JP2011150819A - Lithium secondary battery and method for manufacturing electrode thereof - Google Patents

Lithium secondary battery and method for manufacturing electrode thereof Download PDF

Info

Publication number
JP2011150819A
JP2011150819A JP2010009613A JP2010009613A JP2011150819A JP 2011150819 A JP2011150819 A JP 2011150819A JP 2010009613 A JP2010009613 A JP 2010009613A JP 2010009613 A JP2010009613 A JP 2010009613A JP 2011150819 A JP2011150819 A JP 2011150819A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive
secondary battery
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010009613A
Other languages
Japanese (ja)
Other versions
JP2011150819A5 (en
Inventor
Kenji Hara
賢二 原
Yusuke Ono
雄介 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2010009613A priority Critical patent/JP2011150819A/en
Publication of JP2011150819A publication Critical patent/JP2011150819A/en
Publication of JP2011150819A5 publication Critical patent/JP2011150819A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable lithium secondary battery in which electrode reaction is performed with high density and high efficiency by covering current collecting leads of positive and negative electrode plates with an insulating layer having dissolution resistance to an organic electrolyte in a battery with a higher regard for input and output performance, and to solve a problem that a burr, a chip or the like in electrode processing (cutting) is one of causes of the internal short circuit of the battery, and the short circuit is further liable to be generated by a volume change of the electrode by charge and discharge, remarkably impairing the reliability of the battery. <P>SOLUTION: The current collecting leads of the strip-like positive and negative electrode plates are covered with a synthetic resin selected from at least one of thermoplastic resin having dissolution resistance to an organic electrolyte and curing resin cross-linked by heating, ultraviolet irradiation or electron beam irradiation, or a mixture of the synthetic resin with an insulating filler as an insulating layer having a thickness of the thickness of a mixture layer or smaller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池に用いられる電極、並びにその製造方法に関する。   The present invention relates to an electrode used for a lithium secondary battery and a method for producing the same.

有機電解液二次電池に代表されるリチウム二次電池は、高エネルギー密度であるメリットを活かして、主にVTRカメラやノートパソコン,携帯電話等のポータブル機器に使用されている。特に近年は負極に炭素材等の、リチウムを吸蔵,放出可能な材料を用いたいわゆるリチウム二次電池が普及している。   Lithium secondary batteries represented by organic electrolyte secondary batteries are mainly used in portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of the high energy density. Particularly in recent years, so-called lithium secondary batteries using a material capable of occluding and releasing lithium such as a carbon material for the negative electrode have become widespread.

一方、自動車産業界においては環境問題に対応すべく、動力源を完全に電池のみにした排出ガスのない電気自動車や、内燃機関エンジンと電池との両方を動力源とするハイブリッド(電気)自動車の開発が加速され、既に一部実用化されている。このような電気自動車用電源となる電池には、高エネルギー密度のみならず、高出力,高容量の性能が要求されており、これらの要求にマッチした電池としてリチウムイオン二次電池が注目され、一部では実用化されている。また、電気自動車用の電池には、電気自動車の長期の使用期間に対応すべく長寿命な性能が求められている。一般に、電気自動車に限らず、自動車では、乗車(電池使用)時より駐車(電池保存)時の時間の方が圧倒的に長いため、電池保存中の電池性能の低下を抑制する(保存性能を向上させる)ことは、自動車の性能を長期間にわたって維持することに対して大きな意義を有する。   On the other hand, in the automobile industry, in order to cope with environmental problems, electric vehicles without exhaust gas with a power source made entirely of batteries, and hybrid (electric) vehicles with both internal combustion engine engines and batteries as power sources are used. Development has been accelerated and some have already been put into practical use. Such a battery serving as a power source for electric vehicles is required to have not only high energy density but also high output and high capacity performance. Lithium ion secondary batteries are attracting attention as batteries that meet these requirements. Some have been put to practical use. In addition, a battery for an electric vehicle is required to have a long-life performance so as to correspond to a long use period of the electric vehicle. In general, not only for electric vehicles, but for cars, the time for parking (battery storage) is overwhelmingly longer than when riding (using batteries). Improving) has great significance for maintaining the performance of the automobile over a long period of time.

この電池の内部構造は、通常以下に記述するような捲回式にされる。すなわち、正極,負極共に活物質は金属箔に塗着される。そして、セパレータを挟んで正極,負極が直接接触しないように捲回され、容器となる円筒形の缶に収納、電解液注液後、キャップ封口されている。   The internal structure of this battery is usually wound as described below. That is, the active material is applied to the metal foil for both the positive electrode and the negative electrode. And it rolls so that a positive electrode and a negative electrode may not contact directly on both sides of a separator, and it is sealed in the cap after accommodating in the cylindrical can used as a container, electrolyte solution injection.

電池組立時では負極活物質として用いる炭素材は、いわばリチウムが放出しきった状態、即ち放電状態である。従って、通常正極も放電状態の活物質、例えばLiCoO2(コバルト酸リチウム)やLiNiO2(ニッケル酸リチウム)などが用いられる。そして、初充電することによって電池として機能させることができる。こうして必要に応じて充電,放電できるリチウム二次電池となる。 When the battery is assembled, the carbon material used as the negative electrode active material is in a state where lithium is completely released, that is, in a discharged state. Accordingly, an active material in a discharged state is usually used for the positive electrode, for example, LiCoO 2 (lithium cobaltate) or LiNiO 2 (lithium nickelate). And it can be made to function as a battery by carrying out initial charge. In this way, the lithium secondary battery can be charged and discharged as required.

一般にリチウム二次電池は、電極反応に関与する物質が化学的に活性な材料であり、充放電を行われることにより合剤層の体積変化が起こること、水分の混入により性能劣化する有機電解液を用いていること等の理由により、電池外界と電池内部構成物とが完全に隔離された密閉構造をとる。何らかの原因で電池内部もしくは外部で短絡すると発熱し、時には熱暴走を生じて電池が破裂し、周辺機器に損傷を与えてしまうことがある。   In general, a lithium secondary battery is a material in which a substance involved in an electrode reaction is a chemically active material, and a volume change of a mixture layer occurs due to charge / discharge, and an organic electrolyte whose performance deteriorates due to moisture mixing For example, the battery exterior and the battery internal components are completely isolated from each other. If a short circuit occurs inside or outside the battery for some reason, it will generate heat, sometimes causing thermal runaway, and the battery may burst, damaging peripheral devices.

リチウム二次電池の入出力特性を高める上で、正負極電極およびセパレータの薄膜化を進めることで単位面積あたりの電流密度を小さくすると共に電極反応の均一化および一定体積中の活物質量を増やして高容量化が図られている。   In order to improve the input / output characteristics of lithium secondary batteries, the current density per unit area is reduced by increasing the thickness of the positive and negative electrodes and separator, and the electrode reaction is made uniform and the amount of active material in a certain volume is increased. To increase the capacity.

特にハイブリッド電気自動車用のリチウム二次電池は、充放電電流が非常に大きいため、電極厚みは薄く、電極面積も非常に大きい。   In particular, a lithium secondary battery for a hybrid electric vehicle has a very large charge / discharge current, so that the electrode thickness is thin and the electrode area is also very large.

このようにリチウム二次電池は、誤使用,誤操作,誤動作により、場合によっては破裂,爆発等危険な壊れ方をするので、電池の安全性を確保することは、この上ない重要な課題である。更に電池の安全性を確保するためには、上記構造や使用環境への留意と共に、万が一支障が発生しても安全性を確保する必要がある。そのため、電池内部の捲回群、さらに電極にも不具合を未然に防止する対策が必要である。   As described above, since the lithium secondary battery is dangerously broken such as rupture and explosion due to misuse, misoperation, and malfunction, ensuring the safety of the battery is a most important issue. Furthermore, in order to ensure the safety of the battery, it is necessary to ensure the safety even if troubles occur in addition to the above-mentioned structure and attention to the usage environment. For this reason, it is necessary to take measures to prevent defects in the wound group inside the battery and also in the electrodes.

本発明が解決しようとする課題は、電極加工(切断)時にバリや切粉等の内部短絡の原因の一つを絶縁層で被覆すると共に充放電による体積変化によって短絡し易い集電リードを絶縁することによって、信頼性の高いリチウム二次電池を提供する。   The problem to be solved by the present invention is to cover one of the causes of internal short circuits such as burrs and chips during electrode processing (cutting) with an insulating layer and to insulate current collecting leads that are likely to be short-circuited due to volume changes due to charge and discharge Thus, a highly reliable lithium secondary battery is provided.

特許第3010781号公報Japanese Patent No. 3010781 特許第3303319号公報Japanese Patent No. 3303319

本発明は入出力性能を重視した電池に対し、正負極板の集電リードには有機電解液に溶解しない絶縁層で被覆することによって、電極反応が高密度でかつ高効率に行われ、信頼性の高いリチウム二次電池を提供することを目的とする。   In the present invention, for the battery with an emphasis on input / output performance, the current collector leads of the positive and negative electrode plates are coated with an insulating layer that does not dissolve in the organic electrolyte solution, so that the electrode reaction is performed with high density and high efficiency. An object is to provide a lithium secondary battery having high performance.

本発明は、帯状の正負極板が捲回された電極群と、前記電極群の軸方向の両側にそれぞれ配置された板状の集電部材とを備え、前記正負極板からそれぞれ導出された集電リードの先端部が前記集電部材に接合された有機電解液二次電池において、前記帯状の正負極板の集電リードには有機電解液に対して耐溶性を有する熱可塑性樹脂もしくは加熱,紫外線照射,電子線照射により架橋する硬化性樹脂の少なくとも一つから選ばれた合成樹脂もしくは絶縁性フィラーと前記合成樹脂の混合物を合剤層の厚み以下の厚みを有する絶縁層で被覆されていることを特徴とする。   The present invention includes an electrode group in which strip-like positive and negative electrode plates are wound, and plate-like current collecting members respectively disposed on both sides in the axial direction of the electrode group, and each is derived from the positive and negative electrode plates. In the organic electrolyte secondary battery in which the tip portion of the current collecting lead is joined to the current collecting member, the current collecting lead of the strip-like positive and negative electrode plates is a thermoplastic resin having resistance to the organic electrolyte or heating. A synthetic resin selected from at least one of curable resins that are crosslinked by ultraviolet irradiation and electron beam irradiation, or a mixture of the insulating filler and the synthetic resin is coated with an insulating layer having a thickness equal to or less than the thickness of the mixture layer. It is characterized by being.

帯状の正負極板が捲回された電極群と、前記電極群の両側にそれぞれ配置された円盤状の集電部材とを備え、前記正負極板からそれぞれ導出された集電リードの先端部が前記集電部材に接合された有機電解液二次電池において、前記帯状の正負極板の集電リードには有機電解液に溶解しない熱可塑性樹脂もしくは加熱,紫外線照射,電子線照射により架橋する硬化性樹脂の少なくとも一つから選ばれた合成樹脂もしくは絶縁性フィラーと前記合成樹脂の混合物を合剤層の厚み以下の厚みを有する絶縁層で被覆することによって、入出力性能を重視した電池に対し、正負極板の集電リードには有機電解液に溶解しない絶縁層で被覆することによって、電極反応が高密度でかつ高効率に行われ、信頼性の高いリチウム二次電池を提供することができる。   An electrode group in which a belt-like positive and negative electrode plate is wound, and a disk-shaped current collecting member disposed on each side of the electrode group, and a tip portion of a current collecting lead led out from the positive and negative electrode plate, In the organic electrolyte secondary battery bonded to the current collecting member, the current collecting lead of the strip-like positive and negative electrode plates is a thermoplastic resin that does not dissolve in the organic electrolyte solution or is cured by crosslinking by heating, ultraviolet irradiation, or electron beam irradiation. By covering the synthetic resin selected from at least one of the functional resins or a mixture of the insulating filler and the synthetic resin with an insulating layer having a thickness equal to or less than the thickness of the mixture layer, the battery with an emphasis on input / output performance By coating the current collecting leads of the positive and negative electrode plates with an insulating layer that does not dissolve in the organic electrolyte, the electrode reaction can be performed with high density and high efficiency, and a highly reliable lithium secondary battery can be provided. so That.

この図は、本発明のリチウム二次電池の捲回群断面の一形態を示す模式図である。This figure is a schematic diagram showing one form of a wound group cross section of the lithium secondary battery of the present invention.

本発明のリチウム二次電池用電極、並びにリチウム二次電池の製造方法を以下順に説明する。   The lithium secondary battery electrode of the present invention and the method for producing the lithium secondary battery will be described in the following order.

(電極の作製)
極板群を構成する負極板は、負極集電体として厚さ10μmの圧延銅箔を有している。圧延銅箔の両面には、負極活物質としてリチウムイオンを吸蔵,放出可能な黒鉛粉末を含む負極合剤が均等かつ均質に塗着されている。負極合剤には、例えば、黒鉛粉末の92質量部に対して、バインダ(結着材)のポリフッ化ビニリデン(以下、PVDFと略記する。)の8質量部が配合されている。圧延銅箔に負極合剤を塗着するときには、分散溶媒のN−メチル−2−ピロリドン(以下、NMPと略記する。)が用いられる。黒鉛粉末の塗着量は、電池作製後の初充電時に正極板から放出されるリチウムイオン量と負極板に吸蔵されるリチウムイオン量とが1:1以上となるように設定されている。圧延銅箔の長寸方向一側の側縁には、幅30mmの負極合剤の未塗着部が形成されている。未塗着部は櫛状に切り欠かれており、切り欠き残部で負極リード片が形成されている。隣り合う負極リード片の間隔が50mm、負極リード片の幅が5mmに設定されている。
(Production of electrodes)
The negative electrode plate constituting the electrode plate group has a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. On both surfaces of the rolled copper foil, a negative electrode mixture containing graphite powder capable of occluding and releasing lithium ions as a negative electrode active material is uniformly and uniformly applied. For example, 8 parts by mass of a binder (binder) polyvinylidene fluoride (hereinafter abbreviated as PVDF) is blended with 92 parts by mass of graphite powder in the negative electrode mixture. When applying the negative electrode mixture to the rolled copper foil, a dispersion solvent N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is used. The amount of the graphite powder applied is set so that the amount of lithium ions released from the positive electrode plate and the amount of lithium ions occluded in the negative electrode plate at the time of initial charge after battery preparation is 1: 1 or more. An uncoated portion of a negative electrode mixture having a width of 30 mm is formed on the side edge on one side in the longitudinal direction of the rolled copper foil. The uncoated part is notched in a comb shape, and a negative electrode lead piece is formed in the notch remaining part. The interval between the adjacent negative electrode lead pieces is set to 50 mm, and the width of the negative electrode lead piece is set to 5 mm.

負極板は、乾燥後、負極合剤層の空隙率が約35体積%となるように、加熱可能なロールプレス機でプレス加工され、次いで負極合剤の未塗着部である負極リード片にビスフェノールA型エポキシ樹脂とアクリル酸共重合物の混合物をN−メチル−2−ピロリドンに溶解させた溶液をダイコーターにて片面5μm厚さで絶縁性樹脂を塗布し、熱風乾燥・架橋させた後、室温まで自然冷却させ、幅86mmに裁断されている。   After drying, the negative electrode plate is pressed with a heatable roll press so that the porosity of the negative electrode mixture layer is about 35% by volume, and then applied to the negative electrode lead piece that is an uncoated portion of the negative electrode mixture. After applying a solution in which a mixture of bisphenol A type epoxy resin and acrylic acid copolymer is dissolved in N-methyl-2-pyrrolidone to a thickness of 5 μm on one side with a die coater, drying with hot air and crosslinking It is naturally cooled to room temperature and cut to a width of 86 mm.

一方、正極板は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、例えば、上述の方法で作製したリチウム遷移金属複酸化物と無機物とを複合させた正極85質量部に対して、主たる導電材の黒鉛粉末の8質量部、副たる導電材のアセチレンブラックの2質量部及びバインダのPVDFの5質量部が配合されている。アルミニウム箔に正極合剤を塗着するときには、分散溶媒のNMPが用いられる。アルミニウム箔の長寸方向一側の側縁には、負極板と同様に幅30mmの正極合剤の未塗着部が形成されており、正極リード片が形成されている。隣り合う正極リード片の間隔が50mm、正極リード片2の幅が5mmに設定されている。正極板は、乾燥後、正極合剤層の空隙率が30体積%となるように、負極板と同様にプレス加工された後、同様の絶縁性樹脂を形成させ、幅82mmに裁断されている。   On the other hand, the positive electrode plate has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. On both sides of the aluminum foil, for example, 8 parts by mass of graphite powder as a main conductive material, subordinate conductivity with respect to 85 parts by mass of the positive electrode in which the lithium transition metal double oxide prepared by the above-described method and an inorganic substance are combined. 2 parts by mass of acetylene black as a material and 5 parts by mass of PVDF as a binder are blended. When applying the positive electrode mixture to the aluminum foil, a dispersion solvent NMP is used. On the side edge on one side in the longitudinal direction of the aluminum foil, a non-coated portion of a positive electrode mixture having a width of 30 mm is formed as in the negative electrode plate, and a positive electrode lead piece is formed. The interval between the adjacent positive electrode lead pieces is set to 50 mm, and the width of the positive electrode lead piece 2 is set to 5 mm. After drying, the positive electrode plate is pressed in the same manner as the negative electrode plate so that the porosity of the positive electrode mixture layer is 30% by volume, and then the same insulating resin is formed and cut into a width of 82 mm. .

(セル作製)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器及びポリプロピレン製で中空円筒状の軸芯に帯状の正負極板がセパレータを介して断面渦巻状に捲回された極板群を有している。
(Cell production)
As shown in FIG. 1, the cylindrical lithium ion secondary battery of the present embodiment is a nickel-plated steel bottomed cylindrical battery container and a polypropylene hollow cylindrical shaft core with a strip-shaped positive battery. The negative electrode plate has a group of electrode plates wound in a spiral shape through a separator.

極板群の上側には、軸芯のほぼ延長線上に正極板からの電位を集電するためのアルミニウム製の正極集電リングが配置されている。正極集電リングは、軸芯の上端部に固定されている。正極集電リングの周囲から一体に張り出している鍔部周縁には、正極板から導出された正極リード片の端部が超音波溶接されている。正極集電リングの上方には、正極外部端子となる円盤状の電池蓋が配置されている。電池蓋は、蓋ケースと、蓋キャップと、気密を保つ弁押えと、内圧上昇により開裂する開裂弁とで構成されており、これらが積層されて蓋ケースの周縁をカシメることで組立てられている。正極集電リングの上部には複数枚のアルミニウム製リボンを重ね合わせて構成した2本の正極リード板のうち1本の一端が固定されており、蓋ケースの下面には他の1本の一端が溶接されている。2本の正極リード板の他端同士は溶接で接続されている。   On the upper side of the electrode plate group, an aluminum positive electrode current collecting ring for collecting the electric potential from the positive electrode plate is disposed substantially on the extension line of the shaft core. The positive electrode current collecting ring is fixed to the upper end portion of the shaft core. The edge part of the positive electrode lead piece led out from the positive electrode plate is ultrasonically welded to the peripheral edge of the flange portion integrally protruding from the periphery of the positive electrode current collecting ring. A disc-shaped battery lid serving as a positive external terminal is disposed above the positive current collecting ring. The battery lid is composed of a lid case, a lid cap, a valve retainer that keeps airtightness, and a cleavage valve that cleaves when the internal pressure rises, and these are stacked and assembled by crimping the periphery of the lid case Yes. One end of two positive electrode lead plates formed by stacking a plurality of aluminum ribbons is fixed to the upper part of the positive electrode current collecting ring, and the other end of the other one is fixed to the lower surface of the lid case. Are welded. The other ends of the two positive electrode lead plates are connected by welding.

一方、極板群の下側には負極板からの電位を集電するための銅製の負極集電リングが配置されている。負極集電リングの内周面には軸芯の下端部外周面が固定されている。負極集電リングの外周縁には、負極板から導出された負極リード片の端部が溶接されている。負極集電リングの下部には電気的導通のための銅製の負極リード板が溶接されており、負極リード板は電池容器の内底部に溶接されている。電池容器は、本例では、外径40mm,内径39mmに設定されている。   On the other hand, a negative electrode current collector ring made of copper for collecting electric potential from the negative electrode plate is disposed below the electrode plate group. The outer peripheral surface of the lower end portion of the shaft core is fixed to the inner peripheral surface of the negative electrode current collecting ring. The end of the negative electrode lead piece led out from the negative electrode plate is welded to the outer peripheral edge of the negative electrode current collecting ring. A copper negative electrode lead plate for electrical conduction is welded to the lower part of the negative electrode current collecting ring, and the negative electrode lead plate is welded to the inner bottom of the battery container. In this example, the battery container has an outer diameter of 40 mm and an inner diameter of 39 mm.

電池蓋は、絶縁性及び耐熱性のEPDM樹脂製ガスケットを介して電池容器の上部にカシメることで固定されている。このため、リチウムイオン二次電池の内部は密封されている。また、電池容器内には、図示しない非水電解液が注液されている。非水電解液には、炭酸エステルのエチレンカーボネートとジメチルカーボネートとの体積比2:3の混合溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解したものが用いられている。なお、リチウムイオン二次電池には、電池温度の上昇に応じて電気的に作動する、例えば、PTC(Positive Temperature Coefficient)素子や、電池内圧の上昇に応じて正極又は負極の電気的リードが切断される電流遮断機構は配置されていない。 The battery lid is fixed by caulking to the upper part of the battery container via an insulating and heat resistant EPDM resin gasket. For this reason, the inside of the lithium ion secondary battery is sealed. Further, a non-aqueous electrolyte (not shown) is injected into the battery container. As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as a lithium salt in a mixed solvent of a carbonate ester ethylene carbonate and dimethyl carbonate in a volume ratio of 2: 3 is used. It has been. The lithium ion secondary battery is electrically operated in response to an increase in battery temperature, for example, a PTC (Positive Temperature Coefficient) element or a positive or negative electrical lead is disconnected in response to an increase in battery internal pressure. The current interruption mechanism to be performed is not arranged.

極板群は、正極板と負極板とがこれら両極板が直接接触しないように、幅90mm,厚さ40μmで多孔質ポリエチレン製のセパレータを介して軸芯の周囲に捲回されている。正極リード片と負極リード片とは、それぞれ極板群の互いに反対側の両端面に配置されている。極板群及び正極集電リングの鍔部周面全周には、絶縁被覆が施されている。絶縁被覆には、ポリイミド製の基材の片面にヘキサメタアクリレートの粘着剤が塗布された粘着テープが用いられている。粘着テープは鍔部周面から極板群外周面に亘って一重以上巻かれている。正極板,負極板,セパレータの長さを調整することで、極板群の直径が38±0.1mmに設定されている。   In the electrode plate group, the positive electrode plate and the negative electrode plate are wound around the shaft core through a separator made of porous polyethylene having a width of 90 mm and a thickness of 40 μm so that the two electrode plates do not directly contact each other. The positive electrode lead piece and the negative electrode lead piece are respectively disposed on opposite end surfaces of the electrode plate group. Insulation coating is applied to the entire circumference of the collar surface of the electrode plate group and the positive electrode current collector ring. For the insulation coating, an adhesive tape in which a hexamethacrylate adhesive is applied to one side of a polyimide base material is used. The pressure-sensitive adhesive tape is wound one or more times from the collar peripheral surface to the electrode plate outer peripheral surface. By adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator, the diameter of the electrode plate group is set to 38 ± 0.1 mm.

次に、本実施形態に従って作製したリチウムイオン電池の実施例について説明する。   Next, examples of lithium ion batteries manufactured according to this embodiment will be described.

(実施例)
正極活物質として平均粒子径6μmのリチウムニッケルマンガンコバルト複酸化物(LiMn0.3Co0.3Ni0.42)を合成した。得られたリチウムニッケルマンガンコバルト複酸化物と、導電材として鱗片状黒鉛と、結着材としてポリフッ化ビニリデン(以下、PVDFという。)と、を重量比85:10:5で混合し、この混合物に分散溶媒のN−メチルピロリドン(以下、NMPという。)を添加,混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗布した。このとき、正極長寸方向の一方の側縁に幅30mmの未塗布部を残した。その後、乾燥,プレスした後、側縁に残した未塗布部に切り欠きを入れ、切り欠き残部を正極リード片とした上で、この正極リード片をビスフェノールA型エポキシ樹脂とアクリル酸共重合物の混合物をN−メチル−2−ピロリドンに溶解させた溶液をダイコーターにて片面5μm厚さで絶縁性樹脂を塗布し、熱風乾燥・架橋させた後、室温まで自然冷却させ、幅82mmに裁断して正極板を得た。
(Example)
Lithium nickel manganese cobalt complex oxide (LiMn 0.3 Co 0.3 Ni 0.4 O 2 ) having an average particle diameter of 6 μm was synthesized as a positive electrode active material. The obtained lithium nickel manganese cobalt composite oxide, scaly graphite as a conductive material, and polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder were mixed at a weight ratio of 85: 10: 5, and this mixture A slurry in which N-methylpyrrolidone (hereinafter referred to as NMP) as a dispersion solvent was added and kneaded was applied to both sides of an aluminum foil having a thickness of 20 μm. At this time, an uncoated part with a width of 30 mm was left on one side edge in the positive electrode longitudinal direction. Then, after drying and pressing, a notch is left in the uncoated part left on the side edge, and the remaining part of the notch is used as a positive electrode lead piece, and this positive electrode lead piece is used as a bisphenol A type epoxy resin and an acrylic acid copolymer. A solution prepared by dissolving the mixture in N-methyl-2-pyrrolidone was coated with an insulating resin with a thickness of 5 μm on one side using a die coater, dried with hot air and cross-linked, allowed to cool naturally to room temperature, and cut to a width of 82 mm Thus, a positive electrode plate was obtained.

一方、負極活物質として黒鉛粉末の92質量部に対して、ポリフッ化ビニリデン8質量部で混合し、この混合物に分散溶媒のNMPを添加,混練したスラリを厚さ10μmの圧延銅箔の両面に塗布した。圧延銅箔の長寸方向一側の側縁に幅30mmの負極合剤の未塗着部を残した。その後、乾燥,プレスした後、側縁に残した未塗布部に切り欠きを入れ、切り欠き残部を負極リード片とした上で、正極リード片と同様に絶縁性樹脂を塗布し、熱風乾燥・架橋させた後、室温まで自然冷却させ、幅86mmに裁断して負極板を得た。隣り合う負極リード片の間隔が50mm、負極リード片の幅が5mmに設定されている。   On the other hand, 92 parts by mass of graphite powder as a negative electrode active material was mixed with 8 parts by mass of polyvinylidene fluoride, and NMP as a dispersion solvent was added to this mixture, and the kneaded slurry was applied to both sides of a rolled copper foil having a thickness of 10 μm. Applied. An uncoated portion of the negative electrode mixture having a width of 30 mm was left on the side edge on one side in the longitudinal direction of the rolled copper foil. Then, after drying and pressing, a notch is made in the uncoated part left on the side edge, and after the remaining part of the notch is used as a negative electrode lead piece, an insulating resin is applied in the same manner as the positive electrode lead piece, After crosslinking, it was naturally cooled to room temperature and cut to a width of 86 mm to obtain a negative electrode plate. The interval between the adjacent negative electrode lead pieces is set to 50 mm, and the width of the negative electrode lead piece is set to 5 mm.

(比較例)
リード片に絶縁層を設けず、上記同様にして正負極板を作製した。
(Comparative example)
A positive and negative electrode plate was produced in the same manner as described above without providing an insulating layer on the lead piece.

(作製した円筒型セルの出力測定)
実施例及び比較例の各電池について、電池重量の測定を行った後、電池容量,電池抵抗を測定した。電池容量の測定では、電池を25±2℃の雰囲気にて1時間率(1C)で定電流定電圧充電(上限電圧4.1V)を3時間した後、1時間率(1C)の定電流で2.7Vまで放電したときの放電容量を測定した。電池抵抗の測定では、電池を25±2℃の雰囲気にて1時間率で4.1V定電圧充電を3時間して満充電状態とした後、1A,3A,6Aの電流値でそれぞれ11秒間放電し、5秒目の電池電圧を測定した。各電流値に対して電圧値をプロットしたとき、直線の傾きの絶対値を電池抵抗とした。
(Output measurement of the fabricated cylindrical cell)
About each battery of an Example and a comparative example, after measuring battery weight, battery capacity and battery resistance were measured. In the measurement of battery capacity, the battery was subjected to constant current and constant voltage charge (upper limit voltage 4.1 V) for 3 hours in an atmosphere of 25 ± 2 ° C. at a rate of 1 hour (1 C), and then a constant current of 1 hour rate (1 C). The discharge capacity when discharged to 2.7 V was measured. In the measurement of battery resistance, the battery was charged at a constant voltage of 4.1 V at an hour rate of 25 ± 2 ° C. for 3 hours and then fully charged for 11 seconds at current values of 1A, 3A, and 6A, respectively. The battery voltage was discharged and the battery voltage at 5 seconds was measured. When the voltage value was plotted against each current value, the absolute value of the slope of the straight line was taken as the battery resistance.

(作製した円筒型セルの圧壊試験)
実施例及び比較例の各電池について、完全充電した後2枚の平板間に入れて油圧ラムによって13kNの力で押し潰した。最大の圧力が得られた後、加圧力を解放して電圧低下,開裂弁の開裂及び内部ガス噴出等の現象発現後の電池外観について目視により観察した。
(Crush test of the produced cylindrical cell)
About each battery of an Example and a comparative example, after fully charging, it put between two flat plates, and was crushed with the force of 13 kN with the hydraulic ram. After the maximum pressure was obtained, the external pressure of the battery was released and the appearance of the battery after occurrence of phenomena such as voltage drop, cleavage of the cleavage valve and ejection of internal gas was visually observed.

Figure 2011150819
Figure 2011150819

表1に示すように、本実施形態のリチウム二次電池は、高容量,高出力でありながらも、安全性に優れている。   As shown in Table 1, the lithium secondary battery of the present embodiment is excellent in safety while having high capacity and high output.

電池性能に対しては差は見られないものの、電極作製時の切断加工では刃の磨耗によりその切断面はバリ,かえりなどの欠損の発生が起こり易く、かつ度合いも大きくなる。充放電が繰り返されると正負極合剤層の膨張・収縮により、集電リード片の一部に圧力が加わり、上記のような欠損がセパレータを強く押し当て内部短絡を引き起こす原因となる。本発明では、この内部短絡を引き起こす部分を絶縁層で被覆しているため、切断面が悪化した場合であっても信頼性の高い電池を得ることができる。   Although there is no difference in battery performance, the cutting process during electrode fabrication is likely to cause burrs, burr, and other defects due to wear of the blade, and the degree of the cutting increases. When charging / discharging is repeated, pressure is applied to a part of the current collecting lead piece due to expansion / contraction of the positive / negative electrode mixture layer, and the above-described defects strongly press the separator and cause an internal short circuit. In this invention, since the part which causes this internal short circuit is coat | covered with the insulating layer, even if it is a case where a cut surface deteriorates, a reliable battery can be obtained.

上記実施形態では、リチウムニッケルマンガンコバルト複酸化物を用いる例を示したが、本発明はこれに限定されるものではない。リチウム含有金属酸化物としては、リチウムコバルト複合酸化物,リチウムニッケル複合酸化物,リチウムニッケルマンガンコバルト複酸化物,スピネル型のマンガン酸リチウム,リチウム鉄複合酸化物等でもよい。また、Li/Mn比についても制限されるものではなく、酸化マンガンとリチウム塩との仕込み比により所望のLi/Mn比とすることができる。更に、原料として、Fe,Co,Ni,Cr,Al,Mg等の遷移金属の酸化物等を添加混合することで、結晶中のリチウムや、マンガン等の遷移金属元素の一部をこれらの遷移金属元素で置換又はドープしたリチウム含有金属酸化物としてもよく、結晶中の酸素をS,P等で置換又はドープした材料や層状岩塩型構造を有する材料としてもよい。   In the said embodiment, although the example using lithium nickel manganese cobalt complex oxide was shown, this invention is not limited to this. The lithium-containing metal oxide may be lithium cobalt composite oxide, lithium nickel composite oxide, lithium nickel manganese cobalt composite oxide, spinel type lithium manganate, lithium iron composite oxide, or the like. Moreover, it is not restrict | limited also about Li / Mn ratio, It can be set as desired Li / Mn ratio with the preparation ratio of manganese oxide and lithium salt. Furthermore, by adding and mixing transition metal oxides such as Fe, Co, Ni, Cr, Al, and Mg as raw materials, some of the transition metal elements such as lithium and manganese in the crystals are transitioned. A lithium-containing metal oxide substituted or doped with a metal element may be used, or a material in which oxygen in a crystal is substituted or doped with S, P, or the like, or a material having a layered rock salt structure.

また更に、上記実施形態では、円筒型電池について例示したが、本発明は電池の形状については限定されず、角形、その他の多角形の電池にも適用可能である。また、本発明の適用可能な構造としては、上述した電池容器に電池蓋がカシメによって封口されている構造の電池以外であっても構わない。このような構造の一例として正負外部端子が電池蓋を貫通し、電池容器内で軸芯を介して正負外部端子が押し合っている状態の電池を挙げることができる。更に本発明は、正極及び負極を捲回式の構造とせず、積層式の構造としたリチウム二次電池にも適用可能である。   Furthermore, in the above-described embodiment, the cylindrical battery is exemplified, but the present invention is not limited to the shape of the battery, and can be applied to a rectangular battery or other polygonal batteries. In addition, the structure to which the present invention can be applied may be other than a battery having a structure in which a battery lid is sealed by caulking on the battery container described above. As an example of such a structure, a battery in which positive and negative external terminals penetrate the battery lid and the positive and negative external terminals are pressed against each other via an axis in the battery container can be cited. Further, the present invention can be applied to a lithium secondary battery in which the positive electrode and the negative electrode have a stacked structure instead of a wound structure.

更にまた、上記実施形態では、負極活物質に、晶質の炭素材料を用いた場合と比べて負極集電体への密着性に優れる非晶質炭素を用いる例を示したが、天然黒鉛や、人造の各種黒鉛材,コークスなどの炭素材料等を使用してもよく、その粒子形状についても、鱗片状,球状,繊維状,塊状等、特に制限されるものではない。このような炭素材を負極活物質に用いると、断面渦巻状に捲回して電極群を形成するときの可撓性に優れ、負極からの負極活物質層の剥離離脱を防止することができる。   Furthermore, in the above embodiment, an example in which amorphous carbon having excellent adhesion to the negative electrode current collector as compared with a case where a crystalline carbon material is used is used as the negative electrode active material. Various artificial graphite materials, carbon materials such as coke, etc. may be used, and the particle shape is not particularly limited, such as scaly, spherical, fibrous or massive. When such a carbon material is used for the negative electrode active material, it is excellent in flexibility when it is wound in a cross-sectional spiral shape to form an electrode group, and separation and separation of the negative electrode active material layer from the negative electrode can be prevented.

また、本発明は、上記実施形態で例示した導電材,バインダ(結着材)には限定されず、通常用いられているいずれのものも使用可能である。本実施形態以外で用いることのできるリチウム二次電池用極板活物質結着材としては、ポリテトラフルオロエチレン(PTFE),ポリエチレン,ポリスチレン,ポリブタジエン,ブチルゴム,ニトリルゴム,スチレン/ブタジエンゴム,多硫化ゴム,ニトロセルロース,シアノエチルセルロース,各種ラテックス,アクリロニトリル,フッ化ビニル,フッ化ビニリデン,フッ化プロピレン,フッ化クロロプレン等の重合体及びこれらの混合体などがある。   Further, the present invention is not limited to the conductive material and binder (binder) exemplified in the above embodiment, and any commonly used material can be used. Examples of electrode plate active material binders for lithium secondary batteries that can be used in other embodiments include polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, and polysulfide. Examples thereof include polymers such as rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof.

更に、本実施形態では、EC,DMC,DECを体積比1:1:1で混合した混合溶媒にLiPF6を溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO4,LiAsF6,LiBF4,LiB(C654,CH3SO3Li,CF3SO3Li等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート,1,2−ジメトキシエタン,1,2−ジエトキシエタン,γ−ブチロラクトン,テトラヒドロフラン,1,3−ジオキソラン,4−メチル−1,3−ジオキソラン,ジエチルエーテル,スルホラン,メチルスルホラン,アセトニトリル,プロピオニトリル等、又はこれらの2種類以上を混合した混合溶媒を用いることができ、更に、混合配合比についても限定されるものではない。このような非水電解液を用いることにより電池容量の向上や寒冷地での使用にも適合させることが可能となる。 Furthermore, in the present embodiment, a non-aqueous electrolyte solution in which LiPF 6 is dissolved in a mixed solvent in which EC, DMC, and DEC are mixed at a volume ratio of 1: 1: 1 is illustrated, but a general lithium salt is used as an electrolyte. A nonaqueous electrolytic solution in which is dissolved in an organic solvent may be used, and the present invention is not particularly limited to the lithium salt or organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, Sulfolane, methyl sulfolane, acetonitrile, propionitrile, etc., or a mixed solvent in which two or more of these are mixed can be used, and the mixing ratio is not limited. By using such a non-aqueous electrolyte, it is possible to improve battery capacity and adapt to use in cold regions.

絶縁性の合成樹脂として、ビスフェノールA型エポキシ樹脂とアクリル酸共重合物の混合物を熱硬化させて絶縁層を形成させたが、上記エポキシ樹脂としては、特に制限はなく、例えば、ビスフェノールA型エポキシ樹脂,テトラブロモビスフェノールA型エポキシ樹脂,ビスフェノールF型エポキシ樹脂,ビスフェノールAD型エポキシ樹脂,ナフタレン型エポキシ樹脂,ビフェニル型エポキシ樹脂,テトラメチルビフェニル型エポキシ樹脂等の二官能芳香族グリシジルエーテル,フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,ジシクロペンタジエン−フェノール型エポキシ樹脂,テトラフェニロールエタン型エポキシ樹脂等の多官能芳香族グリシジルエーテル,ポリエチレングリコール型エポキシ樹脂,ポリプロピレングリコール型エポキシ樹脂,ネオペンチルグリコール型エポキシ樹脂,ジブロモネオペンチルグリコール型エポキシ樹脂,ヘキサンジオール型エポキシ樹脂等の二官能脂肪族グリシジルエーテル,水添ビスフェノールA型エポキシ樹脂等の二官能脂環式グリシジルエーテル,トリメチロールプロパン型エポキシ樹脂,ソルビトール型エポキシ樹脂,グリセリン型エポキシ樹脂等の多官能脂肪族グリシジルエーテル,フタル酸ジグリシジルエステル等の二官能芳香族グリシジルエステル,テトラヒドロフタル酸ジグリシジルエステル,ヘキサヒドロフタル酸ジグリシジルエステル,ダイマー酸ジグリシジルエステル,水添ダイマー酸ジグリシジルエステル等の二官能脂環式グリシジルエステル,N,N−ジグリシジルアニリン,N,N−ジグリシジルトリフルオロメチルアニリン等の二官能芳香族グリシジルアミン,N,N,N′,N′−テトラグリシジル−4,4−ジアミノジフェニルメタン,1,3−ビス(N,N−グリシジルアミノメチル)シクロヘキサン,N,N,O−トリグリシジル−p−アミノフェノール等の多官能芳香族グリシジルアミン,アリサイクリックジエポキシアセタール,アリサイクリックジエポキシアジペート,アリサイクリックジエポキシカルボキシレート,ビニルシクロヘキセンジオキシド等の二官能脂環式エポキシ樹脂,ジグリシジルヒダントイン等の二官能複素環式エポキシ樹脂,トリグリシジルイソシアヌレート等の多官能複素環式エポキシ樹脂,オルガノポリシロキサン型エポキシ樹脂等の二官能又は多官能ケイ素含有エポキシ樹脂,上記した二官能タイプのエポキシ樹脂と脂肪族ジカルボン酸(コハク酸,グルタル酸,アジピン酸,ピメリン酸,アゼライン酸,セバシン酸,ドデカン二酸,エイコサン二酸,アルキレンエーテル結合含有ジカルボン酸,アルキレンカーボネート結合含有ジカルボン酸,ブタジエン結合含有ジカルボン酸,水添ブタジエン結合含有ジカルボン酸,ジメチルシロキサン結合含有ジカルボン酸等)及び/又は脂環式ジカルボン酸(1,4−シクロヘキサンジカルボン酸,ダイマー酸,水添ダイマー酸等)との鎖伸長反応で得られたエポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、単独で又は二種類以上組み合わせて用いられる。ラウリルアクレート/アクリル酸共重合物とポリオキサゾリン,ポリイソシアナート,メラミン樹脂,ポリカルボジイミド,ポリオール,ポリアミン等アクリル多官能モノマーを混合し、加熱,紫外線照射,電子線照射によりアクリル架橋させる方法やトリアジン系架橋剤,シリコン系架橋剤,ビニルシラン系架橋剤等を用いた架橋方法等も挙げることができる。これらの樹脂を有機溶剤、例えば、N−メチル−2−ピロリドン,N,N−ジメチルアセトアミド,N,N−ジメチルホルムアミド等のアミド類,N,N−ジメチルエチレンウレア,N,N−ジメチルプロピレンウレア,テトラメチルウレア等のウレア類,γ−ブチロラクトン,γ−カプロラクトン等のラクトン類,プロピレンカーボネート等のカーボネート類,メチルエチルケトン,メチルイソブチルケトン,シクロヘキサノン等のケトン類,酢酸エチル,酢酸n−ブチル,ブチルセロソルブアセテート,ブチルカルビトールアセテート,エチルセロソルブアセテート,エチルカルビトールアセテート等のエステル類,ジグライム,トリグライム,テトラグライム等のグライム類,トルエン,キシレン,シクロヘキサン等の炭化水素類,スルホラン等のスルホン類など単独で又は二種類以上組み合わせて溶媒に溶解させて用いられる。   As an insulating synthetic resin, a mixture of a bisphenol A type epoxy resin and an acrylic acid copolymer was thermally cured to form an insulating layer, but the epoxy resin is not particularly limited. For example, a bisphenol A type epoxy Resin, tetrabromobisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, etc. bifunctional aromatic glycidyl ether, phenol novolac type Polyfunctional aromatic glycidyl ether such as epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene-phenol type epoxy resin, tetraphenylolethane type epoxy resin, polyethylene glycol type epoxy resin, Bifunctional alicyclics such as bifunctional aliphatic glycidyl ethers such as propylene glycol type epoxy resin, neopentyl glycol type epoxy resin, dibromoneopentyl glycol type epoxy resin, hexanediol type epoxy resin, and hydrogenated bisphenol A type epoxy resin Polyfunctional aliphatic glycidyl ethers such as glycidyl ether, trimethylolpropane type epoxy resin, sorbitol type epoxy resin, glycerin type epoxy resin, bifunctional aromatic glycidyl ester such as diglycidyl phthalate, tetrahydrophthalic acid diglycidyl ester, hexa Bifunctional alicyclic glycidyl ester such as hydrophthalic acid diglycidyl ester, dimer acid diglycidyl ester, hydrogenated dimer acid diglycidyl ester, N, N-diglycidyl aniline, , N-diglycidyltrifluoromethylaniline, etc., bifunctional aromatic glycidylamine, N, N, N ′, N′-tetraglycidyl-4,4-diaminodiphenylmethane, 1,3-bis (N, N-glycidylamino) Methyl) cyclohexane, polyfunctional aromatic glycidylamines such as N, N, O-triglycidyl-p-aminophenol, alicyclic diepoxy acetals, alicyclic diepoxy adipates, alicyclic diepoxycarboxylates, vinylcyclohexene Bifunctional alicyclic epoxy resins such as dioxide, bifunctional heterocyclic epoxy resins such as diglycidylhydantoin, polyfunctional heterocyclic epoxy resins such as triglycidyl isocyanurate, organopolysiloxane type epoxy resins, etc. Polyfunctional silicon-containing epoxy Resin, bifunctional epoxy resin and aliphatic dicarboxylic acid (succinic acid, glutaric acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, dodecanedioic acid, eicosane diacid, alkylene ether bond-containing dicarboxylic acid, alkylene Carbonate-bonded dicarboxylic acid, butadiene-bonded dicarboxylic acid, hydrogenated butadiene-bonded dicarboxylic acid, dimethylsiloxane-bonded dicarboxylic acid, etc.) and / or alicyclic dicarboxylic acids (1,4-cyclohexanedicarboxylic acid, dimer acid, hydrogenated) And epoxy resins obtained by chain extension reaction with dimer acid and the like. These epoxy resins are used alone or in combination of two or more. A method in which lauryl acrylate / acrylic acid copolymer and polyoxazoline, polyisocyanate, melamine resin, polycarbodiimide, polyol, polyamine and other acrylic polyfunctional monomers are mixed and acrylic crosslinked by heating, ultraviolet irradiation, electron beam irradiation, and triazine Examples of the crosslinking method include a crosslinking agent using a silicone crosslinking agent, a silicone crosslinking agent, a vinylsilane crosslinking agent, and the like. These resins are treated with organic solvents, for example, amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea. , Ureas such as tetramethylurea, lactones such as γ-butyrolactone and γ-caprolactone, carbonates such as propylene carbonate, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, n-butyl acetate, butyl cellosolve acetate , Esters such as butyl carbitol acetate, ethyl cellosolve acetate and ethyl carbitol acetate, glymes such as diglyme, triglyme and tetraglyme, hydrocarbons such as toluene, xylene and cyclohexane, sulfur Sulfones such as holan can be used alone or in combination of two or more in a solvent.

絶縁性フィラーとしては、アルミナ粉末の他にジルコニア粉末,酸化マグネシウム,窒化ケイ素,酸化チタンなどが挙げられ、これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the insulating filler include zirconia powder, magnesium oxide, silicon nitride, and titanium oxide in addition to alumina powder. These may be used alone or in combination of two or more.

1 正極合剤層
2 正極集電体(アルミ箔)
3 負極合剤層
4 負極集電体(銅箔)
5 セパレータ
6 絶縁層
1 Positive mix layer 2 Positive current collector (aluminum foil)
3 Negative electrode mixture layer 4 Negative electrode current collector (copper foil)
5 Separator 6 Insulating layer

Claims (5)

帯状の正負極板が捲回された電極群と、前記電極群の軸方向の両側にそれぞれ配置された板状の集電部材とを備え、前記正負極板からそれぞれ導出された集電リードの先端部が前記集電部材に接合された有機電解液二次電池において、
前記帯状の正負極板の集電リードには、有機電解液に対して耐溶性を有する絶縁層で被覆されていることを特徴とするリチウム二次電池。
An electrode group in which a belt-like positive and negative electrode plate is wound, and plate-like current collecting members respectively disposed on both sides in the axial direction of the electrode group, and current collecting leads respectively led out from the positive and negative electrode plates In the organic electrolyte secondary battery whose tip is joined to the current collecting member,
The lithium secondary battery, wherein the current collecting lead of the strip-like positive and negative electrode plates is covered with an insulating layer having resistance to organic electrolyte.
前記絶縁層は、熱可塑性樹脂、及び加熱・紫外線照射又は電子線照射により架橋する硬化性樹脂のいずれかの合成樹脂であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the insulating layer is a synthetic resin selected from a thermoplastic resin and a curable resin that is crosslinked by heating, ultraviolet irradiation, or electron beam irradiation. 前記絶縁層は絶縁性フィラーと合成樹脂の混合物であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the insulating layer is a mixture of an insulating filler and a synthetic resin. 前記絶縁層の厚みは、合剤層の厚み以下であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein a thickness of the insulating layer is equal to or less than a thickness of the mixture layer. 前記絶縁層は電極合剤を圧延した後に、正負極板の集電リード部にのみロールコーター方式,グラビア印刷,オフセット印刷,凸版印刷,インクジェット方式のいずれかの方式にて絶縁層を塗布,硬化して作製することを特徴とする請求項1から4のいずれかに記載のリチウム二次電池用電極の製造方法。   After the electrode mixture is rolled, the insulating layer is applied to the current collecting lead portion of the positive and negative electrode plates only by roll coater method, gravure printing, offset printing, letterpress printing, or ink jet method, and cured. The method for producing an electrode for a lithium secondary battery according to any one of claims 1 to 4, wherein the method is produced.
JP2010009613A 2010-01-20 2010-01-20 Lithium secondary battery and method for manufacturing electrode thereof Pending JP2011150819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009613A JP2011150819A (en) 2010-01-20 2010-01-20 Lithium secondary battery and method for manufacturing electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009613A JP2011150819A (en) 2010-01-20 2010-01-20 Lithium secondary battery and method for manufacturing electrode thereof

Publications (2)

Publication Number Publication Date
JP2011150819A true JP2011150819A (en) 2011-08-04
JP2011150819A5 JP2011150819A5 (en) 2013-04-18

Family

ID=44537644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009613A Pending JP2011150819A (en) 2010-01-20 2010-01-20 Lithium secondary battery and method for manufacturing electrode thereof

Country Status (1)

Country Link
JP (1) JP2011150819A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178252A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
JP2016071955A (en) * 2014-09-26 2016-05-09 トヨタ自動車株式会社 Method for manufacturing electrode for lithium ion secondary battery
WO2017057762A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
WO2018123088A1 (en) * 2016-12-28 2018-07-05 マクセルホールディングス株式会社 Wound-type battery
WO2018123089A1 (en) * 2016-12-28 2018-07-05 マクセルホールディングス株式会社 Wound battery
WO2021019958A1 (en) * 2019-07-26 2021-02-04 昭和電工マテリアルズ株式会社 Resin member, active material retaining member, electrode, lead storage battery, and electric car
CN114597604A (en) * 2022-03-21 2022-06-07 上海兰钧新能源科技有限公司 Battery processing method and battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JP2006032112A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Electrochemical element
JP2009043515A (en) * 2007-08-08 2009-02-26 Hitachi Maxell Ltd Electrode for battery, method of manufacturing the same, and battery having electrode for battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JP2006032112A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Electrochemical element
JP2009043515A (en) * 2007-08-08 2009-02-26 Hitachi Maxell Ltd Electrode for battery, method of manufacturing the same, and battery having electrode for battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178252A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
JP2016071955A (en) * 2014-09-26 2016-05-09 トヨタ自動車株式会社 Method for manufacturing electrode for lithium ion secondary battery
WO2017057762A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
WO2018123088A1 (en) * 2016-12-28 2018-07-05 マクセルホールディングス株式会社 Wound-type battery
WO2018123089A1 (en) * 2016-12-28 2018-07-05 マクセルホールディングス株式会社 Wound battery
WO2021019958A1 (en) * 2019-07-26 2021-02-04 昭和電工マテリアルズ株式会社 Resin member, active material retaining member, electrode, lead storage battery, and electric car
WO2021019628A1 (en) * 2019-07-26 2021-02-04 昭和電工マテリアルズ株式会社 Resin member, active material holding member, electrode and lead storage battery
CN114597604A (en) * 2022-03-21 2022-06-07 上海兰钧新能源科技有限公司 Battery processing method and battery
CN114597604B (en) * 2022-03-21 2024-03-15 上海兰钧新能源科技有限公司 Battery processing method and battery

Similar Documents

Publication Publication Date Title
JP5093997B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2010010117A (en) Lithium secondary battery and its manufacturing method
US20160043373A1 (en) Lithium-ion secondary cell and method for manufacturing same
JP5257700B2 (en) Lithium secondary battery
JP5590333B2 (en) Lithium ion secondary battery and its positive electrode
JP2011150819A (en) Lithium secondary battery and method for manufacturing electrode thereof
WO2010125755A1 (en) Assembled sealing body and battery using same
JP2001143762A (en) Cylindrical lithium ion battery
JP2010232089A (en) Sealed cell
JP6936670B2 (en) Separator for lithium-ion batteries
JP2010160985A (en) Lithium ion secondary cell negative electrode and lithium ion secondary cell using the same
JP2005174691A (en) Bipolar battery
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
JP5232751B2 (en) Lithium ion secondary battery
JP2013137943A (en) Lithium ion secondary battery and manufacturing method thereof
JP2009266706A (en) Lithium-ion secondary battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2009059571A (en) Current collector for battery, and battery using this
JP2007087801A (en) Lithium ion secondary battery
JP2003243036A (en) Cylindrical lithium secondary battery
JP2004259675A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP5503882B2 (en) Lithium ion battery
JP2003243037A (en) Lithium ion battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JP2004186130A (en) Non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210