JPH10308218A - Positive electrode active material for lithium ion secondary battery, and manufacture thereof - Google Patents
Positive electrode active material for lithium ion secondary battery, and manufacture thereofInfo
- Publication number
- JPH10308218A JPH10308218A JP9074907A JP7490797A JPH10308218A JP H10308218 A JPH10308218 A JP H10308218A JP 9074907 A JP9074907 A JP 9074907A JP 7490797 A JP7490797 A JP 7490797A JP H10308218 A JPH10308218 A JP H10308218A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- particles
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、二次電池の正極活物質
に係り、特に、サイクル特性、及び熱安定性を向上でき
る非水系のリチウムイオン二次電池用正極活物質及びそ
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a secondary battery, and more particularly to a positive electrode active material for a non-aqueous lithium ion secondary battery capable of improving cycle characteristics and thermal stability, and a method for producing the same. .
【0002】[0002]
【従来の技術】近年、カメラ一体形VTR、オーディオ
・ビデオ機器、ノート型パソコン、携帯電話などの新し
いコードレス型電子機器が次々と出現し、短期間で急速
に広く普及した。これら機器の小型・軽量化には、携帯
用電源である二次電池の高性能化は不可欠である。2. Description of the Related Art In recent years, new cordless electronic devices such as a camera-integrated VTR, an audio / video device, a notebook personal computer, and a mobile phone have appeared one after another, and have rapidly spread widely in a short time. In order to reduce the size and weight of these devices, it is essential to improve the performance of secondary batteries as portable power supplies.
【0003】非水系リチウムイオン二次電池は、電池電
圧が高く、高放電容量、及びサイクル特性などに優れ、
このような用途に合致し最近盛んに研究されている。A non-aqueous lithium ion secondary battery has a high battery voltage, a high discharge capacity, and excellent cycle characteristics.
Recently, it has been actively studied to meet such applications.
【0004】この電池の正極活物質にはコバルト酸リチ
ウム(LiCoO2)を代表とするLiの重金属酸塩L
iMO2(M=Co、Ni、Fe、Mn、Cr等)が使
用されている。The positive electrode active material of this battery is Li heavy metal salt L typified by lithium cobalt oxide (LiCoO 2).
iMO2 (M = Co, Ni, Fe, Mn, Cr, etc.) is used.
【0005】従来、LiMO2を正極活物質に用いた非
水系二次電池では、充放電サイクルを繰り返し行うこと
により、その電池放電容量が徐々に減少するというサイ
クル特性の劣化の問題があった。この原因は、LiMO
2の結晶が崩れることによると考えられていた。特に、
充放電を繰り返すことにより、正極活物質を構成する微
小粒子のc軸方向への膨張、収縮が起こり、多結晶体等
の場合は結晶子の界面が多いので、そこから結晶が崩
れ、正極の集電体からの正極活物質の剥離が起こること
がサイクル特性を劣化する原因とされていた。これに対
し、サイクル特性の改善のために、結晶を単結晶化さ
せ、かつc軸に垂直な方向((003)面)に配向する
扁平粒子を成長させる方法が特開平9−22693号公
報に提案されている。Conventionally, a non-aqueous secondary battery using LiMO2 as a positive electrode active material has had a problem of deterioration in cycle characteristics such that the battery discharge capacity is gradually reduced by repeatedly performing charge and discharge cycles. This is because LiMO
It was thought that the crystal of 2 collapsed. Especially,
By repeating charging and discharging, expansion and contraction of the fine particles constituting the positive electrode active material in the c-axis direction occur, and in the case of a polycrystal or the like, since there are many interfaces of crystallites, crystals collapse from there, and It has been considered that peeling of the positive electrode active material from the current collector causes deterioration of cycle characteristics. On the other hand, Japanese Unexamined Patent Publication No. 9-22693 discloses a method of improving the cycle characteristics by monocrystallizing a crystal and growing flat particles oriented in a direction perpendicular to the c-axis ((003) plane). Proposed.
【0006】また、正極活物質のLiCoO2のX線回
折線の(003)面と(104)面のピーク強度比を特
定の範囲に限定することにより、サイクル特性は向上す
ることが特開平5−258751号公報、特開平9−2
2692号公報、特開平9−22693号公報、及び特
開平8−55624号公報に記載されている。In addition, it is disclosed in Japanese Patent Application Laid-Open No. H05-205580 that by limiting the peak intensity ratio between the (003) plane and the (104) plane of the X-ray diffraction line of LiCoO2 as a positive electrode active material to a specific range. JP-A-2585751, JP-A-9-2
No. 2692, JP-A-9-22693, and JP-A-8-55624.
【0007】さらに、リチウムイオン二次電池の正極活
物質は、高温空気中では安定であるが、充電状態におか
れることにより熱安定性が低下し、二次電池の電解液を
構成する有機溶媒を酸化分解し、場合によっては発火を
引き起こすという重大な問題が潜在している。Further, the positive electrode active material of a lithium ion secondary battery is stable in high-temperature air, but its thermal stability is reduced by being charged, and the organic solvent constituting the electrolyte of the secondary battery is poor. The potential problem is that it oxidatively decomposes and, in some cases, ignites.
【0008】これまで、リチウムイオン二次電池用正極
活物質の特性については、充放電のサイクル特性を向上
するための研究が数々なされてきたが、充電時の熱安定
性についてはあまり触れられることはなかった。それは
充電時の熱安定性を改良すれば、充放電のサイクル特性
は低下するという相反する関係にあるとの見解が常識で
あったからである。[0008] A number of studies have been made on the characteristics of the positive electrode active material for lithium ion secondary batteries in order to improve the charge / discharge cycle characteristics. However, the thermal stability during charging has not been mentioned much. There was no. This is because it was common knowledge that if the thermal stability at the time of charging was improved, the charge-discharge cycle characteristics would be reduced.
【0009】[0009]
【発明が解決しようとする課題】本発明は上述した事情
に鑑みなされ、リチウムイオン二次電池の充電時の熱安
定性を改善し、さらに良好な充放電サイクル特性を両立
する正極活物質を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and provides a positive electrode active material that improves the thermal stability during charging of a lithium ion secondary battery and achieves good charge / discharge cycle characteristics. The purpose is to do.
【0010】[0010]
【課題を解決するための手段】本発明者は正極活物質の
粒子形状及び構造について鋭意検討したところ、正極活
物質は、結晶子と呼ばれる微小な単結晶が集合した粒子
からなり、この結晶子及び一次粒子の大きさ或いは形状
がリチウムイオン電池の熱安定性及び充放電サイクル特
性に密接に関係することを見出し本発明を完成させるに
至った。Means for Solving the Problems The present inventors have made intensive studies on the particle shape and structure of the positive electrode active material, and found that the positive electrode active material is composed of particles in which fine single crystals called crystallites are aggregated. The inventors have found that the size or shape of the primary particles is closely related to the thermal stability and charge / discharge cycle characteristics of the lithium ion battery, and have completed the present invention.
【0011】すなわち、本発明のリチウムイオン二次電
池用正極活物質は、一般式LiMO2で表現されるリチ
ウムイオン二次電池用正極活物質であって、その粒子構
造は、微小な結晶子を単位とする単結晶が集合した粒子
からなり、該結晶子及び該粒子の形状は立体的にほぼ等
方的形状であることを特徴とする。(但しMはCo、N
i、Fe、Mn、Crの群から選ばれる少なくとも一種
の重金属元素)That is, the positive electrode active material for a lithium ion secondary battery of the present invention is a positive electrode active material for a lithium ion secondary battery represented by the general formula LiMO 2, and the particle structure of the positive electrode active material is small crystallites. And the shape of the crystallites and the particles is three-dimensionally substantially isotropic. (However, M is Co, N
i, at least one heavy metal element selected from the group consisting of Fe, Mn, and Cr)
【0012】結晶子とは、単結晶と考えられる最大限の
集合を示し、XRD(X−raydiffractio
n)測定より、次のシェラーの式を用いることにより計
算できる。 <シェラーの式> 結晶子の大きさD(オングストローム)=Kλ/(βsi
nθ) K:シェラー定数 (βを積分幅より算出した場合K=
1.05) λ:使用X線管球の波長(CuKα1=1.54056
2オングストローム β:結晶子の大きさによる回折線の広がりの幅(rad
ian) θ:回折角2θ/2(degree)The term “crystallite” refers to the maximum set considered to be a single crystal, and is referred to as XRD (X-ray diffraction).
n) From the measurement, it can be calculated by using the following Scherrer equation. <Scherrer's formula> Crystallite size D (angstrom) = Kλ / (βsi
nθ) K: Scherrer's constant (when β is calculated from the integral width, K =
1.05) λ: wavelength of the used X-ray tube (CuKα1 = 1.40556)
2 angstrom β: width of spread of diffraction line due to crystallite size (rad)
ian) θ: diffraction angle 2θ / 2 (degree)
【0013】ここでいう粒子とはSEMで結像する最小
の粒子を指し、粒子が1つの単結晶で構成されている場
合は結晶子径と粒子径は同じ大きさである。一つの粒子
に複数の単結晶を包含する場合、当然その大きさは一致
しない。The term “particle” as used herein refers to the smallest particle that can be imaged by SEM. When the particle is formed of one single crystal, the crystallite diameter and the particle diameter are the same. When a single particle includes a plurality of single crystals, the sizes do not naturally match.
【0014】立体的にほぼ等方的形状とは、粒子に配向
性がなく、空間の全ての方向に等方的に成長した形状を
いい、典型的には球状であるが、必ずしも真球に限定す
るものではなく、ほぼ球状であるものも含む。通常の結
晶性のある物質はその結晶構造を反映したような粒子形
状を有する。これに対し、本発明において有用な正極活
物質はそのような配向性を有しない特別な形状であると
いうことができる。The three-dimensionally isotropic shape refers to a shape in which the particles have no orientation and grow isotropically in all directions of the space, and are typically spherical, but not necessarily spherical. The present invention is not limited thereto, and includes those having a substantially spherical shape. An ordinary crystalline substance has a particle shape that reflects its crystal structure. On the other hand, it can be said that the positive electrode active material useful in the present invention has a special shape having no such orientation.
【0015】該正極活物質の一次粒子を構成する結晶子
の立体形状を、層を重ねる方向((003)ベクトル方
向)、及びそれに垂直な方向((110)ベクトル方
向)で表現する場合、(110)ベクトル方向の結晶子
径に対する(003)方向の結晶子径の比率は、0.5
〜1.6の範囲であることが好ましい。層を重ねる方向
とは、正極活物質のLiMO2の基本格子は六方晶系で
あり、c軸方向を指す。従って、それに垂直な方向とは
a軸方向を指す。In the case where the three-dimensional shape of crystallites constituting the primary particles of the positive electrode active material is expressed by a direction in which layers are superposed ((003) vector direction) and a direction perpendicular thereto ((110) vector direction), 110) The ratio of the crystallite diameter in the (003) direction to the crystallite diameter in the vector direction is 0.5
It is preferably in the range of 1.6. The direction in which the layers are stacked indicates that the basic lattice of LiMO2 as the positive electrode active material is hexagonal, and points in the c-axis direction. Therefore, the direction perpendicular to the direction refers to the a-axis direction.
【0016】該正極活物質の結晶子の(003)ベクト
ル方向の結晶子径は500〜750オングストロームの
範囲であることが好ましい。The crystallite diameter of the crystallite of the positive electrode active material in the (003) vector direction is preferably in the range of 500 to 750 angstroms.
【0017】該正極活物質の結晶子の(110)ベクト
ル方向の結晶子径は450〜1000オングストローム
の範囲であることが好ましい。The crystallite diameter of the crystallite of the positive electrode active material in the (110) vector direction is preferably in the range of 450 to 1000 Å.
【0018】正極活物質の平均粒径は、空気透過法によ
り比表面積を測定し、一次粒子の粒径の平均値を求めた
ものであり、具体的にはフィッシャーサブシーブサイザ
ー(F.S.S.S.)を用いて測定した値である。The average particle diameter of the positive electrode active material is obtained by measuring the specific surface area by an air permeation method and calculating the average value of the particle diameters of the primary particles. Specifically, the average particle diameter is determined by a Fischer subsieve sizer (FS. SS).
【0019】SEM観察による該粒子の長軸粒子径に対
する短軸粒子径の比率は0.5〜1.0の範囲であるこ
とが好ましい。次のようにして該比率を計算する。図1
に示すように、SEM写真からランダムに20個抽出し
た粒子像の個々の中心を求め、中心を通る最長径を決定
し、これを長軸粒子径と定義する。次に中心を通り長軸
に垂直な方向の径を短軸粒子径として定義する。得られ
た個々の粒子の短軸粒子径/長軸粒子径の比率の平均を
算出する。The ratio of the minor axis particle diameter to the major axis particle diameter of the particles by SEM observation is preferably in the range of 0.5 to 1.0. The ratio is calculated as follows. FIG.
As shown in (1), the center of each of 20 randomly extracted particle images is determined from the SEM photograph, the longest diameter passing through the center is determined, and this is defined as the long-axis particle diameter. Next, the diameter in the direction perpendicular to the major axis passing through the center is defined as the minor axis particle diameter. The average of the ratio of the minor axis particle diameter / major axis particle diameter of each of the obtained particles is calculated.
【0020】本発明のリチウムイオン二次電池用正極活
物質の製造方法は、原料の重金属酸化物とリチウム塩を
Li/M比が0.98〜1.01の範囲となるように混
合して焼成する正極活物質の製造方法において、重金属
酸化物の粒子形状は、立体的にほぼ等方的形状を有する
一次粒子又は一次粒子が集合した二次粒子からなり、そ
の中心粒径は0.1〜10μmであることを特徴とす
る。(但しMはCo、Ni、Fe、Mn、Crの群から
選ばれる少なくとも一種の重金属元素)In the method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention, the raw metal oxide and the lithium salt are mixed so that the Li / M ratio is in the range of 0.98 to 1.01. In the method for producing a positive electrode active material to be fired, the particle shape of the heavy metal oxide is composed of primary particles having a substantially three-dimensionally isotropic shape or secondary particles in which the primary particles are aggregated, and the central particle size is 0.1%. -10 μm. (Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
【0021】原料の重金属酸化物の中心粒径は、電気抵
抗法の粒度分布測定装置を用いて測定される値であり、
ここではCoulter Multisizer2を用
いて測定した中心粒径である。これは測定原理から分散
状態にあるか凝集状態にあるかの知見を含んだ粒径とい
うことができる。The center particle diameter of the raw material heavy metal oxide is a value measured by using a particle size distribution measuring device of an electric resistance method.
Here, it is the central particle diameter measured using Coulter Multisizer 2. This can be said to be a particle size that includes a knowledge of whether it is in a dispersed state or an aggregated state from the measurement principle.
【0022】[0022]
<粒子形状>本発明に於いて、正極活物質の粒子内の結
晶子の成長度が、電池特性に影響を及ぼすこと、また特
定のベクトル方向への成長度が、個々の特性と相関があ
ることを見いだした。リチウムイオン二次電池の正極活
物質であるLiMO2は本来層状構造を有している。本
発明の正極活物質の結晶子の粒子形状は図2(a)に示
すように空間に等方的に成長しており、(b)比較例の
ようなc軸配向のないものである。そのことをシェラー
の式による結晶子径を用いて表現すると、(003)ベ
クトル方向に500〜750オングストロームの範囲、
(110)ベクトル方向に450〜1000オングスト
ロームの範囲、(105)ベクトル方向に500〜90
0オングストロームの範囲、(113)ベクトル方向に
450〜1000オングストロームの範囲にあるという
ことができる。<Particle Shape> In the present invention, the degree of growth of crystallites in the particles of the positive electrode active material affects battery characteristics, and the degree of growth in a specific vector direction has a correlation with individual characteristics. I found something. LiMO2, which is a positive electrode active material of a lithium ion secondary battery, originally has a layered structure. The crystal shape of the crystallite of the positive electrode active material of the present invention grows isotropically in the space as shown in FIG. 2A, and does not have c-axis orientation as in the comparative example. If this is expressed using the crystallite diameter according to Scherrer's formula, the range of 500 to 750 angstroms in the (003) vector direction,
(110) Range of 450-1000 Angstroms in vector direction, (105) 500-90 in vector direction
It can be said that it is in the range of 0 angstroms and in the range of 450 to 1000 angstroms in the (113) vector direction.
【0023】本発明において、(105)、(113)
ベクトル方向についても言及したが、これは、結晶が三
次元的に成長しているか否かを表現するための手段であ
り、層に平行、垂直でないような面であれば(104)
や(108)ベクトル方向の様な他の面方向をとって表
現してもかまわない。但し、これらの結晶子も大きすぎ
ると、Liイオンの拡散を阻害し、小さすぎると結晶の
崩れの原因となると考えられる。In the present invention, (105), (113)
Although the vector direction was also mentioned, this is a means for expressing whether or not the crystal is growing three-dimensionally. If the plane is not parallel or perpendicular to the layer (104)
Alternatively, other plane directions such as the (108) vector direction may be used. However, it is considered that if these crystallites are too large, the diffusion of Li ions is hindered, and if they are too small, they cause crystal collapse.
【0024】<重金属酸化物原料>本発明のリチウムイ
オン二次電池用正極活物質は、上述したような粒子形状
に特徴がある。このような粒子構造とするためには、原
料として二次粒子が球状であり、一次粒子の結晶子径の
小さな重金属酸化物原料を選択する。正極活物質の粒子
形状は、原料の粒子形状をそのまま引き継ぎやすい。例
えば、重金属原料の二次粒子の形状が八面体構造である
場合、得られるLiMO2の結晶子及び粒子は八面体構
造となりやすく、また、重金属酸化物の形状が球状の場
合、得られるLiMO2の結晶子及び粒子は球状構造と
なりやすい。さらに、二次粒子の形状が六角板状構造の
場合、得られるLiMO2の結晶子及び粒子は六角板状
構造となりやすい。本発明は、六角板状の構造は除外さ
れる。特に、重金属元素MがCoであるCo3O4の場合
は、(222)ベクトル方向の結晶子のサイズが100
〜400オングストロームの範囲であることが好まし
い。<Material for Heavy Metal Oxide> The positive electrode active material for a lithium ion secondary battery of the present invention is characterized by the particle shape as described above. In order to obtain such a particle structure, a heavy metal oxide raw material whose secondary particles are spherical and whose primary particles have a small crystallite diameter is selected as a raw material. As for the particle shape of the positive electrode active material, it is easy to take over the particle shape of the raw material as it is. For example, when the shape of the secondary particles of the heavy metal raw material is an octahedral structure, the obtained LiMO2 crystallites and particles are likely to have an octahedral structure, and when the shape of the heavy metal oxide is spherical, the obtained LiMO2 crystal Particles and particles tend to have a spherical structure. Further, when the secondary particles have a hexagonal plate-like structure, the obtained LiMO2 crystallites and particles tend to have a hexagonal plate-like structure. The present invention excludes a hexagonal plate-like structure. In particular, when the heavy metal element M is Co 3 O 4 where Co is Co, the crystallite size in the (222) vector direction is 100.
Preferably, it is in the range of 400400 Å.
【0025】重金属酸化物は一次粒子の粒径が0.01
〜0.5μmのほぼ球状の形状であり、二次粒子の粒径
は0.1〜10.0μmの範囲が好ましい。例えば、M
がCoである場合、炭酸コバルトCoCO3であって、
短軸粒子径/長軸粒子径の比率が0.5〜1.0の範囲
である粒子を熱分解することで得ることができる。The heavy metal oxide has a primary particle size of 0.01
The diameter of the secondary particles is preferably in the range of 0.1 to 10.0 μm. For example, M
Is Co, cobalt carbonate CoCO3,
It can be obtained by thermally decomposing particles having a ratio of short axis particle diameter / long axis particle diameter in the range of 0.5 to 1.0.
【0026】重金属元素酸化物の二次粒子の短軸粒子径
/長軸粒子径の比率、重金属酸化物の二次粒子の中心粒
径を上記した範囲に選択するのは、それは前述したよう
に、M3O4の粒子構造がそのままLiMO2の粒子構造
に反映されるため、この原料粒子のパラメータの限定は
非常に重要となるからである。The reason for selecting the ratio of the short axis particle diameter to the long axis particle diameter of the secondary particles of the heavy metal element oxide and the center particle diameter of the secondary particles of the heavy metal oxide in the above ranges is as described above. This is because the particle structure of M3O4 is directly reflected on the particle structure of LiMO2, so that the limitation of the parameters of the raw material particles is very important.
【0027】<リチウム原料>本発明においてリチウム
二次電池に使用する原料のLi塩としては、種々検討し
た結果、融点が比較的高いLi2CO3、Li2(CO
O)2又はLiOHが好ましく使用できる。<Lithium raw material> As a result of various studies, as a raw material Li salt used in the lithium secondary battery in the present invention, Li2CO3 and Li2 (CO2
O) 2 or LiOH can be preferably used.
【0028】<重金属原料とリチウムの混合>本発明に
おいて、M3O4とリチウム塩をLi/M比が0.98〜
1.01の範囲となるように混合する。それはLi/M
比がこの範囲から逸脱すると、過剰分が融剤として作用
することで粒子が異常成長し、粒子径及び粒子形状を制
御困難となるからである。<Mixing of Heavy Metal Raw Material and Lithium> In the present invention, M3O4 and a lithium salt are mixed with a Li / M ratio of 0.98 to 0.98.
Mix so as to be in the range of 1.01. It is Li / M
If the ratio deviates from this range, the excess acts as a flux, causing abnormal growth of the particles, making it difficult to control the particle diameter and particle shape.
【0029】<焼成>得られた混合原料を大気雰囲気下
で、750〜1100℃で焼成する。融剤として、アル
カリ金属塩類や、Bさらには、Bi、Pb等を加える場
合、もしくは、造粒する場合は、(110)ベクトル方
向の成長を促進しやすくなり、サイクル特性を低下する
ので(110)ベクトル方向の成長を制御する必要があ
る。<Firing> The obtained mixed raw material is fired at 750 to 1100 ° C. in an air atmosphere. When an alkali metal salt, B, Bi, Pb, or the like is added as a flux, or when granulation is performed, the growth in the (110) vector direction is easily promoted, and the cycle characteristics are reduced. ) It is necessary to control the growth in the vector direction.
【0030】[0030]
【作用】リチウムイオン二次電池の正極活物質は、充電
することによりLiが結晶中から脱離し、LixMO2
(x<1.0)の状態に変化し、六方晶系であるLiM
O2が単斜晶系へと転移する。この転移により結晶が崩
れることが正極活物質の充電時の熱安定性の最も大きな
低下要因である。これは次のようなメカニズムにより熱
安定性が低下する。The positive electrode active material of the lithium ion secondary battery is charged with Li, which is desorbed from the crystal, and LixMO2
(X <1.0), and the hexagonal LiM
O2 is transformed into a monoclinic system. Distortion of the crystal due to this transition is the largest cause of the decrease in thermal stability during charging of the positive electrode active material. This lowers the thermal stability by the following mechanism.
【0031】充電時に結晶が崩れると正極活物質から酸
素が遊離する。正極活物質はEC(エチレンカーボネー
ト)等の電解液に接触した状態で電池を構成している
が、この遊離酸素が電解液を酸化分解することによって
酸化反応が起こり、発熱し、場合によっては発火に至る
という重大な問題に発展する可能性がある。When the crystal collapses during charging, oxygen is released from the positive electrode active material. The positive electrode active material constitutes the battery in a state of being in contact with an electrolytic solution such as EC (ethylene carbonate). The free oxygen oxidizes and decomposes the electrolytic solution to cause an oxidation reaction, thereby generating heat and, in some cases, igniting. Could lead to serious problems.
【0032】<熱安定性>本発明において熱安定性が改
善されるのは次のような理由による。本発明の正極物質
のLiMO2は、基本的に結晶子の形状が空間に等方的
に成長した球状であり、しかも結晶子径を大きくしてい
る。結晶子の形状を球形の等方的構造とすることで、充
放電に伴うLiの移動による結晶の歪みの方向が全ての
空間方向に均等となるため、一定方向に配向した従来の
結晶構造に比べ、崩れを最小に抑えることが可能とな
る。また、結晶子を大きくすることによりLiイオンの
脱離時に生じる結晶構造の崩れを軽減できる。このよう
な理由で、(003)ベクトル方向の結晶子は500オ
ングストローム以上、(110)ベクトル方向の結晶子
は450オングストローム以上が好ましい。<Thermal Stability> The thermal stability is improved in the present invention for the following reasons. LiMO2 of the positive electrode material of the present invention is basically a crystallite having a spherical shape with isotropic growth in space, and has a large crystallite diameter. By making the crystallite shape a spherical isotropic structure, the direction of crystal distortion due to the movement of Li due to charge and discharge becomes uniform in all spatial directions, so that the conventional crystal structure oriented in a certain direction In comparison, collapse can be minimized. In addition, by increasing the crystallite, it is possible to reduce the collapse of the crystal structure that occurs when Li ions are eliminated. For these reasons, the crystallite in the (003) vector direction is preferably 500 Å or more, and the crystallite in the (110) vector direction is preferably 450 Å or more.
【0033】本発明の正極活物質の熱安定性について次
のようにして測定した。充電を完了したリチウムイオン
二次電池をドライボックス中で分解し、正極板を取り出
して約10mgを切り出し測定試料とする。得られた測
定試料をThermal Gravimetric A
nalyzer(TGA)を用いて熱重量分析を行っ
た。(Solid State Ionics vol.69,No.3/4 Page 265-27
0(1994))基本的にはその試料の温度を外部から上昇さ
せながら試料の重量変化を引き起こす限界温度を測定す
る方法である。この重量変化は主として正極活物質から
酸素が遊離することによる重量減少に基づく。電池の電
解液中にこの酸素濃度が増加すると異常発熱の原因とな
る。従って、限界温度は高いほど異常発熱の問題は低下
し好ましい。The thermal stability of the positive electrode active material of the present invention was measured as follows. The charged lithium ion secondary battery is disassembled in a dry box, the positive electrode plate is taken out, and about 10 mg is cut out to be a measurement sample. The obtained measurement sample was subjected to Thermal Gravimetric A
Thermogravimetric analysis was performed using a analyzer (TGA). (Solid State Ionics vol.69, No.3 / 4 Page 265-27
0 (1994)) Basically, a method of measuring a limit temperature that causes a change in weight of a sample while increasing the temperature of the sample from the outside. This weight change is mainly based on the weight loss due to liberation of oxygen from the positive electrode active material. An increase in the oxygen concentration in the battery electrolyte causes abnormal heat generation. Therefore, the higher the limit temperature, the lower the problem of abnormal heat generation, which is preferable.
【0034】結晶子径と、TGA装置の限界温度の関係
について、ほぼ球状をした結晶子を有する正極活物質に
ついて測定し図3にプロットした。本発明の正極活物質
はほぼ球状であるのでの結晶子径はどのようなベクトル
方向で測定しても同等であるが、ここでは(003)ベ
クトル方向の結晶子径を上述したシェラーの式を用いて
計算した。図2よりLiMO2の充電時の熱安定性と一
次関数的に相関しており、結晶子径の大きい方が限界温
度が高くなり、すなわち熱安定性が向上していることが
理解できる。これは上述したように結晶子径が大きいと
充電時のLiの離脱による結晶の崩れの影響は小さくな
り、遊離酸素濃度が低下することによる。The relationship between the crystallite diameter and the critical temperature of the TGA apparatus was measured for a cathode active material having substantially spherical crystallites and plotted in FIG. Since the cathode active material of the present invention is substantially spherical, the crystallite diameter is the same regardless of the vector direction, but here, the (003) crystallite diameter in the vector direction is calculated by the above-mentioned Scherrer equation. Calculated using FIG. 2 shows that the thermal stability during charging of LiMO2 is linearly related to the thermal stability, and it can be understood that the larger the crystallite diameter, the higher the limit temperature, that is, the higher the thermal stability. This is because, as described above, when the crystallite diameter is large, the influence of crystal breakage due to detachment of Li during charging is reduced, and the free oxygen concentration is reduced.
【0035】<充放電サイクル特性>充放電サイクルに
ついては、(110)ベクトル方向への結晶子径が10
00オングストローム以上に成長し過ぎないことが重要
である。これは、(110)ベクトル方向に結晶を成長
し過ぎると、図2(b)に示すように、正極活物質にL
iを挿入(放電)する際、層に対して平行な方向しかL
iイオンが挿入できないため、相対的にLiイオン挿入
可能な面が減少し、粒子界面でのLiイオンの拡散が悪
化するためである。特に、高い電流密度で放電させた場
合、この傾向が顕著になる。<Charge / Discharge Cycle Characteristics> Regarding the charge / discharge cycle, the crystallite diameter in the (110) vector direction is 10
It is important that they do not grow too much above 00 Angstroms. This is because if the crystal grows too much in the (110) vector direction, as shown in FIG.
When inserting (discharging) i, only the direction parallel to the layer is L
This is because, since i-ions cannot be inserted, the surface into which Li ions can be inserted relatively decreases, and the diffusion of Li ions at the particle interface deteriorates. In particular, when discharging at a high current density, this tendency becomes remarkable.
【0036】図4に本発明の正極活物質の結晶子径と1
00サイクル劣化率の関係をプロットした。ここで本発
明品は球形であることから、結晶子径はどの方向で評価
してもほぼ同じであるが、ここでは(110)ベクトル
方向の結晶子径に対してプロットした。図3より結晶子
径が500からおよそ1000オングストロームの範囲
ではサイクル特性はほぼ変化しないが、およそ1000
オングストロームを超えると後に定義する容量維持率は
低下することが分かる。FIG. 4 shows the crystallite diameter of the positive electrode active material of the present invention and 1
The relationship of the 00 cycle deterioration rate was plotted. Here, since the product of the present invention is spherical, the crystallite diameter is almost the same no matter which direction is evaluated. Here, however, the crystallite diameter is plotted with respect to the crystallite diameter in the (110) vector direction. As shown in FIG. 3, when the crystallite diameter is in the range of 500 to about 1000 angstroms, the cycle characteristics hardly change.
It is understood that the capacity retention ratio defined later decreases when the thickness exceeds Å.
【0037】リチウム二次電池の充放電試験は次のよう
にして行う。先ず、正極としてLiMO2を70重量
部、アセチレンブラックを15重量部、PTFT(ポリ
テトラフルオロエチレン)15重量部をエタノールで混
合し練り延ばしたものをペースト状とし、SUSメッシ
ュ上に圧着し、それを乾燥して正極板を得る。これに対
し、Li金属を負極として、これら両電極をEC(エチ
レンカーボネート)、DEC(ジエチレンカーボネー
ト)及び電解質LiPCl4を混合した電解液に浸漬す
る。充電は0.2C(1Cは1時間で充電又は放電が終
了する電流負荷)の電流負荷に設定し、充電上限電圧を
4.20Vとする。放電は0.6C電流負荷に設定し、
下限電圧を2.75Vとし、100サイクルの充放電を
行う。容量維持率は(10回目の放電容量)/(1回目
の放電容量)×100の(%)式により算出する。The charge / discharge test of the lithium secondary battery is performed as follows. First, as a positive electrode, 70 parts by weight of LiMO2, 15 parts by weight of acetylene black, and 15 parts by weight of PTFT (polytetrafluoroethylene) were mixed with ethanol and kneaded to form a paste, which was then pressed on a SUS mesh and pressed. Dry to obtain a positive electrode plate. On the other hand, both electrodes are immersed in an electrolytic solution in which EC (ethylene carbonate), DEC (diethylene carbonate) and the electrolyte LiPCl4 are mixed, using Li metal as a negative electrode. The charging is set to a current load of 0.2 C (1 C is a current load at which charging or discharging is completed in one hour), and the charging upper limit voltage is set to 4.20 V. Discharge is set to 0.6C current load,
The lower limit voltage is set to 2.75 V, and charge / discharge for 100 cycles is performed. The capacity retention ratio is calculated by the (%) formula of (10th discharge capacity) / (1st discharge capacity) × 100.
【0038】前述したように従来技術では、サイクル特
性を向上させるために、粒子を平板状単結晶にし、c軸
方向の粒子の伸縮を一定方向にすることにより、粒子の
崩れを防止し、集電体からの剥離を防止するとしてい
る。これに対し、本発明では逆に、結晶を配向性のない
球状に近い形状とした。そのことで、粒子そのものの集
電体への接着力が増大し、充放電サイクルによる正極活
物質の集電体からの剥離を防止し、さらに、粒子界面で
のLi挿入可能な面を増加させることにより、サイクル
特性が改善される。As described above, in the prior art, in order to improve the cycle characteristics, the particles are made into a flat plate single crystal, and the expansion and contraction of the particles in the c-axis direction are made in a certain direction, thereby preventing the particles from collapsing and collecting. It is said to prevent peeling from the conductor. On the other hand, in the present invention, on the contrary, the crystal was formed into a shape close to a spherical shape without orientation. This increases the adhesion of the particles themselves to the current collector, prevents the positive electrode active material from peeling off from the current collector due to charge / discharge cycles, and further increases the surface on the particle interface where Li can be inserted. Thereby, the cycle characteristics are improved.
【0039】[0039]
【実施例】本発明の実施例を正極活物質としてLiCo
O2について説明するが、この組成に限定するものでは
なく、LiMO2(但しMはCo、Ni、Fe、Crの
群から選ばれる少なくとも一種の重金属元素)の全ての
可能な組成についても同様である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention uses LiCo as a positive electrode active material.
O2 will be described, but the composition is not limited to this. The same applies to all possible compositions of LiMO2 (where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, and Cr).
【0040】 [実施例1] <原料仕込み> ・四三酸化コバルト(Co3O4)・・・・・ 3.000kg ・炭酸リチウム(Li2CO3)・・・・・・ 1.380kg 四三酸化コバルトは(222)ベクトル方向の結晶子径
が200オングストロームであり、二次粒子の形状がほ
ぼ球状の多結晶の粒子である。二次粒子径について、C
oulter Multisizer2を用いて測定し
たところ中心粒径は5.0μmであった。上記原料のL
i/Coの仕込み比率は1.00である。これら原料を
セラミックポットに仕込み、ボールミルを行い正極活物
質の混合原料を得る。Example 1 <Preparation of Raw Materials> Cobalt tetroxide (Co 3 O 4) 3.000 kg Lithium carbonate (Li 2 CO 3) 1.380 kg Cobalt tetroxide was (222 2) The crystallite diameter in the vector direction is 200 angstroms, and the secondary particles are substantially spherical polycrystalline particles. Regarding the secondary particle size, C
The center particle size was 5.0 μm as measured using an Oulter Multisizer 2. L of the above raw materials
The charging ratio of i / Co is 1.00. These raw materials are charged into a ceramic pot and ball milled to obtain a mixed raw material of the positive electrode active material.
【0041】得られた混合原料を空気中900℃で10
時間焼成し、粉砕し、目的とするLiCoO2を合成し
た。The obtained mixed raw material was heated at 900 ° C. in air for 10 hours.
After firing for a period of time and pulverizing, the desired LiCoO2 was synthesized.
【0042】得られたLiCoO2をCuKαを線源と
する粉末X線回折を測定し、シェラーの式を用いて計算
したところ、(003)ベクトル方向の結晶子径は60
6オングストローム、及び(110)ベクトル方向の結
晶子径は879オングストロームであり、その他(11
5)ベクトル方向の結晶子径は795オングストロー
ム、(113)ベクトル方向の結晶子径は848オング
ストロームであった。The obtained LiCoO 2 was measured for powder X-ray diffraction using CuKα as a radiation source, and was calculated using Scherrer's formula. As a result, the crystallite diameter in the (003) vector direction was 60%.
The crystallite diameter in the 6 Å and (110) vector directions is 879 Å, and the other (11
5) The crystallite diameter in the vector direction was 795 angstroms, and the crystallite diameter in the (113) vector direction was 848 angstroms.
【0043】LiCoO2正極活物質の粒子径につい
て、F.S.S.S.を用いて測定したところ平均粒径
は4.0μmであり、個々の粒子の短軸粒子径/長軸粒
子径の比率の平均を計算したところ0.9であった。S
EMに供する測定用試料を作製する場合、圧力を加えて
作製すると、本発明の等方的形状の粒子と見分けが付け
にくくなる。そこで、SEM測定試料を作製する場合、
粒子の形状を受けにくくするため試料面に圧力をかけな
いように準備した。Regarding the particle size of the LiCoO 2 cathode active material, S. S. S. The average particle size was 4.0 μm as measured by using the formula (1), and the average of the ratio of the short axis particle diameter / the long axis particle diameter of each particle was 0.9. S
When preparing a measurement sample to be subjected to EM, if it is prepared by applying pressure, it will be difficult to distinguish it from the isotropically shaped particles of the present invention. Therefore, when preparing a SEM measurement sample,
The sample surface was prepared so as not to apply pressure to make it difficult to receive the shape of the particles.
【0044】<サイクル特性>得られた正極活物質Li
CoO2を70重量部、アセチレンブラックを15重量
部、PTFT(ポリテトラフルオロエチレン)15重量
部をエタノールで混合し練り延ばしたものをペースト状
とし、SUSメッシュ上に圧着し、それを乾燥して正極
板を得る。これに対しLi金属を負極として、これら両
電極をEC(エチレンカーボネート)、DEC(ジエチ
レンカーボネート)及び電解質LiPCl4を混合した
電解液に浸漬する。充電は0.2C(1Cは1時間で充
電又は放電が終了する電流負荷)の電流負荷に設定し、
充電上限電圧を4.20Vとする。放電は0.6C電流
負荷に設定し、下限電圧を2.75Vとし、100サイ
クルの充放電を行う。容量維持率は(100回目の放電
容量)/(1回目の放電容量)×100の式により求め
た結果95.2%であった。<Cycle characteristics> The obtained positive electrode active material Li
A mixture of 70 parts by weight of CoO2, 15 parts by weight of acetylene black, and 15 parts by weight of PTFT (polytetrafluoroethylene) mixed with ethanol and kneaded into a paste was pressed on a SUS mesh, dried and dried to form a positive electrode. Get the board. On the other hand, both electrodes are immersed in an electrolytic solution in which EC (ethylene carbonate), DEC (diethylene carbonate) and the electrolyte LiPCl4 are mixed, using Li metal as a negative electrode. The charging is set to a current load of 0.2C (1C is a current load at which charging or discharging is completed in one hour),
The charging upper limit voltage is set to 4.20V. The discharge is set to a 0.6 C current load, the lower limit voltage is set to 2.75 V, and charge / discharge for 100 cycles is performed. The capacity retention ratio was 95.2% as a result of an expression of (100th discharge capacity) / (first discharge capacity) × 100.
【0045】<熱安定性>得られた正極活物質LiCO
2を使用し、サイクル特性測定と同じ条件の二次電池を
作製し、充電負荷0.2C、充電上限電圧4.20Vの
条件で充電を行い、次に、リチウムイオン二次電池をド
ライボックス中で分解し、正極板を取り出してその内の
約10mgを切り出し測定試料とする。得られた測定試
料をTGA装置を用いて熱重量分析を行った結果、21
8.0℃で酸素遊離に基づく重量変化が観測され、限界
温度はすなわち218.0℃であった。<Thermal stability> The obtained positive electrode active material LiCO
2 was used to prepare a secondary battery under the same conditions as the cycle characteristics measurement, charging was performed under the conditions of a charging load of 0.2 C and a charging upper limit voltage of 4.20 V, and then the lithium ion secondary battery was placed in a dry box. The positive electrode plate is taken out, and about 10 mg thereof is cut out to obtain a measurement sample. As a result of performing thermogravimetric analysis on the obtained measurement sample using a TGA device,
At 8.0 ° C., a weight change due to oxygen release was observed, with a limiting temperature of 218.0 ° C.
【0046】[比較例1]四三酸化コバルト粒子はSE
Mによる観察によると六角板状粒子であり、(222)
ベクトル方向の結晶子径が100オングストローム、C
oulter Multisizer2を用いて測定し
た二次粒子の中心粒径が6.2μmであるものを使用す
る以外実施例1と同じ条件で原料を混合し、焼成するこ
とでLiCoO2を合成した。Comparative Example 1 Cobalt tetroxide particles were SE
According to observation by M, the particles were hexagonal plate-like particles, and (222)
The crystallite diameter in the vector direction is 100 Å, C
LiCoO2 was synthesized by mixing and firing the raw materials under the same conditions as in Example 1 except that secondary particles having a center particle diameter of 6.2 μm measured using an Oulter Multisizer 2 were used.
【0047】得られたLiCoO2を実施例1と同様に
してシェラーの式を用いて計算したところ、(003)
ベクトル方向の結晶子径は649オングストローム、及
び(110)ベクトル方向の結晶子径は1150オング
ストロームであり、その他(115)ベクトル方向の結
晶子径は798オングストローム、(113)ベクトル
方向の結晶子径は868オングストロームであった。When the obtained LiCoO 2 was calculated using Scherrer's formula in the same manner as in Example 1, (003)
The crystallite diameter in the vector direction is 649 angstroms, the crystallite diameter in the (110) vector direction is 1150 angstroms, the crystallite diameter in the (115) vector direction is 798 angstroms, and the crystallite diameter in the (113) vector direction is It was 868 angstroms.
【0048】LiCoO2正極活物質の粒子径について
F.S.S.S.を用いて測定したところ平均粒径は
3.5μmであった。Regarding the particle size of the LiCoO 2 cathode active material S. S. S. As a result, the average particle size was 3.5 μm.
【0049】さらに、SEM観察によるLiCoO2の
粒子の長軸粒子径に対する短軸粒子径の比率は0.3で
あった。Further, the ratio of the minor axis particle diameter to the major axis particle diameter of the LiCoO 2 particles observed by SEM was 0.3.
【0050】<サイクル特性>得られた正極活物質を使
用する以外実施例1と同様にして二次電池を作製し、1
00サイクル充放電を行った。容量維持率は85.0%
であった。<Cycle Characteristics> A secondary battery was prepared in the same manner as in Example 1 except that the obtained positive electrode active material was used.
The charge and discharge were performed for 00 cycles. 85.0% capacity retention
Met.
【0051】<熱安定性>得られた正極活物質LiCO
2を使用し、実施例1と同様にしてTGAを用いて熱重
量分析を行った結果、酸素遊離に基づく重量変化が観測
される限界温度は190.8℃であった。<Thermal stability> The obtained positive electrode active material LiCO
As a result of performing thermogravimetric analysis using TGA and using TGA in the same manner as in Example 1, the limit temperature at which a weight change due to oxygen release was observed was 190.8 ° C.
【0052】[0052]
【発明の効果】以上説明したように、本発明の正極物質
のLiMO2は、基本的に結晶子の形状が空間に等方的
に成長した球状であり、しかも結晶子径を大きくしてい
る。結晶子の形状を球形の等方的構造とすることで、充
放電に伴うLiの移動による結晶の歪みの方向が全ての
空間方向に均等となるため、一定方向に配向した従来の
結晶構造に比べ、崩れを最小に抑えることが可能とな
る。また、さらに結晶子を特定の範囲に大きくすること
によりLiイオンの脱離時に生じる結晶構造の崩れを軽
減できる。これらの点で本発明品は従来品に比べ正極活
物質の熱安定性及びサイクル特性を著しく改善すること
ができた。As described above, LiMO2 of the cathode material of the present invention is basically a sphere in which the crystallite shape is isotropically grown in space, and has a larger crystallite diameter. By making the crystallite shape a spherical isotropic structure, the direction of crystal distortion due to the movement of Li due to charge and discharge becomes uniform in all spatial directions, so that the conventional crystal structure oriented in a certain direction In comparison, collapse can be minimized. Further, by further increasing the crystallite to a specific range, the collapse of the crystal structure that occurs when Li ions are eliminated can be reduced. In these respects, the product of the present invention was able to significantly improve the thermal stability and cycle characteristics of the positive electrode active material as compared with the conventional product.
【図1】SEM写真による長軸粒子径、短軸粒子径の評
価方法を示す模式図。FIG. 1 is a schematic view showing a method for evaluating a long axis particle diameter and a short axis particle diameter based on an SEM photograph.
【図2】(a)本発明品及び(b)比較品の正極活物質
の粒子形状の比較を示す拡大模式図。FIG. 2 is an enlarged schematic diagram showing a comparison of the particle shapes of a positive electrode active material of (a) the present invention product and (b) a comparative product.
【図3】結晶子径と限界温度の関係を示す特性図。FIG. 3 is a characteristic diagram showing a relationship between a crystallite diameter and a limit temperature.
【図4】容量維持率と結晶子径の関係を示す特性図。FIG. 4 is a characteristic diagram showing a relationship between a capacity retention ratio and a crystallite diameter.
1・・・・・・・Liイオンが挿入可能な面 1 ····· The surface into which Li ions can be inserted
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤野 賢治 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 藤井 孝浩 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 (72)発明者 一ノ宮 敬治 徳島県阿南市上中町岡491番地100 日亜化 学工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Fujino 491-100 Kaminakacho Oka, Anan City, Tokushima Prefecture Inside Nichia Kakoh Kogyo Co., Ltd. Within Aka Chemical Industry Co., Ltd.
Claims (6)
イオン二次電池用正極活物質であって、その粒子構造
は、結晶子を単位とし、それが集合した粒子からなり、
該結晶子及び該粒子の形状は立体的にほぼ等方的形状で
あることを特徴とするリチウムイオン二次電池用正極活
物質。(但しMはCo、Ni、Fe、Mn、Crの群か
ら選ばれる少なくとも一種の重金属元素)1. A positive electrode active material for a lithium ion secondary battery represented by the general formula LiMO2, wherein the particle structure is composed of particles in which a crystallite is a unit and which is aggregated,
The positive electrode active material for a lithium ion secondary battery, wherein the shape of the crystallite and the particles is three-dimensional and substantially isotropic. (Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
子の立体形状を、層を重ねる方向((003)ベクトル
方向)、及びそれに垂直な方向((110)ベクトル方
向)で表現する場合、(110)ベクトル方向の結晶子
径に対する(003)ベクトル方向の結晶子径の比率
は、0.5〜1.6の範囲であることを特徴とする請求
項1に記載のリチウムイオン二次電池用正極活物質。2. A case in which the three-dimensional shape of crystallites constituting the primary particles of the positive electrode active material is expressed by a direction in which layers are superposed ((003) vector direction) and a direction perpendicular thereto ((110) vector direction). 2. The lithium ion secondary according to claim 1, wherein a ratio of a crystallite diameter in the (003) vector direction to a crystallite diameter in the (110) vector direction is in a range of 0.5 to 1.6. 3. Positive electrode active material for batteries.
トル方向の結晶子径は500〜750オングストローム
の範囲であることを特徴とする請求項1に記載のリチウ
ムイオン二次電池用正極活物質。3. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein a crystallite diameter in a (003) vector direction of a crystallite of the positive electrode active material is in a range of 500 to 750 Å. material.
トル方向の結晶子径は450〜1000オングストロー
ムの範囲であることを特徴とする請求項1に記載のリチ
ウムイオン二次電池用正極活物質。4. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the crystallite diameter of the crystallite of the positive electrode active material in the (110) vector direction is in a range of 450 to 1000 Å. material.
均粒径は0.1〜10μmであり、SEM観察による該
粒子の長軸粒子径に対する短軸粒子径の比率は0.5〜
1.0の範囲であることを特徴とする請求項1に記載の
リチウムイオン二次電池用正極物質。5. The particle has a substantially spherical shape, an average particle diameter of 0.1 to 10 μm, and a ratio of a short axis particle diameter to a long axis particle diameter of the particle measured by SEM is 0.5 to 10 μm.
The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the positive electrode material has a range of 1.0.
/M比が0.98〜1.01の範囲となるように混合し
て焼成する正極活物質の製造方法において、該重金属酸
化物の粒子形状は、立体的にほぼ等方的形状を有する一
次粒子又は一次粒子が集合した二次粒子からなり、その
中心粒径は0.1〜10μmであることを特徴とするリ
チウムイオン二次電池用正極活物質の製造方法。(但し
MはCo、Ni、Fe、Mn、Crの群から選ばれる少
なくとも一種の重金属元素)6. A method for converting raw material heavy metal oxide and lithium salt into Li
In the method for producing a positive electrode active material, which is mixed and fired so that the / M ratio is in the range of 0.98 to 1.01, the particle shape of the heavy metal oxide is substantially three-dimensional. A method for producing a positive electrode active material for a lithium ion secondary battery, comprising secondary particles in which particles or primary particles are aggregated, and having a central particle size of 0.1 to 10 μm. (Where M is at least one heavy metal element selected from the group consisting of Co, Ni, Fe, Mn, and Cr)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07490797A JP3591195B2 (en) | 1997-03-07 | 1997-03-27 | Cathode active material for lithium ion secondary batteries |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5290097 | 1997-03-07 | ||
JP9-52900 | 1997-03-07 | ||
JP07490797A JP3591195B2 (en) | 1997-03-07 | 1997-03-27 | Cathode active material for lithium ion secondary batteries |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003127719A Division JP4062165B2 (en) | 1997-03-07 | 2003-05-06 | Method for producing positive electrode active material for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10308218A true JPH10308218A (en) | 1998-11-17 |
JP3591195B2 JP3591195B2 (en) | 2004-11-17 |
Family
ID=26393564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07490797A Expired - Lifetime JP3591195B2 (en) | 1997-03-07 | 1997-03-27 | Cathode active material for lithium ion secondary batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3591195B2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999033128A1 (en) * | 1997-12-22 | 1999-07-01 | Ishihara Sangyo Kaisha, Ltd. | Lithium manganate, method of producing the same, and lithium cell produced by the method |
WO1999049528A1 (en) * | 1998-03-23 | 1999-09-30 | Sumitomo Metal Mining Co., Ltd. | Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same |
JP2002063941A (en) * | 2000-08-17 | 2002-02-28 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
JP2002298846A (en) * | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
WO2003003489A1 (en) * | 2001-06-27 | 2003-01-09 | Santoku Corporation | Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode |
WO2004030126A1 (en) * | 2002-09-25 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JP2005050582A (en) * | 2003-07-30 | 2005-02-24 | Mitsubishi Chemicals Corp | Positive pole for lithium secondary battery and lithium secondary battery using it |
JP2007059342A (en) * | 2005-08-26 | 2007-03-08 | Sony Corp | Battery |
WO2013042176A1 (en) * | 2011-09-20 | 2013-03-28 | 日立ビークルエナジー株式会社 | Lithium-ion battery |
WO2015012282A1 (en) | 2013-07-24 | 2015-01-29 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary cell, production method for same, and non-aqueous electrolyte secondary cell |
WO2015012284A1 (en) | 2013-07-24 | 2015-01-29 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery |
WO2015012283A1 (en) | 2013-07-24 | 2015-01-29 | 住友金属鉱山株式会社 | Non-aqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and non-aqueous electrolyte secondary battery |
US8999573B2 (en) | 2010-03-29 | 2015-04-07 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material |
US20160056462A1 (en) * | 2013-05-28 | 2016-02-25 | Asahi Glass Company, Limited | Cathode active material |
JP2016044120A (en) * | 2014-08-20 | 2016-04-04 | 旭硝子株式会社 | Production method of lithium-containing complex oxide, and lithium-containing complex oxide |
US20160218364A1 (en) * | 2015-01-23 | 2016-07-28 | Asahi Glass Company, Limited | Cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US20160301065A1 (en) * | 2015-04-08 | 2016-10-13 | Asahi Glass Company, Limited | Lithium-containing composite oxide, its production process, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US9692047B2 (en) | 2014-01-31 | 2017-06-27 | Panasonic Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
KR20170095888A (en) | 2014-12-25 | 2017-08-23 | 스미또모 가가꾸 가부시끼가이샤 | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
KR20180031556A (en) * | 2016-09-18 | 2018-03-28 | 구이저우 쩐화 이-켐 컴퍼니 리미티드 | Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof |
US9947924B2 (en) | 2012-12-27 | 2018-04-17 | Sanyo Electric Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
US10109849B2 (en) | 2012-06-06 | 2018-10-23 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these |
US10109854B2 (en) | 2015-09-30 | 2018-10-23 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery |
US10147943B2 (en) | 2015-02-19 | 2018-12-04 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US10573881B2 (en) | 2016-02-29 | 2020-02-25 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary battery |
CN113839030A (en) * | 2021-11-26 | 2021-12-24 | 蜂巢能源科技有限公司 | Cobalt-free cathode material and application thereof |
CN115513451A (en) * | 2022-11-22 | 2022-12-23 | 中创新航技术研究中心(深圳)有限公司 | Positive electrode active material and battery using same |
-
1997
- 1997-03-27 JP JP07490797A patent/JP3591195B2/en not_active Expired - Lifetime
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999033128A1 (en) * | 1997-12-22 | 1999-07-01 | Ishihara Sangyo Kaisha, Ltd. | Lithium manganate, method of producing the same, and lithium cell produced by the method |
AU741721B2 (en) * | 1997-12-22 | 2001-12-06 | Ishihara Sangyo Kaisha Ltd. | Lithium manganate, method of producing the same, and lithium cell produced by the method |
US6334993B1 (en) | 1997-12-22 | 2002-01-01 | Ishihara Sangyo Kaisha, Ltd. | Lithium manganate, method of producing the same, and lithium cell produced by the method |
WO1999049528A1 (en) * | 1998-03-23 | 1999-09-30 | Sumitomo Metal Mining Co., Ltd. | Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same |
JP2002063941A (en) * | 2000-08-17 | 2002-02-28 | Mitsubishi Cable Ind Ltd | Lithium ion secondary battery |
JP2002298846A (en) * | 2001-03-30 | 2002-10-11 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
KR100934612B1 (en) * | 2001-06-27 | 2009-12-31 | 가부시키가이샤 산도쿠 | Cathode active material for nonaqueous electrolyte secondary battery, preparation method thereof, method for manufacturing nonaqueous electrolyte secondary battery, and positive electrode |
CN1311574C (en) * | 2001-06-27 | 2007-04-18 | 株式会社三德 | Nonaqueous electrolyte secondary battery-use anode active matter, prodn. method therefor, nonaqueous electrolyte secondary battery, and prodn, method for anode |
WO2003003489A1 (en) * | 2001-06-27 | 2003-01-09 | Santoku Corporation | Nonaqueous electrolyte secondary battery-use anode active matter, production method therefor, nonaqueous electrolyte secondary battery, and production method for anode |
WO2004030126A1 (en) * | 2002-09-25 | 2004-04-08 | Seimi Chemical Co., Ltd. | Positive electrode material for lithium secondary battery and process for producing the same |
JPWO2004030126A1 (en) * | 2002-09-25 | 2006-01-26 | セイミケミカル株式会社 | Positive electrode material for lithium secondary battery and method for producing the same |
JP2005050582A (en) * | 2003-07-30 | 2005-02-24 | Mitsubishi Chemicals Corp | Positive pole for lithium secondary battery and lithium secondary battery using it |
JP2007059342A (en) * | 2005-08-26 | 2007-03-08 | Sony Corp | Battery |
US8999573B2 (en) | 2010-03-29 | 2015-04-07 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material |
US9553311B2 (en) | 2010-03-29 | 2017-01-24 | Sumitomo Metal Mining Co., Ltd | Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material |
WO2013042176A1 (en) * | 2011-09-20 | 2013-03-28 | 日立ビークルエナジー株式会社 | Lithium-ion battery |
US10109849B2 (en) | 2012-06-06 | 2018-10-23 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these |
US9947924B2 (en) | 2012-12-27 | 2018-04-17 | Sanyo Electric Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
US10714748B2 (en) | 2012-12-27 | 2020-07-14 | Sanyo Electric Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
US20160056462A1 (en) * | 2013-05-28 | 2016-02-25 | Asahi Glass Company, Limited | Cathode active material |
WO2015012284A1 (en) | 2013-07-24 | 2015-01-29 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery |
KR20160037878A (en) | 2013-07-24 | 2016-04-06 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Non-aqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and non-aqueous electrolyte secondary battery |
KR20160037947A (en) | 2013-07-24 | 2016-04-06 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery |
WO2015012282A1 (en) | 2013-07-24 | 2015-01-29 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary cell, production method for same, and non-aqueous electrolyte secondary cell |
JP2015026454A (en) * | 2013-07-24 | 2015-02-05 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery |
WO2015012283A1 (en) | 2013-07-24 | 2015-01-29 | 住友金属鉱山株式会社 | Non-aqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and non-aqueous electrolyte secondary battery |
US9786913B2 (en) | 2013-07-24 | 2017-10-10 | Sumitomo Metal Mining Co., Ltd. | Cathode active material for non-aqueous electrolyte rechargeable battery and manufacturing method for same, and non-aqueous electrolyte rechargeable battery |
US12113213B2 (en) | 2013-07-24 | 2024-10-08 | Sumitomo Metal Mining Co., Ltd. | Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method for same, and non-aqueous electrolyte secondary battery |
US9692047B2 (en) | 2014-01-31 | 2017-06-27 | Panasonic Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
US9985282B2 (en) | 2014-01-31 | 2018-05-29 | Panasonic Corporation | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2016044120A (en) * | 2014-08-20 | 2016-04-04 | 旭硝子株式会社 | Production method of lithium-containing complex oxide, and lithium-containing complex oxide |
KR20170095888A (en) | 2014-12-25 | 2017-08-23 | 스미또모 가가꾸 가부시끼가이샤 | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
US11024847B2 (en) | 2014-12-25 | 2021-06-01 | Sumitomo Chemical Company, Limited | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery |
US20160218364A1 (en) * | 2015-01-23 | 2016-07-28 | Asahi Glass Company, Limited | Cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US10147943B2 (en) | 2015-02-19 | 2018-12-04 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US20160301065A1 (en) * | 2015-04-08 | 2016-10-13 | Asahi Glass Company, Limited | Lithium-containing composite oxide, its production process, cathode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery |
US10109854B2 (en) | 2015-09-30 | 2018-10-23 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery |
US10573881B2 (en) | 2016-02-29 | 2020-02-25 | Panasonic Corporation | Positive electrode active material for nonaqueous electrolyte secondary battery |
US10573882B2 (en) | 2016-09-18 | 2020-02-25 | Guizhou Zhenhua E-CHEM Inc. | Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof |
KR20180031556A (en) * | 2016-09-18 | 2018-03-28 | 구이저우 쩐화 이-켐 컴퍼니 리미티드 | Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof |
CN113839030A (en) * | 2021-11-26 | 2021-12-24 | 蜂巢能源科技有限公司 | Cobalt-free cathode material and application thereof |
CN113839030B (en) * | 2021-11-26 | 2023-09-05 | 蜂巢能源科技有限公司 | Cobalt-free positive electrode material and application thereof |
CN115513451A (en) * | 2022-11-22 | 2022-12-23 | 中创新航技术研究中心(深圳)有限公司 | Positive electrode active material and battery using same |
Also Published As
Publication number | Publication date |
---|---|
JP3591195B2 (en) | 2004-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3591195B2 (en) | Cathode active material for lithium ion secondary batteries | |
JP4894969B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery | |
JP4211865B2 (en) | Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP4915488B1 (en) | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP4644895B2 (en) | Lithium secondary battery | |
US7192672B2 (en) | Process for producing positive electrode active material for lithium secondary battery | |
US20050220701A1 (en) | Process for producing positive electrode active material for lithium secondary battery | |
JP2003059490A (en) | Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method | |
JP2004253174A (en) | Positive pole active material for nonaqueous electrolytic secondary battery | |
JPH1116573A (en) | Lithium cobalt double oxide for lithium ion secondary battery and its manufacture | |
JP2004292264A (en) | Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method | |
JP4919147B2 (en) | Method for producing positive electrode active material for non-aqueous lithium secondary battery | |
JP2006525623A (en) | A method for producing a lithium composite oxide for an anode active material of a lithium secondary battery. | |
JP4172024B2 (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery | |
JP2006318928A (en) | Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery | |
JP2002208401A (en) | Positive electrode active material, its manufacturing method and nonaqueous electrolyte battery | |
JP3489391B2 (en) | Positive active material for lithium ion secondary battery and method for producing the same | |
JP2002352802A (en) | Positive electrode active material for lithium ion secondary cell and manufacturing method therefor | |
JPH10255804A (en) | Lithium secondary battery | |
JP4543474B2 (en) | Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same | |
JP2002124258A (en) | Lithium manganate particle powder and its manufacturing method | |
JP4062165B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
JP4479874B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP4209646B2 (en) | Method for producing lithium cobalt composite oxide for positive electrode of secondary battery | |
JP2004356034A (en) | Positive active material and lithium ion secondary battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040220 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040624 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040816 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |