρ/D)(μm-1) ρ ; 析出物の体積分率 D ; 析出物の平均粒子径(μm) P ; {110}面の極密度と{111}面の極密度
の積
1. Dispersion of precipitates and polar density of {110} plane and {111} with respect to random orientation in parallel plane of plate surface at a position of ¼ of total plate thickness from the surface to the central layer of plate thickness.
A primary recrystallization annealed plate for producing a high magnetic flux density unidirectional electrical steel sheet in which the product value of the surface pole density is controlled to satisfy the following equation. 1.5 ≦ 50Z + P ≦ 2.5 Z ≧ 0.015 P ≧ 0.40 Z = (3/2) × (ρ / D) (μm −1 ) ρ; Volume fraction of precipitate D; Deposit Average particle size (μm) P; Product of polar density of {110} plane and polar density of {111} plane
JP33195491A 1991-12-16 1991-12-16 Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet Withdrawn JPH05171371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33195491A JPH05171371A (en) 1991-12-16 1991-12-16 Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33195491A JPH05171371A (en) 1991-12-16 1991-12-16 Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH05171371A true JPH05171371A (en) 1993-07-09

Family

ID=18249500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33195491A Withdrawn JPH05171371A (en) 1991-12-16 1991-12-16 Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH05171371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040723A3 (en) * 2009-10-01 2011-07-07 주식회사 포스코 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040723A3 (en) * 2009-10-01 2011-07-07 주식회사 포스코 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor
CN102575314A (en) * 2009-10-01 2012-07-11 Posco公司 Low-core-loss, high-magnetic-flux density, grain-oriented electrical steel sheet and production method therefor

Similar Documents

Publication Publication Date Title
WO2011013858A1 (en) Grain-oriented magnetic steel sheet
JP2000514506A (en) Manufacturing method of unidirectional electrical steel sheet
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH0832929B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2006299297A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
KR0183408B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
JPS5855530A (en) Preparation of unidirectional silicon steel sheet excellent in magnetic property
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JP3896937B2 (en) Method for producing grain-oriented electrical steel sheet
JPH05171371A (en) Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JP6813134B2 (en) Directional electromagnetic steel sheet and iron core using it
JP7352082B2 (en) Non-oriented electrical steel sheet
JP5810506B2 (en) Oriented electrical steel sheet
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JPH05171370A (en) Primary recrystallization annealed sheet for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0673453A (en) Primary recrystallization-annealed sheet for high-magnetic flux density unidirectional electrical steel sheet
JPS6059044A (en) Grain-oriented silicon steel sheet having low iron loss value and its production
JP2728721B2 (en) Method for producing bi-directional electrical steel sheet with good characteristics
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production
JPS6046319A (en) Preparation of one directional silicon steel plate
JPS6319573B2 (en)
JPS60194019A (en) Manufacture of nonoriented electrical steel sheet having superior shape and magnetism
WO2024154774A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311