JP2003086246A - Nonaqueous electrolytic solution secondary battery - Google Patents

Nonaqueous electrolytic solution secondary battery

Info

Publication number
JP2003086246A
JP2003086246A JP2001278007A JP2001278007A JP2003086246A JP 2003086246 A JP2003086246 A JP 2003086246A JP 2001278007 A JP2001278007 A JP 2001278007A JP 2001278007 A JP2001278007 A JP 2001278007A JP 2003086246 A JP2003086246 A JP 2003086246A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolytic solution
aqueous
carbonate
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001278007A
Other languages
Japanese (ja)
Other versions
JP4887589B2 (en
JP2003086246A5 (en
Inventor
Christian Moller Kai
クリスチャン モラー カイ
Jurgen Otto Besenhard
オットー ベーゼンハルト ユルゲン
Winter Martin
ウインター マルティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001278007A priority Critical patent/JP4887589B2/en
Publication of JP2003086246A publication Critical patent/JP2003086246A/en
Publication of JP2003086246A5 publication Critical patent/JP2003086246A5/ja
Application granted granted Critical
Publication of JP4887589B2 publication Critical patent/JP4887589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution secondary battery and a nonaqueous electrolytic solution to use this wherein decomposition of the electrolytic solution is less, charge-discharge efficiency is high, and storage characteristics and cycle characteristics in high-temperatures are superior. SOLUTION: In the nonaqueous electrolytic solution secondary battery containing a negative electrode and a positive electrode capable of occluding/ discharging lithium and an electrolytic solution in which a lithium salt is dissolved in the nonaqueous solvent, amide compound(s) having carbon-carbon unsaturated bond(s) is contained in the electrolytic solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池及びそれに用いる電解液に関する。詳しくは、電解
液の分解が少なく、充放電効率が高く、高温下における
保存特性及びサイクル特性に優れた非水系電解液二次電
池及びそれに用いる電解液に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery and an electrolyte used therein. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery having a high degree of charge / discharge efficiency, high decomposition efficiency of the electrolyte, excellent storage characteristics and cycle characteristics at high temperatures, and an electrolyte used therein.

【0002】[0002]

【従来の技術】近年の電気製品の軽量化、小型化に伴
い、高いエネルギー密度を持つリチウム二次電池の開発
が進められている。また、リチウム二次電池の適用分野
の拡大に伴い電池特性の改善も要望されている。非水系
電解液二次電池の電解液に用いる溶媒としては、誘電率
の高いエチレンカーボネートが多用されている。しか
し、エチレンカーボネートの凝固点は36.4℃と高く
室温では固体であり、液体としても粘度が高いため扱い
づらい。そこで、エチレンカーボネートを用いた電解液
には、副溶媒としてエチルメチルカーボネートやジエチ
ルカーボネート等の低粘度溶媒が混合されている。しか
し、低粘度溶媒は、一般的に沸点が低く、誘電率が低い
ため、大量に混合すると、リチウム塩の解離度の低下に
より電解液の性能が低下したり、溶媒の蒸発により塩が
析出したり、引火点が低下したりするなど安全性の面で
問題がある。逆に、少量しか混合しないと、低温での電
気伝導率や粘度の面の問題が残る。
2. Description of the Related Art With the recent lightening and miniaturization of electric products, development of lithium secondary batteries having a high energy density has been promoted. Further, improvement of battery characteristics is also demanded as the application field of lithium secondary batteries is expanded. As a solvent used for an electrolytic solution of a non-aqueous electrolytic solution secondary battery, ethylene carbonate having a high dielectric constant is often used. However, the freezing point of ethylene carbonate is as high as 36.4 ° C. and it is a solid at room temperature, and it is difficult to handle because it has a high viscosity as a liquid. Therefore, the electrolytic solution using ethylene carbonate is mixed with a low-viscosity solvent such as ethyl methyl carbonate or diethyl carbonate as an auxiliary solvent. However, a low-viscosity solvent generally has a low boiling point and a low dielectric constant.Therefore, when mixed in a large amount, the performance of the electrolytic solution deteriorates due to a decrease in the dissociation degree of the lithium salt, or the salt precipitates due to evaporation of the solvent. There is a problem in terms of safety, such as a decrease in flash point. On the contrary, if only a small amount is mixed, there remain problems in terms of electric conductivity and viscosity at low temperatures.

【0003】ところで、コークス、人造黒鉛、天然黒鉛
等の炭素質材料を負極に用いた非水系電解液二次電池で
は、リチウムが金属状態で存在しないためデンドライト
の形成が抑制され、優れた電池寿命と安全性を示すこと
が知られている。しかし、黒鉛のような結晶化度の高い
炭素質材料を負極に用いると、非水溶媒の分解や炭素質
材料の剥離が生じ、不可逆容量が増大することがある。
特に、非水溶媒にプロピレンカーボネートを、負極に黒
鉛材料を用いた場合には、黒鉛の表面においてプロピレ
ンカーボネートの激しい分解が起こり、電池特性が低下
するという問題が生じる。
By the way, in a non-aqueous electrolyte secondary battery using a carbonaceous material such as coke, artificial graphite or natural graphite for the negative electrode, the formation of dendrites is suppressed because lithium does not exist in a metallic state, resulting in an excellent battery life. And is known to show safety. However, when a carbonaceous material having a high degree of crystallinity such as graphite is used for the negative electrode, decomposition of the non-aqueous solvent and exfoliation of the carbonaceous material may occur, and the irreversible capacity may increase.
In particular, when propylene carbonate is used as the non-aqueous solvent and a graphite material is used as the negative electrode, there is a problem that the propylene carbonate undergoes severe decomposition on the surface of the graphite and battery characteristics deteriorate.

【0004】このような分解反応を抑制するため、電解
液に種々の化合物を含有させることが多数検討されてい
る。例えば電極に被膜を形成させるものととしては、ク
ロロエチレンカーボネート (H. Katayama, J. Arai, H.
Akahoshi, J. Power Sources 1999, 81-82, 705-70
8.), フルオロエチレンカーボネート (R. McMillan, H.
Slegr, Z. X. Sho, W. Wang, J. Power Sources 1999,
81-82, 20-26.), エチレンサルファイト (G.H. Wrodnig
g, J. O. Besenhard, M. Winter, J. Electrochem. So
c. 1999, 146, 470.),ビニレンカーボネート (J. Bark
er, F. Gao, US Patent No. 5,712,059 (1998), Y. Nar
use, S. Fujita, A. Omaru, US Patent No.5,714,281
(1998))等のエチレンカーボネート誘導体や類似体が検
討されている。これらの化合物は、通常、初期の充電に
おいて高い電極電位で還元されて電極表面に被膜を形成
すると考えられる。
In order to suppress such a decomposition reaction, many studies have been made to include various compounds in the electrolytic solution. For example, chloroethylene carbonate (H. Katayama, J. Arai, H.
Akahoshi, J. Power Sources 1999, 81-82, 705-70
8.), Fluoroethylene carbonate (R. McMillan, H.
Slegr, ZX Sho, W. Wang, J. Power Sources 1999,
81-82, 20-26.), Ethylene sulfite (GH Wrodnig
g, JO Besenhard, M. Winter, J. Electrochem. So
c. 1999, 146, 470.), vinylene carbonate (J. Bark
er, F. Gao, US Patent No. 5,712,059 (1998), Y. Nar
use, S. Fujita, A. Omaru, US Patent No. 5,714,281
(1998)) and other ethylene carbonate derivatives and analogues have been investigated. It is considered that these compounds are usually reduced at a high electrode potential in the initial charge to form a film on the electrode surface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
化合物の効果は不十分であり、更なる改良が望まれてい
る。本発明は、電解液の分解が少なく、充放電効率が高
く、高温下における保存特性及びサイクル特性に優れた
非水系電解液二次電池の提供を課題とするものである。
However, the effects of the above compounds are insufficient, and further improvement is desired. An object of the present invention is to provide a non-aqueous electrolyte secondary battery which is less likely to decompose an electrolyte, has high charge / discharge efficiency, and has excellent storage characteristics and cycle characteristics at high temperatures.

【0006】[0006]

【課題を解決するための手段】本発明者等は、かかる事
情に鑑み鋭意検討した結果、非水系電解液二次電池の電
解液に炭素‐炭素不飽和結合を有するアミド化合物を含
有させることにより、電解液の分解が少なく、充放電効
率が高く、高温下における保存特性及びサイクル特性に
優れた非水系電解液二次電池を得ることができることを
見いだし、本発明を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of such circumstances, and as a result, by incorporating an amide compound having a carbon-carbon unsaturated bond into the electrolyte of a non-aqueous electrolyte secondary battery, The inventors have found that a non-aqueous electrolyte secondary battery with less decomposition of the electrolyte solution, high charge / discharge efficiency, and excellent storage characteristics and cycle characteristics at high temperatures can be obtained, and completed the present invention.

【0007】すなわち、本発明の要旨は、リチウムを吸
蔵・放出することが可能な負極及び正極と、非水溶媒に
リチウム塩を溶解している電解液とを含む非水系電解液
二次電池において、電解液が炭素‐炭素不飽和結合を有
するアミド化合物を含有することを特徴とする非水系電
解液二次電池、及びそれに使用する非水系電解液にあ
る。
That is, the gist of the present invention is a non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery characterized in that the electrolyte contains an amide compound having a carbon-carbon unsaturated bond, and a non-aqueous electrolyte used therein.

【0008】[0008]

【発明の実施の形態】本発明で用いる炭素‐炭素不飽和
結合を有するアミド化合物は、分子中に炭素‐炭素不飽
和結合とアミド結合とをそれぞれ1つ以上有している化
合物であればいずれのものでもよい。このような化合物
としては、N,N‐ジメチルアクリルアミド、N,N‐
ジエチルアクリルアミド、N‐メチルアクリルアミド、
N‐エチルアクリルアミド、N‐メチルメタクリルアミ
ド、N‐エチルメタクリルアミド、N‐フェニルアクリ
ルアミド、N‐ベンジルアクリルアミドなどのようなア
ミド構造の炭素原子に炭素‐炭素不飽和結合が結合した
もの、及びN‐ビニルホルムアミド、N‐メチル‐N‐
ビニルアセトアミドなどのようなアミド構造の窒素原子
に炭素‐炭素不飽和結合が結合したもの、更にはN−ア
リルアクリルアミドのようにアミド構造の炭素原子と窒
素原子のそれぞれに炭素‐炭素不飽和結合が結合したも
のなどが挙げられる。これらの炭素‐炭素不飽和結合を
有するアミド化合物は、電解液中に0.001〜10重
量%、特に0.01〜3重量%となるように含有させる
のが好ましい。本発明で用いる非水溶媒としては、アル
キレン基の炭素数が2〜4のアルキレンカーボネート、
アルキル基の炭素数が1〜4のジアルキルカーボネー
ト、環状エーテル、鎖状エーテル、環状エステル、鎖状
エステル、含硫黄有機溶媒及び含燐有機溶媒など、非水
系電解液の溶媒として用い得るものの中から適宜選択し
て用いればよく、これらの溶媒を混合して用いてもよ
い。アルキレン基の炭素数が2〜4のアルキレンカーボ
ネートとしては、エチレンカーボネート、プロピレンカ
ーボネート、ブチレンカーボネート等が挙げられる。こ
れらの中、エチレンカーボネート、プロピレンカーボネ
ートが好ましい。アルキル基の炭素数が1〜4であるジ
アルキルカーボネートとしては、ジメチルカーボネー
ト、ジエチルカーボネート、ジ−n−プロピルカーボネ
ート、エチルメチルカーボネート、メチル−n−プロピ
ルカーボネート、エチル−n−プロピルカーボネート等
が挙げられる。これらの中、ジメチルカーボネート、ジ
エチルカーボネート、エチルメチルカーボネートが好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The amide compound having a carbon-carbon unsaturated bond used in the present invention is any compound as long as it has at least one carbon-carbon unsaturated bond and at least one amide bond in the molecule. It may be one. Such compounds include N, N-dimethylacrylamide, N, N-
Diethyl acrylamide, N-methyl acrylamide,
Carbon-carbon unsaturated bond bonded to carbon atom of amide structure such as N-ethylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-phenylacrylamide, N-benzylacrylamide, and N- Vinylformamide, N-methyl-N-
Carbon-carbon unsaturated bond bonded to nitrogen atom of amide structure such as vinylacetamide, and further carbon-carbon unsaturated bond to carbon atom and nitrogen atom of amide structure such as N-allylacrylamide. Examples include those that are combined. The amide compound having a carbon-carbon unsaturated bond is preferably contained in the electrolytic solution in an amount of 0.001 to 10% by weight, particularly 0.01 to 3% by weight. The non-aqueous solvent used in the present invention includes an alkylene carbonate having an alkylene group having 2 to 4 carbon atoms,
Of those that can be used as a solvent for the non-aqueous electrolyte, such as dialkyl carbonates having 1 to 4 carbon atoms in the alkyl group, cyclic ethers, chain ethers, cyclic esters, chain esters, sulfur-containing organic solvents and phosphorus-containing organic solvents. The solvent may be appropriately selected and used, and these solvents may be mixed and used. Examples of the alkylene carbonate having an alkylene group having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate and butylene carbonate. Of these, ethylene carbonate and propylene carbonate are preferable. Examples of the dialkyl carbonate in which the alkyl group has 1 to 4 carbon atoms include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethylmethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and the like. . Of these, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate are preferred.

【0009】環状エーテルとしては、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン等が挙げられる。鎖
状エーテルとしては、ジメトキシエタン、ジメトキシメ
タン等が挙げられる。環状エステルとしては、γ−ブチ
ロラクトン、γ−バレロラクトン等が挙げられる。
Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran. Examples of chain ethers include dimethoxyethane and dimethoxymethane. Examples of the cyclic ester include γ-butyrolactone and γ-valerolactone.

【0010】鎖状エステルとしては、酢酸メチル、プロ
ピオン酸メチル、プロピオン酸エチル等が挙げられる。
含硫黄有機溶媒としては、スルフォラン、ジエチルスル
ホン等が挙げられる。含燐有機溶媒としては、リン酸ト
リメチル、リン酸トリエチル等が挙げられる。
Examples of the chain ester include methyl acetate, methyl propionate, ethyl propionate and the like.
Examples of the sulfur-containing organic solvent include sulfolane and diethyl sulfone. Examples of the phosphorus-containing organic solvent include trimethyl phosphate and triethyl phosphate.

【0011】これらの溶媒のうち、アルキレン基の炭素
数が2〜4のアルキレンカーボネート、及びアルキル基
の炭素数が1〜4であるジアルキルカーボネートが好ま
しい。特に好ましいのは、アルキレン基の炭素数が2〜
4のアルキレンカーボネートと、アルキル基の炭素数が
1〜4であるジアルキルカーボネートとをそれぞれ20
重量%以上含有し、かつこれらが全体の70重量%以上
を占める混合溶媒である。
Among these solvents, alkylene carbonate having an alkylene group having 2 to 4 carbon atoms and dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms are preferable. Particularly preferably, the alkylene group has 2 to 2 carbon atoms.
4 alkylene carbonate and a dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms are 20
It is a mixed solvent containing more than 70% by weight and occupying more than 70% by weight of the whole.

【0012】また、高温安定性の面から、非水溶媒は、
比誘電率25以上の有機溶媒を60重量%以上、特に8
5重量%以上の割合で含有していることが好ましい。こ
の割合が低いと、低沸点の低粘度溶媒が併用されている
場合、高温保存時に電池内圧が上昇し、電池の変形・液
漏れが起こりやすくなる。比誘電率25以上の有機溶媒
としては、エチレンカーボネート、プロピレンカーボネ
ート、γ−ブチロラクトン、γ−バレロラクトン等が挙
げられる。これらは単独でも、2種以上を組み合わせて
使用してもよい。
From the viewpoint of high temperature stability, the non-aqueous solvent is
An organic solvent having a relative dielectric constant of 25 or more is used in an amount of 60% by weight or more, particularly 8
It is preferable that the content is 5% by weight or more. When this ratio is low, when a low-boiling point, low-viscosity solvent is also used, the internal pressure of the battery rises during high temperature storage, and the battery is likely to be deformed or leaked. Examples of the organic solvent having a relative dielectric constant of 25 or more include ethylene carbonate, propylene carbonate, γ-butyrolactone, γ-valerolactone and the like. These may be used alone or in combination of two or more.

【0013】電解液には、更に被膜形成剤、過充電防止
剤、脱水剤、脱酸剤などの助剤を含有させてもよい。例
えば、被膜形成剤として、ビニレンカーボネート、ビニ
ルエチレンカーボネート等のカーボネート;エチレンサ
ルファイト等のサルファイト;プロパンスルトン等のス
ルホン酸エステル;無水コハク酸、無水マレイン酸、無
水フタル酸等のカルボン酸無水物;1‐メチル‐2‐ピ
ロリジノン、1‐メチル‐2‐ピペリドン、3‐メチル
‐2‐オキサゾリジノン、1,3‐ジメチル‐2‐イミ
ダゾリジノン、N‐メチルスクシンイミド等の含窒素複
素環化合物よりなる群から選ばれた化合物を、電解液中
に0.01〜3重量%含有していると、電池の容量維持
特性、サイクル特性が向上する。
The electrolytic solution may further contain auxiliary agents such as a film forming agent, an overcharge preventing agent, a dehydrating agent and a deoxidizing agent. For example, as film-forming agents, carbonates such as vinylene carbonate and vinyl ethylene carbonate; sulfites such as ethylene sulfite; sulfonate esters such as propane sultone; carboxylic acid anhydrides such as succinic anhydride, maleic anhydride, phthalic anhydride, etc. Consisting of nitrogen-containing heterocyclic compounds such as 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide When the electrolytic solution contains the compound selected from the group in an amount of 0.01 to 3% by weight, the capacity maintenance characteristics and cycle characteristics of the battery are improved.

【0014】過充電防止剤としては、特開平8−203
560号、同7−302614号、同9−50822
号、同8−273700号、同9−17447号各公報
等に記載されているベンゼン誘導体;特開平9−106
835号、同9−171840号、同10−32125
8号、同7−302614号、同7−302614号、
同11−162512号各公報及び特許2939469
号、特許2963898号各公報等に記載されているビ
フェニル及びその誘導体;特開平9−45369号、同
10−321258号各公報等に記載されているピロー
ル誘導体;特開平7−320778号、同7−3026
14号各公報等に記載されているアニリン誘導体等の芳
香族化合物;特許2983205号公報等に記載されて
いるエーテル系化合物;及び特開2001‐15158
号公報に記載されている化合物を挙げることができる。
As an overcharge preventing agent, Japanese Patent Application Laid-Open No. 8-203
560, 7-302614, 9-50822.
Nos. 8-273700, 9-17447, and the like; benzene derivatives described in JP-A-9-106;
No. 835, No. 9-171840, No. 10-32125.
No. 8, No. 7-302614, No. 7-302614,
No. 11-162512, each gazette and patent 2939469.
And the derivatives thereof described in JP-A No. 2963898 and the like; Pyrrole derivatives described in JP-A Nos. 9-45369 and 10-32258, and the like; JP-A Nos. 7-320778 and 7 -3026
Aromatic compounds such as aniline derivatives described in JP-A-14, etc .; Ether-based compounds described in JP-A-2983205, and JP-A-2001-15158
The compounds described in the publication can be mentioned.

【0015】更に、電解液には、セパレータや電極材と
の濡れ性を良くするために、界面活性剤を0.01〜2
重量%となるように含有させてもよい。本発明で使用さ
れる電解液の溶質としては、リチウム塩が用いられる。
リチウム塩は、非水系電解液の溶質として用い得ること
が知られているいずれのものも使用できるが、例えば、 1)無機リチウム塩:LiPF6、LiAsF6、LiB
4、LiTaF6、LiAlF4、LiAlF6、LiS
iF6等の無機フッ化物塩、LiClO4等の過ハロゲン
酸塩 2)有機リチウム塩:LiCF3SO3等の有機スルホン
酸塩、LiN(CF3SO22 、LiN(C25
22、LiN(CF3SO2)(C49SO2)等のパ
ーフルオロアルキルスルホン酸イミド塩、LiC(CF
3SO23等のパーフルオロアルキルスルホン酸メチド
塩、LiPF3(C253、LiBF2(CF32、L
iBF3(CF3)等の無機フッ化物塩の一部のフッ素を
パーフルオロアルキル基で置換した塩、LiB(CF3
COO)4、LiB(OCOCF2COO)2、LiB
(OCOC24COO)2、等のリチウムテトラキス
(パーフルオロカルボキシレート)ボレート塩 が挙げられる。これらは混合して用いてもよい。
Further, in order to improve the wettability with the separator and the electrode material, the electrolytic solution contains 0.01 to 2 of a surfactant.
You may contain so that it may become a weight%. A lithium salt is used as the solute of the electrolytic solution used in the present invention.
Lithium salt can be used any of those that may be used as a solute of the nonaqueous electrolyte solution is known, for example, 1) an inorganic lithium salt: LiPF 6, LiAsF 6, LiB
F 4, LiTaF 6, LiAlF 4 , LiAlF 6, LiS
Inorganic fluoride salts such as iF 6 and perhalogenates such as LiClO 4 2) Organic lithium salts: Organic sulfonates such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 S
O 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and other perfluoroalkyl sulfonic acid imide salts, LiC (CF
Perfluoroalkyl sulfonic acid methide salt such as 3 SO 2 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiBF 2 (CF 3 ) 2 , L
iBF 3 (CF 3) salts a part of the fluorine inorganic fluoride salts was replaced by perfluoroalkyl groups such as, LiB (CF 3
COO) 4 , LiB (OCOCF 2 COO) 2 , LiB
Examples thereof include lithium tetrakis (perfluorocarboxylate) borate salts such as (OCOC 2 F 4 COO) 2 . These may be mixed and used.

【0016】これらの中で、溶解度、イオン解離度、電
気伝導率特性の面から、LiPF6、LiBF4、LiN
(CF3SO22 、LiN(C25SO22、LiN
(CF3SO2)(C49SO2)、LiPF3(C
33、LiPF3(C253、LiBF2(C252
LiB(OCOCF2COO)2が好ましく、LiP
6、LiBF4がより好ましい。特に、非水溶媒がγ−
ブチロラクトンを60重量%以上含む場合には、LiB
4がリチウム塩全体の50重量%以上であることが好
ましい。
Among these, LiPF 6 , LiBF 4 , and LiN 4 in terms of solubility, ionic dissociation, and electric conductivity characteristics.
(CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN
(CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiPF 3 (C
F 3) 3, LiPF 3 ( C 2 F 5) 3, LiBF 2 (C 2 F 5) 2
LiB (OCOCF 2 COO) 2 is preferable, and LiP
F 6 and LiBF 4 are more preferable. In particular, the non-aqueous solvent is γ-
If the content of butyrolactone is 60% by weight or more, LiB
F 4 is preferably 50% by weight or more of the whole lithium salt.

【0017】電解液中のリチウム塩の濃度は、0.5〜
3モル/リットルであることが好ましい。濃度が低すぎ
ると、絶対的な濃度不足により電解液の電気伝導率が不
十分となり、逆に高すぎると、粘度上昇のため電気伝導
率が低下し、また低温での析出が起こりやすくなる。本
発明の電池を構成する負極の材料としては、様々な条件
での有機物の熱分解物、人造黒鉛、天然黒鉛、及びこれ
らの混合物等の炭素質材料;酸化錫、酸化アンチモン
錫、一酸化珪素、酸化バナジウム等の 金属酸化物;リ
チウム金属;アルミニウム、珪素、錫、アンチモン、
鉛、ヒ素、亜鉛、ビスマス、銅、カドミウム、銀、金、
白金、パラジウム、マグネシウム、ナトリウム、カリウ
ム等のリチウムと合金化可能な金属;前記金属を含む合
金(金属間化合物を含む);リチウムと合金化可能な金
属及び該金属を含む合金とリチウムとの複合合金化合
物;窒化コバルトリチウム等の窒化金属リチウム、など
を挙げることができる。なお、上記材料を混合して用い
てもよい。
The concentration of the lithium salt in the electrolytic solution is 0.5 to
It is preferably 3 mol / liter. If the concentration is too low, the electrical conductivity of the electrolytic solution becomes insufficient due to an absolute lack of concentration. Conversely, if the concentration is too high, the viscosity increases and the electrical conductivity decreases, and precipitation at low temperatures easily occurs. As materials for the negative electrode constituting the battery of the present invention, carbonaceous materials such as pyrolyzed products of organic materials under various conditions, artificial graphite, natural graphite, and mixtures thereof; tin oxide, antimony tin oxide, silicon monoxide. , Metal oxides such as vanadium oxide; lithium metal; aluminum, silicon, tin, antimony,
Lead, arsenic, zinc, bismuth, copper, cadmium, silver, gold,
Metals that can be alloyed with lithium such as platinum, palladium, magnesium, sodium, potassium; alloys containing the above metals (including intermetallic compounds); metals that can be alloyed with lithium, and alloys containing the metals and lithium Alloy compounds; lithium metal nitride such as lithium cobalt nitride, and the like. The above materials may be mixed and used.

【0018】このうち、種々の原料から得た易黒鉛性ピ
ッチを高温熱処理して製造される人造黒鉛、精製天然黒
鉛及びこれらの黒鉛に種々のピッチで表面処理を施した
黒鉛材料が好ましい。このような黒鉛材料としては、学
振法によるX線回折で求めた格子面(002面)のd値
(層間距離)が、0.335〜0.34nm、特に0.
335〜0.337nmのものが好ましい。灰分は、1
重量%以下が好ましく、0.5重量%以下がより好まし
く、0.1重量%以下が特に好ましい。学振法によるX
線回折で求めた結晶子サイズ(Lc)は、30nm以上
が好ましく、50nm以上がより好ましく、100nm
以上が更に好ましい。
Of these, artificial graphite, purified natural graphite produced by subjecting easily graphitizable pitches obtained from various raw materials to high temperature heat treatment, and graphite materials obtained by subjecting these graphites to surface treatment at various pitches are preferable. As such a graphite material, the d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is 0.335 to 0.34 nm, and particularly 0.
It is preferably 335 to 0.337 nm. Ash content is 1
It is preferably not more than 0.5% by weight, more preferably not more than 0.5% by weight, particularly preferably not more than 0.1% by weight. X according to Gakshin method
The crystallite size (Lc) determined by line diffraction is preferably 30 nm or more, more preferably 50 nm or more, and 100 nm.
The above is more preferable.

【0019】また、レーザー回折・散乱法による炭素質
材料のメジアン径は、1〜100μmが好ましく、3〜
50μm以下がより好ましく、5〜40μmが更に好ま
しく、7〜30μmが特に好ましい。BET法比表面積
は、0.3〜25.0m2/gが好ましく、0.5〜2
0.0m2/gがより好ましく、0.7〜15.0m2
gが更に好ましく、0.8〜10.0m2/gが特に好
ましい。
The median diameter of the carbonaceous material by the laser diffraction / scattering method is preferably 1 to 100 μm, and 3 to
It is more preferably 50 μm or less, further preferably 5 to 40 μm, particularly preferably 7 to 30 μm. The BET method specific surface area is preferably 0.3 to 25.0 m 2 / g, and 0.5 to 2
0.0m more preferably 2 / g, 0.7~15.0m 2 /
g is more preferable, and 0.8 to 10.0 m 2 / g is particularly preferable.

【0020】炭素質材料は、アルゴンイオンレーザー光
を用いたラマンスペクトル分析した場合、1570〜1
620cm-1の範囲のピークPA (ピーク強度IA )と
1300〜1400cm-1の範囲のピークPB (ピーク
強度IB )との強度比R=IB /IA が、0.01〜
1.0、特に0.1〜0.7が好ましく、1570〜1
620cm-1の範囲のピークの半値幅が、26cm-1
下、特に25cm-1以下であるのが好ましい。
The carbonaceous material is 1570 to 1 as determined by Raman spectrum analysis using argon ion laser light.
Intensity ratio R = IB / IA of the peak PB (peak intensity IB) the scope of the peak PA (peak intensity IA) and 1300~1400Cm -1 of 620 cm -1 is 0.01
1.0, particularly 0.1 to 0.7 is preferable, and 1570 to 1
The half-value width of the peak in the range of 620 cm -1 is, 26cm -1 or less, and particularly preferably between 25 cm -1 or less.

【0021】合金としては、錫、アンチモン、銀、銅及
び金よりなる群から選択される金属の合金が好ましく、
錫・アンチモン合金、錫・銀合金、銅・アンチモン合
金、金・アンチモン合金を使用するのが特に好ましい。
負極に使用する金属や合金は、1種でも、2種以上の混
合物であってもよい。その平均粒径は、1〜1000n
mが好ましく、10〜500nmがより好ましく、30
〜400nmが更に好ましい。平均粒径が大きすぎる
と、充放電サイクルを繰り返すことによる容量劣化が大
きくなり電極としての有用性が損なわれる場合があり、
逆に小さすぎると、表面積が大きくなり電池の安全性が
低下する。また、粒径分布もこれらの範囲内にあるもの
が好ましい。
As the alloy, an alloy of a metal selected from the group consisting of tin, antimony, silver, copper and gold is preferable,
It is particularly preferable to use a tin-antimony alloy, a tin-silver alloy, a copper-antimony alloy, or a gold-antimony alloy.
The metal or alloy used for the negative electrode may be one kind or a mixture of two or more kinds. The average particle size is 1 to 1000 n
m is preferable, 10-500 nm is more preferable, and 30
-400 nm is more preferable. If the average particle size is too large, the capacity deterioration due to repeated charge and discharge cycles may increase and the usefulness as an electrode may be impaired.
On the other hand, if it is too small, the surface area increases and the safety of the battery decreases. The particle size distribution is preferably within these ranges.

【0022】これらの負極材料を用いて、負極を製造す
るのは常法により行うことができる。例えば、負極材料
に、必要に応じて、結着剤、増粘剤、導電材、溶媒等を
加えてスラリー状とし、集電体の基板に塗布し、乾燥す
ることにより負極を製造することができる。また、負極
材料をそのままロール成形してシート電極としたり、圧
縮成形によりペレット電極とすることもできる。
A negative electrode can be manufactured by a conventional method using these negative electrode materials. For example, a negative electrode can be manufactured by adding a binder, a thickener, a conductive material, a solvent and the like to a negative electrode material to form a slurry, applying the slurry to a substrate of a current collector, and drying. it can. Alternatively, the negative electrode material may be roll-formed as it is to form a sheet electrode, or compression molding may be performed to form a pellet electrode.

【0023】結着剤は、電極製造時に使用する溶媒や電
解液に対して安定な材料であれば、任意のものを使用で
きる。その具体例としては、ポリフッ化ビニリデン、ポ
リテトラフルオロエチレン、スチレン・ブタジエンゴ
ム、イソプレンゴム、ブタジエンゴム等を挙げることが
できる。増粘剤としては、カルボキシルメチルセルロー
ス、メチルセルロース、ヒドロキシメチルセルロース、
エチルセルロース、ポリビニルアルコール、酸化スター
チ、リン酸化スターチ、ガゼイン等が挙げられる。
Any binder can be used as long as it is a material that is stable with respect to the solvent or electrolytic solution used in the production of electrodes. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, isoprene rubber and butadiene rubber. As the thickener, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose,
Examples thereof include ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch and casein.

【0024】導電材としては、銅やニッケル等の金属材
料、グラファイト、カーボンブラック等の炭素質材料が
挙げられる。負極用集電体の材質としては、銅、ニッケ
ル、ステンレス等の金属が挙げられ、これらの中で薄膜
に加工しやすいという点とコストの点から銅箔が好まし
い。正極の材料としては、リチウムコバルト酸化物、リ
チウムニッケル酸化物、リチウムマンガン酸化物などの
リチウム遷移金属複合酸化物材料等のリチウムを吸蔵及
び放出可能な材料を挙げることができる。
Examples of the conductive material include metallic materials such as copper and nickel, and carbonaceous materials such as graphite and carbon black. Examples of the material for the negative electrode current collector include metals such as copper, nickel, and stainless steel. Among these, copper foil is preferable from the viewpoints of easy processing into a thin film and cost. Examples of the material for the positive electrode include materials capable of inserting and extracting lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide.

【0025】正極は、上記の負極の製造方法に準じて製
造することができる。すなわち、正極材料に、必要に応
じて、結着剤、導電材、溶媒等を加えて混合後、これを
集電体の基板に塗布してシート電極としたり、プレス成
形を施してペレット電極とすることができる。正極用集
電体の材質としては、アルミニウム、チタン、タンタル
等の金属又はその合金等が挙げられ、これらの中で、ア
ルミニウム又はその合金が、エネルギー密度の点で好ま
しい。
The positive electrode can be manufactured according to the above-mentioned manufacturing method of the negative electrode. That is, if necessary, a binder, a conductive material, a solvent, etc. are added to the positive electrode material and mixed, and then this is applied to a substrate of a current collector to form a sheet electrode, or press-molded to form a pellet electrode. can do. Examples of the material of the current collector for the positive electrode include metals such as aluminum, titanium and tantalum, and alloys thereof. Among these, aluminum or alloys thereof is preferable in terms of energy density.

【0026】本発明の電池に使用するセパレータは、電
解液に対して安定で、保液性に優れたものであればよ
く、ポリエチレン、ポリプロピレン等のポリオレフィン
を原料とする多孔性シート又は不織布等を用いるのが好
ましい。上述した負極、正極及び非水系電解液を用い
て、本発明に係る電池を製作するのは常法により行うこ
とができる。
The separator used in the battery of the present invention may be any one which is stable to an electrolytic solution and has an excellent liquid retaining property, such as a porous sheet or a non-woven fabric made of polyolefin such as polyethylene or polypropylene as a raw material. It is preferably used. The battery according to the present invention can be manufactured by a conventional method using the above-mentioned negative electrode, positive electrode and non-aqueous electrolyte solution.

【0027】電池は、常用されている任意の形状とする
ことができる。シート電極及びセパレータをスパイラル
状にしたシリンダータイプ、ペレット電極及びセパレー
タを組み合わせたインサイドアウト構造のシリンダータ
イプ、ペレット電極及びセパレータを積層したコインタ
イプ等が挙げられる。
The battery can be of any conventional shape. Examples include a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type in which an inside-out structure is combined with a pellet electrode and a separator, and a coin type in which pellet electrodes and a separator are stacked.

【0028】[0028]

【実施例】以下に、実施例及び比較例を挙げて本発明を
更に具体的に説明するが、本発明は、その要旨を越えな
い限りこれらの実施例に限定されるものではない。 (実施例1)人造黒鉛粉末(TIMREX KS6)9
5重量部にポリフッ化ビニリデン5重量部を混合し、N
−メチル−2−ピロリドンで分散させスラリー状とし
た。これを負極集電体であるステンレス製メッシュ上に
均一に塗布し、乾燥、プレスして負極とした。
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. (Example 1) Artificial graphite powder (TIMREX KS6) 9
5 parts by weight of polyvinylidene fluoride and 5 parts by weight of N
-Methyl-2-pyrrolidone was dispersed to make a slurry. This was uniformly applied onto a stainless steel mesh serving as a negative electrode current collector, dried and pressed to give a negative electrode.

【0029】乾燥アルゴン雰囲気下で、プロピレンカー
ボネート99重量部にN,N‐ジメチルアクリルアミド
1重量部を添加し、これに十分に乾燥したLiN(CF
3SO22を1モル/リットルとなるように溶解させて
電解液とした。ガラスセル中に上記電解液を満たし、上
記負極を作用極とし、リチウム金属を対極及び参照極と
して、電気化学セルを作製し、室温下電位走査速度0.
05mV/secの条件でサイクリックボルタンメトリ
ーを測定した。
Under a dry argon atmosphere, 1 part by weight of N, N-dimethylacrylamide was added to 99 parts by weight of propylene carbonate, and LiN (CF) was sufficiently dried.
3 SO 2 ) 2 was dissolved at 1 mol / liter to prepare an electrolytic solution. An electrochemical cell was prepared by filling a glass cell with the electrolytic solution, using the negative electrode as a working electrode, and using lithium metal as a counter electrode and a reference electrode.
Cyclic voltammetry was measured under the condition of 05 mV / sec.

【0030】(比較例1)プロピレンカーボネートにL
iN(CF3SO22を1モル/リットルとなるように
溶解させた電解液を用いた以外は、実施例1と同様にし
て電気化学セルを作製し、サイクリックボルタンメトリ
ーを測定した。実施例1の結果を図1に、比較例1の結
果を図2に示す。
(Comparative Example 1) L in propylene carbonate
An electrochemical cell was prepared and cyclic voltammetry was measured in the same manner as in Example 1 except that an electrolytic solution in which iN (CF 3 SO 2 ) 2 was dissolved to be 1 mol / liter was used. The result of Example 1 is shown in FIG. 1, and the result of Comparative Example 1 is shown in FIG.

【0031】比較例1では、約0.8V付近に電解液の
分解に伴う大きな還元電流が観測されるのみで、リチウ
ムの吸蔵・放出に伴う電流は観測されない。実施例1で
は、0.8V付近の電解液の分解に伴う電流は観測され
ずに、0.2V付近からリチウムの吸蔵による大きな還
元電流が、0Vから0.3V付近にリチウムの放出によ
る酸化電流が観察され、リチウムの吸蔵及び放出がスム
ーズに進行していることがわかる。
In Comparative Example 1, only a large reduction current due to the decomposition of the electrolytic solution was observed at about 0.8 V, and no current due to the occlusion / release of lithium was observed. In Example 1, a current due to the decomposition of the electrolytic solution near 0.8 V was not observed, and a large reduction current due to the occlusion of lithium was observed from around 0.2 V, and an oxidation current due to the release of lithium from around 0 V to 0.3 V. Is observed, and it can be seen that the occlusion and release of lithium proceed smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1のサイクリックボルタンメト
リー測定による第1回目の電位‐電流曲線を表す。
FIG. 1 shows the first-time potential-current curve measured by cyclic voltammetry of Example 1.

【図2】図2は、比較例1のサイクリックボルタンメト
リー測定による第1回目の電位‐電流曲線を表す。
FIG. 2 shows a first potential-current curve measured by cyclic voltammetry in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ユルゲン オットー ベーゼンハルト オーストリア国グラーツ、ストレマイアガ ッセ、16/111 A−8010 テクニカル ユニバーシティー グラーツ (72)発明者 マルティン ウインター オーストリア国グラーツ、ストレマイアガ ッセ、16/111 A−8010 テクニカル ユニバーシティー グラーツ Fターム(参考) 5H029 AJ02 AJ04 AJ05 AJ07 AK03 AL07 AM00 AM03 AM04 AM05 AM07 DJ17 HJ02 HJ11 HJ13 HJ20 5H050 AA02 AA07 AA10 AA13 BA17 CA08 CA09 CB08 DA13 EA22 FA19 HA02 HA11 HA13 HA19   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jürgen Otto Bosenhardt             Stremaiaga, Graz, Austria             Se, 16/111 A-8010 Technical             University Graz (72) Inventor Martin Winter             Stremaiaga, Graz, Austria             Se, 16/111 A-8010 Technical             University Graz F-term (reference) 5H029 AJ02 AJ04 AJ05 AJ07 AK03                       AL07 AM00 AM03 AM04 AM05                       AM07 DJ17 HJ02 HJ11 HJ13                       HJ20                 5H050 AA02 AA07 AA10 AA13 BA17                       CA08 CA09 CB08 DA13 EA22                       FA19 HA02 HA11 HA13 HA19

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵・放出することが可能な負
極及び正極と、非水溶媒にリチウム塩を溶解している電
解液とを含む非水系電解液二次電池において、電解液が
炭素‐炭素不飽和結合を有するアミド化合物を含有する
ことを特徴とする非水系電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolyte in which a lithium salt is dissolved in a non-aqueous solvent, wherein the electrolyte is carbon- A non-aqueous electrolyte secondary battery comprising an amide compound having a carbon unsaturated bond.
【請求項2】電解液が、炭素‐炭素不飽和結合を有する
アミド化合物を0.001〜10重量%含有することを
特徴とする請求項1記載の非水系電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the electrolyte contains 0.001 to 10% by weight of an amide compound having a carbon-carbon unsaturated bond.
【請求項3】非水溶媒が、アルキレン基の炭素数が2〜
4のアルキレンカーボネートと、アルキル基の炭素数が
1〜4のジアルキルカーボネートとがそれぞれ非水溶媒
の20重量%以上を占め、かつこれらのカーボネートが
非水溶媒全体の70重量%以上を占めるものであること
を特徴とする請求項2記載の非水系電解液二次電池。
3. The non-aqueous solvent having an alkylene group having 2 to 2 carbon atoms.
4 alkylene carbonate and dialkyl carbonate having 1 to 4 carbon atoms in the alkyl group account for 20% by weight or more of the non-aqueous solvent, and these carbonates account for 70% by weight or more of the entire non-aqueous solvent. The non-aqueous electrolyte secondary battery according to claim 2, wherein
【請求項4】非水溶媒が、比誘電率25以上の有機溶媒
を60重量%以上含有するものであることを特徴とする
請求項1又は2記載の非水系電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the non-aqueous solvent contains 60% by weight or more of an organic solvent having a relative dielectric constant of 25 or more.
【請求項5】比誘電率25以上の有機溶媒が、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、γ−ブチロラクトン、及びγ−バレロラクト
ンよりなる群から選ばれたものであることを特徴とする
請求項4記載の非水系電解液二次電池。
5. The organic solvent having a relative dielectric constant of 25 or more is selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and γ-valerolactone. 4. The non-aqueous electrolyte secondary battery according to 4.
【請求項6】リチウムを吸蔵・放出することが可能な負
極が、学振法によるX線回折で求めた格子面(002
面)のd値が0.335〜0.34nmの黒鉛材料を含
むことを特徴とする請求項1乃至5のいずれかに記載の
非水系電解液二次電池。
6. A negative electrode capable of inserting and extracting lithium has a lattice plane (002) obtained by X-ray diffraction by Gakushin method.
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, comprising a graphite material having a surface value d of 0.335 to 0.34 nm.
【請求項7】請求項1乃至6のいずれかに記載の非水系
電解液二次電池に用いる非水系電解液二次電池用電解
液。
7. An electrolytic solution for a non-aqueous electrolytic solution secondary battery used in the non-aqueous electrolytic solution secondary battery according to any one of claims 1 to 6.
JP2001278007A 2001-09-13 2001-09-13 Non-aqueous electrolyte secondary battery Expired - Lifetime JP4887589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278007A JP4887589B2 (en) 2001-09-13 2001-09-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278007A JP4887589B2 (en) 2001-09-13 2001-09-13 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2003086246A true JP2003086246A (en) 2003-03-20
JP2003086246A5 JP2003086246A5 (en) 2008-10-30
JP4887589B2 JP4887589B2 (en) 2012-02-29

Family

ID=19102447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278007A Expired - Lifetime JP4887589B2 (en) 2001-09-13 2001-09-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4887589B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165622A (en) * 2010-02-15 2011-08-25 Asahi Kasei E-Materials Corp Electrolytic solution for lithium-ion secondary battery, and lithium-ion secondary battery
WO2019150895A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
JP2021018911A (en) * 2019-07-19 2021-02-15 奥野製薬工業株式会社 Electrolyte additive, electrolyte, and lithium battery
US11945776B2 (en) 2018-01-30 2024-04-02 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211070A (en) * 1991-11-12 1993-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH06215761A (en) * 1993-01-21 1994-08-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH09213370A (en) * 1996-01-31 1997-08-15 Aea Technol Plc Organic electrolyte composition
JPH10106624A (en) * 1996-09-24 1998-04-24 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH10116516A (en) * 1996-07-30 1998-05-06 Samsung Electron Co Ltd Polymeric solid electrolyte and lithium secondary battery adopting the same
JPH10312813A (en) * 1997-05-15 1998-11-24 Toshiba Battery Co Ltd Organic electrolyte battery
JPH11297328A (en) * 1998-04-03 1999-10-29 Nippon Zeon Co Ltd Electrode for lithium ion secondary battery and the secondary battery
JP2000215912A (en) * 1999-01-26 2000-08-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
JP2000294280A (en) * 1999-04-07 2000-10-20 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211070A (en) * 1991-11-12 1993-08-20 Sanyo Electric Co Ltd Lithium secondary battery
JPH06215761A (en) * 1993-01-21 1994-08-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH09213370A (en) * 1996-01-31 1997-08-15 Aea Technol Plc Organic electrolyte composition
JPH10116516A (en) * 1996-07-30 1998-05-06 Samsung Electron Co Ltd Polymeric solid electrolyte and lithium secondary battery adopting the same
JPH10106624A (en) * 1996-09-24 1998-04-24 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH10312813A (en) * 1997-05-15 1998-11-24 Toshiba Battery Co Ltd Organic electrolyte battery
JPH11297328A (en) * 1998-04-03 1999-10-29 Nippon Zeon Co Ltd Electrode for lithium ion secondary battery and the secondary battery
JP2000215912A (en) * 1999-01-26 2000-08-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
JP2000294280A (en) * 1999-04-07 2000-10-20 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165622A (en) * 2010-02-15 2011-08-25 Asahi Kasei E-Materials Corp Electrolytic solution for lithium-ion secondary battery, and lithium-ion secondary battery
WO2019150895A1 (en) 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
US11945776B2 (en) 2018-01-30 2024-04-02 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module
JP2021018911A (en) * 2019-07-19 2021-02-15 奥野製薬工業株式会社 Electrolyte additive, electrolyte, and lithium battery

Also Published As

Publication number Publication date
JP4887589B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US11646447B2 (en) Electrolyte and electrochemical device
US6670078B1 (en) Non-aqueous electrolyte cell with a solvent including a S-O bond
JP4233819B2 (en) Non-aqueous electrolyte secondary battery
JP5390736B2 (en) Non-aqueous electrolyte for electrochemical devices
JP4492023B2 (en) Non-aqueous electrolyte secondary battery
WO2000079632A1 (en) Nonaqueous electrolytic solution type secondary battery
WO2007064076A1 (en) Nonaqueous electrolyte for improving performance and lithium secondary battery comprising the same
JP2003282138A (en) Nonaqueous electrolyte secondary battery and electrolyte used in it
JP4830244B2 (en) Non-aqueous electrolyte secondary battery and electrolyte
JP2002352852A (en) Nonaqueous electrolyte secondary cell
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2004014134A (en) Nonaqueous electrolyte secondary battery and electrolyte used for it
JP5282346B2 (en) Non-aqueous electrolyte secondary battery
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
EP1096592A1 (en) Secondary battery having nonaqueous electrolyte solution
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JP2003132944A (en) Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP5408112B2 (en) Method for producing difluorophosphate, non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery
JP5326846B2 (en) Non-aqueous electrolyte secondary battery
JP2002298912A (en) Nonaqueous electrolyte secondary battery and electrolyte used for the same
JP4887589B2 (en) Non-aqueous electrolyte secondary battery
JP2002352851A (en) Nonaqueous electrolyte secondary cell
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JP4098997B2 (en) Non-aqueous electrolyte secondary battery and electrolyte used therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4887589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term