WO2013042176A1 - Lithium-ion battery - Google Patents

Lithium-ion battery Download PDF

Info

Publication number
WO2013042176A1
WO2013042176A1 PCT/JP2011/071296 JP2011071296W WO2013042176A1 WO 2013042176 A1 WO2013042176 A1 WO 2013042176A1 JP 2011071296 W JP2011071296 W JP 2011071296W WO 2013042176 A1 WO2013042176 A1 WO 2013042176A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
battery
ion battery
negative electrode
lithium ion
Prior art date
Application number
PCT/JP2011/071296
Other languages
French (fr)
Japanese (ja)
Inventor
誠之 廣岡
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to JP2013534466A priority Critical patent/JP5727023B2/en
Priority to PCT/JP2011/071296 priority patent/WO2013042176A1/en
Publication of WO2013042176A1 publication Critical patent/WO2013042176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a high-output and high-capacity lithium ion battery used for in-vehicle applications.
  • High-power and high-capacity lithium ion batteries used for in-vehicle applications etc. are desired to maintain high safety.
  • Patent Document 1 discloses a general formula Li 1 + x M 1-xy M ′ y O 2 ⁇ (where M is an element of Mn, Co, or Ni, or a combination of two or more thereof) M ′ is a transition element existing between a group 3 element and a group 11 element in the periodic table, or an element composed of a combination of two or more thereof. It is described that the output can be increased by using a metal oxide for the positive electrode.
  • In-vehicle lithium-ion batteries require high safety in addition to high output and high capacity. These characteristics are closely related to the physical properties of the positive electrode material, and particularly high output, high capacity, and safety are incompatible with each other. For example, when the output is increased using the positive electrode material described in Patent Document 1, capacity reduction and safety reduction occur. In addition, for example, the positive electrode material described in Patent Document 2 is lithium cobalt oxide, so that safety can be maintained. However, if the Ni content is increased at the Co site for higher capacity, the safety of the battery is significantly reduced. Is expected to.
  • in-vehicle lithium ion batteries need to secure a gas exhaust path in the event of abnormal heat generation and prevent a sudden increase in internal pressure in the battery can.
  • the present invention aims to simultaneously improve three characteristics of a high capacity, high output, and high safety in a lithium ion battery.
  • the present invention is characterized in that a sub-peak of heat generation appears in a temperature range of 150 to 230 ° C. in a differential thermal scanning calorimetry profile measured by combining a positive electrode mixture constituting a positive electrode in a charged state with an electrolyte. Adopt a lithium ion battery.
  • the total heat generation amount in the case of abnormal heat generation of the battery is reduced, and in the case of abnormal heat generation of the battery, the electrolyte in the battery is decomposed by the heat generation of the positive electrode mixture at an early stage to generate gas. It is possible to promote gas escape from the inside of the battery can and prevent a sudden increase in internal pressure.
  • FIG. 3 is a partially developed perspective view schematically showing the configuration of an electrode winding group used in the lithium ion battery of Example 1.
  • FIG. 1 is a perspective view showing a configuration of an assembly part of a lithium ion battery of Example 1.
  • FIG. 1 is a perspective view showing a configuration of an assembly part of a lithium ion battery of Example 1.
  • FIG. 1 is a perspective view showing an external appearance of a lithium ion battery of Example 1.
  • FIG. It is a graph which shows the profile of differential thermal scanning calorimetry (DSC) in Example 1 and a comparative example.
  • DSC differential thermal scanning calorimetry
  • 6 is a partially developed perspective view schematically showing the configuration of an electrode winding group used in the lithium ion battery of Example 2.
  • FIG. 6 is a developed perspective view showing a lithium ion battery of Example 2.
  • FIG. 1 is a perspective view showing a configuration of an assembly part of a lithium ion battery of Example 1.
  • FIG. 1 is a perspective view
  • FIG. 3 is a cross-sectional view showing a lithium ion battery of Example 2.
  • FIG. 3 is a cross-sectional view showing a lithium ion battery of Example 2.
  • FIG. 6 is a partial perspective view illustrating an assembly process of a current collector of a lithium ion battery according to Embodiment 2.
  • FIG. 6 is a partial perspective view illustrating an assembly process of a current collector of a lithium ion battery according to Embodiment 2.
  • FIG. It is a front view which shows the gas discharge path
  • the lithium ion battery includes an electrode winding group formed by winding a positive electrode, a negative electrode, and a separator sandwiched between them, a battery can containing the electrode winding group and an electrolyte, and the battery can sealed
  • the differential thermal scanning calorimetry profile of the battery including the lid and the cleavage valve provided on the lid and measured by combining the positive electrode mixture constituting the charged positive electrode with the electrolyte is 150. It has an exothermic sub-peak in a temperature range of ⁇ 230 ° C.
  • the positive electrode mixture is represented by the chemical formula Li 1 + x M 1-y Mo y O 2 (wherein M is one or more metal elements selected from the group consisting of Ni, Mn, and Co).
  • X is preferably from 0 to 0.20, and y is preferably from 0.025 to 0.055).
  • the positive electrode active material is preferably a layered lithium transition metal oxide, and the (003) plane crystallite size is preferably 30 to 80 nm.
  • the lid is preferably disposed on a surface orthogonal to the winding axis of the electrode winding group.
  • lithium ion batteries lithium ion secondary batteries
  • a lithium ion battery capable of preventing an increase in internal pressure of the battery by releasing gas generated when abnormal heat generation occurs at an early stage will be described.
  • FIG. 1 is a partially developed perspective view schematically showing the configuration of an electrode winding group used in a lithium ion battery.
  • the electrode winding group 102 includes a strip-like positive electrode 401 in which a positive electrode mixture is applied to both surfaces of an aluminum foil base material, and a strip-like negative electrode 402 in which a negative electrode mixture is applied to both surfaces of a copper foil base material. Are overlapped via two separators 403 and wound around a plate-like core 404.
  • the electrode winding group 102 has a rounded rectangular shape (so-called race track shape) when viewed from the winding axis direction of the winding core 404.
  • the core 404 is not particularly limited as long as it has electrical insulation and heat resistance, but is preferably produced by resin molding from the viewpoint of weight reduction, for example, a thermoplastic resin such as polypropylene or polyphenylene sulfide.
  • Thermosetting resins such as phenol resins, melamine resins, and unsaturated polyesters are preferably used.
  • the positive electrode mixture is not applied to one end of the positive electrode 401 in the winding axis direction (foil width direction), and the aluminum foil base material is exposed.
  • the negative electrode mixture is not applied to one end of the negative electrode 402 in the winding axis direction (the width direction of the foil), and the copper foil base material is exposed.
  • FIG. 2 shows the lid and electrode winding group before assembling the lithium ion battery.
  • FIG. 3 shows a state before the combination of the lid and the electrode winding group is inserted into the battery outer case.
  • FIG. 4 shows the appearance of the assembled lithium ion battery.
  • the positive current collector disposed at the end of the electrode winding group 102 is formed on the aluminum plate 12, and the negative current collector disposed on the opposite end of the positive electrode is formed on the copper plate 11. These are joined by ultrasonic welding.
  • this joining is performed by ultrasonic welding, but there is no particular limitation as long as it can be joined electrically and thermally by resistance welding or other joining methods.
  • the negative electrode external terminal 71, the positive electrode external terminal 73, the negative electrode connection plate 72, and the positive electrode connection plate 74 are electrically connected to the lid 75.
  • the lid 75 is made of aluminum and has a liquid injection port 76 and a gas discharge valve 77.
  • the negative electrode connection plate 72 and the positive electrode connection plate 74 were electrically connected to the copper plate 11 and the aluminum plate 12 joined to the current collector of the electrode winding group 102, respectively.
  • this connection is performed by ultrasonic welding.
  • the connection is not particularly limited as long as it can be electrically connected by resistance welding, bonding by screws, or other bonding methods.
  • the heat inside the electrode winding group 102 is transmitted from the aluminum plate 112 and the copper plate 11 to which the current collector is connected to the positive electrode connection plate 74 and the negative electrode connection plate 72, respectively, and protrudes from the lid 75. Heat is dissipated from the positive external terminal 73 and the negative external terminal 71 installed.
  • the electrode winding group 102 and the lid 75 integrated as shown in FIG. 3 were inserted into an aluminum battery outer casing 78 (battery can).
  • An insulating sheet 79 is provided on the inner wall of the battery outer casing 78 so that insulation from the electrode winding group 102 is maintained.
  • the battery 70 shown in FIG. 4 was produced by sealing the lid
  • Ni + Mn + Co 96 mol%
  • Mo 4 mol%
  • the slurry was pulverized with a zirconia bead mill until the average particle size became 0.2 ⁇ m.
  • a polyvinyl alcohol (PVA) solution was added to the slurry in an amount of 1 wt% in terms of the solid content ratio, and further mixed for 1 hour, and then dried by a spray dryer and granulated.
  • PVA polyvinyl alcohol
  • lithium hydroxide and lithium carbonate were added to form a powder so that the ratio of Li to transition metal was 1.0: 1 to 1.1: 1.
  • the obtained powder was fired at 750 ° C. for 10 hours to form crystals having a layered structure. Thereafter, this crystal was crushed to obtain a positive electrode active material. Then, after removing coarse particles having a particle diameter of 30 ⁇ m or more by classification, a positive electrode was produced using this positive electrode active material.
  • the compounding ratio of the above elements is an example, and a chemical formula Li 1 + x M 1-y Mo y O 2 (wherein M is one or more metal elements selected from the group consisting of Ni, Mn, and Co). x is 0 to 0.20, and y is 0.025 to 0.055).
  • Table 1 shows the compositions of the positive electrode active material 1 according to Example 1, the positive electrode active materials 2 to 8 according to other examples, and the positive electrode active material 9 according to Comparative Examples described later.
  • the Ni ratio is preferably 5-9.
  • the method for producing the positive electrode active material is not limited to the above method, and other methods such as a coprecipitation method may be used.
  • the obtained positive electrode active material was measured by X-ray diffraction (XRD), resulting from diffraction lines appearing at 2 ⁇ 18 degrees (003).
  • XRD X-ray diffraction
  • a material having a surface crystallite size in the range of 30 to 80 nm according to Scherrer's formula was selected as a positive electrode material.
  • a slurry was prepared by mixing a positive electrode active material with a conductive material and a PVDF binder.
  • the environment for the production is desirably a temperature of 30 ° C. or less and a relative humidity of 50% or less.
  • PVDF is an abbreviation for polyvinylidene fluoride.
  • the positive electrode active material and the conductive material were weighed to a mass ratio of 86:11 and mixed with a mixer.
  • This mixed material and PVDF-based binder were weighed so as to have a mass ratio of 97: 3, N-methylpyrrolidone (NMP) was added and kneaded, and finally defoamed to obtain a slurry.
  • NMP N-methylpyrrolidone
  • the obtained slurry was spread on the surface of an aluminum foil, coated on both sides using an applicator, and dried to obtain a positive electrode.
  • DSC differential scanning calorimetry
  • FIG. 5 shows the result.
  • the horizontal axis represents temperature, and the vertical axis represents heat flow per unit mass.
  • a solid line indicates the present embodiment, and a broken line indicates a comparative example described later.
  • the DSC profile of Example 1 indicated by the solid line has lower temperature dependency of the heat flow rate and higher thermal stability than the comparative example. Moreover, heat generation starts from about 150 ° C. and continues to around 350 ° C. It can be seen that the DSC profile of Example 1 has a main peak near 280 ° C. and a sub-peak near 190 ° C. On the other hand, the DSC profile of the comparative example has a steep main peak near 280 ° C.
  • the positive electrode showing the DSC profile as shown by the solid line in FIG. 5 By applying the positive electrode showing the DSC profile as shown by the solid line in FIG. 5 to the battery, the total amount of heat generated during battery overheating or abnormal heat generation due to an internal short circuit can be reduced.
  • the relatively early heat generation of the positive electrode derived from the DSC profile sub-peak ( ⁇ 190 ° C.) promotes the decomposition of the electrolyte solution present between the positive electrode and the negative electrode, and promotes outgassing in the battery can. And a sudden rise in internal pressure of the battery can be prevented.
  • the point at which the heat flow rate reaches the maximum value when heat generation at a heat flow rate of 0.5 W / g or more occurs from the baseline of the DSC profile is defined as “sub-peak”.
  • the point at which the heat flow rate reaches the maximum value is defined as the “main peak”.
  • the case where the sub-peak is about 190 ° C. is shown as an example, but the appropriate sub-peak range is 150 to 230 ° C. A more desirable sub-peak range is 180 to 220 ° C.
  • DSC differential thermal scanning calorimetry
  • FIG. 6 is a partially developed perspective view schematically showing the configuration of the electrode winding group used in the lithium ion battery.
  • the positive electrode tab 405 and the negative electrode tab 406 are formed on opposite sides. Each of the positive electrode tab 405 and the negative electrode tab 406 preferably has a width of 2 to 10 mm and a length of 15 to 50 mm.
  • FIG. 7 shows an exploded view of a lithium ion battery.
  • FIG. 8A shows a cross section of the lithium ion battery in a plane parallel to the wide surface of the core (the flat surface of the battery).
  • FIG. 8B shows a cross section of the lithium ion battery on a plane parallel to the thickness direction of the core (a plane perpendicular to the flat surface of the battery).
  • FIG. 9A shows the assembly process (joining process) of the current collector of the lithium ion battery.
  • FIG. 9B shows an assembly process (bending process) of the current collector of the lithium ion battery.
  • the lithium ion battery 100 includes a battery container (a cylindrical battery can 101 (container body) having a rounded rectangular cross section) at both end portions of a positive electrode side sealing plate 116 and a negative electrode side sealing plate 103.
  • the electrode winding group 102 (details are shown in FIG. 6) is accommodated together with the electrolytic solution inside (sealed by the container lid).
  • aluminum or stainless steel is preferably used as the material for the battery container. That is, in the present embodiment, unlike the first embodiment, the positive electrode terminal 109 and the negative electrode terminal 110 are arranged on the container lids on the opposite sides.
  • the battery can 101 may have a rectangular cross-sectional shape.
  • the positive electrode tab 405 and the negative electrode tab 406 of the electrode winding group 102 are welded to the positive electrode current collector plate 104 and the negative electrode current collector plate 105, respectively. Then, the current collector plate protrusion 603 is fitted into the groove 407 of the winding core 404 wound around the electrode winding group 102. Thereby, the positive electrode current collecting plate 104 and the negative electrode current collecting plate 105 are disposed in a flange shape at both ends of the core 404.
  • a positive electrode terminal 109 and a negative electrode terminal 110 are connected to the positive current collector 104 and the negative current collector 105 by welding or the like, respectively.
  • the positive electrode current collector plate 104 and the negative electrode current collector plate 105 are provided with openings 602 (positive electrode openings and negative electrode openings), which serve as an exhaust path when the internal pressure of the cell increases.
  • the insulating cover 111 produced by resin molding is put on the positive electrode current collector plate 104 and the negative electrode current collector plate 105, and the electrode winding group 102, the positive electrode current collector plate 104, the negative electrode current collector plate 105, and the insulating cover 111 are formed.
  • the integrated unit is inserted into the battery can 101.
  • the insulating cover 111 includes an electrode opening 303 and a gas discharge opening 302.
  • the gasket 112 (made of resin) of the positive electrode terminal 109 is attached inside the positive electrode side sealing plate 116, and the positive electrode side sealing plate 116 is welded to the end of the battery can 101.
  • the gasket 112 (made of resin) of the negative electrode terminal 110 is attached to the inside of the negative electrode side sealing plate 103, and the negative electrode side sealing plate 103 is welded to the end of the battery can 101. Welding is performed by an electron beam or a laser.
  • Each of the positive electrode side sealing plate 116 and the negative electrode side sealing plate 103 includes an electrode terminal opening 304, and a central portion thereof includes a cleavage valve 108.
  • the positive electrode side sealing plate 116 also includes a liquid injection hole 301 for injecting an electrolytic solution.
  • the gasket 115 is attached to the outside of the positive electrode side sealing plate 116 and the negative electrode side sealing plate 103 and fixed by the nut 113.
  • the positive electrode current collector plate 104 and the negative electrode current collector plate 105 are fitted to a cylindrical or plate-like core 404 to which the electrode winding group 102 is attached.
  • the core 404 is made by resin molding, and if it is a thermoplastic resin, polypropylene or polyphenylene sulfide is used, and if it is a thermosetting resin, a phenol resin, a melamine resin, an unsaturated polyester, or the like is used, If it has electrical insulation and heat resistance, it will not specifically limit.
  • a cleavage valve 108 is provided at the center of the negative electrode side sealing plate 103.
  • the positive side sealing plate 116 is provided with a liquid injection stopper 107 in addition to the cleavage valve 108.
  • a resin gasket 112 is provided inside the positive electrode terminal 109 and the negative electrode terminal 110 (inside the battery can 101), and a gasket 115 is provided outside the positive electrode terminal 109 and the negative electrode terminal 110 (outside the battery can 101). Is provided. These gaskets 112 and 115 are fixed from the outside of the positive side sealing plate 116 and the negative side sealing plate 103 by nuts 113.
  • the insulating cover 111 and the two types of gaskets 112 and 115 are preferably produced by resin molding.
  • thermoplastic resin polypropylene or polyphenylene sulfide
  • thermosetting resin a phenol resin, Melamine resins, unsaturated polyesters, and the like
  • unsaturated polyesters and the like are used, but they are not particularly limited as long as they have electrical insulation and heat resistance.
  • the positive electrode tab 405 and the negative electrode tab 406 are formed in groups, and protrude from both ends of the flat electrode winding group 102, respectively.
  • the positive electrode tab 405 and the negative electrode tab 406 are bundled and welded to the positive electrode current collector plate 104 and the negative electrode current collector plate 105, respectively.
  • the positive electrode tab 405 and the negative electrode tab 406 are provided on the flat portion of the electrode winding group 102 that is opposite to the winding core (core 404 in FIG. 7) of the electrode winding group 102. And welded so as to be arranged on the opposite side (opposite side) with respect to the core. As a result, the positive electrode tab 405 and the negative electrode tab 406 respectively block half of the positive electrode current collector plate 104 side and the negative electrode current collector plate 105 side of the electrode winding group 102.
  • gas discharge paths 114 (positive gas discharge path and negative gas discharge path) indicated by broken lines in FIG. 8B are provided on both sides of the core, and when gas is generated in the battery due to battery abnormality. Even when the battery can 101 is deformed, the gas discharge path 114 can be secured.
  • the positive electrode side will be mainly described with reference to FIGS. 9A and 9B, but the same applies to the negative electrode side.
  • the positive electrode current collector plate 104 is a plate-like member having a thickness of 0.5 to 5 mm, and has a rounded rectangular shape (a shape in which a curved region consisting of a substantially semicircular shape is coupled to both ends of a linear region consisting of a rectangle, so-called race track shape). It has the external shape.
  • the outer shape of the positive electrode current collector plate 104 is larger than the outer shape of the end surface of the winding core 404 and slightly smaller than the outer shape of the end surface of the electrode winding group 102 (rounded rectangle).
  • a positive electrode terminal 109 is integrally fixed to the end of the positive electrode current collector plate 104 by welding or the like.
  • an opening 602 for smoothly discharging gas generated due to abnormal heat generation is provided at the center of the positive electrode current collector plate 104.
  • the negative electrode current collector plate 105 has the same outer shape as the positive electrode current collector plate 104. Further, the negative electrode current collector plate 105 is provided with a negative electrode terminal 110 and an opening 602.
  • the group of positive electrode tabs 405 is pressed against the tab joint portion 601 disposed on the surface of the positive electrode current collector plate 104 on the electrode winding group 102 side, and joined together by welding or the like in a close contact state.
  • the positive electrode current collector plate 104 is flanged at the end of the core 404 (that is, the flange surface of the positive electrode current collector 104 and the winding axis direction of the core 404 are orthogonal to each other). Arranged).
  • connection is fixed by fitting the current collector plate convex portions 603 disposed outside both ends of the opening 602 of the positive electrode current collector plate 104 and the groove 407 (core concave portion) of the core 404. Shows when to do.
  • This fixing method has an advantage of not increasing the number of parts.
  • the group of negative electrode tabs 406 is joined to the negative electrode current collector plate 105, and the current collector plate convex portion 603 of the negative electrode current collector plate 105 and the groove 407 of the core 404 are fitted.
  • the present invention is not limited to the fixing method shown in the figure.
  • a fitting recess or fitting hole is formed on the positive electrode current collector plate 104 side, and a fitting projection is formed on the core 404 side.
  • the formed combination may be used, or the positive electrode current collector plate 104 and the core 404 may be fixed with screws.
  • the group of the positive electrode tabs 405 is drawn long, but the positive electrode tabs 405 are within a range not impeding workability when fixing the positive electrode current collector plate 104 and the core 404.
  • the length of is preferably as short as possible.
  • the positive electrode tab 405 and the negative electrode tab 406 protrude from both ends of the electrode winding group 102 and are arranged on opposite sides of the winding core 404. As shown in FIG. 8B, the positive electrode tab 405 and the negative electrode tab 406 are welded, so that a gas discharge path 114 without an obstacle can be secured on the opposite sides of the core 404. As a result, even under abnormal circumstances, even if gas generation locations are unevenly distributed within the electrode winding group 102, gas discharge is kept good.
  • the positive electrode current collector plate 104 and the negative electrode current collector plate 105 are each covered with an insulating cover 111 produced by resin molding.
  • the insulating cover 111 is formed with an electrode opening 303 through which the positive terminal 109 or the negative terminal 110 is inserted, and a gas discharge opening 302 having the same position and the same size as the opening 602.
  • the insulating cover 111 is preferably made of a thermoplastic resin such as polypropylene or polyphenylene sulfide, or a thermosetting resin such as a phenol resin, a melamine resin, or an unsaturated polyester.
  • the electrode winding group 102, the positive electrode current collector plate 104, the negative electrode current collector plate 105, and the insulating cover 111 are integrated into the battery can 101.
  • the electrode winding group 102, the positive electrode current collector plate 104, the negative electrode current collector plate 105, and the insulating cover 111 are integrated into the battery can 101.
  • a resin gasket 112 (first gasket) is disposed on each electrode terminal.
  • a resin gasket 115 (second gasket) is disposed on each electrode terminal, and each electrode terminal and the battery container are fixed by a nut 113.
  • the first gasket and the second gasket are preferably made of a thermoplastic resin such as polypropylene or polyphenylene sulfide, or a thermosetting resin such as a phenol resin, a melamine resin, or an unsaturated polyester.
  • an electrolyte containing lithium ions is injected from the injection hole 301 in a low humidity environment and sealed with the injection plug 107 to complete the assembly of the lithium ion battery 100.
  • FIG. 10 shows a path through which gas is discharged from a lithium ion battery that has expanded in the event of abnormal heat generation.
  • the positive electrode side will be described as an example.
  • the gas generated in one region (the region above the core 404 in the figure) obtained by dividing the battery can 101 into two parts by a plane parallel to the flat surface 1001 of the battery can 101 passes through the opening 602 of the positive electrode current collector plate 104.
  • the gas passes through the gas discharge opening 302 of the insulating cover 111 and is efficiently discharged from the cleavage valve provided outside the gas discharge opening 302.
  • the gas discharge path 114 is indicated by an arrow.
  • the gas discharge path 114 can be arranged on both sides of the core 404 of the electrode winding group 102, and even when the battery can 101 is deformed, the gas is efficiently discharged. can do.
  • the positive electrode lead and the negative electrode lead are formed using a plurality of lead pieces (tabs), but the present invention is not limited to this, and is parallel to the flat surface 1001 of the electrode winding group 102.
  • an undivided (series) lead piece may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A lithium-ion battery of the present invention comprises an electrode winding group formed by winding a positive electrode, a negative electrode, and a separator interposed therebetween, a battery can housing the electrode winding group and an electrolyte, and a cap for sealing the battery can, wherein the cap is provided with a cleavage valve. In the lithium-ion battery, a differential scanning calorimetry profile measured by combining a positive electrode mixture constituting the positive electrode in a charged state with the electrolyte is designed so as to have a heat generation sub-peak in the temperature range of 150 to 230 °C. This simultaneously improves three characteristics, including a high capacity, a high output, and a high safety, in the lithium-ion battery.

Description

リチウムイオン電池Lithium ion battery
 本発明は、車載用途等に使用される高出力、かつ、高容量のリチウムイオン電池に関するものである。 The present invention relates to a high-output and high-capacity lithium ion battery used for in-vehicle applications.
 車載用途等に使用される高出力、かつ、高容量のリチウムイオン電池は、高い安全性を維持することが望まれる。 High-power and high-capacity lithium ion batteries used for in-vehicle applications etc. are desired to maintain high safety.
 特許文献1には、一般式Li1+x1-x-yM’2-δ(式中、Mは、Mn、Co及びNiのいずれかの元素或いはこれらのうちの2つ以上の組み合わせからなる元素。M’は、周期律表の第3族元素から第11族元素の間に存在する遷移元素、或いはそれらのうちの2つ以上の組み合わせからなる元素。)で表されるリチウム遷移金属酸化物を正極に使用することで高出力化できることが記載されている。 Patent Document 1 discloses a general formula Li 1 + x M 1-xy M ′ y O 2−δ (where M is an element of Mn, Co, or Ni, or a combination of two or more thereof) M ′ is a transition element existing between a group 3 element and a group 11 element in the periodic table, or an element composed of a combination of two or more thereof. It is described that the output can be increased by using a metal oxide for the positive electrode.
 また、特許文献2には、層状リチウム遷移金属酸化物の(110)面結晶子サイズが、1000オングストローム以上であること等の物性を有することにより、発熱安定性を維持しつつ、低温下における放電容量と放電電圧を高めたリチウム二次電池を提供することが記載されている。 In addition, Patent Document 2 discloses that the (110) plane crystallite size of the layered lithium transition metal oxide has physical properties such as 1000 angstroms or more, so that the discharge at low temperature is maintained while maintaining the heat generation stability. It is described to provide a lithium secondary battery with increased capacity and discharge voltage.
特開2010-47466号公報JP 2010-47466 A 特開2004-288398号公報JP 2004-288398 A
 車載用リチウムイオン電池は、高出力化及び高容量化に加え、高い安全性が要求される。これらの特性は、正極材料の物性と密接な関係があり、特に高出力化、高容量化、および安全性はそれぞれ両立し難い関係にある。例えば、特許文献1に記載の正極材料を用いて高出力化することにより、容量低下や安全性低下が生じる。また、例えば、特許文献2に記載の正極材料は、コバルト酸リチウムであるため安全性を保てるが、高容量化のためにCoサイトにNi含有量を増やしていくと電池の安全性が著しく低下することが予測される。 車載 In-vehicle lithium-ion batteries require high safety in addition to high output and high capacity. These characteristics are closely related to the physical properties of the positive electrode material, and particularly high output, high capacity, and safety are incompatible with each other. For example, when the output is increased using the positive electrode material described in Patent Document 1, capacity reduction and safety reduction occur. In addition, for example, the positive electrode material described in Patent Document 2 is lithium cobalt oxide, so that safety can be maintained. However, if the Ni content is increased at the Co site for higher capacity, the safety of the battery is significantly reduced. Is expected to.
 また、車載用リチウムイオン電池は、高い安全性を保持するために異常発熱の際のガス排気経路を確保し、電池缶内の急激な内圧上昇を防止する必要がある。 In addition, in order to maintain high safety, in-vehicle lithium ion batteries need to secure a gas exhaust path in the event of abnormal heat generation and prevent a sudden increase in internal pressure in the battery can.
 本発明は、リチウムイオン電池において、高容量、高出力、及び高い安全性の3つの特性を同時に向上することを目的とする。 The present invention aims to simultaneously improve three characteristics of a high capacity, high output, and high safety in a lithium ion battery.
 本発明においては、充電した状態の正極を構成する正極合剤を電解液と合わせて測定した示差熱走査熱量測定のプロファイルで150~230℃の温度範囲に発熱のサブピークが現れることを特徴とするリチウムイオン電池を採用する。 The present invention is characterized in that a sub-peak of heat generation appears in a temperature range of 150 to 230 ° C. in a differential thermal scanning calorimetry profile measured by combining a positive electrode mixture constituting a positive electrode in a charged state with an electrolyte. Adopt a lithium ion battery.
 本発明によれば、電池の異常発熱の際における総発熱量を低減するとともに、電池の異常発熱の際、早期における正極合剤の発熱によって電池内部の電解液を分解してガスを発生させることができ、電池缶内からのガス抜けを促進して、急激な内圧上昇を防止することができる。 According to the present invention, the total heat generation amount in the case of abnormal heat generation of the battery is reduced, and in the case of abnormal heat generation of the battery, the electrolyte in the battery is decomposed by the heat generation of the positive electrode mixture at an early stage to generate gas. It is possible to promote gas escape from the inside of the battery can and prevent a sudden increase in internal pressure.
実施例1のリチウムイオン電池に用いた電極捲回群の構成を模式的に示す部分展開斜視図である。3 is a partially developed perspective view schematically showing the configuration of an electrode winding group used in the lithium ion battery of Example 1. FIG. 実施例1のリチウムイオン電池の組立部品の構成を示す斜視図である。1 is a perspective view showing a configuration of an assembly part of a lithium ion battery of Example 1. FIG. 実施例1のリチウムイオン電池の組立部品の構成を示す斜視図である。1 is a perspective view showing a configuration of an assembly part of a lithium ion battery of Example 1. FIG. 実施例1のリチウムイオン電池の外観を示す斜視図である。1 is a perspective view showing an external appearance of a lithium ion battery of Example 1. FIG. 実施例1及び比較例における示差熱走査熱量測定(DSC)のプロファイルを示すグラフである。It is a graph which shows the profile of differential thermal scanning calorimetry (DSC) in Example 1 and a comparative example. 実施例2のリチウムイオン電池に用いた電極捲回群の構成を模式的に示す部分展開斜視図である。6 is a partially developed perspective view schematically showing the configuration of an electrode winding group used in the lithium ion battery of Example 2. FIG. 実施例2のリチウムイオン電池を示す展開斜視図である。6 is a developed perspective view showing a lithium ion battery of Example 2. FIG. 実施例2のリチウムイオン電池を示す断面図である。3 is a cross-sectional view showing a lithium ion battery of Example 2. FIG. 実施例2のリチウムイオン電池を示す断面図である。3 is a cross-sectional view showing a lithium ion battery of Example 2. FIG. 実施例2のリチウムイオン電池の集電部の組立工程を示す部分斜視図である。6 is a partial perspective view illustrating an assembly process of a current collector of a lithium ion battery according to Embodiment 2. FIG. 実施例2のリチウムイオン電池の集電部の組立工程を示す部分斜視図である。6 is a partial perspective view illustrating an assembly process of a current collector of a lithium ion battery according to Embodiment 2. FIG. 膨張した扁平型電池缶からのガス排出経路を示す正面図である。It is a front view which shows the gas discharge path | route from the expanded flat battery can.
 以下、本発明の実施形態に係るリチウムイオン電池について説明する。 Hereinafter, a lithium ion battery according to an embodiment of the present invention will be described.
 前記リチウムイオン電池は、正極及び負極並びにこれらの間に挟み込まれたセパレータを捲回して形成した電極捲回群と、この電極捲回群及び電解液を収納した電池缶と、この電池缶を密封するための蓋とを含み、この蓋に開裂弁を設けた電池であって、充電した状態の正極を構成する正極合剤を電解液と合わせて測定した示差熱走査熱量測定のプロファイルは、150~230℃の温度範囲に発熱のサブピークを有することを特徴とする。 The lithium ion battery includes an electrode winding group formed by winding a positive electrode, a negative electrode, and a separator sandwiched between them, a battery can containing the electrode winding group and an electrolyte, and the battery can sealed The differential thermal scanning calorimetry profile of the battery including the lid and the cleavage valve provided on the lid and measured by combining the positive electrode mixture constituting the charged positive electrode with the electrolyte is 150. It has an exothermic sub-peak in a temperature range of ˜230 ° C.
 前記リチウムイオン電池においては、正極合剤は、化学式Li1+x1-yMo(式中、Mは、Ni、Mn及びCoからなる群から選択される1種類以上の金属元素である。xは0~0.20であり、yは0.025~0.055である。)で表される正極活物質を含むことが望ましい。 In the lithium ion battery, the positive electrode mixture is represented by the chemical formula Li 1 + x M 1-y Mo y O 2 (wherein M is one or more metal elements selected from the group consisting of Ni, Mn, and Co). X is preferably from 0 to 0.20, and y is preferably from 0.025 to 0.055).
 前記リチウムイオン電池においては、正極活物質は、層状のリチウム遷移金属酸化物であり、その(003)面結晶子サイズが30~80nmであることが望ましい。 In the lithium ion battery, the positive electrode active material is preferably a layered lithium transition metal oxide, and the (003) plane crystallite size is preferably 30 to 80 nm.
 前記リチウムイオン電池においては、蓋は、電極捲回群の捲回軸に直交する面に配置されていることが望ましい。 In the lithium ion battery, the lid is preferably disposed on a surface orthogonal to the winding axis of the electrode winding group.
 以下、リチウムイオン電池(リチウムイオン二次電池)の実施例について図面を用いて説明する。 Examples of lithium ion batteries (lithium ion secondary batteries) will be described below with reference to the drawings.
 本実施例においては、異常発熱が生じた場合に発生するガスを早期に放出することによって、電池の内圧上昇を防止することが可能なリチウムイオン電池について説明する。 In this embodiment, a lithium ion battery capable of preventing an increase in internal pressure of the battery by releasing gas generated when abnormal heat generation occurs at an early stage will be described.
 図1は、リチウムイオン電池に用いた電極捲回群の構成を模式的に示す部分展開斜視図である。 FIG. 1 is a partially developed perspective view schematically showing the configuration of an electrode winding group used in a lithium ion battery.
 本図に示すように、電極捲回群102は、アルミニウム箔基材の両面に正極合剤を塗布した帯状の正極401と、銅箔基材の両面に負極合剤を塗布した帯状の負極402とを2枚のセパレータ403を介して重ね合わせ、板状の巻芯404の周りに捲回して形成したものである。電極捲回群102は、巻芯404の捲回軸方向から見ると角丸長方形(いわゆるレーストラック形状)となっている。 As shown in this figure, the electrode winding group 102 includes a strip-like positive electrode 401 in which a positive electrode mixture is applied to both surfaces of an aluminum foil base material, and a strip-like negative electrode 402 in which a negative electrode mixture is applied to both surfaces of a copper foil base material. Are overlapped via two separators 403 and wound around a plate-like core 404. The electrode winding group 102 has a rounded rectangular shape (so-called race track shape) when viewed from the winding axis direction of the winding core 404.
 巻芯404は、電気絶縁性と耐熱性とを有していれば特に限定されないが、軽量化の観点から、樹脂成型によって作製されることが好ましく、例えば、ポリプロピレンやポリフェニレンスルフィド等の熱可塑性樹脂、フェノール樹脂、メラミン樹脂、又は不飽和ポリエステル等の熱硬化性樹脂が好ましく用いられる。 The core 404 is not particularly limited as long as it has electrical insulation and heat resistance, but is preferably produced by resin molding from the viewpoint of weight reduction, for example, a thermoplastic resin such as polypropylene or polyphenylene sulfide. Thermosetting resins such as phenol resins, melamine resins, and unsaturated polyesters are preferably used.
 正極401の捲回軸方向(箔の幅方向)の片側端部は、正極合剤が塗布されず、アルミニウム箔基材が露出している。一方、負極402の捲回軸方向(箔の幅方向)の片側端部も、負極合剤が塗布されず、銅箔基材が露出している。これらはそれぞれ、正極401及び負極402の集電部50、51となる。集電部50と集電部51とは、互いに反対側に配置されている。 The positive electrode mixture is not applied to one end of the positive electrode 401 in the winding axis direction (foil width direction), and the aluminum foil base material is exposed. On the other hand, the negative electrode mixture is not applied to one end of the negative electrode 402 in the winding axis direction (the width direction of the foil), and the copper foil base material is exposed. These become the current collectors 50 and 51 of the positive electrode 401 and the negative electrode 402, respectively. The current collector 50 and the current collector 51 are disposed on opposite sides.
 次に、リチウムイオン電池の組立工程について図2~4を用いて説明する。 Next, the assembly process of the lithium ion battery will be described with reference to FIGS.
 図2は、リチウムイオン電池を組み立てる前の蓋及び電極捲回群を示したものである。図3は、蓋と電極捲回群とを組み合わせたものを電池外装容器に挿入する前の状態を示したものである。図4は、組み立てたリチウムイオン電池の外観を示したものである。 FIG. 2 shows the lid and electrode winding group before assembling the lithium ion battery. FIG. 3 shows a state before the combination of the lid and the electrode winding group is inserted into the battery outer case. FIG. 4 shows the appearance of the assembled lithium ion battery.
 図2に示すように、電極捲回群102の端部に配置された正極の集電部をアルミニウム板12に、正極の反対側の端部に配置された負極の集電部を銅板11に、それぞれ、超音波溶接によって接合する。 As shown in FIG. 2, the positive current collector disposed at the end of the electrode winding group 102 is formed on the aluminum plate 12, and the negative current collector disposed on the opposite end of the positive electrode is formed on the copper plate 11. These are joined by ultrasonic welding.
 本実施例においては、この接合を超音波溶接によって行ったが、抵抗溶接やその他の接合方法により、電気的・熱的に接合できれば、特に限定されるものではない。 In this embodiment, this joining is performed by ultrasonic welding, but there is no particular limitation as long as it can be joined electrically and thermally by resistance welding or other joining methods.
 銅板11及びアルミニウム板12は、折り曲げられたL字形状となっている。 The copper plate 11 and the aluminum plate 12 are bent L-shaped.
 一方、蓋75には、負極外部端子71及び正極外部端子73並びに負極接続板72及び正極接続板74が電気的に接続されている。蓋75は、アルミニウム製であり、注液口76及びガス排出弁77を有している。 On the other hand, the negative electrode external terminal 71, the positive electrode external terminal 73, the negative electrode connection plate 72, and the positive electrode connection plate 74 are electrically connected to the lid 75. The lid 75 is made of aluminum and has a liquid injection port 76 and a gas discharge valve 77.
 電極捲回群102の集電部に接合された銅板11及びアルミニウム板12にはそれぞれ、負極接続板72及び正極接続板74を電気的に接続した。 The negative electrode connection plate 72 and the positive electrode connection plate 74 were electrically connected to the copper plate 11 and the aluminum plate 12 joined to the current collector of the electrode winding group 102, respectively.
 なお、本実施例においては、この接続を超音波溶接によって行ったが、抵抗溶接やネジによる接合、及びその他の接合方法により、電気的に接続できれば、特に限定されるものではない。 In this embodiment, this connection is performed by ultrasonic welding. However, the connection is not particularly limited as long as it can be electrically connected by resistance welding, bonding by screws, or other bonding methods.
 上述の構造により、電極捲回群102の内部の熱は、集電部が接続されているアルミニウム板112及び銅板11からそれぞれ、正極接続板74及び負極接続板72に伝達され、蓋75から突出して設置されている正極外部端子73及び負極外部端子71から放熱されるようになっている。 With the above-described structure, the heat inside the electrode winding group 102 is transmitted from the aluminum plate 112 and the copper plate 11 to which the current collector is connected to the positive electrode connection plate 74 and the negative electrode connection plate 72, respectively, and protrudes from the lid 75. Heat is dissipated from the positive external terminal 73 and the negative external terminal 71 installed.
 つぎに、図3に示すように一体化された電極捲回群102及び蓋75をアルミニウム製の電池外装容器78(電池缶)に挿入した。電池外装容器78の内壁には、絶縁シート79が設けてあり、電極捲回群102との絶縁が保たれるようになっている。そして、蓋75と電池外装容器78とをレーザー溶接にて封止することにより、図4に示す電池70を作製した。 Next, the electrode winding group 102 and the lid 75 integrated as shown in FIG. 3 were inserted into an aluminum battery outer casing 78 (battery can). An insulating sheet 79 is provided on the inner wall of the battery outer casing 78 so that insulation from the electrode winding group 102 is maintained. And the battery 70 shown in FIG. 4 was produced by sealing the lid | cover 75 and the battery exterior container 78 by laser welding.
 次に、本実施例で用いた正極活物質の作製方法を説明する。 Next, a method for manufacturing the positive electrode active material used in this example will be described.
 原料としては、酸化ニッケル、酸化マンガン及び酸化コバルト並びに酸化モリブテンを使用した。これらの酸化物は、金属元素の組成がNi+Mn+Co=96mol%、Mo=4mol%、Ni:Mn:Co=7:1:2となるように秤量し、純水を加えてスラリーとした。 As raw materials, nickel oxide, manganese oxide, cobalt oxide and molybdenum oxide were used. These oxides were weighed so that the composition of the metal elements was Ni + Mn + Co = 96 mol%, Mo = 4 mol%, Ni: Mn: Co = 7: 1: 2, and pure water was added to form a slurry.
 このスラリーは、平均粒径が0.2μmとなるまでジルコニアのビーズミルで粉砕した。このスラリーにポリビニルアルコール(PVA)溶液を固形分比に換算して1wt%添加し、さらに1時間混合した後、スプレードライヤーにより乾燥して造粒した。 The slurry was pulverized with a zirconia bead mill until the average particle size became 0.2 μm. A polyvinyl alcohol (PVA) solution was added to the slurry in an amount of 1 wt% in terms of the solid content ratio, and further mixed for 1 hour, and then dried by a spray dryer and granulated.
 この造粒した粒子(造粒粒子)に対して、Liと遷移金属との比が1.0:1~1.1:1となるように水酸化リチウムおよび炭酸リチウムを加えて粉末とした。 To the granulated particles (granulated particles), lithium hydroxide and lithium carbonate were added to form a powder so that the ratio of Li to transition metal was 1.0: 1 to 1.1: 1.
 次に、得られた粉末を750℃で10時間焼成することにより、層状構造の結晶を形成した。その後、この結晶を解砕して正極活物質を得た。そして、分級により、粒径30μm以上の粗大粒子を除去した後、この正極活物質を用いて正極を作製した。 Next, the obtained powder was fired at 750 ° C. for 10 hours to form crystals having a layered structure. Thereafter, this crystal was crushed to obtain a positive electrode active material. Then, after removing coarse particles having a particle diameter of 30 μm or more by classification, a positive electrode was produced using this positive electrode active material.
 上記の元素の配合比は一例であり、化学式Li1+x1-yMo(式中、Mは、Ni、Mn及びCoからなる群から選択される1種類以上の金属元素である。xは0~0.20であり、yは0.025~0.055である。)で表される正極活物質も同様な結果を与える。 The compounding ratio of the above elements is an example, and a chemical formula Li 1 + x M 1-y Mo y O 2 (wherein M is one or more metal elements selected from the group consisting of Ni, Mn, and Co). x is 0 to 0.20, and y is 0.025 to 0.055).
 表1は、実施例1に係る正極活物質1及び他の実施例に係る正極活物質2~8並びに後述の比較例に係る正極活物質9について組成を示したものである。 Table 1 shows the compositions of the positive electrode active material 1 according to Example 1, the positive electrode active materials 2 to 8 according to other examples, and the positive electrode active material 9 according to Comparative Examples described later.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中、Niの比率は、5~9が望ましい。 In the table, the Ni ratio is preferably 5-9.
 yが0.025より小さい場合、後述する十分なサブピークが得られない。また、yが0.055より大きい場合、正極活物質に占めるNiの比率が小さくなるため、電池性能が低下する。 When y is smaller than 0.025, a sufficient sub-peak described later cannot be obtained. On the other hand, when y is larger than 0.055, the ratio of Ni in the positive electrode active material is reduced, so that the battery performance is lowered.
 正極活物質の作製方法は、上記の方法に限定されず、共沈法など、他の方法を用いてもよい。 The method for producing the positive electrode active material is not limited to the above method, and other methods such as a coprecipitation method may be used.
 正極容量と熱安定性とを両立するため、得られた正極活物質についてX線回折(X-ray diffraction:XRD)の測定を行い、2θ≒18度に発現する回折線に起因する(003)面結晶子サイズがScherrerの式で30~80nmの範囲にあるものを選別して正極の材料とした。 In order to achieve both positive electrode capacity and thermal stability, the obtained positive electrode active material was measured by X-ray diffraction (XRD), resulting from diffraction lines appearing at 2θ≈18 degrees (003). A material having a surface crystallite size in the range of 30 to 80 nm according to Scherrer's formula was selected as a positive electrode material.
 次に、本実施例で用いた正極の作製方法を説明する。 Next, a method for manufacturing the positive electrode used in this example will be described.
 正極活物質に導電材及びPVDF系バインダを混合してスラリーを作製した。作製の際の環境は、温度30℃以下、相対湿度50%以下が望ましい。ここで、PVDFは、ポリフッ化ビニリデンの略称である。 A slurry was prepared by mixing a positive electrode active material with a conductive material and a PVDF binder. The environment for the production is desirably a temperature of 30 ° C. or less and a relative humidity of 50% or less. Here, PVDF is an abbreviation for polyvinylidene fluoride.
 正極活物質と導電材とを質量比で86:11になるように秤量し、ミキサーで混合した。この混合材とPVDF系バインダとを質量比で97:3になるように秤量し、N-メチルピロリドン(NMP)を加えて混練し、最後に脱泡してスラリーを得た。得られたスラリーは、アルミ箔の表面に展開し、アプリケーターを用いて両面に塗工し、乾燥して正極を得た。 The positive electrode active material and the conductive material were weighed to a mass ratio of 86:11 and mixed with a mixer. This mixed material and PVDF-based binder were weighed so as to have a mass ratio of 97: 3, N-methylpyrrolidone (NMP) was added and kneaded, and finally defoamed to obtain a slurry. The obtained slurry was spread on the surface of an aluminum foil, coated on both sides using an applicator, and dried to obtain a positive electrode.
 正極の熱安定性を評価するため、示差熱走査熱量測定(Differential Scanning Calorimetry:DSC)を行った。これにより得られた熱流速変化の曲線を示差熱走査熱量測定のプロファイル(DSCプロファイル)と呼ぶ。 In order to evaluate the thermal stability of the positive electrode, a differential scanning calorimetry (DSC) was performed. The curve of the change in the heat flow rate obtained in this way is called a differential thermal scanning calorimetry profile (DSC profile).
 4.2Vに充電し、充電した電池をグローブボックス内で解体し、正極を炭酸ジメチル(DMC)で洗浄した後、約5mgの正極合剤及び1μLの電解液を採取してステンレス製のパンに密封した。25℃~450℃の温度範囲を10℃/minでスイープし、熱量測定を行った。 After charging the battery to 4.2 V, disassembling the charged battery in the glove box, washing the positive electrode with dimethyl carbonate (DMC), collecting about 5 mg of the positive electrode mixture and 1 μL of the electrolyte into a stainless steel pan. Sealed. A temperature range of 25 ° C. to 450 ° C. was swept at 10 ° C./min, and calorimetry was performed.
 図5は、その結果を示したものである。横軸に温度、縦軸に単位質量あたりの熱流量をとっている。実線は本実施例を示し、破線は後述の比較例を示す。 FIG. 5 shows the result. The horizontal axis represents temperature, and the vertical axis represents heat flow per unit mass. A solid line indicates the present embodiment, and a broken line indicates a comparative example described later.
 本図から、実線で示す実施例1のDSCプロファイルは、比較例に比べて熱流量の温度依存性が低く、熱安定性が高いことがわかる。また、発熱は、約150℃から生じ始め、350℃近傍まで継続する。実施例1のDSCプロファイルは、280℃近傍にメインピークを有し、190℃近傍にサブピークを有することがわかる。一方、比較例のDSCプロファイルは、280℃近傍に急峻なメインピークを有する。 From this figure, it can be seen that the DSC profile of Example 1 indicated by the solid line has lower temperature dependency of the heat flow rate and higher thermal stability than the comparative example. Moreover, heat generation starts from about 150 ° C. and continues to around 350 ° C. It can be seen that the DSC profile of Example 1 has a main peak near 280 ° C. and a sub-peak near 190 ° C. On the other hand, the DSC profile of the comparative example has a steep main peak near 280 ° C.
 図5の実線のようなDSCプロファイルを示す正極を電池に適用することにより、電池の過熱や、内部短絡による異常発熱の際の総発熱量を小さくすることができる。また、DSCプロファイルのサブピーク(≒190℃)に由来する比較的早期の正極の発熱によって、正極と負極との間に存在する電解液の分解を促進し、電池缶内のガス抜けを促進することができ、電池の急激な内圧上昇を防止することができる。 By applying the positive electrode showing the DSC profile as shown by the solid line in FIG. 5 to the battery, the total amount of heat generated during battery overheating or abnormal heat generation due to an internal short circuit can be reduced. In addition, the relatively early heat generation of the positive electrode derived from the DSC profile sub-peak (≈190 ° C.) promotes the decomposition of the electrolyte solution present between the positive electrode and the negative electrode, and promotes outgassing in the battery can. And a sudden rise in internal pressure of the battery can be prevented.
 ここで、DSCプロファイルのベースラインから熱流速0.5W/g以上の発熱が生じた場合に熱流速が極大値に達する点を「サブピーク」と定義することにする。また、熱流速が最大値に達する点を「メインピーク」と定義する。 Here, the point at which the heat flow rate reaches the maximum value when heat generation at a heat flow rate of 0.5 W / g or more occurs from the baseline of the DSC profile is defined as “sub-peak”. The point at which the heat flow rate reaches the maximum value is defined as the “main peak”.
 本図においては、一例として、サブピークが約190℃の場合を示したが、適切なサブピークの範囲は150~230℃である。更に望ましいサブピークの範囲は180~220℃である。 In this figure, the case where the sub-peak is about 190 ° C. is shown as an example, but the appropriate sub-peak range is 150 to 230 ° C. A more desirable sub-peak range is 180 to 220 ° C.
 (比較例)
 表1に示すように、正極活物質の原料として酸化モリブテンを用いず、酸化ニッケル、酸化マンガン及び酸化コバルトを金属元素の組成比でNi:Mn:Co=7:1:2となるように秤量した点を除いて、実施例1と同様の方法を用いて正極を作製した。
(Comparative example)
As shown in Table 1, molybdenum oxide is not used as a raw material for the positive electrode active material, and nickel oxide, manganese oxide, and cobalt oxide are weighed so that the composition ratio of metal elements is Ni: Mn: Co = 7: 1: 2. A positive electrode was produced using the same method as in Example 1 except for the above.
 この正極について実施例1と同様にして示差熱走査熱量測定(DSC)を行った。この結果は、図5において破線で示した通りである。 For this positive electrode, differential thermal scanning calorimetry (DSC) was performed in the same manner as in Example 1. This result is as shown by the broken line in FIG.
 図5の破線のようなDSCプロファイルを有する正極を電池に適用した場合、電池の過熱や、内部短絡による異常発熱の際の発熱のピークが大きくなり、200℃以上における正極の急激な発熱による電解液の分解に伴う急激な電池の内圧上昇を防止することができず、安全性が低い。 When a positive electrode having a DSC profile as shown by the broken line in FIG. 5 is applied to a battery, the peak of heat generation during battery overheating or abnormal heat generation due to an internal short circuit increases, and electrolysis due to rapid heat generation of the positive electrode at 200 ° C. or higher. A sudden increase in the internal pressure of the battery due to the decomposition of the liquid cannot be prevented, and the safety is low.
 本実施例においては、実施例1の構成に加え、異常発熱が生じた場合に電池缶が変形しても、開裂弁を配置によってガス放出を良好に維持するリチウムイオン電池の例について説明する。既に説明した同一の符号を付された構成、及び同一の機能を有する部分については、説明を省略する。 In the present embodiment, in addition to the configuration of the first embodiment, an example of a lithium ion battery that maintains gas discharge well by arranging a cleavage valve even when the battery can is deformed when abnormal heat generation occurs will be described. The description of the components having the same reference numerals already described and the parts having the same functions is omitted.
 図6は、リチウムイオン電池に用いた電極捲回群の構成を模式的に示す部分展開斜視図である。 FIG. 6 is a partially developed perspective view schematically showing the configuration of the electrode winding group used in the lithium ion battery.
 正極401の捲回軸方向(箔の幅方向)の片側端部は、正極合剤が塗布されず、アルミニウム箔基材が露出している。さらに、該端部には、短冊状でアルミニウム箔からなる正極タブ405が複数形成されている。一方、負極402の捲回軸方向(箔の幅方向)の片側端部も負極合剤が塗布されず、銅箔基材が露出している。該端部にも、短冊状で銅箔からなる負極タブ406が複数形成されている。 The positive electrode mixture is not applied to one end of the positive electrode 401 in the winding axis direction (foil width direction), and the aluminum foil base material is exposed. Further, a plurality of strip-like positive electrode tabs 405 made of aluminum foil are formed at the end. On the other hand, the negative electrode mixture is not applied to one end portion of the negative electrode 402 in the winding axis direction (the foil width direction), and the copper foil base material is exposed. A plurality of strip-shaped negative electrode tabs 406 made of copper foil are also formed at the end portions.
 正極タブ405と負極タブ406とは、互いに反対側に形成されている。正極タブ405及び負極タブ406はそれぞれ、幅2~10mm、長さ15~50mmが好適である。 The positive electrode tab 405 and the negative electrode tab 406 are formed on opposite sides. Each of the positive electrode tab 405 and the negative electrode tab 406 preferably has a width of 2 to 10 mm and a length of 15 to 50 mm.
 次に、リチウムイオン電池の全体構成および組立工程について図7~9Bを用いて説明する。 Next, the overall configuration and assembly process of the lithium ion battery will be described with reference to FIGS. 7 to 9B.
 図7は、リチウムイオン電池を分解して示したものである。図8Aは、巻芯の広い面(電池の扁平面)に平行な面におけるリチウムイオン電池の断面を示したものである。図8Bは、巻芯の厚さ方向に平行な面(電池の扁平面に垂直な面)におけるリチウムイオン電池の断面を示したものである。図9Aは、リチウムイオン電池の集電部の組立工程(接合工程)を示したものである。図9Bは、リチウムイオン電池の集電部の組立工程(折り曲げ工程)を示したものである。 FIG. 7 shows an exploded view of a lithium ion battery. FIG. 8A shows a cross section of the lithium ion battery in a plane parallel to the wide surface of the core (the flat surface of the battery). FIG. 8B shows a cross section of the lithium ion battery on a plane parallel to the thickness direction of the core (a plane perpendicular to the flat surface of the battery). FIG. 9A shows the assembly process (joining process) of the current collector of the lithium ion battery. FIG. 9B shows an assembly process (bending process) of the current collector of the lithium ion battery.
 図7~8Bに示すように、リチウムイオン電池100は、電池容器(角丸長方形の断面を有する筒状の電池缶101(容器本体)の両端部が正極側封口板116及び負極側封口板103(容器蓋)によって封じられたもの)の内部に電極捲回群102(詳細は図6に示す。)が電解液とともに収容されたものである。電池容器の材料としては、アルミニウムやステンレス鋼が好ましく用いられる。すなわち、本実施例においては、実施例1と異なり、正極端子109と負極端子110とは、互いに反対側の容器蓋に配置されている。なお、電池缶101は、その横断面形状が長方形であってもよい。 As shown in FIGS. 7 to 8B, the lithium ion battery 100 includes a battery container (a cylindrical battery can 101 (container body) having a rounded rectangular cross section) at both end portions of a positive electrode side sealing plate 116 and a negative electrode side sealing plate 103. The electrode winding group 102 (details are shown in FIG. 6) is accommodated together with the electrolytic solution inside (sealed by the container lid). As the material for the battery container, aluminum or stainless steel is preferably used. That is, in the present embodiment, unlike the first embodiment, the positive electrode terminal 109 and the negative electrode terminal 110 are arranged on the container lids on the opposite sides. The battery can 101 may have a rectangular cross-sectional shape.
 以下、組立工程を説明しながら、リチウムイオン電池100の内部構造を説明する。 Hereinafter, the internal structure of the lithium ion battery 100 will be described while explaining the assembly process.
 まず、電極捲回群102の正極タブ405及び負極タブ406をそれぞれ、正極集電板104及び負極集電板105に溶接する。そして、電極捲回群102を捲回した巻芯404の溝407に集電板凸部603を嵌合する。これにより、巻芯404の両端部に正極集電板104及び負極集電板105がフランジ状に配設される。 First, the positive electrode tab 405 and the negative electrode tab 406 of the electrode winding group 102 are welded to the positive electrode current collector plate 104 and the negative electrode current collector plate 105, respectively. Then, the current collector plate protrusion 603 is fitted into the groove 407 of the winding core 404 wound around the electrode winding group 102. Thereby, the positive electrode current collecting plate 104 and the negative electrode current collecting plate 105 are disposed in a flange shape at both ends of the core 404.
 正極集電板104及び負極集電板105には、それぞれ、正極電極端子109及び負極端子110が溶接等により接続してある。正極集電板104及び負極集電板105には、開口部602(正極開口部及び負極開口部)が配置してあり、セルの内圧上昇時の排気経路になっている。 A positive electrode terminal 109 and a negative electrode terminal 110 are connected to the positive current collector 104 and the negative current collector 105 by welding or the like, respectively. The positive electrode current collector plate 104 and the negative electrode current collector plate 105 are provided with openings 602 (positive electrode openings and negative electrode openings), which serve as an exhaust path when the internal pressure of the cell increases.
 次に、樹脂成型によって作製された絶縁カバー111を正極集電板104及び負極集電板105に被せ、電極捲回群102と正極集電板104と負極集電板105と絶縁カバー111とが一体となったものを電池缶101内に挿入する。絶縁カバー111は、電極用開口部303及びガス放出用開口部302を備えている。 Next, the insulating cover 111 produced by resin molding is put on the positive electrode current collector plate 104 and the negative electrode current collector plate 105, and the electrode winding group 102, the positive electrode current collector plate 104, the negative electrode current collector plate 105, and the insulating cover 111 are formed. The integrated unit is inserted into the battery can 101. The insulating cover 111 includes an electrode opening 303 and a gas discharge opening 302.
 正極側封口板116の内側には、正極端子109のガスケット112(樹脂製)を取り付け、電池缶101の端部に正極側封口板116を溶接する。負極側封口板103の内側にも同様にして、負極端子110のガスケット112(樹脂製)を取り付け、電池缶101の端部に負極側封口板103を溶接する。溶接は、電子ビーム又はレーザーによって行う。正極側封口板116及び負極側封口板103はそれぞれ、電極端子用開口部304を備え、それらの中央部には、開裂弁108を備えている。正極側封口板116は、電解液注入用の注液孔301も備えている。 The gasket 112 (made of resin) of the positive electrode terminal 109 is attached inside the positive electrode side sealing plate 116, and the positive electrode side sealing plate 116 is welded to the end of the battery can 101. Similarly, the gasket 112 (made of resin) of the negative electrode terminal 110 is attached to the inside of the negative electrode side sealing plate 103, and the negative electrode side sealing plate 103 is welded to the end of the battery can 101. Welding is performed by an electron beam or a laser. Each of the positive electrode side sealing plate 116 and the negative electrode side sealing plate 103 includes an electrode terminal opening 304, and a central portion thereof includes a cleavage valve 108. The positive electrode side sealing plate 116 also includes a liquid injection hole 301 for injecting an electrolytic solution.
 次に、ガスケット115を正極側封口板116及び負極側封口板103の外側に取り付け、ナット113によって固定する。 Next, the gasket 115 is attached to the outside of the positive electrode side sealing plate 116 and the negative electrode side sealing plate 103 and fixed by the nut 113.
 最後に、低湿度環境下で正極側封口板116の注液孔301から電解液を注入し、注液栓107で封止して電池の組立を終了する。 Finally, the electrolytic solution is injected from the liquid injection hole 301 of the positive electrode side sealing plate 116 in a low humidity environment, and sealed with the liquid injection stopper 107 to complete the assembly of the battery.
 図8A及び8Bにおいては、非水電解液電池100は、横断面の形状が扁平な長方形、長円形もしくは角形の電池缶101内に電極捲回群102を電解液とともに収容し、正極側封口板116及び負極側封口板103で両端部を封口して構成されている。電池缶101、正極側封口板116及び負極側封口板103は、アルミニウムもしくはステンレス製のものが用いられる。正極側封口板116には、アルミニウム製の正極端子109が設けられ、負極側封口板103には、銅製の負極端子110が設けられている。正極端子109及び負極端子110はそれぞれ、アルミニウム製の正極集電板104及び銅製の負極集電板105に溶接等で接続されている。 8A and 8B, a non-aqueous electrolyte battery 100 includes an electrode winding group 102 together with an electrolyte in a rectangular, oval or rectangular battery can 101 having a flat cross-sectional shape, and a positive-side sealing plate. 116 and the negative electrode side sealing plate 103 are configured to seal both ends. The battery can 101, the positive electrode side sealing plate 116, and the negative electrode side sealing plate 103 are made of aluminum or stainless steel. The positive electrode side sealing plate 116 is provided with a positive electrode terminal 109 made of aluminum, and the negative electrode side sealing plate 103 is provided with a negative electrode terminal 110 made of copper. The positive electrode terminal 109 and the negative electrode terminal 110 are connected to the positive electrode current collector plate 104 made of aluminum and the negative electrode current collector plate 105 made of copper, respectively, by welding or the like.
 正極集電板104及び負極集電板105は、電極捲回群102が捲き付けられた筒状又は板状の巻芯404に嵌合されている。巻芯404は、樹脂成型によって作製され、熱可塑性樹脂であれば、ポリプロピレンやポリフェニレンスルフィド等が用いられ、熱硬化性樹脂であれば、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等が用いられるが、電気絶縁性と耐熱性とを有していれば特に限定されるものではない。 The positive electrode current collector plate 104 and the negative electrode current collector plate 105 are fitted to a cylindrical or plate-like core 404 to which the electrode winding group 102 is attached. The core 404 is made by resin molding, and if it is a thermoplastic resin, polypropylene or polyphenylene sulfide is used, and if it is a thermosetting resin, a phenol resin, a melamine resin, an unsaturated polyester, or the like is used, If it has electrical insulation and heat resistance, it will not specifically limit.
 負極側封口板103の中央部には、開裂弁108が設けてある。正極側封口板116には、開裂弁108に加えて注液栓107が設けてある。 A cleavage valve 108 is provided at the center of the negative electrode side sealing plate 103. The positive side sealing plate 116 is provided with a liquid injection stopper 107 in addition to the cleavage valve 108.
 正極側封口板116と正極集電板104との間、及び負極側封口板103と負極集電板105との間にはそれぞれ、絶縁カバー111が、集電板を覆うようにして配置されている。絶縁カバー111は、正極端子109及び負極端子110及び開裂弁108に対応する位置に開口部を有している。 An insulating cover 111 is disposed between the positive electrode side sealing plate 116 and the positive electrode current collector plate 104 and between the negative electrode side sealing plate 103 and the negative electrode current collector plate 105 so as to cover the current collector plate. Yes. The insulating cover 111 has openings at positions corresponding to the positive terminal 109, the negative terminal 110, and the cleavage valve 108.
 正極端子109及び負極端子110の内側(電池缶101の内側)には、樹脂製のガスケット112が設けてあり、正極端子109及び負極端子110の外側(電池缶101の外側)には、ガスケット115が設けてある。これらのガスケット112、115は、ナット113によって正極側封口板116及び負極側封口板103の外側から固定されている。絶縁カバー111及び2種類のガスケット112、115は、樹脂成型によって作製されることが好ましく、熱可塑性樹脂であれば、ポリプロピレンやポリフェニレンスルフィド等が用いられ、熱硬化性樹脂であれば、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等が用いられるが、これも電気絶縁性と耐熱性とを有していれば特に限定されるものではない。 A resin gasket 112 is provided inside the positive electrode terminal 109 and the negative electrode terminal 110 (inside the battery can 101), and a gasket 115 is provided outside the positive electrode terminal 109 and the negative electrode terminal 110 (outside the battery can 101). Is provided. These gaskets 112 and 115 are fixed from the outside of the positive side sealing plate 116 and the negative side sealing plate 103 by nuts 113. The insulating cover 111 and the two types of gaskets 112 and 115 are preferably produced by resin molding. If a thermoplastic resin, polypropylene or polyphenylene sulfide is used, and if a thermosetting resin, a phenol resin, Melamine resins, unsaturated polyesters, and the like are used, but they are not particularly limited as long as they have electrical insulation and heat resistance.
 正極タブ405及び負極タブ406は、群をなして形成されており、それぞれ、扁平型の電極捲回群102の両端部から突出している。正極タブ405及び負極タブ406は、正極集電板104及び負極集電板105にそれぞれ束ねて溶接されている。 The positive electrode tab 405 and the negative electrode tab 406 are formed in groups, and protrude from both ends of the flat electrode winding group 102, respectively. The positive electrode tab 405 and the negative electrode tab 406 are bundled and welded to the positive electrode current collector plate 104 and the negative electrode current collector plate 105, respectively.
 図8Bに示すように、正極タブ405及び負極タブ406は、電極捲回群102の巻芯(図7における巻芯404)に対して互いに反対側となる電極捲回群102の扁平部に設けてあり、且つ、巻芯に対して逆側(反対側)に配置されるように溶接されている。これにより、正極タブ405及び負極タブ406はそれぞれ、電極捲回群102の正極集電板104の側及び負極集電板105の側について半分の領域を閉塞させている。また、図8Bにおいて破線で示したガス排出経路114(正極側ガス排出経路及び負極側ガス排出経路)が巻芯の両側に設けられることとなり、電池の異常により電池内でガスが発生した際に、電池缶101が変形した場合でもガス放出経路114を確保することができる。 As shown in FIG. 8B, the positive electrode tab 405 and the negative electrode tab 406 are provided on the flat portion of the electrode winding group 102 that is opposite to the winding core (core 404 in FIG. 7) of the electrode winding group 102. And welded so as to be arranged on the opposite side (opposite side) with respect to the core. As a result, the positive electrode tab 405 and the negative electrode tab 406 respectively block half of the positive electrode current collector plate 104 side and the negative electrode current collector plate 105 side of the electrode winding group 102. In addition, gas discharge paths 114 (positive gas discharge path and negative gas discharge path) indicated by broken lines in FIG. 8B are provided on both sides of the core, and when gas is generated in the battery due to battery abnormality. Even when the battery can 101 is deformed, the gas discharge path 114 can be secured.
 以下では、図9A及び9Bを用いて主に正極側について説明するが、負極側においても同様である。 Hereinafter, the positive electrode side will be mainly described with reference to FIGS. 9A and 9B, but the same applies to the negative electrode side.
 正極集電板104は、厚さ0.5~5mmの板状部材であり、角丸長方形(長方形からなる直線領域の両端に略半円形からなる曲線領域が結合した形状、いわゆるレーストラック形状)の外形を有する。正極集電板104の外形は、巻芯404の端面の外形よりも大きく、電極捲回群102の端面の外形(角丸長方形)よりも一回り小さい。正極集電板104の端部には、正極端子109が溶接等で一体的に固定されている。また、正極集電板104の中央部には、異常発熱により発生したガスをスムーズに排出するための開口部602が設けられている。なお、負極集電板105は、正極集電板104と同様の外形を有する。また、負極集電板105には、負極端子110と開口部602とが設けられている。 The positive electrode current collector plate 104 is a plate-like member having a thickness of 0.5 to 5 mm, and has a rounded rectangular shape (a shape in which a curved region consisting of a substantially semicircular shape is coupled to both ends of a linear region consisting of a rectangle, so-called race track shape). It has the external shape. The outer shape of the positive electrode current collector plate 104 is larger than the outer shape of the end surface of the winding core 404 and slightly smaller than the outer shape of the end surface of the electrode winding group 102 (rounded rectangle). A positive electrode terminal 109 is integrally fixed to the end of the positive electrode current collector plate 104 by welding or the like. In addition, an opening 602 for smoothly discharging gas generated due to abnormal heat generation is provided at the center of the positive electrode current collector plate 104. Note that the negative electrode current collector plate 105 has the same outer shape as the positive electrode current collector plate 104. Further, the negative electrode current collector plate 105 is provided with a negative electrode terminal 110 and an opening 602.
 正極集電板104及び正極端子109は、正極基材と同じアルミニウムからなることが好ましい。一方、負極集電板105及び負極端子110は、負極基材と同じ銅からなることが好ましい。これは、異種金属同士の接触に起因する起電力が発生することを避けるためである。 The positive electrode current collector plate 104 and the positive electrode terminal 109 are preferably made of the same aluminum as the positive electrode base material. On the other hand, the negative electrode current collector plate 105 and the negative electrode terminal 110 are preferably made of the same copper as the negative electrode substrate. This is to avoid generation of electromotive force due to contact between different metals.
 図9Aに示すように、正極タブ405の群を正極集電板104の電極捲回群102側の面に配したタブ接合部601に押し付け、密着した状態で溶接等により接合する。次に、図9Bに示すように、正極集電板104を巻芯404の端部にフランジ状に(すなわち、正極集電板104のフランジ面と巻芯404の捲回軸方向とが直交するように)配設する。 As shown in FIG. 9A, the group of positive electrode tabs 405 is pressed against the tab joint portion 601 disposed on the surface of the positive electrode current collector plate 104 on the electrode winding group 102 side, and joined together by welding or the like in a close contact state. Next, as shown in FIG. 9B, the positive electrode current collector plate 104 is flanged at the end of the core 404 (that is, the flange surface of the positive electrode current collector 104 and the winding axis direction of the core 404 are orthogonal to each other). Arranged).
 図9Bにおいては、正極集電板104の開口部602の両端外側に配設された集電板凸部603と、巻芯404の溝407(巻芯凹部)とを嵌合させることにより接続固定する場合を示している。この固定方法は、部品点数を増やさない利点がある。同様にして、負極集電板105に負極タブ406の群を接合し、負極集電板105の集電板凸部603と巻芯404の溝407とを嵌合する。 In FIG. 9B, the connection is fixed by fitting the current collector plate convex portions 603 disposed outside both ends of the opening 602 of the positive electrode current collector plate 104 and the groove 407 (core concave portion) of the core 404. Shows when to do. This fixing method has an advantage of not increasing the number of parts. Similarly, the group of negative electrode tabs 406 is joined to the negative electrode current collector plate 105, and the current collector plate convex portion 603 of the negative electrode current collector plate 105 and the groove 407 of the core 404 are fitted.
 ただし、本発明は図中の固定方法に限定されるものではなく、例えば、正極集電板104の側に嵌合用凹部や嵌合孔が形成され、巻芯404の側に嵌合用凸部が形成された組合せでもよいし、正極集電板104と巻芯404とがネジ止め固定されるものでもよい。また、図面の理解を容易にするため、正極タブ405の群を長めに描いているが、正極集電板104と巻芯404とを固定する際の作業性を妨げない範囲で、正極タブ405の長さはできるだけ短い方が好ましい。 However, the present invention is not limited to the fixing method shown in the figure. For example, a fitting recess or fitting hole is formed on the positive electrode current collector plate 104 side, and a fitting projection is formed on the core 404 side. The formed combination may be used, or the positive electrode current collector plate 104 and the core 404 may be fixed with screws. Further, in order to facilitate understanding of the drawings, the group of the positive electrode tabs 405 is drawn long, but the positive electrode tabs 405 are within a range not impeding workability when fixing the positive electrode current collector plate 104 and the core 404. The length of is preferably as short as possible.
 前述したように、正極タブ405と負極タブ406とは、電極捲回群102の両端から突出しており、巻芯404を挟んで互いに反対側に配置されていることが好ましい。図8Bのように正極タブ405及び負極タブ406が溶接されることによって、巻芯404を挟んで互いに反対側に、障害物のないガス排出経路114を確保することができる。その結果、異常状況下において、電極捲回群102内部でガス発生箇所が万が一偏在した場合であっても、ガス排出が良好に保たれるようになっている。 As described above, it is preferable that the positive electrode tab 405 and the negative electrode tab 406 protrude from both ends of the electrode winding group 102 and are arranged on opposite sides of the winding core 404. As shown in FIG. 8B, the positive electrode tab 405 and the negative electrode tab 406 are welded, so that a gas discharge path 114 without an obstacle can be secured on the opposite sides of the core 404. As a result, even under abnormal circumstances, even if gas generation locations are unevenly distributed within the electrode winding group 102, gas discharge is kept good.
 次に、図7、8A及び8Bに示すように、正極集電板104及び負極集電板105のそれぞれに対して、樹脂成型によって作製した絶縁カバー111を被せる。絶縁カバー111には、正極端子109または負極端子110を挿通する電極用開口部303と、開口部602と同じ位置および同じ大きさのガス放出用開口部302とが形成されている。また、絶縁カバー111は、巻芯404と同様に、ポリプロピレンやポリフェニレンスルフィド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等の熱硬化性樹脂が好ましく用いられる。 Next, as shown in FIGS. 7, 8 </ b> A and 8 </ b> B, the positive electrode current collector plate 104 and the negative electrode current collector plate 105 are each covered with an insulating cover 111 produced by resin molding. The insulating cover 111 is formed with an electrode opening 303 through which the positive terminal 109 or the negative terminal 110 is inserted, and a gas discharge opening 302 having the same position and the same size as the opening 602. Further, like the core 404, the insulating cover 111 is preferably made of a thermoplastic resin such as polypropylene or polyphenylene sulfide, or a thermosetting resin such as a phenol resin, a melamine resin, or an unsaturated polyester.
 そして、電極捲回群102と正極集電板104と負極集電板105と絶縁カバー111とが一体になったものを電池缶101内に挿入する。次に、各電極端子(正極端子109及び負極端子110のいずれか)と各容器蓋(正極側封口板116及び負極側封口板103のいずれか)との間の電気絶縁および気密を確保するために、樹脂製のガスケット112(第1ガスケット)を各電極端子に配設する。 Then, the electrode winding group 102, the positive electrode current collector plate 104, the negative electrode current collector plate 105, and the insulating cover 111 are integrated into the battery can 101. Next, in order to ensure electrical insulation and airtightness between each electrode terminal (either positive electrode terminal 109 or negative electrode terminal 110) and each container lid (either positive electrode side sealing plate 116 or negative electrode side sealing plate 103). Further, a resin gasket 112 (first gasket) is disposed on each electrode terminal.
 次に、正極側に正極側封口板116を被せ、正極側封口板116と電池缶101とを電子ビームやレーザー等で溶接する。また、負極側に負極側封口板103を被せ、負極側封口板103と電池缶101とを電子ビームやレーザー等で溶接する。正極側封口板116及び負極側封口板103には、正極端子109または負極端子110を挿通する電極端子用開口部304が形成されると共に、開裂弁108が配設されている。正極側封口板116には、電解液注入用の注液孔301も形成されている。なお、注液孔301が形成される容器蓋は、負極側封口板103であってもよい。 Next, the positive electrode side sealing plate 116 is covered on the positive electrode side, and the positive electrode side sealing plate 116 and the battery can 101 are welded by an electron beam, a laser, or the like. Further, the negative electrode side sealing plate 103 is covered on the negative electrode side, and the negative electrode side sealing plate 103 and the battery can 101 are welded by an electron beam, a laser, or the like. The positive electrode side sealing plate 116 and the negative electrode side sealing plate 103 are provided with an electrode terminal opening 304 through which the positive electrode terminal 109 or the negative electrode terminal 110 is inserted, and a cleavage valve 108 is provided. A liquid injection hole 301 for injecting an electrolytic solution is also formed in the positive electrode side sealing plate 116. The container lid in which the liquid injection hole 301 is formed may be the negative electrode side sealing plate 103.
 次に、樹脂製のガスケット115(第2ガスケット)を各電極端子に配設し、ナット113によって各電極端子と電池容器とを固定する。第1ガスケットおよび第2ガスケットも、巻芯404と同様に、ポリプロピレンやポリフェニレンスルフィド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、不飽和ポリエステル等の熱硬化性樹脂が好ましく用いられる。 Next, a resin gasket 115 (second gasket) is disposed on each electrode terminal, and each electrode terminal and the battery container are fixed by a nut 113. Similarly to the core 404, the first gasket and the second gasket are preferably made of a thermoplastic resin such as polypropylene or polyphenylene sulfide, or a thermosetting resin such as a phenol resin, a melamine resin, or an unsaturated polyester.
 最後に、低湿度環境下で注液孔301からリチウムイオンを含む電解液を注入し、注液栓107で封止してリチウムイオン電池100の組立が完了する。 Finally, an electrolyte containing lithium ions is injected from the injection hole 301 in a low humidity environment and sealed with the injection plug 107 to complete the assembly of the lithium ion battery 100.
 図10は、異常発熱の際に膨張したリチウムイオン電池からガスが排出される経路を示したものである。ここでは、例として正極側について述べる。 FIG. 10 shows a path through which gas is discharged from a lithium ion battery that has expanded in the event of abnormal heat generation. Here, the positive electrode side will be described as an example.
 電池缶101の扁平面1001に平行な面で電池缶101を二分割した一方の領域(図中、巻芯404の上方の領域)において発生したガスは、正極集電板104の開口部602を通過し、絶縁カバー111のガス放出用開口部302を通過し、ガス放出用開口部302の外側に設けてある開裂弁から効率よく排出される。本図においては、ガス排出経路114として矢印で示してある。 The gas generated in one region (the region above the core 404 in the figure) obtained by dividing the battery can 101 into two parts by a plane parallel to the flat surface 1001 of the battery can 101 passes through the opening 602 of the positive electrode current collector plate 104. The gas passes through the gas discharge opening 302 of the insulating cover 111 and is efficiently discharged from the cleavage valve provided outside the gas discharge opening 302. In this figure, the gas discharge path 114 is indicated by an arrow.
 上述の構成及び機能は、負極側についても同様である。 The above configuration and functions are the same for the negative electrode side.
 以上のように、本実施例によれば、ガス排出経路114を電極捲回群102の巻芯404の両側に配置することができ、電池缶101が変形した場合においても、効率よくガスを排出することができる。 As described above, according to the present embodiment, the gas discharge path 114 can be arranged on both sides of the core 404 of the electrode winding group 102, and even when the battery can 101 is deformed, the gas is efficiently discharged. can do.
 なお、本実施例においては、複数のリード片(タブ)を用いて正極リード及び負極リードを形成しているが、これに限定されるものではなく、電極捲回群102の扁平面1001に平行で、かつ、分割されていない(一連の)リード片を用いてもよい。 In the present embodiment, the positive electrode lead and the negative electrode lead are formed using a plurality of lead pieces (tabs), but the present invention is not limited to this, and is parallel to the flat surface 1001 of the electrode winding group 102. In addition, an undivided (series) lead piece may be used.
 11:銅板、12:アルミニウム板、50、51:集電部、70:電池、71:負極外部端子、72:負極接続板、73:正極外部端子、74:正極接続板、75:蓋、76:注液口、77:ガス排出弁、78:電池外装容器、79:絶縁シート、100:リチウムイオン電池、101:電池缶、102:電極捲回群、103:負極側封口板、104:正極集電板、105:負極集電板、107:注液栓、108:開裂弁、109:正極端子、110:負極端子、111:絶縁カバー、112:ガスケット、113:ナット、114:ガス排出経路、115:ガスケット、116:正極側封口板、301:注液孔、302:ガス放出用開口部、303:電極用開口部、304:電極用開口部、401:正極、402:負極、403:セパレータ、404:巻芯、405:正極タブ、406:負極タブ、407:溝、601:タブ接合部、602:開口部、603:集電板凸部。 11: copper plate, 12: aluminum plate, 50, 51: current collector, 70: battery, 71: negative electrode external terminal, 72: negative electrode connection plate, 73: positive electrode external terminal, 74: positive electrode connection plate, 75: lid, 76 : Liquid injection port, 77: gas discharge valve, 78: battery outer casing, 79: insulating sheet, 100: lithium ion battery, 101: battery can, 102: electrode winding group, 103: negative electrode side sealing plate, 104: positive electrode Current collector plate, 105: negative electrode current collector plate, 107: injection stopper, 108: cleavage valve, 109: positive electrode terminal, 110: negative electrode terminal, 111: insulating cover, 112: gasket, 113: nut, 114: gas discharge path 115: Gasket, 116: Positive electrode side sealing plate, 301: Injection hole, 302: Gas discharge opening, 303: Electrode opening, 304: Electrode opening, 401: Positive electrode, 402: Negative electrode, 403: Separe Motor, 404: core, 405: positive electrode tab, 406: negative electrode tab, 407: groove, 601: Tab joints, 602: opening, 603: current collector plate protrusion.

Claims (4)

  1.  正極及び負極並びにこれらの間に挟み込まれたセパレータを捲回して形成した電極捲回群と、この電極捲回群及び電解液を収納した電池缶と、この電池缶を密封するための蓋とを含み、この蓋に開裂弁を設けた電池であって、充電した状態の前記正極を構成する正極合剤を前記電解液と合わせて測定した示差熱走査熱量測定のプロファイルは、150~230℃の温度範囲に発熱のサブピークを有することを特徴とするリチウムイオン電池。 An electrode winding group formed by winding a positive electrode and a negative electrode and a separator sandwiched between them, a battery can containing the electrode winding group and an electrolyte, and a lid for sealing the battery can A battery having a lid provided with a cleavage valve, and a differential thermal scanning calorimetry profile obtained by measuring a positive electrode mixture constituting the positive electrode in a charged state together with the electrolytic solution is 150 to 230 ° C. A lithium ion battery characterized by having an exothermic sub-peak in a temperature range.
  2.  前記正極合剤は、化学式Li1+x1-yMo(式中、Mは、Ni、Mn及びCoからなる群から選択される1種類以上の金属元素である。xは0~0.20であり、yは0.025~0.055である。)で表される正極活物質を含むことを特徴とする請求項1記載のリチウムイオン電池。 The positive electrode mixture is represented by the chemical formula Li 1 + x M 1-y Mo y O 2 (wherein M is one or more metal elements selected from the group consisting of Ni, Mn and Co. x is 0 to 0) The lithium ion battery according to claim 1, further comprising: a positive electrode active material represented by the following formula:
  3.  前記正極活物質は、層状のリチウム遷移金属酸化物であり、その(003)面結晶子サイズが30~80nmであることを特徴とする請求項2記載のリチウムイオン電池。 3. The lithium ion battery according to claim 2, wherein the positive electrode active material is a layered lithium transition metal oxide and has a (003) plane crystallite size of 30 to 80 nm.
  4.  前記蓋は、前記電極捲回群の捲回軸に直交する面に配置されていることを特徴とする請求項1~3のいずれか一項に記載のリチウムイオン電池。 The lithium ion battery according to any one of claims 1 to 3, wherein the lid is disposed on a surface orthogonal to a winding axis of the electrode winding group.
PCT/JP2011/071296 2011-09-20 2011-09-20 Lithium-ion battery WO2013042176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013534466A JP5727023B2 (en) 2011-09-20 2011-09-20 Lithium ion battery
PCT/JP2011/071296 WO2013042176A1 (en) 2011-09-20 2011-09-20 Lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071296 WO2013042176A1 (en) 2011-09-20 2011-09-20 Lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2013042176A1 true WO2013042176A1 (en) 2013-03-28

Family

ID=47913991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071296 WO2013042176A1 (en) 2011-09-20 2011-09-20 Lithium-ion battery

Country Status (2)

Country Link
JP (1) JP5727023B2 (en)
WO (1) WO2013042176A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129187A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2017071846A1 (en) * 2015-10-29 2017-05-04 Lithium Energy and Power GmbH & Co. KG Energy storage device
CN109037761A (en) * 2018-07-17 2018-12-18 江苏海基新能源股份有限公司 A kind of rectangular lithium ion battery with aluminum shell and assembly method
JP2020087821A (en) * 2018-11-29 2020-06-04 株式会社豊田自動織機 Lithium nickel cobalt molybdenum oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308218A (en) * 1997-03-07 1998-11-17 Nichia Chem Ind Ltd Positive electrode active material for lithium ion secondary battery, and manufacture thereof
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2006344567A (en) * 2005-06-10 2006-12-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2011082150A (en) * 2009-09-09 2011-04-21 Hitachi Maxell Ltd Electrode for electrochemical element and electrochemical element using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI302760B (en) * 2004-01-15 2008-11-01 Lg Chemical Ltd Electrochemical device comprising aliphatic nitrile compound
JP5205424B2 (en) * 2010-08-06 2013-06-05 株式会社日立製作所 Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308218A (en) * 1997-03-07 1998-11-17 Nichia Chem Ind Ltd Positive electrode active material for lithium ion secondary battery, and manufacture thereof
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2006344567A (en) * 2005-06-10 2006-12-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2011082150A (en) * 2009-09-09 2011-04-21 Hitachi Maxell Ltd Electrode for electrochemical element and electrochemical element using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129187A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPWO2015129187A1 (en) * 2014-02-28 2017-03-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US10340521B2 (en) 2014-02-28 2019-07-02 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
WO2017071846A1 (en) * 2015-10-29 2017-05-04 Lithium Energy and Power GmbH & Co. KG Energy storage device
CN109075286A (en) * 2015-10-29 2018-12-21 锂能源和电力有限责任两合公司 Energy storage device
CN109037761A (en) * 2018-07-17 2018-12-18 江苏海基新能源股份有限公司 A kind of rectangular lithium ion battery with aluminum shell and assembly method
JP2020087821A (en) * 2018-11-29 2020-06-04 株式会社豊田自動織機 Lithium nickel cobalt molybdenum oxide
JP7099286B2 (en) 2018-11-29 2022-07-12 株式会社豊田自動織機 Lithium Nickel Cobalt Molybdenum Oxide

Also Published As

Publication number Publication date
JP5727023B2 (en) 2015-06-03
JPWO2013042176A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP4416770B2 (en) Assembled battery
JP6112338B2 (en) Secondary battery
JP5611251B2 (en) Sealed secondary battery
WO2009157507A1 (en) Lithium ion secondary cell
WO2011161755A1 (en) Lithium secondary battery
KR20080079607A (en) Non-aqueous electrolyte secondary battery
WO2015075766A1 (en) Assembled battery
JP5334894B2 (en) Lithium ion secondary battery
JP2014056716A (en) Sealed secondary battery
KR102137697B1 (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
JP5727023B2 (en) Lithium ion battery
JP2008305645A (en) Battery
CN106558725B (en) Lithium ion secondary battery
JPWO2019186849A1 (en) Batteries, battery packs, power storage devices, vehicles and flying objects
JP2011150819A (en) Lithium secondary battery and method for manufacturing electrode thereof
US11728518B2 (en) Rectangular secondary battery
EP3270445A1 (en) Nonaqueous electrolyte battery and battery pack
JPWO2014033827A1 (en) Secondary battery
JP2009059571A (en) Current collector for battery, and battery using this
JP4590856B2 (en) Sealed battery
JP7024109B2 (en) Batteries, battery packs, battery modules, power storage devices, vehicles and flying objects
JP2018056017A (en) Power storage element
EP4012832A1 (en) Battery
JP7155290B2 (en) Batteries, battery packs, power storage devices, vehicles and flying objects
JPWO2018198469A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872837

Country of ref document: EP

Kind code of ref document: A1