JPH1036366A - ラクチドの製造方法 - Google Patents

ラクチドの製造方法

Info

Publication number
JPH1036366A
JPH1036366A JP8194782A JP19478296A JPH1036366A JP H1036366 A JPH1036366 A JP H1036366A JP 8194782 A JP8194782 A JP 8194782A JP 19478296 A JP19478296 A JP 19478296A JP H1036366 A JPH1036366 A JP H1036366A
Authority
JP
Japan
Prior art keywords
lactide
lactate
pressure
lactic acid
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8194782A
Other languages
English (en)
Inventor
Hideji Kurashima
秀治 倉島
Yasushi Higuchi
靖 樋口
Masahiro Kurokawa
正弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP8194782A priority Critical patent/JPH1036366A/ja
Publication of JPH1036366A publication Critical patent/JPH1036366A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】 【課題】 低酸価、低水分、高純度でポリマー原料など
に使用できるラクチドを高収率で安価に製造する方法を
提供する。 【解決手段】 アセトアルデヒドとギ酸エステルを出発
原料として製造された乳酸エステルを用い、(1)乳酸
エステルを触媒の存在下に加熱して脱アルコールし、
(2)未反応の乳酸エステルを蒸留により回収し、
(3)続いてラクチドを蒸留する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、アセトアルデヒドとギ
酸エステルを出発原料とする新規な乳酸エステルを用い
たラクチドの製造方法に関する。更に詳しく言えば、ポ
リ乳酸等のポリマー原料、塗料、インキ、接着剤、生体
分解性材料、殺菌防腐剤、可塑剤等の用途に利用される
ことが期待されているラクチドの製造法に関する。
【0002】
【従来の技術】ポリ乳酸の原料であるラクチドは、二分
子の乳酸が脱水して生成した環状二量体であって、グリ
コリド等と同様に分子内環状エステルの一種である。ラ
クチドの製造方法として、例えば特開昭63−1013
78号公報には、まず乳酸を脱水、濃縮して中間体であ
るオリゴマーを得て、これに錫系触媒を加えて高真空中
で200℃程度に加熱して分解、環状二量化してラクチ
ドを留去する製造方法が記載されている。しかしなが
ら、このような製法では反応液中に環状二量体であるラ
クチドのほか、ラクトイル乳酸に代表される低重合度の
直鎖オリゴマーが多量に含まれる。このため、ラクチド
の留出時にこれらオリゴマーがラクチドと共に留出し、
蒸留したラクチドの酸価が大きくなる欠点がある(比較
例1参照)。また乳酸を原料としているため蒸留したラ
クチドへの水分や未反応乳酸の混入は不可避である。水
分や乳酸はラクチドを重合させる際に重合阻害物とな
り、更に保存安定性も悪くするので混入は好ましくな
い。
【0003】特開平7−304763号公報には乳酸と
乳酸エステルの混合系から乳酸オリゴマーを製造し、更
にこれを加熱解重合することにより水分や乳酸などの酸
性の不純物が比較的少ないラクチドを得る製造方法が記
載されている。この方法で得られるラクチドは、乳酸の
みが原料から得られるラクチドよりも確かに酸価、水分
ともに低下しているもののポリマー原料としてはまだ不
十分である(比較例2参照)。
【0004】特表平7−503490号公報には粗製乳
酸または粗製乳酸エステルまたはそれらの混合物より水
や溶媒などの不純物を除去した原料からプレポリマーを
生成した後、プレポリマーを解重合して粗製ラクチドを
得て、さらに粗製ラクチドを再蒸留して得た精製ラクチ
ドを重合させてポリラクチドを製造するプロセスが開示
されている。しかしながら、このプロセスにおいても原
料が乳酸や乳酸と乳酸エステルの混合物の場合には上記
のような欠点を有するのは明白である。さらに乳酸エス
テルのみを原料とした場合でも再蒸留を経なければ高純
度のラクチドが得られず、経済的な方法とは言い難く、
この原因としては乳酸などの酸成分、ヒドロキシメディ
ウムと呼ばれるヒドロキシ基を持った成分および水分が
原料乳酸エステル中に多く含まれることによると考えら
れる。該公報で用いている粗製L−乳酸エステルは発酵
法により得たL−乳酸を目的のL−乳酸エステルに対応
するアルコールでエステル化またはそれによって得たL
−乳酸エステルのエステル交換によって得るので、通常
の精製方法では水分および酸成分などの不純物も多く、
これを原料としたラクチドの酸価・水分も必然的に多く
なり、高分子ポリ乳酸原料としてはふさわしくない。ま
た合成乳酸エステル(DL−乳酸エステル)は以下のよ
うな方法で製造されている。青酸とアセトアルデヒドを
原料としてシアンヒドリンを合成した後、硫酸などで加
水分解し、次にエステル化する方法である。この現行法
は、反応が容易で収率も高く、広く実施されているもの
であるが、大量の硫酸アンモニウム塩の副生を伴い、こ
の処理が乳酸エステルの製造コストを圧迫し、更に環境
に対する問題も大きいという欠点がある。
【0005】特開昭63−152375号公報には熱安
定ポリエーテルとα−ヒドロキシカルボン酸またはα−
ヒドロキシカルボン酸のエステルとのブロック共重合体
を製造後、該ブロック共重合体を熱分解させてグリコリ
ドやラクチドなどの環状二量体を得る方法が記載されて
いる。この方法は過剰なタールが避けられるなどの利点
はあるものの、熱安定ポリエーテルを大量に用いるため
釜効率が低く生産性が低いなどの欠点があり経済的でな
いと同時に、得られる環状二量体の純度も低く、数回の
再結晶を必要とするものである(比較例3参照)。
【0006】
【発明が解決しようとする課題】本発明の目的は低酸
価、低水分、高純度でポリマー原料などに使用できるラ
クチドを高収率で安価に製造する方法を提供することに
ある。
【0007】
【課題を解決するための手段】本発明者らは、鋭意検討
した結果、ラクチドを製造するにあたって、アセトアル
デヒドとギ酸エステルを出発原料として製造された乳酸
エステルを用い、(1)乳酸エステルを触媒の存在下に
加熱して脱アルコールし、(2)未反応の乳酸エステル
を蒸留により回収し、(3)続いてラクチドを蒸留する
ことにより、上記課題を解決できることを見いだし、本
発明を完成させるに到った。
【0008】即ち、本発明はラクチドを製造するにあた
り、下記の(A)〜(D)の工程: (A)青酸とアセトアルデヒドからラクトニトリルを製
造する工程、(B)前記工程で得られるラクトニトリル
を水和してラクトアミドを製造する工程、(C)前記工
程で得られるラクトアミドとギ酸エステルより乳酸エス
テルとホルムアミドを製造する工程、(D)前記工程で
得られた生成物から分離したホルムアミドを脱水して青
酸を製造し循環使用する工程、で得られる一般式CH3
CH(OH)COOR(R:炭素数1〜8のアルキル
基)で表される乳酸エステルを原料として、下記の
(1)〜(3)の工程: (1)乳酸エステルを触媒の存在下に加熱して脱アルコ
ールする工程、(2)未反応の乳酸エステルを蒸留によ
り回収する工程、(3)続いてラクチドを蒸留する工
程、を含み、酸価100meq/kg以下、水分200
ppm以下、不純物としての乳酸エステル原料0.5%
以下で、且つ純度99.0%以上の性状のラクチドを得
ることを特徴とするラクチドの製造方法を提供するもの
である。
【0009】
【発明の実施の形態】以下に本発明の方法において詳細
に説明する。本発明で用いる乳酸エステルは、シアンヒ
ドリンを経由して製造されるものではあるが、全体とし
て見ると、最終的にはアセトアルデヒドとギ酸エステル
を出発原料とする乳酸エステルの製造プロセスであり、
従来法の如きアンモニウム塩の副生を全く伴わない上、
製品中に乳酸等の遊離酸が殆ど含まれないという特徴が
ある。この本発明で用いる乳酸エステルの製造方法につ
いては特開平7−233122号公報に開示されてい
る。アセトアルデヒドは、溶剤用や種々の化学原料とし
て、工業的にはエチレンの酸化により大量安価に製造さ
れている。一方、ギ酸エステル、特にギ酸メチルは、極
めて大量安価に生産されているメタノールを原料とし
て、カルボニル化法、又は脱水素法により工業的規模で
製造されている。また、他のギ酸エステルは、ギ酸メチ
ルとアルコールとのエステル交換により容易に製造する
ことができる。本発明における、青酸とアセトアルデヒ
ドの反応によるシアンヒドリンの製造は、上記の特開平
7−233122号公報に代表される公知法にて実施さ
れるものである。乳酸エステル製造工程における反応生
成物は、蒸留などの操作により分離回収し、未反応物は
原料系に戻される。目的物である乳酸エステルと同時に
生成するホルムアミドについては、脱水反応を適用して
青酸を製造する。生成した青酸は回収し、シアンヒドリ
ン製造工程へ送り循環使用される。
【0010】本発明で得られるラクチドは上記のような
方法で得られた安価で高品質な乳酸エステルを用いて以
下に述べるような方法により製造される。 (1)脱アルコール工程 撹拌機、分離装置およびコンデンサーを備えた反応器内
で乳酸エステルと触媒を加熱撹拌して縮合反応を行い、
生成したアルコールを留出させる。反応器としては撹拌
槽、横型反応器、分離装置としては分縮器や蒸留塔など
が代表的に用いられる。また所望により反応を不活性ガ
ス雰囲気下で行うこともでき、その場合は反応器に不活
性ガス導入管を備え付ける。不活性ガスは窒素、ヘリウ
ム、アルゴン、二酸化炭素などを用いることができる
が、経済的見地から窒素が好ましく用いられる。原料の
乳酸エステルは一般式CH3CH(OH)COOR
(R:炭素数1〜8のアルキル基)で表されるものを用
いることができるが、乳酸メチル、乳酸エチル、乳酸プ
ロピル、乳酸ブチルが好ましく用いられ、原料入手の容
易さおよび乳酸エステルの製造コストなどの点から、特
に好ましくは乳酸メチル、乳酸エチルである。触媒は錫
化合物が好ましく用いられ、例えばオクタン酸第一錫、
モノブチル錫オキサイド、ジブチル錫オキサイド、ジメ
チル錫オキサイド、1,1,3,3−テトラブチル−
1,3−ジアセトキシ−ジスタノキサンおよび1,1,
3,3−テトラブチル−1,3−ジラウロイルオキシ−
ジスタノキサンである。特に好ましくはオクタン酸第一
錫、モノブチル錫オキサイド、ジブチル錫オキサイドで
ある。触媒の使用量は特に限定されないが、乳酸エステ
ルに対して0.01〜5重量%の範囲で添加されるのが
好ましく、特に好ましくは0.1〜2重量%の範囲であ
る。上記添加量が0.01重量%未満の場合は、反応速
度が遅い等触媒効果が不十分であるため好ましくなく、
また上記添加量が5重量%を超える場合には、選択率の
低下や副生成物の増加を招くほか経済的にも不利であり
好ましくない。
【0011】一定温度で加熱する方法、徐々に昇温する
方法あるいは段階的に昇温する方法の何れでも反応は進
行するが、好ましくは反応液温度が乳酸エステルの沸点
よりも若干低めの温度から始め、乳酸エステルが留出し
ないようにオイルバスやマントルヒーターなどの加熱媒
体を温度調節して徐々に昇温させて行う。さらに好まし
くは反応液温度が140℃程度から開始し、200℃程
度まで上昇させる。圧力は大気圧下または減圧下のどち
らでもよい。また一定圧力でも漸次圧力を低下させても
よい。好ましくは大気圧下もしくは600mmHg程度
の減圧下から開始し、アルコール留出が遅くなるに従い
徐々に圧力を下げ、工程(1)の最終段階では200m
mHg程度にするのが好ましい。アルコール留出がほと
んど見られなくなった段階で次工程に移る。ここで留出
し、回収されたアルコールは出発原料のギ酸エステルの
合成原料として循環使用することができる。
【0012】(2)未反応乳酸エステル回収工程 工程(1)の最終段階と同程度の反応液温度で、未反応
乳酸エステルが突沸しないように注意して、圧力をさら
に徐々に下げていきながら、未反応乳酸エステルを回収
する。反応液温度は180〜210℃の範囲内が好まし
い。圧力は200mmHg程度から開始し、5mmHg
前後まで徐々に下げる。工程(3)で得られるラクチド
の品質を向上させるためラクチドの初留分(ラクトイル
乳酸メチルなどが含まれる)を留出させてもよい。未反
応乳酸エステルやラクチド初留分は回収し、脱アルコー
ル工程(1)に送り循環使用することができる。
【0013】(3)ラクチド留出工程 前記工程(2)で得られた反応溶液からラクチドを蒸留
する。加熱温度は圧力によっても変わるが、180〜2
30℃が好ましく、ラクチド留出速度および残渣の取扱
いの容易さなどを考えてさらに好ましくは205〜21
5℃である。圧力は0.1〜20mmHgが好ましく、
さらに好ましくは1〜10mmHgである。残渣は脱ア
ルコール工程(1)に送り循環使用することもできる
し、数回の循環使用後汚染が激しいようならば溶剤や希
アルカリ水溶液で洗浄した後に廃棄する。
【0014】以上の方法によって製造されるラクチドは
通常メソラクチドとDL−ラクチドの混合物で得られ
る。その比率は、用いる触媒、蒸留塔の段数、還流比、
反応液温度、圧力、初留ラクチドの取得率および残渣の
反応器中への残存率などによって変化する。工程(3)
で得られたラクチドは乳酸メチルやラクトイル乳酸メチ
ルを若干含むものの、酸価は100meq/kg以下、
水分は200ppm以下のものが代表的に得られるの
で、このままでもポリマー原料などに使用できる。一般
には従来再蒸留や再結晶(再蒸留・再結晶とも数回にお
よぶ場合もある)によって得ていた酸価5〜50meq
/kg、水分10〜150ppmのラクチドと同等の性
状のラクチドが一回だけの蒸留で得られる。さらに低酸
価、低水分のラクチドが必要な場合は再蒸留や再結晶に
よって精製することもできる。その場合にもメソラクチ
ドとDL−ラクチドの比率が変化する。
【0015】
【実施例】以下に、実施例を挙げて本発明を更に詳しく
説明するが、本発明はこれらの実施例によりその範囲を
限定されるものではない。なお実施例における特性値は
以下に述べる方法によって測定した。 (1)酸価測定方法:ラクチドのサンプルを約5g精秤
し、モレキュラーシーブス3A(1/16インチ、和光
純薬工業製)であらかじめ乾燥した塩化メチレンに溶解
させる。終点決定用の指示薬としてフェノールレッド
(乾燥メタノール中0.05重量%/容量)を用い、サ
ンプル溶液中に5滴加える。この溶液を0.025N−
カリウムメトキシド(ベンゼン・メタノール溶液)(和
光純薬工業製非水滴定用0.1mol/Lカリウムメト
キシドを乾燥メタノールで希釈して調製する)で滴定す
ることにより測定する。 (2)ガスクロマトグラフィー分析条件:ラクチド組成
を分析する。ラクチドを精秤し、テトラヒドロフランに
溶解させて分析を行う。カラムはTC−17(ジーエル
サイエンス)を用いる。測定条件は注入口温度およびF
ID検出器温度ともに250℃に設定し、カラム温度を
60℃から240℃まで昇温させることにより行う。 (3)水分測定法:サンプル1gを塩化メチレン5gに
溶解し、水分測定装置(旧三菱化成製微量水分測定装置
CA−05型)を用いて測定する。
【0016】参考例1 (乳酸メチルの合成) (A)工程(青酸とアセトアルデヒドからのラクトニト
リルの合成) 撹拌機、温度計、還流冷却器、および滴下ロートを備え
た内容積500mLのフラスコに、アセトアルデヒド8
8.1gと1規定の水酸化ナトリウム水溶液1mLを仕
込み、フラスコ内の温度を10℃に保ちながら青酸5
9.4gを滴下した。青酸滴下終了後、20℃にて2時
間保ち反応を完結させた。次に、50%硫酸を加えて生
成液のpHを3とした。フラスコを減圧系に接続し、未
反応の青酸を系外に除去し、ラクトニトリル142gを
得た。ラクトニトリルの純度は98.8%、アセトアル
デヒド基準のラクトニトリル収率は98.7%であっ
た。 (B)工程(ラクトニトリルの水和によるラクトアミド
の合成) 触媒調製:撹拌機、還流冷却器、温度計を備えた内容積
1Lのフラスコに、過マンガン酸カリウム63.2gと
水500gを70℃に加熱撹拌した。これに硫酸マンガ
ン96.2gを溶解した水溶液240g,及び15%硫
酸40gを添加し、70℃で3時間反応させた。内容物
を冷却した後、沈殿物を吸引濾過し、2.4Lの水で洗
浄した。沈殿物ケーキを60℃で一昼夜乾燥し、74g
の活性二酸化マンガンを取得し、下記の触媒として使用
した。 水和反応:撹拌機、還流冷却器、温度計を備えた内容積
1Lのフラスコに、順次、(A)工程で得られたラクト
ニトリル121g、水350g、及び二酸化マンガン6
0gを仕込み、60℃にて5時間加熱撹拌して反応させ
た。生成液を氷冷したのち、吸引濾過して触媒を分離し
た。濾液をガスクロマト分析した結果、ラクトニトリル
の反応率は99.5%であり、ラクトアミドの収率は9
7.5%であった。この濾液を減圧下に濃縮乾固し、主
成分としての純度99.5%以上のラクトアミド148
gを得た。
【0017】(C)工程(ラクトアミドとギ酸メチルか
らの乳酸メチルとホルムアミドの合成) 撹拌機付きの内容積1Lのステンレス製オートクレーブ
に(B)で得られたラクトアミド44.5g、ギ酸メチ
ル180g、メタノール96g、及びナトリウムメトキ
シド1.1gを仕込み、60℃にて2時間加熱撹拌して
反応させた。生成物を冷却後、ガスクロマト分析した結
果、ラクトアミドの反応率は86.1%であり、ラクト
アミド基準の乳酸メチルの選択率は99.8%、及びホ
ルムアミドの選択率は98.4%であった。生成液中の
ナトリウムメトキシドを硫酸で中和したのち、常法によ
り蒸留してギ酸メチル、メタノールを回収すると共に、
純度99%以上の乳酸メチル40g及び純度99%のホ
ルムアミド14gを得た。中間留分を含めた回収率は定
量的であった。 (D)工程(ホルムアミドの脱水による青酸の製造) 触媒調製:炭酸マンガン51.5gに、水30gに溶解
した炭酸ナトリウム0.88gを加え、1時間混練し
た。その後、110℃で15時間乾燥し、10%水素−
窒素気流中450℃で5時間焼成してから、破砕して1
0〜20メッシュに揃えたものを30g得た。反応:上
記の方法で得た酸化マンガン3.0gを、温度計鞘管を
備えた内径10φ×300mm石英製反応管に充填し、
触媒層下部の温度を400℃に維持するように加熱し
た。また、触媒層の上部15cmには3φ×3mm石英
ラシヒリングを充填し、100〜400℃に加熱してホ
ルムアミドの蒸発部とした。反応管内を100mmHg
の真空度に保ちながら、(C)で得たホルムアミドを1
0g/時間、空気を240ml/時間の割合で反応管頭
頂部から系内に導入した。反応開始後5時間目から反応
ガスを1時間サンプリングした。水、およびNaOH水
溶液に吸収させることにより捕集した青酸は硝酸銀滴定
で定量した。また、水に溶解したアンモニアはイオンク
ロマトグラフで、未反応ホルムアミドはガスクロマトグ
ラフでそれぞれ定量した。その結果、ホルムアミド反応
率99.5%、青酸収率95.2%、アンモニア収率
4.3%であった。
【0018】参考例2 原料のギ酸メチルをギ酸エチルに変えた以外は、参考例
1と同様に反応させた。その結果、ラクトアミドの反応
率は86.1%であり、ラクトアミド基準の乳酸エチル
の選択率は99.8%、ホルムアミドの選択率は98.
4%であった。 参考例3 参考例1の(C)工程で、ギ酸メチル180g、メタノ
ール96gの代わりにメタノール200gを仕込み、さ
らに一酸化化炭素40atmを圧入し加熱撹拌して反応
させた。オートクレーブ内の温度が60℃に達したら、
反応圧力を40atmに維持するように一酸化炭素を供
給し、3時間反応を続けた。その後、オートクレーブ内
の温度を10℃まで冷却し、内圧を徐々に下げて常圧に
戻した後、生成物を取出してガスクロマト分析した結
果、ラクトアミドの反応率は81.7%、ラクトアミド
基準の乳酸メチルの選択率は95.9%、及びホルムア
ミドの選択率は94.8%であった。
【0019】実施例1 (1)脱アルコール工程 撹拌機、窒素導入管、分縮器および冷却管を備えた内容
積500mLのフラスコに、参考例1の方法によって得
られた乳酸メチル416.4g、とモノブチル錫オキサ
イド2.10g(乳酸メチルに対して0.50重量%)
を仕込み、窒素気流下で圧力600mmHg、液温度1
40℃から反応を開始した。乳酸メチルの重縮合によっ
て生ずるメタノールを留出させながら徐々に昇温させ
3.5時間かけて195℃にまで上昇させた。その後圧
力を徐々に低下させ、0.5時間かけて200mmHg
にした。同時に温度を200℃まで上昇させた。メタノ
ールを114.0g回収した。 (2)未反応乳酸メチル回収工程 温度を200℃に保ち、圧力を徐々に低下させ、1.0
時間かけて10mmHgにして未反応の乳酸メチルを回
収した。その後210℃に昇温し、5mmHgで1時間
ラクチド初留分を蒸留させた。回収物の重量は77.4
gでメタノール1.7g、乳酸メチル61.8g、ラク
トイル乳酸メチル2.4g、メソラクチド7.0g、D
L−ラクチド4.5gを含むものであった。 (3)ラクチド留出工程 温度を210℃、圧力を5mmHgに保ち、5時間
(2)で得られた反応溶液を蒸留し、本留分としてラク
チド217.6gを得た。組成は乳酸メチル0.2%、
ラクトイル乳酸メチル0.4%、メソラクチド44.1
%、DL−ラクチド55.1%、その他0.2%であっ
た。全工程を通じて計算した(以下同様)乳酸メチル転
化率は85.2%、ラクチド選択率93.1%であっ
た。酸価は30meq/kg、水分は40ppm、ラク
チド純度99.2%であった。
【0020】実施例2 実施例1の工程(1)における触媒をオクタン酸第一錫
に換えた以外は実施例1と同様に反応操作を行い、ラク
チド220.5gを得た。組成は乳酸メチル0.2%、
ラクトイル乳酸メチル0.4%、メソラクチド42.8
%、DL−ラクチド56.4%、その他0.2%であっ
た。乳酸メチル転化率84.4%、ラクチド選択率9
3.0%、酸価28meq/kg、水分35ppm、ラ
クチド純度99.2%であった。
【0021】実施例3 実施例1の工程(1)における触媒をジブチル錫オキサ
イドに換えた以外は実施例1と同様に反応操作を行い、
ラクチド222.4gを得た。組成は乳酸メチル0.2
%、ラクトイル乳酸メチル0.3%、メソラクチド4
4.5%、DL−ラクチド54.7%、その他0.3%
であった。乳酸メチル転化率93.0%、ラクチド選択
率91.8%、酸価26meq/kg、水分30pp
m、ラクチド純度99.2%であった。 実施例4 実施例1の工程(2)における圧力を徐々に低下すると
きの時間を3.0時間にした以外は実施例1と同様に反
応操作を行い、ラクチド228.5gを得た。組成は乳
酸メチル0.1%、ラクトイル乳酸メチル0.3%、メ
ソラクチド44.6%、DL−ラクチド54.9%、そ
の他0.1%であった。乳酸メチル転化率91.3%、
ラクチド選択率95.2%、酸価25meq/kg、水
分40ppm、ラクチド純度99.5%であった。
【0022】実施例5 実施例の工程(1)における乳酸メチルを参考例3の方
法によって得られた乳酸エチルに変えた以外は実施例1
と同様に反応を行い、ラクチド215.5gを得た。組
成は乳酸エチル0.1%、ラクトイル乳酸エチル0.4
%、メソラクチド42.6%、DL−ラクチド56.5
%、その他0.4%であった。乳酸エチル転化率84.
8%、ラクチド選択率88.3%、酸価35meq/k
g、水分45ppm、純度99.1%であった。
【0023】実施例6 実施例1で得られたラクチドを液温度170℃、圧力5
mmHg、5時間で再蒸留し、精製ラクチド185.0
gを得た(再蒸留前の85重量%)。組成は乳酸メチル
0.02%、ラクトイル乳酸メチル0.03%、メソラ
クチド39.7%、DL−ラクチド60.2%であっ
た。酸価10meq/kg、水分25ppm、純度9
9.9%以上であった。
【0024】実施例7 参考例1の方法によって得られた乳酸メチル500g、
モノブチル錫オキサイド2.50gを実施例1を同様の
装置に仕込み、同様に反応操作を行った。その結果回収
乳酸メチル103.4g(組成はメタノール11.7
%、乳酸メチル67.0%、ラクトイル乳酸メチル6.
5%、メソラクチド7.7%、DL−ラクチド5.7
%、その他1.4%)、ラクチド238.7g(組成は
乳酸メチル0.1%、ラクトイル乳酸メチル0.2%、
メソラクチド44.2%、DL−ラクチド55.0%、
その他0.5%)および残渣34.2gを得た。この残
渣に乳酸メチル366.1gと回収乳酸メチル100.
1g、モノブチル錫オキサイド1.25gを加え実施例
1と同様に反応操作を行った。ラクチドが250.3g
(組成は乳酸メチル0.1%、ラクトイル乳酸メチル
0.2%、メソラクチド47.0%、DL−ラクチド5
2.2%、その他0.5%)得られた。酸価は45me
q/kg、水分50ppm、純度99.2%であった。
【0025】比較例1 DL−乳酸(85〜92%)水溶液300.3g、モノ
ブチル錫オキサイド1.58gを実施例1と同様の装置
に仕込み、液温度150℃、常圧で0.5時間濃縮し
た。ついで15mmHgまで徐々に減圧にしながら、温
度を200℃まで上昇させ8.0時間乳酸オリゴマーの
生成を行った。ラクチドの留出は温度210℃、圧力5
mmHgで5.0時間行い、ラクチド164.9gを得
た。組成は乳酸0.8%、ラクトイル乳酸0.7%、メ
ソラクチド42.5%、DL−ラクチド53.7%、そ
の他2.3%であった。酸価365meq/kg、水分
470ppm、純度96.2%であった。
【0026】比較例2 乳酸メチル208.2g、DL−乳酸(85〜92%)
水溶液200.0g、モノブチル錫オキサイド1.94
gを実施例1と同様の装置に仕込み、同様の操作により
ラクチド136.4gを得た。組成は乳酸0.6%、乳
酸メチル0.2%、ラクトイル乳酸0.6%、ラクトイ
ル乳酸メチル0.3%、メソラクチド40.5%、DL
−ラクチド56.4%、その他1.4%であった。酸価
255meq/kg、水分270ppm、純度96.9
%であった。
【0027】比較例3 乳酸メチル208.2g、ポリエーテルグリコール(分
子量1000)416.4g、モノブチル錫オキサイド
1.94gを実施例1と同様の装置に仕込み、同様の操
作によりラクチド70.1gを得た。組成は乳酸メチル
0.4%、ラクトイル乳酸メチル0.6%、メソラクチ
ド42.6%、DL−ラクチド52.1%、その他4.
3%であった。乳酸メチル転化率は72.1%、ラクチ
ド選択率78.8%であった。酸価は430meq/k
g、水分は550ppm、ラクチド純度94.7%であ
った。
【0028】
【発明の効果】本発明の構成を採用することにより、ポ
リマー原料などに使用可能な高純度で低酸価、低水分の
ラクチドが高収率で経済的に有利に製造される。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成8年10月4日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0008
【補正方法】変更
【補正内容】
【0008】即ち、本発明はラクチドを製造するにあた
り、下記の(A)〜(D)の工程: (A)青酸とアセトアルデヒドからラクトニトリルを製
造する工程、(B)前記工程で得られるラクトニトリル
を水和してラクトアミドを製造する工程、(C)前記工
程で得られるラクトアミドとギ酸エステルより乳酸エス
テルとホルムアミドを製造する工程、(D)前記工程で
得られた生成物から分離したホルムアミドを脱水して青
酸を製造し循環使用する工程、で得られる一般式CH3
CH(OH)COOR(R:炭素数1〜8のアルキル
基)で表される乳酸エステルを原料として、下記の
(1)〜(3)の工程: (1)乳酸エステルを触媒の存在下に加熱して脱アルコ
ールする工程、(2)未反応の乳酸エステルを蒸留によ
り回収する工程、(3)続いてラクチドを蒸留する工
程、を含み、酸価50meq/kg以下、水分200p
pm以下、不純物としての乳酸エステル原料0.5%以
下で、且つ純度99.0%以上の性状のラクチドを得る
ことを特徴とするラクチドの製造方法を提供するもので
ある。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0014
【補正方法】変更
【補正内容】
【0014】以上の方法によって製造されるラクチドは
通常メソラクチドとDL−ラクチドの混合物で得られ
る。その比率は、用いる触媒、蒸留塔の段数、還流比、
反応液温度、圧力、初留ラクチドの取得率および残渣の
反応器中への残存率などによって変化する。工程(3)
で得られたラクチドは乳酸メチルやラクトイル乳酸メチ
ルを若干含むものの、酸価は50meq/kg以下、水
分は200ppm以下のものが代表的に得られるので、
このままでもポリマー原料などに使用できる。一般には
従来再蒸留や再結晶(再蒸留・再結晶とも数回におよぶ
場合もある)によって得ていた酸価5〜50meq/k
g、水分10〜150ppmのラクチドと同等の性状の
ラクチドが一回だけの蒸留で得られる。さらに低酸価、
低水分のラクチドが必要な場合は再蒸留や再結晶によっ
て精製することもできる。その場合にもメソラクチドと
DL−ラクチドの比率が変化する。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 下記の(A)〜(D)の工程: (A)青酸とアセトアルデヒドからラクトニトリルを製
    造する工程、(B)前記工程で得られるラクトニトリル
    を水和してラクトアミドを製造する工程、(C)前記工
    程で得られるラクトアミドとギ酸エステルより乳酸エス
    テルとホルムアミドを製造する工程、(D)前記工程で
    得られた生成物から分離したホルムアミドを脱水して青
    酸を製造し循環使用する工程、で得られる一般式CH3
    CH(OH)COOR(R:炭素数1〜8のアルキル
    基)で表される乳酸エステルを原料として、下記の
    (1)〜(3)の工程: (1)乳酸エステルを触媒の存在下に加熱して脱アルコ
    ールする工程、(2)未反応の乳酸エステルを蒸留によ
    り回収する工程、(3)続いてラクチドを蒸留する工
    程、を含み、酸価50meq/kg以下、水分200p
    pm以下、不純物としての乳酸エステル原料0.5%以
    下で、且つ純度99.0%以上の性状のラクチドを得る
    ことを特徴とするラクチドの製造方法。
  2. 【請求項2】 工程(1)においては反応液温度140
    〜200℃、圧力常圧〜200mmHgの条件、工程
    (2)においては反応液温度180〜210℃、圧力2
    00〜5mmHgの条件、工程(3)においては液温度
    180〜230℃、圧力20〜0.1mmHgの条件下
    で操作を行うことを特徴とする請求項1記載の方法。
  3. 【請求項3】 前記乳酸エステルは(C)工程で用いる
    ギ酸エステルがギ酸メチルであり、製造される乳酸エス
    テルが乳酸メチルである請求項1記載の方法。
  4. 【請求項4】 ギ酸メチルの代わりにメタノールと一酸
    化炭素を用いることを特徴とする請求項3記載の方法。
  5. 【請求項5】 工程(1)における前記触媒が錫化合物
    であることを特徴とする請求項1記載の方法。
  6. 【請求項6】 錫化合物がオクタン酸第一錫、モノブチ
    ル錫オキサイド、ジブチル錫オキサイド、ジメチル錫オ
    キサイド、1,1,3,3−テトラブチル−1,3−ジ
    アセトキシ−ジスタノキサンおよび1,1,3,3−テ
    トラブチル−1,3−ジラウロイルオキシ−ジスタノキ
    サンから選ばれる少なくとも1種であることを特徴とす
    る請求項5記載の方法。
JP8194782A 1996-07-24 1996-07-24 ラクチドの製造方法 Pending JPH1036366A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8194782A JPH1036366A (ja) 1996-07-24 1996-07-24 ラクチドの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8194782A JPH1036366A (ja) 1996-07-24 1996-07-24 ラクチドの製造方法

Publications (1)

Publication Number Publication Date
JPH1036366A true JPH1036366A (ja) 1998-02-10

Family

ID=16330173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8194782A Pending JPH1036366A (ja) 1996-07-24 1996-07-24 ラクチドの製造方法

Country Status (1)

Country Link
JP (1) JPH1036366A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164550A (zh) * 2023-11-02 2023-12-05 华东理工大学 一种高纯丙交酯的制备方法及其在聚乳酸合成中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164550A (zh) * 2023-11-02 2023-12-05 华东理工大学 一种高纯丙交酯的制备方法及其在聚乳酸合成中的应用
CN117164550B (zh) * 2023-11-02 2024-01-26 华东理工大学 一种高纯丙交酯的制备方法及其在聚乳酸合成中的应用

Similar Documents

Publication Publication Date Title
JP5446272B2 (ja) 2−メチル−3−(3,4−メチレンジオキシフェニル)プロパナール及びその製造方法
US5900491A (en) Preparation process and purification process of cyclic ester
JPH0219373A (ja) モノヒドロキシ単環式アセタールおよびそのエステルの製法
US20070110701A1 (en) Acyloxyacetic acid polymer and process for producing the same
EP3015447B1 (en) Method for preparing allyl alcohol
JPH1036366A (ja) ラクチドの製造方法
US6384241B2 (en) Purified salt of β-hydroxyethoxy acetic acid, purified 2-p-dioxanone, and manufacturing method therefor
JP4645032B2 (ja) スピログリコールの製造方法
US6162946A (en) Processing for producing allyl 2-hydroxyisobutyrate
US4002667A (en) Bis-(2-hydroxyethyl)-terephthalate
US6235924B1 (en) Continuous process for preparing benzoic acid esters
EP0895978A1 (en) Process for producing polyhydric alcohol
EP0456157B1 (en) Process of producing chloroacetals
JPH0665149A (ja) アクリル酸エステルのミカエル付加物から有用化合物を製造する方法
JP3191842B2 (ja) 乳酸エステルの製造法
JP3368955B2 (ja) ジペンタエリスリトールの製造方法
EP2949654B1 (en) Improved method for manufacturing 1,4:3,6-dianhydrohexitol di(alkyl carbonate)s
JPH11335319A (ja) α−ヒドロキシカルボン酸の製造方法
JP2756373B2 (ja) 1,1,1−トリフルオロ−3−ニトロ−2−プロペンの製造方法
JP3529876B2 (ja) 3−メチル−3−メトキシブタン酸。
JPH1059958A (ja) テトラメチルグリコリドの製造方法
CN115784930A (zh) 一种水杨腈杂质的制备方法
JP2002080423A (ja) トリフルオロ酢酸エチルの合成方法
JPH04182452A (ja) 脂肪族ジカルボン酸モノエステルの製造方法
JPS6310692B2 (ja)