JPH10183307A - High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production - Google Patents

High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production

Info

Publication number
JPH10183307A
JPH10183307A JP10978697A JP10978697A JPH10183307A JP H10183307 A JPH10183307 A JP H10183307A JP 10978697 A JP10978697 A JP 10978697A JP 10978697 A JP10978697 A JP 10978697A JP H10183307 A JPH10183307 A JP H10183307A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
ridging resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10978697A
Other languages
Japanese (ja)
Inventor
Yuji Koyama
祐司 小山
Akihiko Takahashi
明彦 高橋
Hidehiko Sumitomo
秀彦 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10978697A priority Critical patent/JPH10183307A/en
Publication of JPH10183307A publication Critical patent/JPH10183307A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a high purity, ferritic and thin stainless steel sheet excellent in ridging-resistance. SOLUTION: A continuously cast slab of a high purity ferritic stainless steel in which the components of the steel are regulated so as to contain, by weight, <=0.015% C, <=0.020% N, <=1% Mn, 10.5 to 12% Cr and 8×(C+N) to 0.4% Ti and furthermore so as to satisfy either <=0.2% Si or <=0.03% Al, and the balance Fe with inevitable impurities is heated at <=1,150 deg.C, is subjected to hot rolling, is subjected to annealing of executing holding in the temp. range of 800 to 900 deg.C for >=2hr according to necessary and is thereafter subjected to cold rolling and annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐リジング性に優れ
た11%Cr高純度フェライト系ステンレス薄鋼板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing 11% Cr high-purity ferritic stainless steel sheet having excellent ridging resistance.

【0002】[0002]

【従来の技術】フェライト系ステンレス鋼は優れた耐食
性、加工性とともに高価なNiを添加しないためオース
テナイト系ステンレス鋼に比較して安価であることか
ら、家電、建材、自動車排気系部材など広い用途に使わ
れている。とりわけ、C,Nを極低とし、さらに添加T
iなどによりこれらの元素を固定することで鋼中の固溶
C,N量の低減を図った高純度フェライト系ステンレス
鋼は、特にプレス成形性、深絞り性に優れている。
2. Description of the Related Art Ferritic stainless steel has excellent corrosion resistance and workability, and is inexpensive compared to austenitic stainless steel because it does not add expensive Ni. Therefore, it is widely used for home appliances, building materials, automobile exhaust system members, etc. It is used. In particular, C and N are extremely low, and T
A high-purity ferritic stainless steel in which the amounts of solid solution C and N in the steel are reduced by fixing these elements by i or the like is particularly excellent in press formability and deep drawability.

【0003】一般にフェライト系ステンレス鋼板をプレ
ス成形すると、リジングとよばれる圧延方向に沿った縞
状の凹凸が生じる。リジングは成形品の美観を損なうの
みならず、これを除去する研磨負荷が生じるため、フェ
ライト系ステンレス鋼をプレス成形する際の問題点とな
っている。
Generally, when a ferritic stainless steel sheet is press-formed, striped irregularities called ridging are produced along the rolling direction. Ridging not only impairs the aesthetics of the molded product, but also causes a polishing load to remove it, which is a problem when press-forming ferritic stainless steel.

【0004】フェライト系ステンレス鋼のリジング発生
機構については数多く報告されているが、鋳造時の凝固
組織や、熱延および熱延焼鈍組織に存在する圧延方向に
伸びた層状の粗大なフェライトバンド組織(コロニー組
織)が、その後の冷延、焼鈍後にも残存し、それぞれの
組織が塑性異方性の差によりプレス成形した際に異なっ
た変形挙動を示すため、圧延方向に平行に縞状の凹凸が
生じるという考え方が主流である。すなわち耐リジング
性の改善には、熱延板および熱延焼鈍板での粗大なフェ
ライトバンド組織を細かく分断することが必要であり、
これまでその対策が多数開発されてきた。
There have been many reports on the ridging mechanism of ferritic stainless steels. However, a layered coarse ferrite band structure extending in the rolling direction existing in the solidification structure at the time of casting, hot rolling and hot rolling annealing structure ( Colony structure) remains after the subsequent cold rolling and annealing, and each structure shows different deformation behavior when press-formed due to the difference in plastic anisotropy, so that striped irregularities are parallel to the rolling direction. The idea that it occurs is mainstream. That is, in order to improve the ridging resistance, it is necessary to finely cut the coarse ferrite band structure in the hot-rolled sheet and the hot-rolled annealed sheet,
Many countermeasures have been developed so far.

【0005】例えば特開平6−81036号公報には
(1)式で示されるγmax(熱間圧延中に生成するオ
ーステナイト相分率の最大値)が35〜80の間になる
ように成分を調整したフェライト系ステンレス鋼のスラ
ブを1150〜1250℃に加熱して熱間圧延をし、仕
上圧延出側速度を7.0m/s以上とし、かつ860℃
以上で仕上圧延を終了し、さらに650℃以上で巻き取
る方法が開示されている。この技術により汎用鋼である
SUS430のような17%Crフェライト系ステンレ
ス鋼のリジングは大きく改善される。しかしながら、本
発明で取り扱うような11%Cr−低C、N−Ti添加
鋼(高純度フェライト系ステンレス鋼)に対しては効果
が無く、耐リジング性は向上しない。
For example, Japanese Patent Application Laid-Open No. 6-81036 discloses that the components are adjusted so that γmax (the maximum value of the austenite phase fraction generated during hot rolling) represented by the equation (1) is between 35 and 80. The resulting ferritic stainless steel slab is heated to 1150-1250 ° C. and hot-rolled, the finish rolling exit speed is set to 7.0 m / s or more, and 860 ° C.
A method in which finish rolling is completed as described above, and the film is wound at 650 ° C. or higher is disclosed. With this technology, ridging of 17% Cr ferritic stainless steel such as SUS430, which is a general-purpose steel, is greatly improved. However, it has no effect on 11% Cr-low C, N-Ti added steel (high-purity ferritic stainless steel) as handled in the present invention, and the ridging resistance is not improved.

【0006】 γmax= 420C+ 470N+23Ni+ 7Mn−11.5Cr−11.5Si −23V−49Ti−50Nb−50Zr+189 ‥‥‥(1)Γmax = 420C + 470N + 23Ni + 7Mn-11.5Cr-11.5Si-23V-49Ti-50Nb-50Zr + 189 (1)

【0007】[0007]

【発明が解決しようとする課題】11%Cr高純度フェ
ライト系ステンレス鋼の場合、γmaxを高めるだけで
は熱間圧延中でオーステナイト相がフェライトバンドを
分断するのに効果のあるほどには生成しない。つまり1
1%Cr高純度フェライト系ステンレス鋼の場合、γm
axでは熱間圧延中でのオーステナイト相分率を予測で
きない。例えばC:0.004%、N:0.008%、
Mn:0.4%、Cr:11.0%、Ti:0.16
%、Si:0.5%、Al:0.04%、残部がFeお
よび不可避的不純物で構成される11%Cr高純度フェ
ライト系ステンレス鋼はγmaxが57%であるのにも
関わらず、実際に熱間圧延中で生成するオーステナイト
相はせいぜい5%ほどにしかならない。
In the case of 11% Cr high-purity ferritic stainless steel, increasing the γmax alone does not produce an austenite phase during hot rolling that is effective in dividing the ferrite band. That is, 1
Γm for 1% Cr high-purity ferritic stainless steel
With ax, the austenite phase fraction during hot rolling cannot be predicted. For example, C: 0.004%, N: 0.008%,
Mn: 0.4%, Cr: 11.0%, Ti: 0.16
%, Si: 0.5%, Al: 0.04%, the balance being 11% Cr high-purity ferritic stainless steel composed of Fe and unavoidable impurities, despite the fact that γmax is 57%, The austenite phase formed during hot rolling is only about 5% at most.

【0008】そこで本発明の課題は、高価な合金元素を
多量に添加することなく、11%Cr高純度フェライト
系ステンレス鋼の熱間圧延中でのオーステナイト相生成
量を高め、フェライトバンドを分断することによりリジ
ングを低減する方法を開発することにある。
Accordingly, an object of the present invention is to increase the amount of austenite phase formed during hot rolling of 11% Cr high-purity ferritic stainless steel without adding a large amount of expensive alloying elements, and to cut a ferrite band. And to develop a method for reducing ridging.

【0009】[0009]

【課題を解決するための手段】本発明者らは、11%C
r高純度フェライト系ステンレス鋼の熱間圧延中にオー
ステナイト相を十分生成させることによりフェライトバ
ンドを分断し、耐リジング性を高める方法を実験室で詳
細に検討した。その結果、鋼組成中のSi量、Al量を
低下させたうえで、スラブ加熱温度を1150℃以下と
することで、11%Cr高純度フェライト系ステンレス
鋼でも熱間圧延中にオーステナイト相を十分に生成さ
せ、熱間圧延中でオーステナイト相とフェライト相の界
面で再結晶が進行して粗大なフェライトバンドを分断す
ることができ、耐リジング性を高めることができるとの
知見を得た。
Means for Solving the Problems The present inventors have proposed that 11% C
r The method of generating austenite phase during hot rolling of a high-purity ferritic stainless steel to divide the ferrite band and improve ridging resistance was studied in detail in the laboratory. As a result, by lowering the amount of Si and Al in the steel composition and lowering the slab heating temperature to 1150 ° C. or less, even the 11% Cr high-purity ferritic stainless steel has sufficient austenite phase during hot rolling. It has been found that recrystallization proceeds at the interface between the austenite phase and the ferrite phase during hot rolling, so that a coarse ferrite band can be cut off and ridging resistance can be improved.

【0010】本発明はかかる知見に基づくものであっ
て、以下の構成を要旨とする。すなわち、(1)質量%
で、C:0.015%以下、N:0.020%以下、M
n:1%以下、Cr:10.5〜12%、Ti:8×
(C+N)〜0.4%を含有し、さらにSi:0.2%
以下、もしくはAl:0.03%以下のいずれか一方を
満足し、さらに必要に応じてB:0.005%以下を含
有し、残部がFeおよび不可避的不純物からなる高純度
フェライト系ステンレス鋼の連続鋳造スラブを1150
℃以下に加熱して熱間圧延を行い、必要に応じて800
℃〜900℃の温度範囲で2時間以上保持する焼鈍を施
した後に冷延、焼鈍することを特徴とした耐リジング性
に優れた高純度フェライト系ステンレス薄鋼板の製造方
法であり、(2)質量%で、C:0.015%以下、
N:0.020%以下、Mn:1%以下、Cr:10.
5〜12%、Ti:8×(C+N)〜0.4%、および
Si:0.2%以下、Al:0.03%以下を満足し、
さらに必要に応じてB:0.005%以下を含有し、残
部がFeおよび不可避的不純物からなることを特徴とす
る耐リジング性に優れた高純度フェライト系ステンレス
鋼である。なお、この鋼でSi含有量を0.1%以下に
することにより、耐リジング性をさらに高めることがで
きる。
The present invention is based on this finding and has the following constitution. That is, (1) mass%
And C: 0.015% or less, N: 0.020% or less, M
n: 1% or less, Cr: 10.5 to 12%, Ti: 8 ×
(C + N) -0.4%, and further Si: 0.2%
Or Al: 0.03% or less, and if necessary, B: 0.005% or less, with the balance being Fe and unavoidable impurities. 1150 continuous cast slab
℃ or less, hot rolling is performed, and if necessary, 800
(2) a method for producing a high-purity ferritic stainless steel sheet excellent in ridging resistance, characterized in that the steel sheet is annealed for 2 hours or more in a temperature range of from 900C to 900C and then cold rolled and annealed. By mass%, C: 0.015% or less,
N: 0.020% or less, Mn: 1% or less, Cr: 10.
5-12%, Ti: 8 × (C + N) -0.4%, Si: 0.2% or less, Al: 0.03% or less,
Further, it is a high-purity ferritic stainless steel excellent in ridging resistance, which further contains B: 0.005% or less as necessary, and the balance consists of Fe and unavoidable impurities. By setting the Si content to 0.1% or less in this steel, the ridging resistance can be further improved.

【0011】[0011]

【発明の実施の形態】高純度フェライト系ステンレス鋼
のSi量もしくはAl量のいずれか一方あるいは両方を
低減することによりγmax値はさほど変化しないもの
の鋼中のオーステナイト相生成能が高くなり、さらにス
ラブの加熱温度を1150℃以下とすることで熱間圧延
中にオーステナイト相を生成させることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By reducing one or both of the amount of Si and the amount of Al in a high-purity ferritic stainless steel, the .gamma.max value does not change much, but the austenite phase forming ability in the steel increases, and the slab further increases. By setting the heating temperature to 1150 ° C. or lower, an austenite phase can be generated during hot rolling.

【0012】図1はC:0.004%、N:0.008
%、Mn:0.4%、Cr:11.0%、Ti:0.1
6%でさらに(a)Si:0.5%、Al:0.04
%、(b)Si:0.06%、Al:0.04%、
(c)Si:0.5%、Al:0.01%とした鋼を8
50℃〜1200℃の各温度範囲に30分保持した際
の、平衡状態での鋼中オーステナイト相率を測定した結
果である。(b)のようにSi量を低下した鋼、(c)
のようにAl量を低下した鋼は1150℃以下でオース
テナイト相が生成し、1000℃で最大となる。100
0℃でのオーステナイト相率は(a)が5%しかないの
に対し、(b)は80%、(c)は45%となり、Si
量あるいはAl量を低下させることによりオーステナイ
ト相率が大きくなることが分かる。またSi低下の効果
のほうがAl低下の効果よりも大きい。
FIG. 1 shows C: 0.004%, N: 0.008.
%, Mn: 0.4%, Cr: 11.0%, Ti: 0.1
6% further (a) 0.5% of Si, 0.04 of Al
%, (B) Si: 0.06%, Al: 0.04%,
(C) 8% steel with 0.5% Si and 0.01% Al
It is the result of having measured the austenite phase ratio in the steel in the equilibrium state at the time of keeping for 30 minutes in each temperature range of 50 ° C-1200 ° C. (B) steel with reduced Si content as in (b), (c)
The austenitic phase is formed at 1150 ° C. or lower in steel having a reduced Al content as described above, and reaches its maximum at 1000 ° C. 100
The austenite phase ratio at 0 ° C. is only 5% for (a), 80% for (b) and 45% for (c),
It can be seen that the austenite phase ratio is increased by decreasing the amount or Al amount. The effect of Si reduction is greater than the effect of Al reduction.

【0013】フェライト相中にオーステナイト相が生成
すると、その界面が再結晶の核生成サイトとなり、熱間
圧延中の特に粗圧延後段での再結晶促進により粗大なフ
ェライトバンドを分断することができ、耐リジング性を
高めることができる。
When an austenite phase is formed in the ferrite phase, the interface becomes a nucleation site for recrystallization, and a coarse ferrite band can be separated by accelerating recrystallization during hot rolling, particularly at a later stage of rough rolling. Ridging resistance can be increased.

【0014】図2はC:0.004%、N:0.008
%、Mn:0.4%、Cr:11.0%、Ti:0.1
6%、Al:0.04%でSi量を変化させた高純度フ
ェライト系ステンレス鋼の真空溶解ICスラブを114
0℃に加熱し、実験室の熱間圧延機で熱間圧延し、さら
に冷間圧延、最終焼鈍した際のリジング高さ測定結果を
示す。Si量が0.2%以下の領域でリジング低減の効
果が認められ、Si量が0.1%以下の領域ではリジン
グがさらに低く抑えられる。
FIG. 2 shows C: 0.004% and N: 0.008.
%, Mn: 0.4%, Cr: 11.0%, Ti: 0.1
A high-purity ferritic stainless steel vacuum-melted IC slab with a Si content of 6% and Al: 0.04% was used for 114
The results of measuring the ridging height when heated to 0 ° C., hot-rolled in a laboratory hot rolling mill, further cold-rolled, and finally annealed are shown. The effect of reducing ridging is recognized in a region where the amount of Si is 0.2% or less, and ridging is further suppressed in a region where the amount of Si is 0.1% or less.

【0015】なお、より高い耐リジング性が要求される
場合には、熱間圧延鋼帯を800℃〜900℃の温度範
囲で2時間以上保持する焼鈍工程を加えることが効果的
である。この焼鈍を施すことで、熱延後の組織を完全再
結晶化し、かつその再結晶組織を細粒なものとすること
で、フェライトバンドをさらに細かく分断する効果があ
る。
When higher ridging resistance is required, it is effective to add an annealing step of maintaining the hot-rolled steel strip in a temperature range of 800 ° C. to 900 ° C. for 2 hours or more. By performing this annealing, the structure after hot rolling is completely recrystallized, and the recrystallized structure is made finer, so that the ferrite band is more finely divided.

【0016】次に本発明の限定範囲について述べる。本
発明対象鋼の成分含有量を限定した理由は以下の通りで
ある。 C:0.015%以下とする必要がある。0.015%
を超えて含有すると、Cr炭化物の粒界析出に伴う溶接
熱影響部の耐食性劣化が生じ易くなる。また侵入型固溶
元素であるため鋼を強化し、0.015%を超えて含有
すると加工性が劣化する。これらの理由から、その上限
を0.015%とした。
Next, the limited range of the present invention will be described. The reasons for limiting the component content of the steel subject to the present invention are as follows. C: It is necessary to be 0.015% or less. 0.015%
When the content exceeds the range, the corrosion resistance of the weld heat affected zone is likely to be deteriorated due to the precipitation of Cr carbide at the grain boundary. In addition, since it is an interstitial solid solution element, it strengthens the steel, and if it exceeds 0.015%, the workability deteriorates. For these reasons, the upper limit is made 0.015%.

【0017】N:0.020%以下とする必要がある。
侵入型固溶元素であるため鋼を強化し、0.020%を
超えて含有すると加工性が劣化するため、その上限を
0.020%とした。
N: It is necessary to be 0.020% or less.
Since it is an interstitial solid-solution element, it strengthens the steel. If the content exceeds 0.020%, the workability deteriorates. Therefore, the upper limit is set to 0.020%.

【0018】Mn:1%以下とする必要がある。鋼の脱
酸に有効な元素であるとともに鋼のオーステナイト相生
成能を高める元素であるが、1%を超えて含有するとM
nS生成量が増加し耐食性を劣化させるため、その上限
を1%とした。
Mn must be 1% or less. It is an element that is effective in deoxidizing steel and also enhances the austenite phase forming ability of steel.
Since the amount of nS generated increases and the corrosion resistance deteriorates, the upper limit is set to 1%.

【0019】Cr:10.5%以上12%以下とする必
要がある。ステンレス鋼の基本元素であり、必要な耐食
性を得るためには少なくとも10.5%以上の含有が必
要である。しかしながら12%を超えて含有すると靭
性、加工性が劣化し、さらに合金コストが上昇するた
め、その上限を12%とした。
Cr: 10.5% or more and 12% or less. It is a basic element of stainless steel, and must contain at least 10.5% or more in order to obtain necessary corrosion resistance. However, if the content exceeds 12%, toughness and workability deteriorate, and the alloy cost further increases. Therefore, the upper limit is set to 12%.

【0020】Ti:C+Nの8倍以上で0.4%以下と
する必要がある。TiはC,Nと容易に結合し、マトリ
ックス中に固溶するC,N量を実質的に低減する作用に
より、加工性を高めることができる。ただこの効果は8
×(C+N)未満の含有量では現れない。また、0.4
%を超えて含有しても、鋼の熱間加工性を低下させ、熱
間圧延中での疵発生の原因となることから、その上限を
0.4%とした。
It is necessary to be at least 8 times Ti: C + N and 0.4% or less. Ti is easily bonded to C and N, and the workability can be enhanced by the action of substantially reducing the amounts of C and N dissolved in the matrix. But this effect is 8
It does not appear if the content is less than × (C + N). Also, 0.4
%, The hot workability of the steel is reduced, which causes flaws during hot rolling. Therefore, the upper limit is set to 0.4%.

【0021】Si,Al:Si,Alのいずれか一方も
しくは両方の含有量をSi量では0.2%以下、Al量
では0.03%以下となるように低下させる必要があ
る。各元素とも鋼の脱酸材として有効な元素であるが、
これらの元素の含有量を低下させることで11%Cr高
純度フェライト系ステンレス鋼の熱間圧延中でのオース
テナイト相生成能を高めることができる。この効果が現
れるのは、それぞれSi:0.2%以下、好ましくは
0.1%以下、Al:0.03%以下の場合である。こ
のSi,Alの含有量は、後述するようにスラブの加熱
温度によって選択できる。
Si, Al: It is necessary to reduce the content of one or both of Si and Al so that the content of Si is 0.2% or less and the content of Al is 0.03% or less. Each element is an effective element as a steel deoxidizer,
By reducing the content of these elements, the austenite phase forming ability during hot rolling of 11% Cr high-purity ferritic stainless steel can be increased. This effect appears when Si: 0.2% or less, preferably 0.1% or less, and Al: 0.03% or less. The contents of Si and Al can be selected depending on the heating temperature of the slab as described later.

【0022】B:より高い2次加工性が必要な用途の場
合には0.005%以下の範囲で添加することが有効で
ある。Bは製品を加工する際に生じた鋼中の欠陥を修復
し、2次加工性を高める効果がある。しかしながらB含
有量が0.005%を超えると鋼の熱間加工性を著しく
低下させ、熱間圧延中で割れや疵が生じることからその
上限を0.005%とした。
B: For applications that require higher secondary workability, it is effective to add 0.005% or less. B has the effect of repairing defects in the steel generated when processing the product and improving the secondary workability. However, if the B content exceeds 0.005%, the hot workability of the steel is significantly reduced, and cracks and flaws occur during hot rolling, so the upper limit was made 0.005%.

【0023】Si量、Al量のうちのいずれか一方のみ
の含有量を低下させた場合には熱間圧延時のスラブ加熱
温度を1150℃以下とする必要がある。スラブ加熱中
は熱力学的な平衡状態に相当し、スラブ加熱温度に対し
て図1に示したようなオーステナイト相率となる。熱間
圧延前のスラブ加熱の段階で、鋼中にオーステナイト相
を生成させておくことにより、熱間圧延中(温度低下、
変形)でのオーステナイト相の増加を容易にし、その結
果フェライトバンドの分断に寄与する。
When the content of only one of the Si content and the Al content is reduced, the slab heating temperature during hot rolling needs to be 1150 ° C. or less. During the slab heating, it corresponds to a thermodynamic equilibrium state, and the austenite phase ratio as shown in FIG. 1 with respect to the slab heating temperature. By generating an austenitic phase in the steel at the stage of slab heating before hot rolling, during hot rolling (temperature reduction,
(Deformation), thereby facilitating the increase of the austenite phase, thereby contributing to the splitting of the ferrite band.

【0024】スラブ加熱温度が1150℃を超えると、
スラブ加熱中(平衡状態)でオーステナイト相はほとん
ど生成せず、熱間圧延中にオーステナイト相を生成させ
ることが困難となり、その結果オーステナイト相とフェ
ライト相の界面を起点とした熱間圧延中の再結晶による
フェライトバンドを分断する効果が得られない。
When the slab heating temperature exceeds 1150 ° C.,
During the slab heating (equilibrium state), almost no austenite phase is formed, making it difficult to form the austenite phase during hot rolling. As a result, the re-forming during hot rolling starting from the interface between the austenite phase and the ferrite phase is started. The effect of dividing the ferrite band by the crystal cannot be obtained.

【0025】スラブ加熱温度が1150℃以下では、低
温になるほどスラブ加熱中のオーステナイト相率が高ま
り1000℃でその量は最大となる。その結果、熱間圧
延中のオーステナイト相生成量もスラブ加熱温度が低温
になるほど多くなり、フェライトバンドの分断効果が大
きくなり、耐リジング性がより向上する。ただスラブ加
熱温度が1050℃未満になると、熱間圧延中の鋼板表
面に疵が生じる可能性があるため、スラブ加熱温度の下
限は1050℃とすることが好ましい。
When the slab heating temperature is 1150 ° C. or lower, the austenite phase ratio during slab heating increases as the temperature decreases, and the amount becomes maximum at 1000 ° C. As a result, the amount of austenite phase generated during hot rolling increases as the slab heating temperature decreases, the effect of dividing the ferrite band increases, and the ridging resistance further improves. However, if the slab heating temperature is lower than 1050 ° C., a flaw may be generated on the surface of the steel sheet during hot rolling. Therefore, the lower limit of the slab heating temperature is preferably 1050 ° C.

【0026】さらにオーステナイト生成量が最大となる
温度が1000℃であることから、熱間圧延中の粗圧延
終了温度を1000℃以上とすることが熱間圧延中での
再結晶を促進し、フェライトバンドを分断することによ
り効果的である。
Furthermore, since the temperature at which the amount of austenite is maximized is 1000 ° C., setting the rough rolling end temperature during hot rolling to 1000 ° C. or more promotes recrystallization during hot rolling, It is effective to divide the band.

【0027】Si量、Al量の両方を規定量以下に低下
させた場合、スラブ加熱温度が1150℃を超えても熱
間圧延中で十分にオーステナイト相が生成するため、ス
ラブ加熱温度を1150℃以下に制限する必要はない。
When both the amount of Si and the amount of Al are reduced below the specified amounts, even if the slab heating temperature exceeds 1150 ° C., a sufficient austenite phase is formed during hot rolling. There is no need to limit to:

【0028】より高い耐リジング性が要求される用途の
場合に熱間圧延鋼帯に施す焼鈍は、800℃〜900℃
の温度範囲で2時間以上保持とする必要がある。焼鈍温
度が800℃未満の場合は焼鈍後の組織を完全再結晶さ
せられなく、また900℃を超える温度で焼鈍すると焼
鈍後の組織が粒成長により粗大化してしまう。また焼鈍
の時間が2時間未満であると、焼鈍後の組織を完全再結
晶させることができない。
For applications requiring higher ridging resistance, the annealing performed on the hot-rolled steel strip is performed at 800 ° C. to 900 ° C.
It is necessary to keep the temperature in the range of 2 hours or more. If the annealing temperature is lower than 800 ° C., the structure after annealing cannot be completely recrystallized, and if the temperature exceeds 900 ° C., the structure after annealing becomes coarse due to grain growth. If the annealing time is less than 2 hours, the structure after annealing cannot be completely recrystallized.

【0029】[0029]

【実施例】表1に示す化学成分を有する7種の高純度フ
ェライト系ステンレス鋼A〜Eを溶製し、連続鋳造によ
り250mm厚スラブとした。このスラブを表2に示すス
ラブ加熱温度で加熱し、3.2mm厚まで熱間圧延した
後、場合によっては熱延板焼鈍し、酸洗後さらに0.9
4mm厚まで冷間圧延し、850℃×60秒の最終焼鈍し
製品とした。表2には各製品板に冷間で16%引張歪み
を付与した際のリジング高さを測定した結果も併記す
る。
EXAMPLE Seven types of high purity ferritic stainless steels A to E having the chemical components shown in Table 1 were melted and continuously cast into 250 mm thick slabs. The slab was heated at a slab heating temperature shown in Table 2, hot-rolled to a thickness of 3.2 mm, and then, if necessary, annealed with a hot-rolled sheet, pickled, and then 0.9%.
It was cold-rolled to a thickness of 4 mm to obtain a final annealed product at 850 ° C. × 60 seconds. Table 2 also shows the results of measuring the ridging height when 16% tensile strain was applied to each product sheet in the cold.

【0030】[0030]

【表1】 [Table 1]

【0031】表2において、No.1〜11が本発明方法
に従っている。Si量もしくはAl量のいずれか一方を
低下した鋼B,C,DおよびFは、スラブ加熱温度を1
150℃以下とすることで耐リジング性は大きく向上
し、スラブ加熱温度が低温であるほど耐リジング性の向
上効果は大きい(No.1,2,3,4,5)。Si量、
Al量の両方を低下した鋼D,Eについてはスラブ加熱
温度が1150℃以下の場合は優れた耐リジング性を示
し、この効果はスラブ加熱温度が低温であるほど大きく
なるが(No.6,7,10)、スラブ加熱温度が115
0℃を超えた場合でもリジング高さは低く抑えられる
(No.9,11)。また熱延板焼鈍を施すとさらに耐リ
ジング性は向上する(No.8)。
In Table 2, no. 1 to 11 follow the method of the present invention. Steels B, C, D and F, in which either the Si content or the Al content was reduced, had a slab heating temperature of 1
By setting the temperature to 150 ° C. or lower, the ridging resistance is greatly improved, and the lower the slab heating temperature, the greater the effect of improving the ridging resistance (Nos. 1, 2, 3, 4, and 5). Si content,
Regarding steels D and E in which both the Al contents were reduced, when the slab heating temperature was 1150 ° C. or lower, excellent ridging resistance was exhibited, and this effect increased as the slab heating temperature became lower (No. 6, 7,10), slab heating temperature is 115
Even when the temperature exceeds 0 ° C., the ridging height can be kept low (No. 9, 11). Further, when hot-rolled sheet annealing is performed, the ridging resistance is further improved (No. 8).

【0032】これに対してSi量もAl量も低下しない
鋼Aについてはスラブ加熱温度によらず耐リジング性は
劣っており(No.12,13,14)、さらに熱延板焼
鈍を施すと若干の改善は認められるものの依然として耐
リジング性は劣ったままである(No.15)。またSi
量もしくはAl量のいずれか一方を低下した鋼B,Cに
ついても、スラブ加熱温度が1150℃を超えた場合で
は耐リジング性は劣ったものとなり(No.16,1
7)、さらに熱延板焼鈍を施しても依然として耐リジン
グ性は劣ったままである(No.18)。
On the other hand, the steel A, in which neither the Si content nor the Al content decreases, is inferior in ridging resistance regardless of the slab heating temperature (No. 12, 13, 14). Although slight improvement is observed, the ridging resistance is still inferior (No. 15). Also Si
For steels B and C in which either the amount of Al or the amount of Al was decreased, the ridging resistance was inferior when the slab heating temperature exceeded 1150 ° C (Nos. 16, 1).
7) Even after further hot-rolled sheet annealing, the ridging resistance is still inferior (No. 18).

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明により耐リジング性に優れた11
%Cr高純度フェライト系ステンレス薄鋼板の製造が可
能となった。
According to the present invention, 11 having excellent ridging resistance can be obtained.
% Cr high-purity ferritic stainless steel sheet can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Si量、Al量を変化させた11%Cr高純度
フェライト系ステンレス鋼を850℃〜1200℃で3
0分保持した際の鋼中オーステナイト相率を測定した結
果である。
FIG. 1 shows a sample of 11% Cr high-purity ferritic stainless steel having different amounts of Si and Al at 850 ° C. to 1200 ° C.
It is the result of having measured the austenite phase ratio in steel at the time of holding for 0 minute.

【図2】Si量を変化させた11%Cr高純度フェライ
ト系ステンレス薄鋼板のリジング高さを測定した結果を
示す図である。
FIG. 2 is a diagram showing the results of measuring the ridging height of 11% Cr high-purity ferritic stainless steel sheet with varied amounts of Si.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.015%以下、 N :0.020%以下、 Mn:1%以下、 Cr:10.5〜12%、 Ti:8×(C+N)〜0.4% を含有し、さらに、 Si:0.2%以下、 もしくは、 Al:0.03%以下 のいずれか一方を満足し、残部がFeおよび不可避的不
純物からなる高純度フェライト系ステンレス鋼の連続鋳
造スラブを1150℃以下に加熱して熱間圧延を行い、
その後冷延、焼鈍することを特徴とする耐リジング性に
優れた高純度フェライト系ステンレス薄鋼板の製造方
法。
1. Mass%, C: 0.015% or less, N: 0.020% or less, Mn: 1% or less, Cr: 10.5 to 12%, Ti: 8 × (C + N) to 0. Continuity of high-purity ferritic stainless steel, which satisfies one of the following: Si: 0.2% or less, or Al: 0.03% or less, with the balance being Fe and unavoidable impurities. The cast slab is heated to 1150 ° C. or lower and hot-rolled,
A method for producing a high-purity ferritic stainless steel sheet having excellent ridging resistance, characterized by cold rolling and annealing.
【請求項2】 質量%で、 C :0.015%以下、 N :0.020%以下、 Mn:1%以下、 Cr:10.5〜12%、 Ti:8×(C+N)〜0.4% を含有し、さらに、 Si:0.2%以下、 もしくは、 Al:0.03%以下 のいずれか一方を満足し、残部がFeおよび不可避的不
純物からなる高純度フェライト系ステンレス鋼の連続鋳
造スラブを1150℃以下に加熱して熱間圧延を行い、
得られた熱延鋼帯に800℃〜900℃の温度範囲で2
時間以上保持する焼鈍を施し、その後冷延、焼鈍するこ
とを特徴とする耐リジング性に優れた高純度フェライト
系ステンレス薄鋼板の製造方法。
2. In mass%, C: 0.015% or less, N: 0.020% or less, Mn: 1% or less, Cr: 10.5-12%, Ti: 8 × (C + N) -0. Continuity of high-purity ferritic stainless steel, which satisfies one of the following: Si: 0.2% or less, or Al: 0.03% or less, with the balance being Fe and unavoidable impurities. The cast slab is heated to 1150 ° C. or lower and hot-rolled,
The obtained hot-rolled steel strip is heated to a temperature of 800 ° C. to 900 ° C. for 2 hours.
A method for producing a high-purity ferritic stainless steel sheet having excellent ridging resistance, which comprises annealing for at least one hour, followed by cold rolling and annealing.
【請求項3】 高純度フェライト系ステンレス鋼に、さ
らに重量%で、B:0.005%以下を含有することを
特徴とする請求項1または2記載の耐リジング性に優れ
た高純度フェライト系ステンレス鋼の製造方法。
3. A high-purity ferritic stainless steel having excellent ridging resistance according to claim 1, wherein the high-purity ferritic stainless steel further contains B: 0.005% or less by weight%. Method of manufacturing stainless steel.
【請求項4】 質量%で、 C :0.015%以下、 N :0.020%以下、 Mn:1%以下、 Cr:10.5〜12%、 Ti:8×(%C+%N)〜0.4%、 Si:0.2%以下、 Al:0.03%以下 を含有し、残部がFeおよび不可避的不純物からなるこ
とを特徴とする耐リジング性に優れた高純度フェライト
系ステンレス鋼。
4. In mass%, C: 0.015% or less, N: 0.020% or less, Mn: 1% or less, Cr: 10.5 to 12%, Ti: 8 × (% C +% N) -0.4%, Si: 0.2% or less, Al: 0.03% or less, the balance being Fe and unavoidable impurities, the high purity ferritic stainless steel having excellent ridging resistance. steel.
【請求項5】 質量%で、 C :0.015%以下、 N :0.020%以下、 Mn:1%以下、 Cr:10.5〜12%、 Ti:8×(%C+%N)〜0.4%、 Si:0.1%以下、 Al:0.03%以下 を含有し、残部がFeおよび不可避的不純物からなるこ
とを特徴とする耐リジング性に優れた高純度フェライト
系ステンレス鋼。
5. In mass%, C: 0.015% or less, N: 0.020% or less, Mn: 1% or less, Cr: 10.5 to 12%, Ti: 8 × (% C +% N) -0.4%, Si: 0.1% or less, Al: 0.03% or less, the balance being Fe and unavoidable impurities, the high purity ferritic stainless steel excellent in ridging resistance. steel.
【請求項6】 さらに重量%で、B:0.005%以下
を含有することを特徴とする請求項4または5記載の耐
リジング性に優れた高純度フェライト系ステンレス鋼。
6. The high-purity ferritic stainless steel excellent in ridging resistance according to claim 4, further comprising B: 0.005% or less by weight%.
JP10978697A 1996-10-22 1997-04-25 High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production Withdrawn JPH10183307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10978697A JPH10183307A (en) 1996-10-22 1997-04-25 High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27964796 1996-10-22
JP8-279647 1996-10-22
JP10978697A JPH10183307A (en) 1996-10-22 1997-04-25 High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production

Publications (1)

Publication Number Publication Date
JPH10183307A true JPH10183307A (en) 1998-07-14

Family

ID=26449508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10978697A Withdrawn JPH10183307A (en) 1996-10-22 1997-04-25 High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production

Country Status (1)

Country Link
JP (1) JPH10183307A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958026B1 (en) * 2002-11-15 2010-05-17 주식회사 포스코 Method for producing ferritic stainless steel sheets having excellent ridging property
WO2014003271A1 (en) * 2012-06-28 2014-01-03 주식회사 포스코 Low chrome and ferrite-based stainless steel having improved corrosion resistance and anti-ridging properties
EP3434800A4 (en) * 2016-03-24 2019-11-13 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet having good toughness, and flange

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958026B1 (en) * 2002-11-15 2010-05-17 주식회사 포스코 Method for producing ferritic stainless steel sheets having excellent ridging property
WO2014003271A1 (en) * 2012-06-28 2014-01-03 주식회사 포스코 Low chrome and ferrite-based stainless steel having improved corrosion resistance and anti-ridging properties
EP3434800A4 (en) * 2016-03-24 2019-11-13 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet having good toughness, and flange

Similar Documents

Publication Publication Date Title
JPH07268461A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JPH0820843A (en) Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JP3241114B2 (en) Method for producing ferritic stainless steel sheet excellent in ridging property and workability
JP4518834B2 (en) Manufacturing method of heat-resistant ferritic stainless steel sheet with excellent workability
JP2008138231A (en) Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH10183307A (en) High purity, ferritic and thin stainless steel sheet excellent in ridging resistance and its production
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP3297798B2 (en) Manufacturing method of austenitic stainless steel sheet for roll forming
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPH09287060A (en) Production of high purity hot rolled ferritic stainless steel strip excellent in workability
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JPH0931534A (en) Production of high strength hot rolled steel plate excellent in workability and fatigue characteristic
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH10298658A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH09287021A (en) Production of high purity ferritic stainless hot rolled steel strip excellent in workability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706