JPH10312813A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH10312813A
JPH10312813A JP9125384A JP12538497A JPH10312813A JP H10312813 A JPH10312813 A JP H10312813A JP 9125384 A JP9125384 A JP 9125384A JP 12538497 A JP12538497 A JP 12538497A JP H10312813 A JPH10312813 A JP H10312813A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
manganese dioxide
organic electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9125384A
Other languages
Japanese (ja)
Inventor
Yukihiro Ogura
幸弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP9125384A priority Critical patent/JPH10312813A/en
Publication of JPH10312813A publication Critical patent/JPH10312813A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration of a storage characteristic of a battery by adding a reaction inhibitor in an organic electrolyte to check reaction of a manganese dioxide with an electrolyte. SOLUTION: A battery uses a manganese dioxide as a positive electrode active material, and normally uses a propylene carbonate as an organic electrolyte. A substance used as a reaction inhibitor to be added to this electrolyte is desirable to be a polyacrylamide (acrylamide-acrylic acid copolymer), and non-electric charge polyacrylamide or the like is cited as its representative one. Reactivity of the manganese dioxide to the electrolyte reduces by adding this in the electrolyte. This is caused by the fact that the activity of a manganese dioxide surface on the basis of sticking water, joining water, a surface functional group or the like deteriorates because a comparatively stable adsorbing layer is formed in an active part of the manganese dioxide surface by adding the reaction inhibitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムなどのア
ルカリ金属を負極活物質とし、二酸化マンガンを正極活
物質とする有機電解液電池に関し、特に電解液の改良に
関するものである。
The present invention relates to an organic electrolyte battery using an alkali metal such as lithium as a negative electrode active material and manganese dioxide as a positive electrode active material, and more particularly to an improvement in an electrolyte solution.

【0002】[0002]

【従来の技術】有機電解液電池では、リチウムなどのア
ルカリ金属を負極活物質とし、二酸化マンガンを正極活
物質とし、電解液としてプロピレンカーボネート、1,
2−ジメトキシエタン、1,3−ジオキソラン等の有機
溶媒に、LiClO4 ,LiPF6 ,LiAsF6 ,L
iSbF6 ,LiB(C6 5 4 などの電解質の1種
または2種以上を溶解したものが用いられている。これ
らの有機溶媒のうち、特にプロピレンカーボネートは、
誘電率が高く、電解質を高濃度に溶解させることがで
き、かつ使用温度範囲が広いことから、多用されてい
る。
2. Description of the Related Art In an organic electrolyte battery, an alkali metal such as lithium is used as a negative electrode active material, manganese dioxide is used as a positive electrode active material, and propylene carbonate is used as an electrolyte.
LiClO 4 , LiPF 6 , LiAsF 6 , L can be added to an organic solvent such as 2-dimethoxyethane or 1,3-dioxolan.
An electrolyte in which one or more electrolytes such as iSbF 6 and LiB (C 6 H 5 ) 4 are dissolved is used. Among these organic solvents, especially propylene carbonate is
It is widely used because it has a high dielectric constant, can dissolve the electrolyte at a high concentration, and has a wide use temperature range.

【0003】ところで、上記電池の正極活物質として二
酸化マンガンを用いた場合、二酸化マンガンが表面に付
着水.結合水,表面官能基を有しているため表面の活性
能が高く、これが電池形成した場合に理論電位より高電
位を生じる原因となる。また電解液溶媒として前記プロ
ピレンカーボネートのように環状でエステル結合を有す
る有機溶媒が使用されていると、貯蔵中に二酸化マンガ
ンとプロピレンカーボネートとが反応し、プロピレンカ
ーボネートが酸化分解して、電池内部に炭酸ガス(CO
2 )が発生し、電池総高の増加や、内部インピーダンス
の増加などの電池性能の低下を引き起こす。
[0003] When manganese dioxide is used as the positive electrode active material of the above battery, manganese dioxide adheres to the surface of water. Since it has bound water and surface functional groups, its surface activity is high, which causes a potential higher than the theoretical potential when a battery is formed. Further, when an organic solvent having a cyclic ester bond such as the propylene carbonate is used as the electrolyte solvent, manganese dioxide and propylene carbonate react during storage, and propylene carbonate is oxidized and decomposed, so that the inside of the battery is removed. Carbon dioxide (CO
2 ) occurs, causing a decrease in battery performance such as an increase in the total battery height and an increase in internal impedance.

【0004】これに対して、電池製造直後に予備放電し
てプロピレンカーボネートの分解を防止する方法が提案
されているが(特開昭55−80276号公報)、この
方法によると電池を1個ずつ所定電圧まで放電させなけ
ればならず、工業的には大変な手間を要することにな
る。
On the other hand, there has been proposed a method for preventing the decomposition of propylene carbonate by performing a preliminary discharge immediately after the production of the battery (Japanese Patent Laid-Open No. 55-80276). It must be discharged to a predetermined voltage, which requires a great deal of work industrially.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題に対
処してなされたもので、二酸化マンガンを正極活物質と
して用いた有機電解液電池において、二酸化マンガンと
電解液が反応して電池性能が低下することのないように
電解液を改良し、従来のように電池製造直後に予備放電
をしないでも貯蔵特性が低下しない電池を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and in an organic electrolyte battery using manganese dioxide as a positive electrode active material, manganese dioxide reacts with the electrolyte to improve battery performance. An object of the present invention is to provide a battery in which the electrolytic solution is improved so as not to be deteriorated, and the storage characteristics are not deteriorated even if a preliminary discharge is not performed immediately after manufacturing the battery as in the related art.

【0006】[0006]

【課題を解決するための手段】本発明は電解液中に二酸
化マンガンと電解液との反応を阻止する反応阻止剤を添
加することによって上記目的を達成したものであって、
すなわち、本発明は、アルカリ金属を負極活物質とし、
二酸化マンガンを正極活物質とし、有機電解液を備えて
なる有機電解液電池において、前記有機電解液中に二酸
化マンガンと電解液との反応を阻止する反応阻止剤が添
加されていることを特徴とする。
According to the present invention, the above object has been achieved by adding a reaction inhibitor for preventing the reaction between manganese dioxide and the electrolyte in the electrolyte.
That is, the present invention uses an alkali metal as a negative electrode active material,
Manganese dioxide as a positive electrode active material, in an organic electrolyte battery comprising an organic electrolyte, characterized in that a reaction inhibitor for inhibiting the reaction between manganese dioxide and the electrolyte is added to the organic electrolyte. I do.

【0007】本発明において、反応阻止剤として用いる
物質はポリアクリルアミド(アクリルアミド−アクリル
酸コポリマー)が好ましく、その代表的なものとして
は、非荷電ポリアクリルアミド(PAM),荷電ポリア
クリルアミド(アニオン性加水分解ポリアクリルアミド
(HPAM))などが挙げられる。
In the present invention, the substance used as the reaction inhibitor is preferably polyacrylamide (acrylamide-acrylic acid copolymer). Representative examples thereof include uncharged polyacrylamide (PAM) and charged polyacrylamide (anionic hydrolysis). Polyacrylamide (HPAM)).

【0008】本発明では、上記したように電解液中に反
応阻止剤を添加することによって、プロピレンカーボネ
ート等を含む電解液に対する二酸化マンガンの反応性が
低下する。反応性が低下する理由は現在のところ必ずし
も明確ではないが、阻止剤を添加することにより二酸化
マンガンの表面の活性部位に比較的安定な吸着層が形成
され、付着水や結合水、表面官能基などに基づく二酸化
マンガン表面の活性が低下することによるものと考えら
れる。
In the present invention, the reactivity of manganese dioxide with respect to an electrolyte containing propylene carbonate or the like is reduced by adding a reaction inhibitor to the electrolyte as described above. Although the reason for the decrease in reactivity is not always clear at present, the addition of a blocking agent results in the formation of a relatively stable adsorption layer on the active site on the surface of manganese dioxide. It is considered that the activity of the surface of manganese dioxide based on such factors is reduced.

【0009】本発明の電池では、負極活物質としては、
例えばリチウム,ナトリウム,カリウムなどのアルカリ
金属が用いられる。負極は上記アルカリ金属そのもので
構成してもよいが、リチウム合金などのように合金の状
態で構成してもよい。
In the battery of the present invention, as the negative electrode active material,
For example, alkali metals such as lithium, sodium, and potassium are used. The negative electrode may be composed of the alkali metal itself, but may be composed of an alloy such as a lithium alloy.

【0010】このリチウム合金で負極を構成する場合も
負極活物質として作用するのはリチウムである。上記の
ようなリチウム合金としては、例えはリチウム−アルミ
ニウム合金,リチウム−ケイ素合金,リチウム−錫合
金,リチウム−鉛合金,リチウム−アンチモン合金,リ
チウム−インジウム合金,リチウム−ガリウム合金,リ
チウム−ビスマス合金,リチウム−ゲルマニウム合金,
リチウム−インジウム−ガリウム合金などが挙げられ
る。また、上記リチウム合金にさらに他の金属を少量添
加したものを負極に用いることもできる。
When a negative electrode is made of this lithium alloy, lithium acts as a negative electrode active material. Examples of the above lithium alloy include lithium-aluminum alloy, lithium-silicon alloy, lithium-tin alloy, lithium-lead alloy, lithium-antimony alloy, lithium-indium alloy, lithium-gallium alloy, and lithium-bismuth alloy. , Lithium-germanium alloy,
Lithium-indium-gallium alloy and the like can be mentioned. In addition, a material obtained by further adding a small amount of another metal to the above lithium alloy can be used for the negative electrode.

【0011】有機電解液は、通常プロピレンカーボネー
トや、プロピレンカーボネートと同様に環状でエステル
結合を有するエチレンカーボネート,γ−ブチロラクト
ンなどを含む有機溶媒からなる電解液溶媒に、LiCl
4 ,LiPF6 ,LiAsF6 ,LiSbF6 ,Li
B(C6 5 4 などの電解質の1種または2種以上を
溶解したものが用いられる。上記プロピレンカーボネー
ト,エチレンカーボネート,γ−ブチロラクトンなどは
それらを単独で電解液溶媒として用いてもよく、また、
それらを混合するかまたはそれらと1,2−ジメトキシ
エタン,1,2−ジエトキシエタン,テトラヒドロフラ
ン,1,3−ジオキソラン,4−メチル−1,3−ジオ
キソランなどの有機溶媒を混合して電解液溶媒として用
いてもよい。
[0011] The organic electrolyte solution is usually an electrolyte solvent composed of propylene carbonate or an organic solvent containing ethylene carbonate, γ-butyrolactone, etc. having a cyclic ester bond similar to propylene carbonate.
O 4, LiPF 6, LiAsF 6 , LiSbF 6, Li
An electrolyte in which one or more electrolytes such as B (C 6 H 5 ) 4 are dissolved is used. The above-mentioned propylene carbonate, ethylene carbonate, γ-butyrolactone and the like may be used alone as an electrolyte solvent.
An electrolytic solution is prepared by mixing them or mixing them with an organic solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan. It may be used as a solvent.

【0012】[0012]

【発明の実施の形態】つぎに本発明の実施形態を図面を
参照して詳細に説明する。 (実施例)常法にしたがって電池組立をして図1に示す
電池を製造した。図1において、2はリチウムからなる
負極であり、この負極2は、ステンレス鋼製の負極缶3
の内面にあらかじめスポット溶接しておいたステンレス
鋼製網からなる負極集電体4に直径16mm,厚さ0.
2mmのリチウム板を圧着して形成したものである。5
は微孔性ポリプロピレンフィルムからなるセパレータ
で、6は二酸化マンガンを正極活物質とする正極合剤を
加圧成形した正極であり、以下のようにして作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. (Example) A battery shown in FIG. 1 was manufactured by assembling a battery according to a conventional method. In FIG. 1, reference numeral 2 denotes a negative electrode made of lithium, and this negative electrode 2 is a negative electrode can 3 made of stainless steel.
A negative electrode current collector 4 composed of a stainless steel mesh spot-welded in advance to the inner surface of the negative electrode has a diameter of 16 mm and a thickness of 0.1 mm.
It is formed by compressing a 2 mm lithium plate. 5
Is a separator made of a microporous polypropylene film, and 6 is a positive electrode obtained by press-molding a positive electrode mixture containing manganese dioxide as a positive electrode active material, and was produced as follows.

【0013】すなわち、350〜450℃の温度範囲で
熱処理した二酸化マンガンを活物質として用い、この二
酸化マンガンと導電剤としてのカーボン粉末と、結着剤
としてのフッ素樹脂粉末とを、85:10:5の重量比
で混合し、次にこの混合物を加圧成形した後、250〜
350℃で熱処理し、直径16mm,厚さ0.6mmの
円板状の成形体を作製した。
That is, manganese dioxide heat-treated at a temperature in the range of 350 to 450 ° C. is used as an active material, and the manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder are mixed at 85:10: 5 and then press-molded the mixture,
Heat treatment was performed at 350 ° C. to produce a disk-shaped compact having a diameter of 16 mm and a thickness of 0.6 mm.

【0014】さらに図1中、7は上記正極6の加圧成形
時に正極6の一方の側に配設したステンレス鋼製網から
なる正極集電体である。8はステンレス鋼製の正極缶
で、9はポリプロピレン製の環状ガスケットである。
Further, in FIG. 1, reference numeral 7 denotes a positive electrode current collector made of a stainless steel net disposed on one side of the positive electrode 6 when the positive electrode 6 is subjected to pressure molding. Reference numeral 8 denotes a stainless steel positive electrode can, and reference numeral 9 denotes an annular gasket made of polypropylene.

【0015】この電池には、有機電解液としてプロピレ
ンカーボネートと1,2−ジメトキシエタンとの容量比
2:1の混合溶媒に過塩素酸リチウム(LiClO4
を1mol/l溶解させたものを用い、この電解液に更
に反応阻止剤としてポリアクリルアミドを1g/lを溶
解させて使用した。電池は直径20.0mmのコイン形
電池である。
In this battery, lithium perchlorate (LiClO 4 ) is mixed with a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 2: 1 as an organic electrolyte.
Was dissolved at 1 mol / l, and 1 g / l of polyacrylamide was further dissolved and used as a reaction inhibitor in this electrolytic solution. The battery is a coin-shaped battery having a diameter of 20.0 mm.

【0016】(比較例1)電解液に反応阻止剤を添加し
ないほかは上記実施例と同様にして電池を製造し、比較
例1の電池とした。
(Comparative Example 1) A battery was manufactured in the same manner as in the above Example except that no reaction inhibitor was added to the electrolytic solution.

【0017】上記実施例の電池および比較例1の電池に
関して次の3種類の試験を行った。まず、上記実施例と
比較例1の電池を各10個ずつ80℃で48時間貯蔵
し、貯蔵による電池総高の増加を調べた。貯蔵前の電池
総高はいずれの電池も1.52±0.02mmの範囲内
にあり、貯蔵により電池総高が1.56mmを超えたも
のを総高不良として、表1にその個数を示した。表1中
の数値の分母は試験に供した電池個数を示し、分子は総
高不良が発生した電池個数を示す。
The following three tests were conducted on the battery of the above-described embodiment and the battery of Comparative Example 1. First, 10 batteries of each of the above Example and Comparative Example 1 were stored at 80 ° C. for 48 hours, and an increase in the total battery height due to storage was examined. The total battery height before storage was within the range of 1.52 ± 0.02 mm for all batteries, and those whose total battery height exceeded 1.56 mm due to storage were regarded as defective in total height. Was. The denominator of the numerical values in Table 1 indicates the number of batteries subjected to the test, and the numerator indicates the number of batteries in which the total height failure occurred.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示すように、電解液に添加剤を添加
していない比較例1の電池では、試験に供したすべての
電池に貯蔵による総高不良が発生したが、本発明の実施
例の電池では総高不良が全く発生しなかった。次に高温
保存後の電池の内部インピーダンスを1kHzの周波数
で測定した。その結果を下記表2に示す。
As shown in Table 1, in the battery of Comparative Example 1 in which no additive was added to the electrolytic solution, all the batteries subjected to the test had a total height failure due to storage. No defect of the total height occurred at all in the battery. Next, the internal impedance of the battery after high-temperature storage was measured at a frequency of 1 kHz. The results are shown in Table 2 below.

【0020】[0020]

【表2】 [Table 2]

【0021】表2より、比較例1の電池は保存後に内部
インピーダンスが著しく増大しているのに比べて、本発
明の実施例1の電池は保存後でも内部インピーダンスは
若干増大するのみである。
From Table 2, it can be seen that the internal impedance of the battery of Comparative Example 1 significantly increased after storage, whereas the internal impedance of the battery of Example 1 of the present invention increased only slightly after storage.

【0022】(比較例2)比較例1で製造した電池を、
電池製造直後に3.2Vまで予備放電して高電位部分を
除去し、二酸化マンガンとプロピレンカーボネートとの
反応を抑制するようにした。この電池を比較例2とす
る。
(Comparative Example 2) The battery manufactured in Comparative Example 1 was
Immediately after the production of the battery, a pre-discharge was performed to 3.2 V to remove a high potential portion, thereby suppressing the reaction between manganese dioxide and propylene carbonate. This battery is referred to as Comparative Example 2.

【0023】上記実施例の電池および比較例2の電池に
ついて、25℃,抵抗15kΩで放電終止電圧2.5V
まで連続放電させたときの放電持続時間を測定した。こ
れらの結果を表3に示す。
With respect to the battery of the above embodiment and the battery of Comparative Example 2, the discharge end voltage was 2.5 V at 25 ° C. and a resistance of 15 kΩ.
The discharge duration time when the battery was continuously discharged until the discharge was measured. Table 3 shows the results.

【0024】[0024]

【表3】 [Table 3]

【0025】表3に示すように、実施例の電池は、予備
放電した比較例2の電池より長い放電時間を有してい
て、電解液に添加剤を添加したことによる放電容量低下
は認められなかった。
As shown in Table 3, the batteries of Examples had a longer discharge time than the batteries of Comparative Example 2 which had been pre-discharged, and a decrease in discharge capacity due to the addition of additives to the electrolyte was observed. Did not.

【0026】[0026]

【発明の効果】以上説明したように、本発明の有機電解
液電池では、電解液に反応阻止剤を添加したことによっ
て、正極活物質である二酸化マンガンと電解液との反応
を阻止することができ、それによって電池の貯蔵特性を
向上させることができる。また、従来の予備放電によっ
てプロピレンカーボネートの分解を阻止する方法に比べ
て、本発明は生産性を向上させることができる。
As described above, in the organic electrolyte battery of the present invention, the reaction between manganese dioxide, which is a positive electrode active material, and manganese dioxide can be prevented by adding a reaction inhibitor to the electrolyte. The storage characteristics of the battery. Further, the present invention can improve the productivity as compared with the conventional method of preventing the decomposition of propylene carbonate by the preliminary discharge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の電池の断面図。FIG. 1 is a sectional view of a battery according to an embodiment of the present invention.

【符号の説明】 1…電池、2…負極活物質、3…負極缶、4…負極集電
体、5…セパレータ、6…正極活物質、7…正極集電
体、8…正極缶、9…ガスケット。
[Description of Signs] 1 ... Battery, 2 ... Negative electrode active material, 3 ... Negative electrode can, 4 ... Negative electrode current collector, 5 ... Separator, 6 ... Positive electrode active material, 7 ... Positive electrode current collector, 8 ... Positive electrode can, 9 …gasket.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属を負極活物質とし、二酸化
マンガンを正極活物質とし、有機電解液を備えてなる有
機電解液電池において、前記有機電解液中に二酸化マン
ガンと電解液との反応を阻止する反応阻止剤が添加され
ていることを特徴とする有機電解液電池。
1. An organic electrolyte battery comprising an alkali metal as a negative electrode active material, manganese dioxide as a positive electrode active material, and an organic electrolyte, wherein the reaction between the manganese dioxide and the electrolyte in the organic electrolyte is prevented. An organic electrolyte battery, wherein a reaction inhibitor is added.
【請求項2】 反応阻止剤がポリアクリルアミドである
請求項1記載の有機電解液電池。
2. The organic electrolyte battery according to claim 1, wherein the reaction inhibitor is polyacrylamide.
JP9125384A 1997-05-15 1997-05-15 Organic electrolyte battery Pending JPH10312813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9125384A JPH10312813A (en) 1997-05-15 1997-05-15 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9125384A JPH10312813A (en) 1997-05-15 1997-05-15 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH10312813A true JPH10312813A (en) 1998-11-24

Family

ID=14908811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125384A Pending JPH10312813A (en) 1997-05-15 1997-05-15 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH10312813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086246A (en) * 2001-09-13 2003-03-20 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
CN109860628A (en) * 2019-04-15 2019-06-07 安徽大学 A kind of preparation method and application of the flexible all solid state zinc-air battery of plane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086246A (en) * 2001-09-13 2003-03-20 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
CN109860628A (en) * 2019-04-15 2019-06-07 安徽大学 A kind of preparation method and application of the flexible all solid state zinc-air battery of plane

Similar Documents

Publication Publication Date Title
JP3617447B2 (en) Lithium secondary battery
EP1022797B1 (en) Polymer electrolyte battery and polymer electrolyte
US20030148191A1 (en) Non-aqueous electrolyte secondary battery
JPH0487156A (en) Nonaqueous electrolyte battery
JP2003223887A (en) Nonaqueous system secondary battery
US4874680A (en) Lithium secondary battery
JP2006236888A (en) Nonaqueous electrolyte solution battery
JPH08213014A (en) Nonaqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH10312813A (en) Organic electrolyte battery
JPH08241731A (en) Organic electrolytic secondary battery
JP2000149986A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JP2003168427A (en) Nonaqueous electrolyte battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JPH07118316B2 (en) Method for manufacturing organic electrolyte battery
JP2000149987A (en) Nonaqueous electrolyte solution and lithium secondary battery using it
JP2003223930A (en) Non-aqueous electrolytic cell
JPH02168562A (en) Manufacture of organic electrolyte battery
JP3358482B2 (en) Lithium secondary battery
JP3036018B2 (en) Organic electrolyte battery
JP3353455B2 (en) Organic electrolyte secondary battery
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JP2007080554A (en) Nonaqueous electrolyte secondary battery
JPH11297310A (en) Lithium ion secondary battery, and first time charging method therefor