JPH10298658A - Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance - Google Patents

Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance

Info

Publication number
JPH10298658A
JPH10298658A JP10219697A JP10219697A JPH10298658A JP H10298658 A JPH10298658 A JP H10298658A JP 10219697 A JP10219697 A JP 10219697A JP 10219697 A JP10219697 A JP 10219697A JP H10298658 A JPH10298658 A JP H10298658A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
steel
less
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10219697A
Other languages
Japanese (ja)
Inventor
Yuji Koyama
祐司 小山
Akihiko Takahashi
明彦 高橋
Hidehiko Sumitomo
秀彦 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10219697A priority Critical patent/JPH10298658A/en
Publication of JPH10298658A publication Critical patent/JPH10298658A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a high purity stainless steel sheet excellent in ridging resistance. SOLUTION: A high purity ferritic stainless steel, in which steel components are regulated so that the steel contains, by mass, <=0.015% C, <=0.020% N, <=1% Mn, 10.5-12% Cr, and 8×(C+N) to 0.4% Ti and further contains either of <=0.2% Si and <=0.03% Al and has the balance Fe with inevitable impurities, is used. This steel is held, in the course of hot rolling, at 970 to 1070 deg.C for >=5 min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐リジング性に優
れた11%Cr高純度フェライト系ステンレス薄鋼板の
製造方法に関するものである。
The present invention relates to a method for producing 11% Cr high-purity ferritic stainless steel sheet having excellent ridging resistance.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼は、耐食性、
加工性が優れており、さらに高価なNiを添加しないた
め、オーステナイト系ステンレス鋼に比較して安価とな
ることから、家電、建材、自動車排気系部材など広い用
途に使われている。とりわけC,Nを低下させ、さらに
Ti添加などによりこれらの元素を固定することで鋼中
の固溶C,N量の低減を図った高純度フェライト系ステ
ンレス薄鋼板は、特にプレス成形性、深絞り性に優れて
いる。
2. Description of the Related Art Ferritic stainless steel has corrosion resistance,
Since it is excellent in workability and does not add expensive Ni, it is inexpensive as compared with austenitic stainless steel. In particular, a high-purity ferritic stainless steel thin plate in which C and N are reduced and these elements are fixed by adding Ti or the like to reduce the amount of solute C and N in the steel is particularly suitable for press forming and deep forming. Excellent drawability.

【0003】一般に、フェライト系ステンレス薄鋼板を
プレス成形するとリジングとよばれる圧延方向に沿った
縞状の凹凸が生じる。リジングは成形品の美観を損なう
のみならず、これを除去する研磨負荷が生じるため、フ
ェライト系ステンレス鋼をプレス成形する際の問題点と
なっている。
[0003] In general, when a ferritic stainless steel sheet is press-formed, striped irregularities called ridging are produced along the rolling direction. Ridging not only impairs the aesthetics of the molded product, but also causes a polishing load to remove it, which is a problem when press-forming ferritic stainless steel.

【0004】フェライト系ステンレス鋼のリジング発生
機構については数多く報告されているが、鋳造時の凝固
組織や熱延および熱延焼鈍組織に存在する圧延方向に伸
びた層状の粗大なフェライトバンド組織(コロニー組
織)が、その後の冷延焼鈍後にも残存し、それぞれの組
織の塑性異方性に差があることから、プレス成形した際
に異なった変形挙動を示すため、圧延方向に沿った縞状
の凹凸が生じるという考え方が主流である。すなわち耐
リジング性の改善には、熱延板および熱延焼鈍板での粗
大なフェライトバンド組織を細かく分断することが必要
であり、これまでその対策が多数開発されてきた。
Many reports have been made on the ridging mechanism of ferritic stainless steel. However, a layered coarse ferrite band structure (colonies) extending in the rolling direction existing in the solidification structure at the time of casting, hot rolling and hot rolling annealing structure. Structure) remains after the subsequent cold-rolling annealing, and there is a difference in the plastic anisotropy of each structure. The idea that unevenness occurs is the mainstream. That is, in order to improve the ridging resistance, it is necessary to finely cut a coarse ferrite band structure in a hot-rolled sheet and a hot-rolled annealed sheet, and many measures have been developed so far.

【0005】例えば特開平4−160117号公報に
は、高温でオーステナイト相が析出するような17%C
rフェライト系ステンレス鋼の粗圧延を900℃〜11
00℃の温度範囲で行い、得られたシートバーを900
℃〜1100℃の温度範囲で保温後、仕上圧延する方法
が開示されている。この技術により、SUS430に代
表される17%Crフェライト系ステンレス鋼のリジン
グは大きく改善される。しかしながら、この公知技術に
代表されるように、従来のフェライト系ステンレス鋼の
リジング低減技術は、17%Crフェライト系ステンレ
ス鋼に対するものが主であり、本発明で取り扱うような
11%Cr−低C、N−Ti添加鋼(高純度フェライト
系ステンレス鋼)に対しては同様の効果が得られず、耐
リジング性は向上しない。
[0005] For example, Japanese Patent Application Laid-Open No. 4-160117 discloses a 17% C solution in which an austenite phase is precipitated at a high temperature.
Rough rolling of r ferritic stainless steel at 900 ° C to 11
The test was performed in a temperature range of 00 ° C.
A method is disclosed in which after the temperature is maintained in a temperature range of 1C to 1100C, finish rolling is performed. With this technology, ridging of 17% Cr ferritic stainless steel represented by SUS430 is greatly improved. However, as typified by this known technique, the conventional ridging reduction technology of ferritic stainless steel is mainly for 17% Cr ferritic stainless steel, and it is 11% Cr-low C as described in the present invention. The same effect cannot be obtained for N-Ti-added steel (high-purity ferritic stainless steel), and ridging resistance is not improved.

【0006】[0006]

【発明が解決しようとする課題】通常の11%Cr高純
度フェライト系ステンレス鋼は熱間圧延中でオーステナ
イト相がフェライトバンドを分断するのに効果のあるほ
どには生成しない。例えば、C:0.004%、N:
0.008%、Mn:0.4%、Cr:11.0%、T
i:0.16%、Si:0.5%、Al:0.04%、
残部がFeおよび不可避的不純物で構成される典型的な
11%Cr高純度フェライト系ステンレス鋼は、熱間圧
延中で生成するオーステナイト相はせいぜい5%ほどで
ある。
The normal 11% Cr high-purity ferritic stainless steel does not produce an austenite phase in hot rolling that is effective in breaking the ferrite band. For example, C: 0.004%, N:
0.008%, Mn: 0.4%, Cr: 11.0%, T
i: 0.16%, Si: 0.5%, Al: 0.04%,
In a typical 11% Cr high-purity ferritic stainless steel whose balance is composed of Fe and unavoidable impurities, the austenite phase generated during hot rolling is at most about 5%.

【0007】そこで本発明の課題は、高価な合金元素を
多量に添加することなく、11%Cr高純度フェライト
系ステンレス鋼の熱間圧延中でのオーステナイト相生成
量を高め、フェライトバンドを分断することにより、リ
ジングを低減する方法を提供することにある。
[0007] Therefore, an object of the present invention is to increase the amount of austenite phase formed during hot rolling of 11% Cr high-purity ferritic stainless steel without adding a large amount of expensive alloying elements, and to cut the ferrite band. Accordingly, an object of the present invention is to provide a method for reducing ridging.

【0008】[0008]

【課題を解決するための手段】本発明者らは、11%C
r高純度フェライト系ステンレス鋼の熱間圧延中にオー
ステナイト相を十分生成させることにより、フェライト
バンドを分断し、耐リジング性を高める方法を実験室で
詳細に検討した。その結果、鋼組成中のSi量、Al量
を低下させることで11%Cr鋼純度フェライト系ステ
ンレス鋼でも熱間圧延の温度域でオーステナイト相が十
分に生成し、熱間圧延中でオーステナイト相とフェライ
ト相の界面で再結晶が進行することで粗大なフェライト
バンドを分断することができ、耐リジング性を高めるこ
とができるとの知見を得、本発明を完成した。
Means for Solving the Problems The present inventors have proposed that 11% C
r A method was studied in detail in a laboratory to sufficiently generate an austenite phase during hot rolling of a high-purity ferritic stainless steel, thereby dividing a ferrite band and improving ridging resistance. As a result, by reducing the Si content and the Al content in the steel composition, an austenite phase is sufficiently formed in the hot rolling temperature range even in 11% Cr steel pure ferritic stainless steel, and the austenite phase is formed during hot rolling. The present inventors have found that a coarse ferrite band can be separated by the progress of recrystallization at the interface of the ferrite phase, and the ridging resistance can be improved, and the present invention has been completed.

【0009】すなわち本発明の要旨は次の通りである。
質量%で、C:0.015%以下、N:0.020%以
下、Mn:1%以下、Cr:10.5〜12%、Ti:
8×(C+N)〜0.4%を含有し、さらにSi:0.
2%以下、もしくはAl:0.03%以下のいずれか一
方を満足し、さらに必要に応じてB:0.005%以下
を含有し、残部がFeおよび不可避的不純物からなる高
純度フェライト系ステンレス鋼において、熱間圧延中の
970℃〜1070℃の温度範囲で5分以上保持するこ
とを特徴とする耐リジング性に優れた高純度フェライト
系ステンレス薄鋼板の製造方法にある。
That is, the gist of the present invention is as follows.
In mass%, C: 0.015% or less, N: 0.020% or less, Mn: 1% or less, Cr: 10.5 to 12%, Ti:
8 × (C + N) to 0.4%, and further containing Si: 0.
High-purity ferritic stainless steel that satisfies either 2% or less or Al: 0.03% or less, further contains B: 0.005% or less as necessary, and the balance is Fe and unavoidable impurities. The present invention relates to a method for producing a high-purity ferritic stainless steel sheet excellent in ridging resistance, wherein the steel is maintained at a temperature range of 970 ° C. to 1070 ° C. during hot rolling for 5 minutes or more.

【0010】[0010]

【発明の実施の形態】高純度フェライト系ステンレス鋼
のSi量もしくはAl量のいずれか一方を低減すること
により鋼中のオーステナイト相生成量が高くなる。図1
は、C:0.004%、N:0.008%、Mn:0.
4%、Cr:11.0%、Ti:0.16%でさらに
(a)Si:0.5%、Al:0.04%、(b)S
i:0.06%、Al:0.04%、(c)Si:0.
5%、Al:0.01%とした鋼を850℃〜1200
℃の各温度範囲に30分保持した際の、平衡状態での鋼
中オーステナイト相率を測定した結果である。(b)の
Si量を低下した鋼、(c)のAl量を低下した鋼は、
1150℃以下でオーステナイト相が生成し、970℃
〜1070℃の温度範囲でオーステナイト相率が高くな
り、1000℃で最大となる。1000℃でのオーステ
ナイト相率は(a)が5%しかないのに対し、(b)は
80%、(c)は45%となり、Si量あるいはAl量
を低下させることにより、オーステナイト相率が大きく
なることが分かる。また、Si低下の効果のほうがAl
低下の効果よりも大きい。フェライト相中にオーステナ
イト相が生成すると、その界面が再結晶の核生成サイト
となり、熱間圧延中の特に粗圧延後段での再結晶促進に
より、粗大なフェライトバンドを分断することができ、
耐リジング性を高めることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reduction of either the Si content or the Al content of a high-purity ferritic stainless steel increases the amount of austenite phase formed in the steel. FIG.
Are: C: 0.004%, N: 0.008%, Mn: 0.
4%, Cr: 11.0%, Ti: 0.16%, (a) Si: 0.5%, Al: 0.04%, (b) S
i: 0.06%, Al: 0.04%, (c) Si: 0.
850 ° C. to 1200% steel with 5% Al: 0.01%
It is the result of having measured the austenite phase ratio in the steel in the equilibrium state at the time of keeping for 30 minutes in each temperature range of ° C. The steel in which the amount of Si is reduced in (b) and the steel in which the amount of Al is reduced in (c) are:
An austenitic phase is formed below 1150 ° C,
The austenite ratio increases in the temperature range of -1070 ° C and reaches its maximum at 1000 ° C. The austenite phase ratio at 1000 ° C. is only 5% for (a), 80% for (b) and 45% for (c). By reducing the amount of Si or Al, the austenite phase ratio is reduced. It turns out that it becomes large. In addition, the effect of Si reduction is better for Al.
Greater than the effect of the drop. When the austenite phase is formed in the ferrite phase, the interface becomes a nucleation site for recrystallization, and the coarse ferrite band can be separated by the promotion of recrystallization during hot rolling, particularly at the later stage of rough rolling.
Ridging resistance can be increased.

【0011】次に本発明の限定範囲について述べる。本
発明対象鋼の成分含有量を限定した理由は以下の通りで
ある。 C:0.015%以下とする必要がある。0.015%
を超えて含有すると、Cr炭化物の粒界析出に伴う溶接
熱影響部の耐食性劣化が生じ易くなる。また、侵入型固
溶元素であるため鋼を強化し、0.015%を超えて含
有すると加工性が劣化する。これらの理由から、その上
限を0.015%とした。
Next, the limited range of the present invention will be described. The reasons for limiting the component content of the steel subject to the present invention are as follows. C: It is necessary to be 0.015% or less. 0.015%
When the content exceeds the range, the corrosion resistance of the weld heat affected zone is likely to be deteriorated due to the precipitation of Cr carbide at the grain boundary. Further, since it is an interstitial solid solution element, it strengthens steel, and if it exceeds 0.015%, the workability deteriorates. For these reasons, the upper limit is made 0.015%.

【0012】N:0.020%以下とする必要がある。
侵入型固溶元素であるため鋼を強化し、0.020%を
超えて含有すると加工性が劣化するため、その上限を
0.020%とした。
N: It is necessary to be 0.020% or less.
Since it is an interstitial solid-solution element, it strengthens the steel. If the content exceeds 0.020%, the workability deteriorates. Therefore, the upper limit is set to 0.020%.

【0013】Mn:1%以下とする必要がある。鋼の脱
酸に有効な元素であると共に鋼のオーステナイト相生成
能を高める元素であるが、1%を超えて含有するとMn
S生成量が増加し耐食性を劣化させるため、その上限を
1%とした。
Mn must be 1% or less. It is an element that is effective in deoxidizing steel and also enhances the austenite phase forming ability of steel.
Since the amount of S generated increases and deteriorates corrosion resistance, the upper limit is set to 1%.

【0014】Cr:10.5%以上12%以下とする必
要がある。ステンレス鋼の基本元素であり、必要な耐食
性を得るためには少なくとも10.5%以上の含有が必
要である。しかしながら、12%を超えて含有すると靭
性、加工性が劣化し、さらに合金コストが上昇するた
め、その上限を12%とした。
Cr: 10.5% or more and 12% or less. It is a basic element of stainless steel, and must contain at least 10.5% or more in order to obtain necessary corrosion resistance. However, if the content exceeds 12%, the toughness and workability deteriorate, and the alloy cost further increases. Therefore, the upper limit is set to 12%.

【0015】Ti:C+Nの8倍以上で0.4%以下と
する必要がある。C,Nと容易に結合し、マトリックス
中に固溶するC,N量を実質的に低減する作用により、
加工性を高めることができる。ただこの効果は8×(C
+N)未満の含有量では現れない。また、0.4%を超
えて含有しても、鋼の熱間加工性を低下させ、熱間圧延
中での疵発生の原因となることから、その上限を0.4
%とした。
[0015] Ti: It is necessary to be not less than 8 times and not more than 0.4% of C + N. By easily binding to C and N and substantially reducing the amount of C and N dissolved in the matrix,
Workability can be improved. However, this effect is 8 × (C
+ N) does not appear. Further, even if the content exceeds 0.4%, the hot workability of the steel is reduced, and this may cause flaws during hot rolling.
%.

【0016】Si,Al:Si量を0.2%以下、Al
量を0.03%以下のいずれか一方を満足させる必要が
ある。各元素とも鋼の脱酸材として有効な元素である
が、これらの元素の含有量を低下させることで、11%
Cr高純度フェライト系ステンレス鋼の熱間圧延中での
オーステナイト相生成能を高めることができる。この効
果が現れるのは、それぞれSi:0.2%以下、Al:
0.03%以下の場合である。
Si, Al: Si content of 0.2% or less, Al
It is necessary to satisfy one of the amounts of 0.03% or less. Each element is an effective element as a steel deoxidizer, but by reducing the content of these elements, 11%
The ability to form an austenite phase during hot rolling of Cr high-purity ferritic stainless steel can be enhanced. This effect appears when Si: 0.2% or less and Al:
0.03% or less.

【0017】B:より高い2次加工性が必要な用途の場
合には0.005%以下の範囲で添加することが有効で
ある。Bは製品を加工する際に生じた鋼中の欠陥を修復
し、2次加工性を高める効果がある。しかしながら、B
含有量が0.005%を超えると、鋼の熱間加工性を著
しく低下させ、熱間圧延中で割れや疵が生じることか
ら、その上限を0.005%とした。
B: For applications requiring higher secondary workability, it is effective to add it in an amount of 0.005% or less. B has the effect of repairing defects in the steel generated when processing the product and improving the secondary workability. However, B
If the content exceeds 0.005%, the hot workability of steel is significantly reduced, and cracks and flaws occur during hot rolling, so the upper limit was made 0.005%.

【0018】熱間圧延中の970℃〜1070℃の温度
範囲で5分以上保持する必要がある。熱間圧延中で熱力
学的な平衡状態を実現することで、図1に示したような
オーステナイト相率を得ることができる。熱間圧延中
(温度低下、変形)でオーステナイト相を生成させるこ
とで、フェライトバンドを分断し、耐リジング性を高め
ることができる。熱間圧延中の保持温度が970℃未満
もしくは1070℃を超えるとオーステナイト相はさほ
ど生成せず、その結果オーステナイト相とフェライト相
の界面を起点とした熱間圧延中の再結晶によるフェライ
トバンドを分断する効果が殆ど得られない。また保持時
間が5分未満であれば、オーステナイト相が十分に生成
せず効果が無い。
It is necessary to maintain the temperature in the range of 970 ° C. to 1070 ° C. during hot rolling for 5 minutes or more. By realizing a thermodynamic equilibrium state during hot rolling, an austenite phase ratio as shown in FIG. 1 can be obtained. By generating an austenite phase during hot rolling (temperature reduction, deformation), the ferrite band can be separated, and ridging resistance can be improved. If the holding temperature during hot rolling is less than 970 ° C. or exceeds 1070 ° C., the austenite phase is not so much formed, and as a result, the ferrite band is separated by recrystallization during hot rolling from the interface between the austenite phase and the ferrite phase. Almost no effect is obtained. If the holding time is less than 5 minutes, the austenite phase is not sufficiently formed, and there is no effect.

【0019】[0019]

【実施例】表1に示す化学成分を有する3種の11%C
r高純度フェライト系ステンレス鋼A〜Cを溶製し、連
続鋳造により250mm厚スラブとした。このスラブを表
2に示す条件で3.2mm厚まで熱間圧延し、酸洗後さら
に0.94mm厚まで冷間圧延し、最終焼鈍し製品とし
た。表2には各製品板に冷間で16%引張歪みを付与し
た際のリジング高さを測定した結果も併記する。
EXAMPLES Three types of 11% C having the chemical components shown in Table 1
r High-purity ferritic stainless steels A to C were melted and continuously cast into 250 mm thick slabs. The slab was hot-rolled to a thickness of 3.2 mm under the conditions shown in Table 2, pickled, and further cold-rolled to a thickness of 0.94 mm to obtain a final annealed product. Table 2 also shows the results of measuring the ridging height when 16% tensile strain was applied to each product sheet in the cold.

【0020】[0020]

【表1】 [Table 1]

【0021】表2において、No.1〜8が本発明方法に
従っている。Si量もしくはAl量のいずれか一方を低
下した鋼B,Cは、熱間圧延中の970℃〜1070℃
の温度範囲で5分以上保持することで耐リジング性は大
きく向上する。熱間圧延中の保持時間は長いほど耐リジ
ング性の向上効果は大きい。また、平衡状態でのオース
テナイト相生成量は1000℃で最大となるため、保持
時間が等しい場合は保持する温度が1000℃で耐リジ
ング性が最も向上する。
In Table 2, No. 1 to 8 follow the method of the present invention. Steels B and C in which either the Si content or the Al content is reduced are 970 ° C to 1070 ° C during hot rolling.
By keeping the temperature for 5 minutes or more, the ridging resistance is greatly improved. The longer the holding time during hot rolling, the greater the effect of improving ridging resistance. Further, since the amount of austenite phase formation in the equilibrium state is maximum at 1000 ° C., when the holding time is equal, the holding temperature is 1000 ° C. and the ridging resistance is most improved.

【0022】これに対して、Si量もAl量も低下して
いない鋼Aは、熱間圧延中の970℃〜1070℃で5
分以上保持しても耐リジング性は向上しない。また、S
i量もしくはAl量のいずれか一方を低下した鋼B,C
についても、熱間圧延中で保持しない場合や、保持する
温度が970℃〜1070℃の間でない場合、さらに保
持する時間が5分未満である場合には、耐リジング性は
殆ど向上しない。
On the other hand, the steel A in which neither the amount of Si nor the amount of Al has decreased is 5% at 970 ° C. to 1070 ° C. during hot rolling.
Even if it is held for more than one minute, the ridging resistance is not improved. Also, S
Steels B and C in which either the i content or the Al content is reduced
Regarding the above, when not held during hot rolling, when the holding temperature is not between 970 ° C. and 1070 ° C., and when the holding time is less than 5 minutes, the ridging resistance hardly improves.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明により、耐リジング性に優れた1
1%Cr高純度フェライト系ステンレス薄鋼板の製造が
可能となった。
According to the present invention, 1 excellent in ridging resistance can be obtained.
Production of 1% Cr high-purity ferritic stainless steel sheet is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Si量、Al量を変化させた11%Cr高純度
フェライト系ステンレス鋼を850℃〜1200℃で3
0分保持した際の鋼中オーステナイト相率を測定した結
果である。
FIG. 1 shows a sample of 11% Cr high-purity ferritic stainless steel having different amounts of Si and Al at 850 ° C. to 1200 ° C.
It is the result of having measured the austenite phase ratio in steel at the time of holding for 0 minute.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.015%以下、 N :0.020%以下、 Mn:1%以下、 Cr:10.5〜12%、 Ti:8×(C+N)〜0.4% を含有し、さらに Si:0.2%以下、 もしくは Al:0.03%以下 のいずれか一方を満足し、さらに必要に応じて B :0.005%以下 を含有し、残部がFeおよび不可避的不純物からなる高
純度フェライト系ステンレス鋼において、熱間圧延中の
970℃〜1070℃の温度範囲で5分以上保持するこ
とを特徴とする耐リジング性に優れた高純度フェライト
系ステンレス薄鋼板の製造方法。
1. Mass%, C: 0.015% or less, N: 0.020% or less, Mn: 1% or less, Cr: 10.5 to 12%, Ti: 8 × (C + N) to 0. 4%, and further satisfy either Si: 0.2% or less or Al: 0.03% or less, and further contain B: 0.005% or less as necessary, with the balance being Fe And a high-purity ferritic stainless steel having excellent ridging resistance, wherein the high-purity ferritic stainless steel is maintained at a temperature range of 970 ° C. to 1070 ° C. for 5 minutes or more during hot rolling. Steel plate manufacturing method.
JP10219697A 1997-04-18 1997-04-18 Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance Withdrawn JPH10298658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10219697A JPH10298658A (en) 1997-04-18 1997-04-18 Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10219697A JPH10298658A (en) 1997-04-18 1997-04-18 Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance

Publications (1)

Publication Number Publication Date
JPH10298658A true JPH10298658A (en) 1998-11-10

Family

ID=14320917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10219697A Withdrawn JPH10298658A (en) 1997-04-18 1997-04-18 Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance

Country Status (1)

Country Link
JP (1) JPH10298658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434800A4 (en) * 2016-03-24 2019-11-13 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet having good toughness, and flange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434800A4 (en) * 2016-03-24 2019-11-13 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet having good toughness, and flange

Similar Documents

Publication Publication Date Title
EP1083237A2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties, and method of producing the same
JP2001288543A (en) Ferritic stainless steel excellent in surface property and corrosion resistance, and its production method
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP2001288544A (en) High purity ferritic stainless steel excellent in surface property and corrosion resistance and its production method
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JPH0820843A (en) Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP2003268498A (en) H-type steel excellent in fillet section toughness and its production method
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JPH10298658A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JPH10183307A (en) High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture
JP2013053366A (en) Ferritic stainless steel sheet excellent in ridging resistance and method for producing the same
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706