JPS6319573B2 - - Google Patents

Info

Publication number
JPS6319573B2
JPS6319573B2 JP2276285A JP2276285A JPS6319573B2 JP S6319573 B2 JPS6319573 B2 JP S6319573B2 JP 2276285 A JP2276285 A JP 2276285A JP 2276285 A JP2276285 A JP 2276285A JP S6319573 B2 JPS6319573 B2 JP S6319573B2
Authority
JP
Japan
Prior art keywords
steel plate
grain
oriented electrical
electrical steel
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2276285A
Other languages
Japanese (ja)
Other versions
JPS61183457A (en
Inventor
Tosha Wada
Osamu Tanaka
Makoto Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60022762A priority Critical patent/JPS61183457A/en
Priority to SE8504752A priority patent/SE465128B/en
Priority to IT67867/85A priority patent/IT1182608B/en
Priority to CA000492955A priority patent/CA1249764A/en
Priority to FR858515269A priority patent/FR2571884B1/en
Priority to KR1019850007583A priority patent/KR900008852B1/en
Priority to GB08525352A priority patent/GB2167324B/en
Priority to DE19853536737 priority patent/DE3536737A1/en
Publication of JPS61183457A publication Critical patent/JPS61183457A/en
Priority to US07/002,394 priority patent/US4863531A/en
Publication of JPS6319573B2 publication Critical patent/JPS6319573B2/ja
Priority to US07/470,997 priority patent/US4960652A/en
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は磁気特性の極めてすぐれた方向性電磁
鋼板の製造方法に係わり、詳しくは熱処理を施さ
れても鉄損改善効果が消失しない磁区細分化によ
り鉄損が極めて低く磁束密度も良好な方向性電磁
鋼板を製造する方法に関する。 〔従来の技術〕 方向性電磁鋼板は主として変圧器、その他、電
気機器の鉄芯材料として使用されるので、励磁特
性、鉄損特性が良好である必要がある。 この鋼板は2次再結晶現象を利用し、圧延面に
(110)面を、圧延方向に〈001〉軸をもつ、いわ
ゆるゴス方位を有する2次再結晶粒が発達してい
る。該(110)〈001〉方位の集積度を高めるとと
もに、圧延方向からの偏りを可及的に減少せしめ
ることにより、励磁特性、鉄損特性等のすぐれた
ものが製造されるようになつている。 ところで、(110)<001>方位の集積度を高める
につれて結晶粒は大きくなり、また磁壁が粒界を
貫通するために磁区が大となり、集積度を高めた
割りには鉄損が低くならない現象がある。 上述の現象を解消し、鉄損の低下を図る技術と
して、例えば特公昭58−5968号公報がある。これ
は最終仕上焼鈍済の一方向性電磁鋼板の表面に小
球等を押圧して深さ5μ以下の凹みを形成して線
状の微小ひずみを付与することによつて磁区の細
分化を行い、鉄損を改善するものである。また、
特公昭58−26410号公報には、最終仕上焼鈍によ
り生成した2次再結晶の各結晶粒表面にレーザー
照射による痕跡を少なくとも1個形成せしめて、
磁区を細分化し鉄損を低下させることが提案され
ている。 これら特公昭第58−5968号及び特公昭第58−
26410号に示された方法によれば一方向性電磁鋼
板表面に局部的な微小ひずみを付与することで鉄
損が改善され、超低鉄損材料を得ることができ
る。 〔発明が解決しようとする問題点〕 しかしながら、上記の如く得られた超低鉄損材
料も焼鈍すると鉄損の改善効果が失われ、例えば
巻鉄心を製造する際の歪取り焼鈍では該鉄損改善
効果が消失する問題がある。 本発明は、熱処理例えば歪取焼鈍されても鉄損
改善効果が消失しない磁区細分化を、効率的に行
つて鉄損が極めて低く、磁束密度が良好で、かつ
耐蝕性、絶縁性の良好な方向性電磁鋼板を安定し
て製造する方法を目的とする。また前記歪取焼鈍
を施されても鉄損が劣化しない方向性電磁鋼板を
製造することを目的とする。 本発明者らは磁区細分化後に歪取焼鈍など例え
ば700〜900℃の温度で熱処理されても鉄損改善効
果が消失しない磁区細分化を効率的に行つて鉄損
が極めて低い方向性電磁鋼板であつて、さらに錆
の発生がなく層間抵抗もすぐれたものを生産性よ
く安定して製造すべく実験を行い検討した。 〔問題点を解決するための手段〕 仕上焼鈍された方向性電磁鋼板のグラス被膜、
絶縁被膜等の表面被膜を間隔をおいて除去し、該
除去された箇所に可侵入体をメツキして鋼板地鉄
と結合させると、その後に歪取焼鈍などの熱処理
を施しても磁区細分化による鉄損改善交果は消失
せず、安定して鉄損の極めて低い方向性電磁鋼板
が得られることを見出した。 次いで、リン酸、リン酸塩、クロム酸、クロム
酸塩、重クロム酸塩、コロイダルシリカの1種ま
たは2種以上を含む絶縁被膜溶液を鋼板に塗布
し、焼付けして絶縁被膜を形成すると、メツキさ
れた可侵入体がその後の作業中にコイルのスリツ
プ等により剥離したり、その後の焼鈍時に気散す
る現象が防止され、侵入体の形成が安定化し、さ
らに耐蝕性、絶縁性とも良好であるのを知見し
た。侵入体の形成による鉄損の低下は、鋼成分あ
るいは鋼組織と異なつた侵入体が間隔をおいて鋼
板に存在すると、静磁エネルギーが増加し、これ
を打消するために反転磁区が生成され、磁区の細
分化をもたらした為と考えられる。 本発明は鉄損が極めて低く磁気特性がすぐれ、
さらに耐蝕性、絶縁性の良好な方向性電磁鋼板を
安定して生産性よく製造する方法を提供するもの
である。その特徴とするところは仕上焼鈍された
方向性電磁鋼板のグラス被膜、絶縁被膜等の表面
被膜を1〜30mmの間隔をおいて除去し、該鋼板に
可侵入体のSb,Cu,Sn,Zn,Cr,Mo,および、
これらいずれかの元素の合金の1種または2種以
上を目付量0.05g/m2以上メツキし、次いで絶縁
被膜処理を行い、さらに必要に応じて、700〜900
℃で歪取焼鈍を行なうことを特徴とする磁気特性
の極めてすぐれた方向性電磁鋼板の製造方法にあ
る。 本発明において「可侵入体」とは鋼板にメツキ
により入り込む物質であつて、Sb,Cu,Sn,
Zn,Cr,Mo,およびこれら元素の合金である。 「侵人体」とは前記可侵人体が、鋼板成分等と
結合した状態で鋼板中に粒、塊りまたは線状とな
つて存在する様子を表現するものである。 本発明による耐熱性のある磁区細分化は次のよ
うにして行える。即ち、仕上焼鈍された方向性電
磁鋼板に形成されているグラス被膜、酸化被膜、
絶縁被膜などの表面被膜を、レーザー照射、研
削、切削、溶削、化学研磨、酸洗、腐食、シヨツ
トブラスト等により間隔をおいて除去して鋼板地
鉄を露出させ、次いで該鋼板に、前記可侵人体を
電気メツキ、溶融メツキなどにより0.05g/m2
上の目付量でメツキすると、可侵入体は表面被膜
が間隔をおいて除去された箇所に強固に結合す
る。また可侵入体の一部は合金層を形成すること
がある。即ち、方向性電磁鋼板の仕上焼鈍にて、
前工程の脱炭焼鈍で形成されたSiO2を含む酸化
膜とMgOを主成分とする焼鈍分離剤との反応で
形成されるグラス被膜(フオルステライト被膜)
や、酸化膜、あるいは該鋼板にリン酸、リン酸ア
ルミニウム、リン酸マグネシウム、無水クロム
酸、コロイダルシリカなどを塗布し焼付して形成
された絶縁被膜は、可侵入体を鋼板にメツキする
さい、その反応を妨げる作用がある。このため、
該表面被膜を間隔をおいて除去して鋼板地鉄を露
出しメツキすると当該地鉄と可侵入体の反応が選
択的に生じ、鋼板に極めて強固に結合される。 メツキの目付量を制御すると、可侵入体の鋼板
との結合量が容易に変えられ、その鉄損特性レベ
ルを作り分けることができる。また目付量により
磁束密度も変えられる。例えば目付量がふえると
鉄損特性を改善しながら、該磁束密度を下げ得
る。従つて該鋼板を用いてトランスの鉄芯を製造
すると実機鉄損が大巾に改善されるのである。 次いで、該鋼板にリン酸や、リン酸アルミニウ
ム、リン酸マグネシウム、リン酸亜鉛、リン酸カ
ルシウム等のリン酸塩、クロム酸やクロム酸マグ
ネシウム等のクロム酸塩、重クロロム酸塩、コロ
イダルシリカなどの1種または2種以上を含む絶
縁被膜溶液を塗布し、350℃以上の温度で焼付し
て絶縁被膜を形成する。 この絶縁被膜処理によつて、前記鋼板に結合さ
れた可侵入体は、その後、コイル捲取時の摩擦力
やスリツプ等により剥離するのが防止するととも
に、耐蝕性が向上し錆の発生を防ぐ。またこの絶
縁被膜時の焼付けは可侵入体を鋼板中に入り込ま
せる作用もある。 以下に本発明を仕上焼鈍された方向性電磁鋼板
に可侵入体を電気メツキする例に基づいて具体的
に説明する。 本発明では仕上焼鈍された方向性電磁鋼板に、
磁区細分化を行うが、該方向性電磁鋼板の鋼成
分、および仕上焼鈍されるまでの製造条件は特定
する必要はなく、例えばインヒビターとして
AlN,MnS,MnSe,BN,Cu2S等の内適宜なも
のが用いられ、必要に応じてCu,Sn,Cr,Ni,
Mo,Sb等の元素が含有され、さらにスラブを熱
間圧延し、焼鈍して1回または焼鈍をはさんで2
回以上の冷間圧延により最終板厚とされ、脱炭焼
鈍され、焼鈍分離剤を塗布され仕上焼鈍される一
連のプロセスの条件についても特定する必要はな
い。 ところで、仕上焼鈍された方向性電磁鋼板には
グラス被膜(フオルステライト被膜)が形成され
ている。このグラス被膜は本発明の適用例で電気
メツキする可侵入体と鋼板地鉄との反応を抑制し
その下地に若干存在する酸化膜も上記反応を妨げ
ることがある。また絶縁被膜が形成されていると
前記グラス被膜と同様な作用がある。 これらの弊害を除き可侵入体が鋼板地鉄と反応
し、強固に結合するように、鋼板のグラス被膜、
酸化被膜、絶縁被膜等を、間隔をおいて除去する
には、レーザー照射、研削、切削、溶削、局部酸
洗等で行われる。その間隔は1〜30mmであり、等
間隔でも非等間隔でもよい。この表面被膜除去の
間隔は狭くなると鋼板にメツキされた可侵入体の
間隔が狭くなり、磁区の細分化効果が少なくなる
とともに磁束密度を低下させるので1mm以上とす
る。一方、その間隔が広くなり過ぎると可侵入体
のメツキの間隔が大となり、この場合にも磁区の
細分化効果が少なくなるので30mm以下とするもの
である。その除去の方向は鋼板の圧延方向に対し
て30〜90度の向きが好ましい。その除去は連続、
非連続のいずれでもよい。また、除去の巾は0.01
〜5mmが侵入体形成のために好ましい。 この表面被膜の除去により鋼板地鉄が露出され
る。この露出とは鋼板地鉄の一部に若干の凹みを
形成することも含む。 次いで方向性電磁鋼板に可侵入体が電気メツキ
される。 前記表面被膜が間隔をおいて除去されている場
合は、可侵入体のSb,Sn,Zn,Cr,Moおよび、
これらいずれかの元素の合金の1種または2種以
上、あるいは前記元素の酸化物、さらに必要に応
じて、リン酸塩、ホウ酸塩、硫酸塩、硝酸塩、珪
酸塩、リン酸、ホウ酸などが添加された電解液中
に前記鋼板を通板し電気メツキする。このメツキ
時には、間隔をおいて表面被膜が除去され鋼板地
鉄が露出されている箇所にのみに、電気的反応が
起こり、他の箇所には係る反応が生じない。従つ
て可侵入体が前記鋼板地鉄の露出されている箇所
のみにメツキされる。また、表面被膜が存在して
いる部分は前述の如く電解液と反応しないので、
その表面被膜はそのままきれいな状態に維持され
るという作用もある。 このメツキにおいては、目付量が重要であり、
その量が少ないと、鉄損改善効果が生じない。歪
取焼鈍後に低鉄損とするには0.05g/m2以上(鋼
板の面積あたり)の目付量が必要である。 次いで該鋼板に、リン酸、リン酸塩、リン酸塩
とクロム酸塩、あるいはリン酸塩とクロム酸塩と
コロイダルシリカを含む絶縁被膜液を塗布し、
350℃以上の温度で焼付けて、絶縁被膜を形成す
る。 さらに、歪取焼鈍を行うと侵入体の鋼板中への
入り込みが助長される。この歪取焼鈍は700〜900
℃の温度で行う。歪取焼鈍の温度は低いと加工歪
の消去に長時間を要するので、700℃以上とし、
一方その温度が高くなつてもその効果は殆ど変わ
らないので、900℃以下とするものである。 本発明の適用により、鋼板に形成された侵入体
の一例の顕微鏡組織写真(×1000)を第1図に示
す。 侵入体の組成は鋼成分組成と異なり、また組織
も異なつて、その両側に磁区の芽が多数つくら
れ、鋼板を磁化したとき、該磁区の芽が伸びて、
磁区が細分化されると推察される。 〔実施例〕 以下実施例を説明する。 〔実施例 1〕 重量%でC:0.081、Si:3.22、Mn:0.068、
Al:0.030、S:0.024、Cu:0.13、Sn:0.09、残
部鉄からなる珪素鋼スラブを周知の方法によつて
熱間圧延―焼鈍―冷間圧延を経て0.225mm厚の鋼
板を得た。 次いで更に周知の脱炭焼鈍―MgOを主成分と
する焼鈍分離剤を塗布―仕上焼鈍の各工程を実施
した。仕上焼鈍後の鋼板を「処理前」の供試材と
した。該鋼板にCO2レーザーを照射し、圧延方向
とほぼ直角方向に5mm間隔でグラス被膜、および
酸化被膜を除去し、次いで第1表に示すメツキ金
属(可侵入体)を含む電解液を用いて、目付量
1.5g/m2となるように電気メツキし、次いでリ
ン酸アルミニウム、リン酸、無水クロム酸、クロ
ム酸塩、コロイド状シリカを含んだ絶縁被膜液を
塗布し850℃で焼付けて絶縁被膜を形成し「処理
後」の供試材とした。 以上、「処理前」「処理後」のそれぞれの供試材
の磁気特性を測定した。 その測定結果を第2表に示す。
[Industrial Application Field] The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with extremely excellent magnetic properties, and more specifically, the iron loss is extremely low due to magnetic domain refining, which does not lose its iron loss improvement effect even after heat treatment. The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with good magnetic flux density. [Prior Art] Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, so they need to have good excitation characteristics and iron loss characteristics. This steel sheet utilizes the secondary recrystallization phenomenon, and develops secondary recrystallized grains having a so-called Goss orientation, with a (110) plane on the rolling surface and a <001> axis in the rolling direction. By increasing the degree of integration of the (110) <001> orientation and reducing deviation from the rolling direction as much as possible, products with excellent excitation characteristics, iron loss characteristics, etc. are being manufactured. . By the way, as the degree of integration of the (110)<001> orientation increases, the crystal grains become larger, and the magnetic domain becomes larger because the domain wall penetrates the grain boundary, which is a phenomenon in which iron loss does not decrease as the degree of integration increases. There is. For example, Japanese Patent Publication No. 58-5968 discloses a technique for eliminating the above-mentioned phenomenon and reducing iron loss. This is done by pressing small balls etc. onto the surface of a unidirectional electrical steel sheet that has undergone final finish annealing to form depressions with a depth of 5μ or less and applying linear microstrain to subdivide the magnetic domains. , which improves iron loss. Also,
Japanese Patent Publication No. 58-26410 discloses that at least one mark is formed by laser irradiation on the surface of each crystal grain of secondary recrystallization generated by final finish annealing,
It has been proposed to subdivide magnetic domains to reduce iron loss. These Special Publication No. 58-5968 and Special Publication No. 58-
According to the method disclosed in No. 26410, iron loss is improved by applying local minute strain to the surface of a grain-oriented electrical steel sheet, and an ultra-low iron loss material can be obtained. [Problems to be Solved by the Invention] However, when the ultra-low iron loss material obtained as described above is annealed, the iron loss improvement effect is lost. There is a problem that the improvement effect disappears. The present invention efficiently performs magnetic domain refining that does not lose its iron loss improvement effect even when subjected to heat treatment, such as strain relief annealing, to achieve extremely low iron loss, good magnetic flux density, and good corrosion resistance and insulation properties. The purpose is to provide a method for stably manufacturing grain-oriented electrical steel sheets. Another object of the present invention is to produce a grain-oriented electrical steel sheet whose core loss does not deteriorate even when subjected to the strain relief annealing. The present inventors have developed a grain-oriented electrical steel sheet with extremely low iron loss by efficiently performing magnetic domain refining in which the iron loss improvement effect does not disappear even when subjected to heat treatment such as strain relief annealing at a temperature of 700 to 900°C after magnetic domain refining. In order to produce a product that does not cause rust and has excellent interlayer resistance with good productivity, we conducted experiments and investigated. [Means for solving the problem] Glass coating of finish annealed grain-oriented electrical steel sheet,
If surface coatings such as insulating coatings are removed at intervals, and the removed areas are plated with penetrants and bonded to the steel plate base, magnetic domain refining will not occur even if heat treatment such as strain relief annealing is subsequently performed. It has been found that the iron loss improvement effect caused by this method does not disappear, and grain-oriented electrical steel sheets with extremely low iron loss can be stably obtained. Next, an insulating coating solution containing one or more of phosphoric acid, phosphate, chromic acid, chromate, dichromate, and colloidal silica is applied to the steel plate and baked to form an insulating coating. This prevents the plated penetrable bodies from peeling off during subsequent work due to coil slipping, etc., or from dissipating during subsequent annealing, stabilizes the formation of the penetrants, and also provides good corrosion resistance and insulation properties. I discovered something. The decrease in iron loss due to the formation of intruders is caused by the presence of intruders with different steel composition or structure at intervals in a steel plate, which increases static magnetic energy, and in order to cancel this, reversal magnetic domains are generated. This is thought to be due to the subdivision of magnetic domains. The present invention has extremely low iron loss and excellent magnetic properties.
Furthermore, the present invention provides a method for stably and productively manufacturing grain-oriented electrical steel sheets with good corrosion resistance and insulation properties. The feature is that surface coatings such as glass coatings and insulation coatings of finish annealed grain-oriented electrical steel sheets are removed at intervals of 1 to 30 mm, and penetrants such as Sb, Cu, Sn, and Zn are removed from the steel sheets. , Cr, Mo, and
One or more alloys of any of these elements are plated with a basis weight of 0.05 g/m 2 or more, then an insulation coating is applied, and if necessary, a coating weight of 700 to 900
The present invention provides a method for producing grain-oriented electrical steel sheets with extremely excellent magnetic properties, characterized by carrying out stress relief annealing at ℃. In the present invention, "penetrable body" refers to a substance that enters a steel plate by plating, and includes Sb, Cu, Sn,
Zn, Cr, Mo, and alloys of these elements. The term "invader body" refers to the state in which the intruder body is present in the steel plate in the form of grains, lumps, or lines in a state of being combined with steel plate components and the like. Heat-resistant magnetic domain refining according to the present invention can be performed as follows. That is, glass coatings, oxide coatings, etc. formed on finish annealed grain-oriented electrical steel sheets,
Surface coatings such as insulating coatings are removed at intervals by laser irradiation, grinding, cutting, melting, chemical polishing, pickling, corrosion, shot blasting, etc. to expose the steel sheet base, and then on the steel plate, When the penetrable human body is plated with a basis weight of 0.05 g/m 2 or more by electroplating, melt plating, etc., the penetrable body is firmly bonded to the areas where the surface coating has been removed at intervals. Further, a part of the penetrant may form an alloy layer. That is, in finish annealing of a grain-oriented electrical steel sheet,
A glass film (forstellite film) formed by the reaction between the oxide film containing SiO 2 formed in the decarburization annealing process in the previous process and the annealing separator whose main component is MgO.
The insulating film formed by applying phosphoric acid, aluminum phosphate, magnesium phosphate, chromic acid anhydride, colloidal silica, etc. to the steel plate and baking it can be used when plating penetrants on the steel plate. It has the effect of inhibiting that reaction. For this reason,
When the surface coating is removed at intervals to expose the steel plate base and plated, a reaction between the base metal and the penetrant material occurs selectively, and the steel plate is extremely firmly bonded to the steel plate. By controlling the area weight of the plating, the amount of bonding of the penetrable body with the steel plate can be easily changed, and the iron loss characteristic level can be differentiated. Also, the magnetic flux density can be changed depending on the basis weight. For example, if the basis weight increases, the magnetic flux density can be lowered while improving the core loss characteristics. Therefore, if the iron core of a transformer is manufactured using the steel plate, the actual iron loss will be greatly improved. Next, the steel plate is treated with phosphoric acid, phosphates such as aluminum phosphate, magnesium phosphate, zinc phosphate, and calcium phosphate, chromates such as chromic acid and magnesium chromate, dichloromate, and colloidal silica. An insulating coating solution containing one or more species is applied and baked at a temperature of 350°C or higher to form an insulating coating. This insulating coating treatment prevents the penetrable body bonded to the steel plate from peeling off due to friction or slips during coil winding, and also improves corrosion resistance and prevents rust from forming. . Furthermore, baking during this insulating coating also has the effect of causing penetrants to enter the steel plate. The present invention will be specifically explained below based on an example in which a penetrant is electroplated onto a finish annealed grain-oriented electrical steel sheet. In the present invention, finish annealed grain-oriented electrical steel sheet has
Although magnetic domain refining is performed, it is not necessary to specify the steel composition of the grain-oriented electrical steel sheet and the manufacturing conditions until final annealing.
Appropriate materials such as AlN, MnS, MnSe, BN, Cu 2 S, etc. are used, and Cu, Sn, Cr, Ni,
Elements such as Mo and Sb are contained, and the slab is further hot-rolled and annealed once or twice after annealing.
There is also no need to specify the conditions of a series of processes in which the final plate thickness is obtained by cold rolling several times or more, decarburization annealing, application of an annealing separator, and finish annealing. By the way, a glass coating (forsterite coating) is formed on a finish annealed grain-oriented electrical steel sheet. This glass coating suppresses the reaction between the intrusive body to be electroplated in the application example of the present invention and the steel plate base metal, and the oxide film slightly present under the glass coating may also inhibit the above reaction. Further, if an insulating coating is formed, it has the same effect as the glass coating. To eliminate these harmful effects, the glass coating on the steel plate,
The oxide film, insulating film, etc. can be removed at intervals by laser irradiation, grinding, cutting, melting, local pickling, or the like. The spacing is 1 to 30 mm, and may be equidistant or irregular. The interval at which this surface film is removed is set to 1 mm or more, since the narrower the interval between the penetrants plated on the steel plate, the less the effect of subdividing the magnetic domains and the lowering of the magnetic flux density. On the other hand, if the interval is too wide, the interval between the platings of the penetrable body will become large, and in this case as well, the effect of subdividing the magnetic domain will be reduced, so it should be set to 30 mm or less. The direction of removal is preferably 30 to 90 degrees with respect to the rolling direction of the steel plate. Its removal is continuous,
It can be non-continuous. Also, the width of removal is 0.01
~5 mm is preferred for intruder formation. Removal of this surface coating exposes the steel plate base metal. This exposure also includes forming a slight dent in a part of the steel sheet base. Next, the penetrable body is electroplated onto the grain-oriented electrical steel sheet. If the surface coating is removed at intervals, the penetrants Sb, Sn, Zn, Cr, Mo and
One or more alloys of any of these elements, or oxides of the above elements, and if necessary, phosphates, borates, sulfates, nitrates, silicates, phosphoric acid, boric acid, etc. The steel plate is passed through an electrolytic solution to which is added and electroplated. During this plating, an electrical reaction occurs only at the locations where the surface coating is removed at intervals and the steel sheet base is exposed, and no such reaction occurs at other locations. Therefore, the penetrable body is plated only on the exposed portions of the steel plate base metal. In addition, since the part where the surface film exists does not react with the electrolyte as mentioned above,
Another effect is that the surface coating is maintained in a clean state. In this plating, the basis weight is important,
If the amount is small, the iron loss improvement effect will not occur. In order to achieve low core loss after stress relief annealing, a basis weight of 0.05 g/m 2 or more (per area of the steel plate) is required. Next, an insulating coating liquid containing phosphoric acid, phosphate, phosphate and chromate, or phosphate, chromate and colloidal silica is applied to the steel plate,
Baking at a temperature of 350°C or higher forms an insulating film. Furthermore, when strain relief annealing is performed, the penetration of the intruder into the steel sheet is facilitated. This strain relief annealing is 700 to 900
Perform at a temperature of °C. If the strain relief annealing temperature is low, it will take a long time to eliminate the processing strain, so the temperature should be 700℃ or higher.
On the other hand, even if the temperature becomes higher, the effect hardly changes, so it is set at 900°C or less. FIG. 1 shows a micrograph (×1000) of an example of an intruder formed in a steel plate by applying the present invention. The composition of the invading body is different from that of the steel, and the structure is also different, so many buds of magnetic domains are formed on both sides of the intruder, and when the steel plate is magnetized, the buds of the magnetic domains extend,
It is inferred that the magnetic domains are subdivided. [Example] Examples will be described below. [Example 1] C: 0.081, Si: 3.22, Mn: 0.068, in weight%
A silicon steel slab consisting of Al: 0.030, S: 0.024, Cu: 0.13, Sn: 0.09, balance iron was hot rolled, annealed, and cold rolled by a well-known method to obtain a 0.225 mm thick steel plate. Next, the well-known steps of decarburization annealing--applying an annealing separator containing MgO as a main component--finish annealing were performed. The steel plate after finish annealing was used as the "before treatment" test material. The steel plate was irradiated with a CO 2 laser to remove the glass coating and oxide coating at 5 mm intervals in a direction approximately perpendicular to the rolling direction, and then using an electrolytic solution containing the plating metal (penetrable body) shown in Table 1. , basis weight
Electroplated to 1.5g/ m2 , then applied an insulating coating solution containing aluminum phosphate, phosphoric acid, chromic anhydride, chromate, and colloidal silica and baked at 850℃ to form an insulating coating. This was used as the "after treatment" test material. As described above, the magnetic properties of each sample material "before treatment" and "after treatment" were measured. The measurement results are shown in Table 2.

【表】【table】

〔実施例 2〕[Example 2]

重量%でC:0.078、Si:3.35、Mn:0.068、
Al:0.026、S:0.024、Cu:0.15、Sn:0.08、残
部鉄からなる珪素鋼スラグを周知の方法によつて
熱間圧延―焼鈍―冷間圧延を経て0.225mm厚の鋼
板を得た。 次いで更に周知の脱炭焼鈍―MgOを主成分と
する焼鈍分離剤を塗布―仕上焼鈍の各工程を実施
した。仕上焼鈍後の鋼板を「処理前」の供試材と
した。該鋼板にCO2レーザーを照射し、圧延方向
とほぼ直角方向に10mm間隔でグラス被膜、および
酸化被膜を除去し、次いで第3表に示すメツキ金
属(可侵入体)を含む電解液を用いて、目付量1
g/m2となるように電気メツキし、次いでリン酸
アルミニウム、リン酸、無水クロム酸、クロム酸
塩、コロイド状シリカを含んだ絶縁被膜液を塗布
し850℃で焼付けて絶縁被膜を形成し「処理後」
の供試材とした。 この後歪を除去するために800℃×2時間の歪
取焼鈍を行なつて「歪取焼鈍後」の供試材とし
た。 以上、「処理前」「処理後」及び「歪取焼鈍後」
のそれぞれの供試材の磁気特性を測定した。 その測定結果を第4表に示す。
Weight%: C: 0.078, Si: 3.35, Mn: 0.068,
A silicon steel slag consisting of Al: 0.026, S: 0.024, Cu: 0.15, Sn: 0.08, and the balance iron was hot rolled, annealed, and cold rolled by a well-known method to obtain a 0.225 mm thick steel plate. Next, the well-known steps of decarburization annealing - application of an annealing separator containing MgO as a main component - and final annealing were carried out. The steel plate after final annealing was used as the "before treatment" test material. The steel plate was irradiated with a CO 2 laser to remove the glass coating and oxide coating at 10 mm intervals in a direction approximately perpendicular to the rolling direction, and then using an electrolytic solution containing the plating metal (penetrable body) shown in Table 3. , basis weight 1
g/ m2 , then apply an insulating coating solution containing aluminum phosphate, phosphoric acid, chromic anhydride, chromate, and colloidal silica and bake at 850℃ to form an insulating coating. "After treatment"
This was used as the test material. After this, in order to remove the strain, strain relief annealing was performed at 800°C for 2 hours to obtain a "after strain relief annealing" test material. The above is "before treatment", "after treatment", and "after strain relief annealing"
The magnetic properties of each sample material were measured. The measurement results are shown in Table 4.

【表】【table】

〔実施例 3〕[Example 3]

重量%でC:0.080、Si:3.30、Mn:0.070、
Al:0.028、S:0.025、N:0.0080、残部鉄から
なる珪素鋼スラグを周知の方法によつて熱間圧延
―焼鈍―冷間圧延を経て0.225mm厚の鋼板を得た。 次いで更に周知の脱炭焼鈍―MgOを主成分と
する焼鈍分離剤を塗布し、仕上焼鈍した。その
後、絶縁被膜液を塗布し、平坦化焼鈍をかねる焼
付けをして絶縁被膜を形成した。これを「処理
前」の供試材とした。この鋼板にCO2レーザーを
照射し、圧延方向とほぼ直角方向に5mm間隔でグ
ラス被膜、絶縁被膜を除去し、第5表に示す可侵
入体を含む電解液を用いて目付量0.05〜10.0g/
m2にて電気メツキした。次いでリン酸アルミニウ
ム、無水クロム酸、クロム酸塩、コロイダルシリ
カを含む絶縁被膜液を塗布し、350℃で焼付け絶
縁被膜を形成した。これを「処理後」の供試材と
した。この後800℃×2時間の歪取焼鈍を行なつ
て「歪取焼鈍後」の供試材とした。 以上、「処理前」「処理後」及び「歪取焼鈍後」
のそれぞれの供試材の磁気特性を測定した結果を
第6表に示す。 また、これらの試料について時間、層間抵抗
(JIS第2法)と耐蝕性(恒温、恒湿槽テスト50℃
×24時間湿度98%)について試験を行つた。その
結果、層間電流はいずれも零で、また錆発生はな
かつた。
Weight%: C: 0.080, Si: 3.30, Mn: 0.070,
Silicon steel slag consisting of Al: 0.028, S: 0.025, N: 0.0080, balance iron was hot rolled, annealed and cold rolled by a well-known method to obtain a steel plate with a thickness of 0.225 mm. Next, a well-known decarburization annealing process was performed, in which an annealing separator mainly composed of MgO was applied, and final annealing was performed. Thereafter, an insulating coating liquid was applied and baking was performed which also served as flattening annealing to form an insulating coating. This was used as the "before treatment" test material. This steel plate is irradiated with a CO 2 laser to remove the glass coating and insulating coating at 5 mm intervals in a direction approximately perpendicular to the rolling direction, and then electrolyte solution containing penetrants shown in Table 5 is used to remove the coating weight from 0.05 to 10.0 g. /
Electroplated at m2 . Next, an insulating coating solution containing aluminum phosphate, chromic anhydride, chromate, and colloidal silica was applied, and an insulating coating was formed by baking at 350°C. This was used as the "after treatment" test material. Thereafter, strain relief annealing was performed at 800°C for 2 hours to obtain a "strain relief annealed" test material. The above is "before treatment", "after treatment", and "after strain relief annealing"
Table 6 shows the results of measuring the magnetic properties of each sample material. In addition, these samples were tested for time, interlayer resistance (JIS method 2), and corrosion resistance (constant temperature and humidity chamber test at 50°C).
x 24 hour humidity 98%). As a result, the interlayer current was zero in all cases, and no rust occurred.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、該侵人体
による磁区細分化で鋼板の鉄損が低くなるととも
に、その後に、高温に加熱される歪取焼鈍が行わ
れても、鉄損改善効果が消失しないという、これ
までの磁区細分化法に見られないすぐれた特長が
ある。
As explained above, according to the present invention, the iron loss of the steel sheet is reduced by magnetic domain refining by the intruder, and even if strain relief annealing is subsequently performed at high temperature, the iron loss improvement effect is maintained. It has an excellent feature not seen in previous magnetic domain subdivision methods: it does not disappear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によつて鋼板に形成された侵入
体を示す金属顕微鏡組織写真(×1000)である。
FIG. 1 is a metal microscopic photograph (×1000) showing an intruder formed in a steel plate according to the present invention.

Claims (1)

【特許請求の範囲】 1 仕上焼鈍された方向性電磁鋼板のグラス被
膜、絶縁被膜等の表面被膜を1〜30mmの間隔をお
いて除去し、該鋼板にSb,Cu,Sn,Zn,Cr,
Mo,およびこれらのいずれかの元素の合金の1
種または2種以上を、目付量0.05g/m2以上メツ
キし、次いで絶縁被膜処理を行うことを特徴とす
る磁気特性の極めてすぐれた方向性電磁鋼板の製
造方法。 2 仕上焼鈍された方向性電磁鋼板のグラス被
膜、絶縁被膜等の表面被膜を1〜30mmの間隔をお
いて除去し、該鋼板にSb,Cu,Sn,Zn,Cr,
Mo,およびこれらのいずれかの元素の合金の1
種または2種以上を、目付量0.05g/m2以上メツ
キし、次いで絶縁被膜処理を行い、その後、700
〜900℃で歪取焼鈍を行なうことを特徴とする磁
気特性の極めてすぐれた方向性電磁鋼板の製造方
法。
[Claims] 1. Surface coatings such as glass coatings and insulating coatings of a finish annealed grain-oriented electrical steel sheet are removed at intervals of 1 to 30 mm, and Sb, Cu, Sn, Zn, Cr,
Mo, and an alloy of any of these elements
1. A method for producing grain-oriented electrical steel sheets with extremely excellent magnetic properties, which comprises plating one or more seeds with a basis weight of 0.05 g/m 2 or more, and then subjecting them to an insulating coating. 2. Surface coatings such as glass coatings and insulating coatings of finish annealed grain-oriented electrical steel sheets are removed at intervals of 1 to 30 mm, and Sb, Cu, Sn, Zn, Cr,
Mo, and an alloy of any of these elements
The seed or two or more types are plated with a basis weight of 0.05 g/m 2 or more, then subjected to insulation coating treatment, and then 700
A method for manufacturing grain-oriented electrical steel sheets with extremely excellent magnetic properties, characterized by carrying out strain relief annealing at ~900°C.
JP60022762A 1984-10-15 1985-02-09 Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic Granted JPS61183457A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP60022762A JPS61183457A (en) 1985-02-09 1985-02-09 Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic
SE8504752A SE465128B (en) 1984-10-15 1985-10-14 CORN-ORIENTED STEEL TUNNER PLATE FOR ELECTRICAL PURPOSES AND PROCEDURES FOR PREPARING THE PLATE
IT67867/85A IT1182608B (en) 1984-10-15 1985-10-14 ORIENTED GRAIN ELECTRIC STEEL SHEET WITH LOW POWER LOSS AND METHOD FOR ITS MANUFACTURE
KR1019850007583A KR900008852B1 (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
FR858515269A FR2571884B1 (en) 1984-10-15 1985-10-15 ORIENTED GRAIN ELECTRIC STEEL SHEET WITH LOW ACTIVE ENERGY LOSS AND PROCESS FOR PRODUCING SAME
CA000492955A CA1249764A (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
GB08525352A GB2167324B (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
DE19853536737 DE3536737A1 (en) 1984-10-15 1985-10-15 GRAIN-ORIENTED ELECTRO-STEEL SHEET WITH LOW RE-MAGNETIZATION LOSS AND METHOD FOR THE PRODUCTION THEREOF
US07/002,394 US4863531A (en) 1984-10-15 1987-01-09 Method for producing a grain-oriented electrical steel sheet having a low watt loss
US07/470,997 US4960652A (en) 1984-10-15 1990-01-22 Grain-oriented electrical steel sheet having a low watt loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022762A JPS61183457A (en) 1985-02-09 1985-02-09 Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic

Publications (2)

Publication Number Publication Date
JPS61183457A JPS61183457A (en) 1986-08-16
JPS6319573B2 true JPS6319573B2 (en) 1988-04-23

Family

ID=12091688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022762A Granted JPS61183457A (en) 1984-10-15 1985-02-09 Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic

Country Status (1)

Country Link
JP (1) JPS61183457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313553Y2 (en) * 1985-09-04 1991-03-27

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682576B2 (en) * 1987-05-30 1994-10-19 川崎製鉄株式会社 Method for producing amorphous alloy ribbon with excellent magnetic properties
JP2827890B2 (en) * 1994-03-24 1998-11-25 住友金属工業株式会社 Manufacturing method of electrical steel sheet with excellent magnetic properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313553Y2 (en) * 1985-09-04 1991-03-27

Also Published As

Publication number Publication date
JPS61183457A (en) 1986-08-16

Similar Documents

Publication Publication Date Title
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
WO2019013351A1 (en) Oriented electromagnetic steel sheet and method for producing same
CN113396242A (en) Grain-oriented electromagnetic steel sheet, method for forming insulating coating on grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPS6319573B2 (en)
JPS61284529A (en) Manufacture of grain oriented magnetic steel sheet having extremely low iron loss
RU2771130C1 (en) Method for producing electrical steel sheet with oriented grain structure
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS6319568B2 (en)
JPS6330968B2 (en)
WO2022215709A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
JPS6319572B2 (en)
JPS6319574B2 (en)
WO2022215714A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
WO2022215710A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
RU2776382C1 (en) Anisotropic electrical steel sheet and its production method
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
WO2020149336A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPS6319569B2 (en)
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet