JPH10293028A - 地中掘進機の位置計測装置 - Google Patents

地中掘進機の位置計測装置

Info

Publication number
JPH10293028A
JPH10293028A JP10056397A JP10056397A JPH10293028A JP H10293028 A JPH10293028 A JP H10293028A JP 10056397 A JP10056397 A JP 10056397A JP 10056397 A JP10056397 A JP 10056397A JP H10293028 A JPH10293028 A JP H10293028A
Authority
JP
Japan
Prior art keywords
light
measurement unit
measurement
underground
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10056397A
Other languages
English (en)
Other versions
JP3759281B2 (ja
Inventor
Minoru Noguchi
稔 野口
Yasuhiko Hara
靖彦 原
Takashi Moro
茂呂  隆
Yasuaki Ishikawa
泰昭 石川
Yoshiaki Shimomura
義昭 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP10056397A priority Critical patent/JP3759281B2/ja
Publication of JPH10293028A publication Critical patent/JPH10293028A/ja
Application granted granted Critical
Publication of JP3759281B2 publication Critical patent/JP3759281B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

(57)【要約】 【課題】 掘進位置の計測の際、光を受光手段に当てる
ための操作をしなくても済み、そのための操作機構を要
しない地中掘進機の位置計測装置を提供する。 【解決手段】 計測ユニット4,5,6を、全ての隣接
する計測ユニットに拡散光を発することのできる光源4
2と、隣接する計測ユニットの全ての光源42からの拡
散光を集めることのできる凸レンズと、凸レンズにより
集められた光を受光しその受光した光の位置により隣接
する計測ユニットの光源の方向を検出し得るように配置
されたCCD撮像素子とで構成し、各計測ユニット4,
5,6での検出結果に基づいて得られる各光源42の方
向に関するデータと、別途収集した隣接する計測ユニッ
ト間の各距離に関するデータとを中央演算処理装置7の
演算部に入力し、同演算部により、計測基点に対する被
計測点の相対位置を演算して計測するように、地中掘進
機の位置計測装置を構成した。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、地下坑を掘削しな
がら地中を掘進する、管推進機(人が入れない小口径の
管を地中に埋設する小口径管推進機や人が入れる大口径
の管を地中に埋設するセミシールド機)及びシールド掘
進機等の地中掘進機の掘進位置の計測に用いられる地中
掘進機の位置計測装置に関する。
【0002】
【従来の技術】地下坑を掘削しながら地中を掘進する、
管推進機及びシールド掘進機等の地中掘進機では、予め
設定された掘進経路である計画線に沿って正しく掘進で
きるようにする必要がある。そのためには、掘進中の地
中掘進機の現在位置がリアルタイムにかつ的確に計測で
きるようにすることが望ましい。すなわち、地中掘進機
の現在位置に関する信頼性の高い情報がオペレータにリ
アルタイムに提供されると、地中掘進機が計画線から外
れて掘進しようとしたときに、オペレータは、これをい
ち早く見つけて早期に対応することができ、地中掘進機
を計画線に沿って掘進させる管理が楽に行え、施工精度
の向上も期待できる。地中掘進機の掘進位置を計測する
技術としては、従来、「トランシットを用いて人手によ
り計測する」方法、「地中掘進機に誘導磁界を発生する
発信コイルを設置し、その誘導磁界の強度を地上の受信
コイルで測定して地中掘進機の掘進位置を計測する」方
法、「逆に、地上に電路を敷設し、この電路に電流を流
して誘導磁界を発生させ、その誘導磁界の強度を地中掘
進機に設置した受信コイルで検出して掘進位置を計測す
る」方法等の各種の方法が用いられていた。しかしなが
ら、これら従来用いられている地中掘進機の位置計測技
術は、掘進位置のリアルタイムな計測が本来的に行えな
かったり、原理的には行えても実際上困難であったりし
た。
【0003】こうした問題を改善する地中掘進機の位置
計測技術として、特開昭61ー45092号公報に記載
のシールド掘進機の方向検出装置が提案されている。こ
の従来提案されているシールド掘進機の方向検出装置
は、「前方のトンネル内へ向けて照射する第1レーザビ
ーム発振器と前方からのレーザビームを受光することが
できる第1レーザビーム受光器とをサーボモータでX方
向(ヨーイング方向)、Y方向(ピッチング方向)に回
転できるように架台に取り付け、かつ、その回転角度を
センサで検知できるようにした計測用機器をトンネルの
入口部に設置するとともに、後方の第1レーザビーム受
光器へ向けて照射する第2レーザビーム発振器と後方の
第1レーザビーム発振器からのレーザビームを受光する
ことができる第2レーザビーム受光器と前方のシールド
掘進機方向に向けて照射する第3レーザビーム発振器と
をサーボモータでX,Y方向に回転できるように架台に
取り付け、かつ、その回転角度をセンサで検知できるよ
うにした計測用の中継器をトンネルの中間部に設置し、
また、後方の第2レーザビーム発振器からのレーザビー
ムを受光することができ、かつ、X,Y方向及びローリ
ング角を検知可能にした第3レーザビーム受光器とピッ
チングローリング計とをシールド掘進機に取り付けるよ
うにした」装置である。
【0004】
【発明が解決しようとする課題】ところで、この従来の
装置は、収束度の高いレーザ光であるレーザビームをレ
ーザビーム受光器の所定位置に照射するように、レーザ
ビーム発振器をヨーイング方向やピッチング方向に回転
操作してその回転角度を検知し、検知した回転角度に基
づいて、シールド掘進機の計画線からのずれ位置をコン
ピュータで演算して求めるようにしている。そのため、
地中掘進機の掘進位置を計測する際、レーザビームをレ
ーザビーム受光器の所定位置に的確に当てるようにレー
ザビーム発振器を回転させる操作を要して操作が複雑で
あるばかりでなく、サーボモータ等レーザビーム発振器
を回転させるための回転機構を要して機構も複雑にな
り、これに伴って種々の問題がもたらされることとな
る。例えば、こうした回転機構を設けたことにより、装
置が地下坑内に配置するものにしては大型化し、製作費
が割高になるのは勿論のこと、回転機構が機械的なもの
であるために、光学的な誤差に機械的な誤差が加わって
高い計測精度を確保することが困難であるとともに振動
に対しても弱い。
【0005】本発明は、こうした従来の技術にみられる
問題を解消しようとするものであって、その技術課題
は、地中掘進機の掘進位置を計測する際に光を受光手段
に当てるための操作をしなくても済み、そのための操作
機構を要しない地中掘進機の位置計測装置を提供するこ
とにある。
【0006】
【課題を解決するための手段】本発明のこうした技術課
題は、「地下坑を掘削しながら地中を掘進する地中掘進
機の掘進位置の計測に用いられ、掘進方向前方に配置し
その掘進位置の指標となる被計測点の位置を、掘進方向
後方に配置し計測の基点となる計測基点との位置関係で
計測する地中掘進機の位置計測装置」を、「前方に拡散
光を発することのできる光源と前方の光源からの拡散光
を集めることのできる集光手段と集光手段により集めら
れた光を受光しその受光した光の位置により前方の光源
の方向を検出し得るように配置された受光手段とを有し
計測基点を設定する基点計測ユニットと、後方に拡散光
を発することのできる光源と後方の光源からの拡散光を
集めることのできる集光手段と集光手段により集められ
た光を受光しその受光した光の位置により後方の光源の
方向を検出し得るように配置された受光手段とを有し被
計測点を設定する被測点計測ユニットと、前方及び後方
に拡散光を発することのできる光源と前方及び後方の光
源からの拡散光をそれぞれ集めることのできる集光手段
と集光手段によりそれぞれ集められた光を受光しその受
光した各光の位置により前方及び後方の各光源の方向を
検出し得るように配置された受光手段とを有し地下坑内
における基点計測ユニットと被測点計測ユニットとの間
に配置される少なくとも一つの中間計測ユニットとを設
けて構成し、これら基点計測ユニット、被測点計測ユニ
ット及び中間計測ユニットの各計測ユニットで検出結果
に基づいて得られる各光源の方向に関するデータと各計
測ユニットにおける隣接する計測ユニット間の各距離に
関するデータとに基づいて、計測基点に対する被計測点
の相対位置を演算手段で演算して計測するようにした」
ことにより達成される。
【0007】本発明の地中掘進機の位置計測装置は、こ
うした技術手段を採用したことにより、中間計測ユニッ
トは、前後に隣接する計測ユニットの前後双方の光源か
ら拡散光を各集光手段で集めてその集められた各光を受
光手段で受光し、その受光した各光の位置により中間計
測ユニットに対する前後の双方の各光源の相対的な方向
を検出することができて、その検出結果に基づいて各光
源の方向に関するデータが得られる。その場合、光源と
して、特に拡散光を発することのできる光源を用い、こ
の光源からの拡散光を集光手段で集めて受光手段に当て
るようにしているため、従来のように光源からの光を受
光手段に当てるための操作をしなくても済む。こうして
各光源の方向に関するデータが得られると、隣接する各
計測ユニット間を結ぶ各掘進路線の発進方向線に対する
各角度を、その発進方向線との関係で直接的に検出しな
くても、演算により間接的に求めることができる。その
場合、その角度は、中間計測ユニットや被測点計測ユニ
ットがその取付時の姿勢によって変化したり、地中掘進
機の掘進時のヨーイングやピッチングによって変化した
りしても、こうした影響を排除した状態で正しく求める
ことができる。したがって、別途、各計測ユニットにお
ける隣接する計測ユニット間の各距離に関するデータを
適宜の方法で収集すれば、演算により求められた前記の
各角度に関するデータとそれらの各距離に関するデータ
とから計測基点に対する被計測点の相対位置を演算して
計測することができる。
【0008】
【発明の実施の形態】以下、本発明が実際上どのように
具体化されるのかを示す具体化例を図1乃至図18に基
づいて説明することにより、本発明の実施の形態を明ら
かにする。本発明の具体化例の地中掘進機の位置計測装
置は、何れも、地下坑を掘削しながら地中を掘進する地
中掘進機の掘進位置の計測に用いられ、掘進方向前方に
配置しその掘進位置の指標となる被計測点の位置を、掘
進方向後方に配置し計測の基点となる計測基点との位置
関係で計測する装置である。まず、図1乃至図9を用い
て、本発明の第1具体化例の地中掘進機の位置計測装置
について説明する。図1は、本発明の第1具体化例の地
中掘進機の位置計測装置の全体像を概略的に示す水平断
面図、図2は、図1の地中掘進機の位置計測装置におけ
る計測ユニットで光源の方向を検出する原理を説明する
ための概念図、図3は、図1の地中掘進機の位置計測装
置における中間計測ユニットを詳細に示す水平断面図、
図4は、図1の地中掘進機の位置計測装置における中間
計測ユニットの作動時のイメージを示す斜視図、図5
は、図1の地中掘進機の位置計測装置で光を授受してい
るときの状態を示す要部の水平断面図、図6は、図1の
地中掘進機の位置計測装置で計測基点寄りの計測ユニッ
トの方向を算出する手法を説明するための概念図、図7
は、図1の地中掘進機の位置計測装置で任意の地点の計
測ユニットの方向を算出する手法を説明するための概念
図、図8は、図1の地中掘進機の位置計測装置で地中掘
進機の掘進位置を算定する基本原理を説明するための概
念図、図9は、図1の地中掘進機の位置計測装置で地中
掘進機の掘進位置を算定する実際的な手法を説明するた
めの概念図である。
【0009】図1乃至図4において、1は地中掘進機の
主要部をなす掘削機、2はシールド掘進機で掘削した坑
道又は管推進機で掘削した管渠等の地下坑、3は地中掘
進機の掘進の出発点となる発進立坑、4は地下坑2内に
おける後記基点計測ユニット5と後記被測点計測ユニッ
ト6との間に配置された中間計測ユニット、5は発進立
坑3に配置された基点計測ユニット、6は掘削機1内に
配置された被測点計測ユニット、7はこれら中間計測ユ
ニット4、基点計測ユニット5及び被測点計測ユニット
6とそれぞれ通信ラインで接続され地中掘進機の掘進位
置を演算する中央演算処理装置、8は中央演算処理装置
7での演算結果やその演算結果に基づいて得られる情報
をオペレータの操縦の便のために数値やグラフで表示す
る表示装置である。掘削機1は、管推進機及びシールド
掘進機等、地下坑を掘削しながら地中を掘進する地中掘
進機の掘削機であれば、何れのものでもよい。地下坑2
は、管推進機であれば、ヒューム管、鋼管等の埋設管で
坑壁が形成され、シールド掘進機であれば、鋼製又はコ
ンクリート製のセグメントで坑壁が形成される。中間計
測ユニット4、基点計測ユニット5及び被測点計測ユニ
ット6は、大別すると、隣接する計測ユニットの光源4
2から光を受けてその光の方向を検出できるように構成
された光源方向検出手段41と光源42とからなってい
て、何れも基本的な構造は変わらない。
【0010】そこで、これらの計測ユニット4,5,6
を代表して、中間計測ユニット4の構造を図3に基づい
て説明する。中間計測ユニット4は、図3に詳細を示す
ように、隣接する計測ユニットに向けて拡散光を発する
ことのできる発光ダイオード等の光源42と、隣接する
計測ユニットの光源42からの拡散光を集めることので
きる集光手段としての凸レンズ411と、この凸レンズ
411により集められた光を受光しその受光した光の位
置を検出することのできる受光手段としてのCCD撮像
素子412(CCDはCharge−Coupled−
Deviceの略称である。)を備えている。この受光
手段としてのCCD撮像素子412は、図2で後に詳述
するように、集光手段としての凸レンズ411に対して
受光した光の位置により隣接する計測ユニットの光源の
方向を検出し得るように配置されている。図示している
光源方向検出手段41は、こうした凸レンズ411とC
CD撮像素子412との集合体のことである。中間計測
ユニット4では、光源42が地中掘進機の掘進方向を基
準に前方及び後方に向けてそれぞれ拡散光を発すること
ができるように図3の左右にそれぞれ配置されている。
また、凸レンズ411は、前後に隣接する別の計測ユニ
ットの光源42からの各拡散光をそれぞれ集めることが
できるように、同じく左右に配置されているとともに、
CCD撮像素子412も、各凸レンズ411でそれぞれ
集められた光を受光することができるように左右に配置
されている。各凸レンズ411及び各CCD撮像素子4
12は、互いに平行に配置して中間計測ユニット4のケ
ース内に取り付け、光源42は、同ケースの外側に取り
付ける。
【0011】CCD撮像素子412は、一次元のライン
センサでもよいが、本具体化例では二次元の面センサを
使用することを前提にしている。受光手段として、本具
体化例ではCCD撮像素子412を用いているが、これ
に代えて、フォトダイオードの表面抵抗を利用して光ス
ポットの位置を知ることのできるPSD(Positi
on−Sensitive−Device)のようなも
のを用いてもよく、要は、凸レンズ411のような集光
手段により集められた光を受光しその受光した光の位置
を検出することのできるものであればよく、その種類は
問わない。光源42には、いわゆる点光源のようなもの
を用い、レーザビームのような収束度の高い光線を発す
るものは用いることができないが、基本的には、微小な
エリアから放射状に拡がるいわゆる拡散光を発するよう
なものであれば、どのようなものでも使用することがで
きる。中間計測ユニット4は、多くの場合5m乃至50
mの間隔で地下坑3内に取り付けられるが、光源42
は、こうした5m乃至50m先の地下坑内の略全域を照
らし得る広がりをもつ収束度の低い光であればよい。す
なわち、地下坑3の内径にもよるが、少なくとも5°乃
至10°の角度で広がる光であれば、本発明に用いるこ
とができる。したがって、レーザ光であっても、こうし
た角度以上の角度で広がる収束度の低いレーザ光であれ
ば実用に供することができる。発明が解決しようとする
課題の項で述べたように、従来の装置にあっては、レー
ザビームを光源に用いているため、地中掘進機の掘進位
置の計測の際、レーザビームをレーザビーム受光器の所
定位置に的確に当てるようにレーザビーム発振器を回転
させる操作を必要としたが、本発明では、光源に拡散光
を発するものを用いたため、地下坑2の掘削中に何れか
の測量ユニットの姿勢が変動しても、光源42の光を受
光手段としてのCCD撮像素子412に確実に当てるこ
とができて、こうした操作をしなくても済む。
【0012】中間計測ユニット4は、以上述べた凸レン
ズ411、CCD撮像素子412及び光源42のほか、
付帯的構造として、透明ガラス製の透明板413やコン
トローラ部43を備えている。透明板113は、中間計
測ユニット4のケースの前後に設けた各光採取孔に覆う
ように取り付けられ、同ケースの気密性を保持し、ケー
ス内の凸レンズ411等を防護する。コントローラ部4
3は、中間計測ユニット4のケースに内蔵され、CCD
撮像素子412や各光源42が電気的に接続されるとと
もにケーブル45が接続される。このケーブル45は、
ケースに穿設した引出口から引き出されて中央演算処理
装置7に接続されるが、その際、ケーブル45を、引出
口に嵌めたグランド44に挿通して引きだすことによ
り、ケースの気密性を保持するようにしている。コント
ローラ部43は、光源42を発光させるための電源部、
CCD撮像素子412で検出した光の位置に関する画像
データを数値データに変換して処理するためのデータ処
理部及びこのデータ処理部で処理したデータを中央演算
処理装置7に出力するための通信処理部等から構成され
る。このコントローラ部43のデータ処理部では、後に
詳述するように、CCD撮像素子412で検出した光の
位置のデータを各光源42の方向のデータに変換したり
その変換したデータを補正したりするための演算も行
う。前記ケーブル45は、コントローラ部43の通信処
理部と中央演算処理装置7との間で通信信号を送受信す
るための信号路や中間計測ユニット4に電源電流を導く
ための電路を内蔵している。
【0013】以上、中間計測ユニット4の構造について
述べたが、基点計測ユニット5は、前方に拡散光を発す
ることのできる光源42と前方の光源42からの拡散光
を集めることのできる凸レンズ411とこの凸レンズ4
11により集められた光を受光することのできるCCD
撮像素子412とを備えている。また、被測点計測ユニ
ット6は、後方に拡散光を発することのできる光源42
と後方の光源42からの拡散光を集めることのできる凸
レンズ411とこの凸レンズ411により集められた光
を受光することのできるCCD撮像素子412とを備え
ている。換言すると、基点計測ユニット5及び被測点計
測ユニット6は、それぞれ、中間計測ユニット4におけ
る前方側半分の機能及び後方側半分の機能を果たす構造
を備えており、この点を除けば、中間計測ユニット4の
構造と本質的な差異はない。したがって、基点計測ユニ
ット5及び被測点計測ユニット6には、中間計測ユニッ
ト4をそのまま使用し、セットする際にそれぞれ前方側
半分及び後方側半分だけが働くようにしたり、ソフト
上、それぞれ前方側半分及び後方側半分だけを活かすよ
うにしてもよい。このように中間計測ユニット4に用い
られる計測ユニットを基点計測ユニット5や被測点計測
ユニット6に兼用するようにすれば、製作する機器の種
類を少なくできてそれらの製作を省力化することができ
るだけでなく、使用する機器の種類も少なくできて機器
の使用上の便もよい。地中掘進機の掘進位置を計測する
際、その計測の基点となる計測基点と掘進中の地中掘進
機の現在位置を表す指標となり得るような被計測点を設
定する必要があるが、基点計測ユニット5は、計測基点
を設定する役割を果たし、被測点計測ユニット6は、被
計測点を設定する役割を果たす。
【0014】これらの計測ユニット4,5,6の光源方
向検出手段41で光源42の方向を検出する原理を、図
2を用いて説明する。以下、この説明を始め各具体化例
の説明をするに当たり、3次元位置座標上の水平方向の
座標軸(端的にいえば左右方向の軸線)をX軸、3次元
位置座標上の垂直方向の座標軸(端的にいえば上下方向
の軸線)をY軸、X軸に直交する3次元位置座標上の水
平方向の座標軸(端的にいえば前後方向の軸線)をZ軸
とする。いま、図2に示すように、凸レンズ411とC
CD撮像素子412とをLcの間隔で互いに平行に配置
し、隣接する計測ユニットの光源42から拡散光を発す
ると、光源42の像が凸レンズ411を通過してCCD
撮像素子412の面上に結像する。その場合、光軸(光
源42と凸レンズ411の中心とを結ぶ線を意味する。
以下同じ。)が基準線(凸レンズ411の中心を通りC
CD撮像素子412の面に直交する線を意味する。以下
同じ。)となす角度のX−Z平面上の成分(Y軸回りの
回転角度)をΘ、同角度のY−Z平面上の成分(X軸回
りの回転角度)をΦとし、CCD撮像素子412の面上
における光源42の像の結像点が基準線からずれるずれ
量(CCD撮像素子412の面への光源42の結像点の
CCD撮像素子412の中心からの偏差量)のうち、そ
のX軸方向の成分をδcX,そのY軸方向の成分をδc
Yとすると、次の各式が成立する。 tanΘ=δcX/Lc……………(1) tanΦ=δcY/Lc……………(2) 前(1)式及び前(2)式からは、それぞれ、δcX/
Lc及びδcY/Lcに基づいて角度Θ及び角度Φを演
算により求めることができる。光源42の方向は、こう
した原理により、CCD撮像素子412が検出した光の
位置に基づいて各計測ユニット4,5,6の光源方向検
出手段41で検出することができる。δcX/Lc及び
δcY/Lcに基づく角度Θ及び角度Φの実際の演算
は、本具体化例ではコントローラ部43の演算手段で行
っているが、中央演算処理装置7で行うようにしてもよ
い。
【0015】ここで留意すべきことは、こうして求めら
れる角度Θ,Φは、当該計測ユニットの光軸がその計測
ユニットの基準線に対してなす角度であって、地中掘進
機の発進時の発進方向に対してなす角度ではなく、地中
掘進機の掘進方向を定めるための尺度とはなりえない。
しかも、その計測ユニットの基準線それ自体は、計測ユ
ニットの取付時の姿勢によって変化するし、地中掘進機
の掘進時のヨーイングやピッチングによっても変化する
ことから、光源方向検出手段41で検出した前記の角度
Θ,Φの値を単純に利用しても、地中掘進機の掘進方向
を正しく演算することはできない。こうしたことから、
中間計測ユニット4には、前述したように、前後双方の
光源42から拡散光を集め得るように凸レンズ411を
左右に設け、これら左右の凸レンズ411で集められた
光を受光し得るようにCCD撮像素子412も左右に設
けて、角度Θ,Φを前後双方で検出するようにするとと
もに、これら前後双方の角度Θ,Φの検出値を後に詳述
する独自の演算手法に利用することにより、計測ユニッ
トの取付時の姿勢や地中掘進機のヨーイング、ピッチン
グの影響を排除した状態で地中掘進機の掘進方向を正し
く演算できるようにしている。その技術内容について
は、地中掘進機の位置の演算手法を説明する際に具体的
に述べる。
【0016】中間計測ユニット4を設置して実際に作動
させているときの全体のイメージを図示すると、図4に
図示したようになる。なお、図中に示す矢印は、光源4
2の入射方向や放射方向を表す。基点計測ユニット5及
び被測点計測ユニット6の全体のイメージについても、
それぞれ、図4に図示の前方側半分及び後方側半分と同
様のイメージになる。こうした各計測ユニット4,5,
6を地中掘進機の位置計測に使用する場合、シールド工
事及び管推進工事の何れの場合でも、基点計測ユニット
5は、通常、発進立坑3に設置し、被測点計測ユニット
6は、通常、掘削機1(シールド工事ではシールド掘進
機、管推進工事では先導体)にそれぞれ設置する。その
場合、基点計測ユニット5は、その基準線が発進方向と
一致するように精度良く設置する。ただし、基点計測ユ
ニット5の基準線を発進方向と一致させないで設置する
ようにしても、両者のなす角度を精度良く測定してお
き、その測定値をオフセット値としてコントローラ部4
3又は中央演算処理装置7に予め記憶させておき、地中
掘進機の掘進位置を中央演算処理装置7で演算する際に
その値を反映させるようにすれば、地中掘進機の位置計
測に支障は生じないので、こうした方法を採用すること
もできる。
【0017】一方、各計測ユニット4,5,6のうち特
に中間計測ユニット4については、その設置方法がシー
ルド工事及び管推進工事とで若干異なる。すなわち、シ
ールド工事及び管推進工事の何れの場合でも、中間計測
ユニット4を地下坑2内に配置する点では変わらない
が、前者の場合は、通常、地下坑2の内周壁を構成する
既設セグメント等に取り付け、後者の場合は、通常、地
下坑2を構成する埋設管の内壁や排土装置をなすオーガ
ケーシング、排土管等の外壁等に取り付ける。管推進工
事において地下坑2内に中間計測ユニット4を取り付け
る場合、特に、地下坑2の掘削の進展に伴って設置距離
を延伸させながら仮設し、地下坑2の掘削の終了後に撤
去するオーガケーシングや排土管等の延伸仮設体に取り
付けるようにすれば、延伸仮設体の撤去時に中間計測ユ
ニット4も自動的に撤去することができて至便である。
また、シールド工事の場合でも、送泥管、排泥管、排土
管等の延伸仮設体に取り付けるようにすれば、同様の効
果が得られる。
【0018】シールド工事では、シールド掘進機をシー
ルドジャッキで推進しながら掘進してその掘進により形
成された地下坑2内にセグメントを組み立て、こうした
工程の反復により工事が進められるが、工事の過程で、
被測点計測ユニット6が基点計測ユニット5の設置位置
から見通せなくなったら、これらの計測ユニット5,6
の中間の適宜の位置に中間計測ユニット4を新設する。
工事が進捗して、新設した中間計測ユニット4の設置位
置から被測点計測ユニット6が見通せなくなったら、こ
れらの計測ユニット4、6の中間の適宜の位置に新たな
計測ユニット4を追加して設置し、こうした設置作業を
繰り返す。管推進工事では、先導体の後方に連結される
埋設管の最後部を元押しジャッキで推進しながら最後部
の埋設管を地中に埋設し、最後部の埋設管の埋設が終了
する都度、新たな埋設管を継ぎ足して工事が進められる
が、工事の過程で埋設管を一定距離推進して埋設した
ら、最後部の埋設管内に中間計測ユニット4を設置す
る。工事が進捗して埋設管を更に一定距離推進して埋設
したら、再度、最後部の埋設管内に中間計測ユニット4
を追加して設置し、こうした設置作業を繰り返して各計
測ユニット4,5,6間の間隔を適宜の間隔に保つ。そ
の間隔の目安は、計画されている曲線施工区間において
も各計測ユニット4,5,6同士が見通せる位置に設置
する。
【0019】こうして、適当数の中間計測ユニット4を
見通せるように地下坑2内に配置して互いに光を授受し
ているときの状態を摸式的に示した図面が図5である。
この図では、4(n)は基点計測ユニット5側からみて
n番目の中間計測ユニットを表し、4(n+1)及び4
(n−1)はその前後の中間計測ユニットを表す。実際
の各計測ユニット4,5,6を地下坑2内に設置した場
合、図5に示すように当該計測ユニットへの入射光と当
該計測ユニットの放射光とが互いに交差し、かつ、一つ
の中間計測ユニット4の前後のレンズ411及び前後の
光源42の各中心位置が基準となる一点に集中せず、X
−Y面方向やZ軸方向にずれた状態で計測が行われるこ
とになる。
【0020】こうした状態で計測することにより得られ
るデータに基づいて地中掘進機の位置を演算する場合に
は、演算の便宜上、図6及び図7に示すように、前後の
レンズ411及び前後の光源42の各中心位置が各計測
ユニット4,5,6の基準点(前後のレンズ411の中
心線上の適宜の点、例えばその中心線上の真中の点)に
揃えられるようにそれらの各中心位置をX−Y面方向や
Z軸方向に位置補正して演算する。その場合、地中掘進
機の位置計測が一層正確に行えるようにするため、光軸
と基準線とのなす角度について若干補正をするが、その
補正値は、前後のレンズ411及び前後の光源42の各
中心位置と基準点との位置関係を考慮しながら、前記
(1)、(2)式から得られる角度Θ、角度Φに基づい
てコントローラ部43で算出するようにしている。後述
する角度ΘNn ,ΦNn 、ΘSn 、ΦSn は、こうした
補正を経て得られたものである。このように、本具体化
例では、より正確な計測を期して光軸と基準線とのなす
角度について補正をしているが、前後のレンズ411や
光源42の各中心位置のずれ量は、各計測ユニット4,
5,6間の距離に比べれば僅少な値であるので、レンズ
411や光源42の中間計測ユニット4への配置を適切
に選定すれば、こうした補正をしなくても、実用性のあ
る位置計測装置が得られる。
【0021】そこで、各計測ユニット4,5,6で得ら
れるデータにより地中掘進機の位置を演算する手法を、
図6乃至図9を用いて説明する。その説明をするに当た
り、これらの図面や以下の数式に用いている記号の意味
を説示する。 V;隣合った各計測ユニット4,5,6の基準点同士を
結ぶ直線を意味する見通し線、この見通し線Vは、隣合
った各計測ユニット4,5,6間で授受する光の光軸と
みることができる。 V0 ;地中掘進機の発進時の発進方向を表す発進方向
線、 Vn ;見通し線Vのうちのn−1番目の計測ユニットと
n番目の計測ユニットとを結ぶ見通し線、 G;当該計測ユニットの凸レンズ411の中心を通りそ
の計測ユニットのCCD撮像素子412の面に直交する
線を意味する前述の基準線、 Gn ;基準線Gのうちのn番目の計測ユニットの基準
線、 Θn ;見通し線Vn が発進方向線V0 に対してなす角度
のX−Z平面上の成分(見通し線Vn と発進方向線V0
をX−Z平面上へ正投影した線のなす角度、端的にいえ
ば、地下坑2の軸方向に向かって左右方向の角度)、 Φn ;見通し線Vn が発進方向線V0 に対してなす角度
のY−Z平面上の成分(見通し線Vn と発進方向線V0
をY−Z平面上へ正投影した線のなす角度、端的にいえ
ば、地下坑2の軸方向に向かって上下方向の角度)、 ΘNn ;n番目の測量ユニットにおいてその後方の見通
し線Vn が基準線Gnとなす角度のX−Z平面上の成分
(見通し線Vn と基準線Gn をX−Z平面上へ正投影し
た線のなす角度)、 ΦNn ;n番目の測量ユニットにおいてその後方の見通
し線Vn が基準線Gnとなす角度のY−Z平面上の成分
(見通し線Vn と基準線Gn をY−Z平面上へ正投影し
た線のなす角度)、 ΘSn ;n番目の測量ユニットにおいてその前方の見通
し線Vn+1 (n+1番目の測量ユニットにとっては後方
の見通し線)が基準線Gn となす角度のX−Z平面上の
成分(見通し線Vn+1 と基準線Gn をX−Z平面へ正投
影した線のなす角度)、 ΦSn ;n番目の測量ユニットにおいてその前方の見通
し線Vn+1 (n+1番目の測量ユニットにとっては後方
の見通し線)が基準線Gn となす角度のY−Z平面上の
成分(見通し線Vn+1 と基準線Gn をY−Z平面上へ正
投影した線のなす角度)、 Ln ;隣合った各計測ユニット4,5,6の基準点間の
距離のうちのn−1番目の計測ユニットとn番目の計測
ユニットの基準点間の距離、 なお、地中掘進機の位置の演算手法を説明するに当たっ
ては、説明の便宜上、中間計測ユニット4だけに限ら
ず、全ての計測ユニット4,5,6を、4を頭文字とす
る符号4(n)で統一して表すこととする。その場合、
4(n)は、基点計測ユニット5の次の計測ユニットか
ら数えてn番目の計測ユニットを意味し、4(0)は、
基点計測ユニット5を意味する。また、G0 は、基点計
測ユニット4(0)の基準線Gを意味し、本具体化例で
は発進方向線V0 の方向と一致させるようにセットして
ある。角度Θn ,Φn ,ΘNn ,ΦNn ,ΘSn ,ΦS
n には、極性をもたせており、図6及び図7において
は、基準線Gn を基準にして見通し線Vn が時計方向回
りに傾斜している場合の角度を−の極性、反時計方向回
りに傾斜している場合の角度を+の極性と定めた。した
がって、例えば、図6において、角度Θ1 ,Φ1 は、見
通し線Vn の傾斜方向を表す弧線先端矢印が反時計方向
を向いていてプラスの角度であり、角度ΘN1 ,Φ
1 ,ΘS1 ,ΦS1は、見通し線Vn の傾斜方向を表
す弧線先端矢印が時計方向を向いていてマイナスの角度
である。
【0022】すでに述べたことから明らかなように、見
通し線Vn が基準線Gn となす角度ΘNn ,ΦNn ,Θ
n ,ΦSn は、計測ユニット4(n)により求めるこ
とができるが、地中掘進機の位置を演算する際、本具体
化例で最終的に求めようとする角度は、見通し線Vn
発進方向線V0 となす角度Θn ,Φn である。図6及び
図7を用いてその角度Θn ,Φn の演算手法について説
明すると、まず、角度Θ1 ,Φ1 については、基点計測
ユニット4(0)の基準線G0 を発進方向線V0 の方向
と一致させるように、換言すると、Θ1 =ΘS0 、Φ1
=ΦS0 となるように予め設定しているので、基点計測
ユニット4(0)での計測結果から直接的に得られる。
次に、角度Θ2 ,Φ2 については、それぞれ、こうして
得られた角度Θ1 ,Φ1 と計測ユニット4(1)で得ら
れたΘN1 ・ΘS1 ,ΦN1 ・ΦS1 の値を基に、次の
各式で求めることができる。 Θ2 =Θ1 −ΘN1 +ΘS1 ……………(3) Φ2 =Φ1 −ΦN1 +ΦS1 ……………(4) 同様にして、角度Θn+1 ,Φn+1 については、角度
Θn ,Φn が得られれば、この角度Θn ,Φn と計測ユ
ニット4(n)で得られたΘNn ・ΘSn ,ΦNn・Φ
n の値を基に、次の各式で求めることができる。 Θn+1 =Θn −ΘNn +ΘSn ……………(5) Φn +1=Φn −ΦNn +ΦSn ……………(6) これら(5)、(6)式中の角度Θn ,Φn は、角度Θ
n-1 ,Φn-1 の値が地中掘進機の位置の計測過程で演算
により求められるので、これらの値を基にして(5)、
(6)式から求めることができる。すなわち、前記
(3)、(4)式で得られた角度Θ2 ,Φ2 の値を
(5)、(6)式のΘn ,Φn に代入してΘ3 ,Φ3
算出し、その算出結果を基に再び(5)、(6)式から
Θ4 ,Φ4 を算出するという演算を順送りに行って角度
Θn-1 ,Φn-1 の値を得ることができるので、最後に、
これらの値を(5)、(6)式に代入することにより角
度Θn ,Φn を求めることができる。こうした角度
Θn ,Φn のような各光源42の方向に関するデータ
は、本具体化例では前各式に従って中央演算処理装置7
の演算部で演算することにより求められる。本具体化例
では、各計測ユニット4,5,6の検出結果に基づいて
得られる各光源42の方向に関するデータのうち、角度
ΘNn ,ΦNn 、ΘSn 、ΦSn についてはコントロー
ラ部43の演算手段で求め、角度Θn ,Φn については
前各式に従って中央演算処理装置7の演算部で求めてい
るが、これらのデータを何れで求めるかは、発明の実施
に際して任意に選択できる設計上の選択事項である。
【0023】以上の説明から明らかなように、地中掘進
機の位置の演算の基礎となる、計測ユニット4(n)の
見通し線Vn の発進方向線V0 に対する角度Θn ,Φn
は、見通し線Vn のなす角度を発進方向線V0 との関係
で直接的に検出しなくても、その計測ユニット4(n)
の基準線Gn との関係で前後双方の見通し線Vn につい
て検出して各計測ユニット4(n)ごとに角度ΘNn
ΦNn ,ΘSn ,ΦSn を順次計測し、その計測結果を
用いて前式のような手法で演算することにより間接的に
求めることができる。そのため、本具体化例によれば、
計測ユニット4(n)の基準線Gn がその取付時の姿勢
によって変化したり、地中掘進機の掘進時のヨーイング
やピッチングによって変化したりしても、角度ΘNn
ΦNn ,ΘSn ,ΦSn さえ適正に計測すれば、こうし
た変化がそのまま織り込まれた状態で地中掘進機の掘進
方向を正しく演算することができ、その変化が演算結果
に影響をもたらすようなことはない。
【0024】こうして、例えば角度Θ1 〜Θn の値やΦ
1 〜Φn の値を順次計測した後は、各計測ユニット4
(n)と隣接する後方の計測ユニット4(n−1)との
基準点間の距離L1 〜Ln の値を、後に詳述するような
適宜の方法で順次計測し、これらの角度と距離の計測結
果に基づいて、設定された3次元位置座標上における地
中掘進機の位置すなわち計測基点に対する被計測点の相
対位置を演算する。そこで、その演算方法の基本的な原
理を図8を用いて説明する。図8には、その演算方法の
理解を容易にするため、角度Θn ,Φn の一方だけを変
化させ他方を変化させないで地下坑を施工する場合すな
わち地中掘進機で水平方向か上下方向にだけ曲線施工す
る場合における各計測ユニット4(n)の基準点の位置
を、X軸及びY軸に共用している縦軸とZ軸としての横
軸とからなる2次元位置座標上に、(X1 ,Y1
1 )、(X2 ,Y2 ,Z2 )……(Xn ,Yn
n )というように順次表示している。その場合、2次
元位置座標のZ軸を発進方向線V0 に一致させるととも
にその原点を基点計測ユニット5〔4(0)〕の計測基
点に一致させるようにしている。
【0025】この図8を参照すると明らかなように、各
計測ユニット4(n)の基準点の隣接後方計測ユニット
4(n−1)の基準点に対する座標位置の変化量は、各
角度Θ1 〜Θn やΦ1 〜Φn の値及び各距離L1 〜Ln
の値(各見通し線V1 〜Vnの長さに相当)を用いて三
角関数により順次算出することができる。すなわち、各
計測ユニット4(n)の基準点の隣接後方計測ユニット
4(n−1)の基準点に対する座標位置の変化量のう
ち、X軸方向の成分及びY軸方向の成分は、それぞれL
n ・sinΘn 及びLn ・sinΦn として求めること
ができ、Z軸方向の成分は、Ln・cosΘn 又はLn
・cosΦn として求めることができる。なお、この例
では、曲線施工に際して前記したように角度Θn ,Φn
の一方だけを変化させるようにしているので、角度Θn
を変化させるようにした場合は、前記の各計測ユニット
4(n)の基準点の座標位置の変化量のうちのX軸方向
の成分だけがLn ・sinΘn の量変化してY軸方向の
成分は変化せず、角度Φn を変化させるようにした場合
は、Y軸方向の成分だけがLn ・sinΦn の量変化し
てX軸方向の成分は変化しない。
【0026】こうして、各計測ユニット4(n)の基準
点の隣接後方計測ユニット4(n−1)の基準点に対す
る座標位置の変化量のX軸方向又はY軸方向の成分及び
Z軸方向の成分が求められると、これらの各方向の成分
の量をそれぞれ積算することにより、(Xn ,Yn ,Z
n )の座標位置を算定することができる。図8の例で
は、各見通し線Vn がZ軸に対して常に反時計方向回り
に傾斜するように変化しているので、その積算をする際
には、各方向の成分の量をそれぞれそのまま積算すれば
よい。しかしながら、各見通し線Vn の傾斜方向が時計
方向回り、反時計方向回りにランダムに変化する場合で
あっても、角度Θn ,Φn に前述したような極性をもた
せるようにすれば、前記したと同様、X軸、Y軸及びZ
軸の各方向の成分の量をそれぞれそのまま積算して、
(Xn ,Yn ,Zn )の座標位置を算定することができ
る。
【0027】図8では、曲線施工に際して角度Θn ,Φ
n の一方だけを変化させる例を示したが、次に、角度Θ
n ,Φn の双方を変化させて地中掘進機の掘進方向を上
下、水平方向というように3次元的に変える場合の地中
掘進機の位置の演算方法を図9を用いて説明する。図9
には、地中掘進機の掘進方向をこのように3次元的に変
える場合の各計測ユニット4(n)の基準点の位置を、
X,Y,Z軸からなる通常の3次元位置座標上に
(X1 ,Y1 ,Z1 )、(X2 ,Y2 ,Z2 )というよ
うに計測ユニット4(1),4(2)についてだけ例示
的に示している。その場合、3次元位置座標のZ軸を発
進方向線V0 に一致させるとともにその原点を基点計測
ユニット5〔4(0)〕の計測基点に一致させるように
している。図9では、図6及び図7と同様、角度Θn
Φn に極性をもたせており、角度Θn については、Y−
Z面を基準にして時計方向回りに形成される角度を+の
極性、反時計方向回りに形成される角度を−の極性と定
めた。これに対し、角度Φn については、X−Z面を基
準にして時計方向回りに形成される角度を−の極性、反
時計方向回りに形成される角度を+の極性と定めた。し
たがって、図9において、角度Θ1 ,Θ2 は、角度を表
す弧線の先端矢印が何れも時計方向を向いていてプラス
の角度である。これに対し、角度Φ1 は、角度を表す弧
線の先端矢印が反時計方向を向いていてプラスの角度で
あり、角度Φ2 は、角度を表す弧線の先端矢印が時計方
向を向いていてマイナスの角度である。
【0028】各計測ユニット4(n)の基準点の座標位
置(Xn ,Yn ,Zn )は、前述した方法で得られた角
度Θ1 〜Θn やΦ1 〜Φn の値と適宜の方法で計測して
得られた距離L1 〜Ln の値とを用いて、図8で概説し
たのと同様の手法により3次元的に算定する。まず、座
標位置(X1 ,Y1 ,Z1 )については、基点計測ユニ
ット4(0)での計測結果から直接的に得られた角度Θ
1 ,Φ1 の値及び距離L1 の値を基に、次の各式で求め
ることができる。 X1 =L1 cosΦ1 sinΘ1 ……………(7) Y1 =L1 cosΘ1 sinΦ1 ……………(8) Z1 =L1 cosΘ1 cosΦ1 ……………(9) 次に、座標位置(X2 ,Y2 ,Z2 )については、前
(7)、(8)、(9)式で得られたX1 ,Y1 ,Z1
の値と前記(3)、(4)式で得られた角度Θ2,Φ2
の値と適宜の方法で計測して得られた距離L2 の値を基
に、次の各式で求めることができる。 X2 =X1 +L2 cosΦ2 sinΘ2 ……………(10) Y2 =Y1 +L2 cosΘ2 sinΦ2 ……………(11) Z2 =Z1 +L2 cosΘ2 cosΦ2 ……………(12) 同様に、座標位置(Xn ,Yn ,Zn )については、前
(10)、(11)、(12)と同様の演算を順送りに
行って得られたXn-1 、Yn-1 、Zn-1 の値と前記
(5)、(6)式で演算して得られた角度Θn ,Φn
値と距離Ln の値とを基に、次の(13)´、(14)
´、(15)´式で求めることができる。 Xn =Xn-1 +Ln cosΦn sinΘn ……………(13)´ Yn =Yn-1 +Ln cosΘn sinΦn ……………(14)´ Zn =Zn-1 +Ln cosΘn cosΦn ……………(15)´ したがって、各計測ユニット4(n)の基準点の座標位
置(Xn ,Yn ,Zn)は、結局、次の(13)、(1
4)、(15)で表すことができる。 Xn =ΣLn cosΦn sinΘn ……………(13) Yn =ΣLn cosΘn sinΦn ……………(14) Zn =ΣLn cosΘn cosΦn ……………(15) なお、前(13)、(14)、(15)式中のΣはnを
順次1からnまでに置いて積算した値を意味し、それゆ
え、例えば、ΣLn cosΦn sinΘn は、ΣL1
osΦ1 sinΘ1 〜ΣLn cosΦn sinΘn の各
値の合計値を意味する。いま仮に、n番目の計測ユニッ
ト4(n)が被計測点を設定するための被測点計測ユニ
ット6であるとすると、基点計測ユニット5で設定した
計測基点に対する被計測点の相対位置は(Xn ,Yn
n )となり、(13)、(14)、(15)式により
容易に算定することができる。こうした前各式による位
置の演算は、中央演算処理装置7の演算部で行われる。
【0029】このように、計測基点に対する被計測点の
相対位置は、計測ユニット4,5,6の検出結果に基づ
いて得られる各光源の方向に関するデータと隣接する計
測ユニット間の各距離に関するデータとに基づいて、
(3)〜(15)式に従って演算により計測するが、そ
の場合、隣接する計測ユニット間の各距離に関するデー
タを収集して中央演算処理装置7の演算部に入力する必
要がある。そこで、こうした距離に関するデータを中央
演算処理装置7の演算部に入力する手法の例を図10及
び図11に基づいて説明する。図10は、第1具体化例
を管推進機に適用した場合における地下坑の距離に関す
るデータを中央演算処理装置に入力する手法を説明する
ための水平断面図、図11は、第1具体化例をシールド
掘進機に適用した場合における図10と同様の図であ
る。
【0030】計測ユニット間の各距離に関するデータ
は、基本的には既存の距離計で計測する等適宜の手段で
収集して中央演算処理装置7に入力すればよいが、その
ための代表的な手法を示すと、次のような方法がある。 (イ)各計測ユニット4,5,6間の各距離を自動的に
検出できる距離検出手段を設け、その距離計測手段での
検出結果により得られる各距離に関するデータを中央演
算処理装置7の演算部に自動的に入力する。 (ロ)地下坑2の所定区間の変化する距離を自動的に検
出できる距離検出手段を設け、距離が変化する区間につ
いては、その距離計測手段での検出結果により得られる
距離に関するデータを、中央演算処理装置7の演算部に
継続的に入力し、他の区間については、実地に計測して
得られる実測値や計画線から得られる計画値等の確定し
た距離に関するデータを非継続的に入力する。
【0031】図10及び図11は、これらの手法のうち
(ロ)の手法を説明するための図である。管推進機で地
下坑2を施工する場合、地下坑2の距離は、元押しジャ
ッキで直接推進している埋設中の最後方の埋設管の区間
だけが時々刻々変化し、埋設管が地中に完全に埋設され
ている他の区間は、距離が固定されていて絶えず変動す
るようなことはない。こうしたことから、管推進工事の
場合、図10に示すように、埋設管の埋設が進行してい
る最後方の区間についてだけ、その距離を元押しジャッ
キのストローク計12で自動的に検出して距離に関する
データを中央演算処理装置7に入力し、埋設管が地中に
完全に埋設されている他の区間については、確定した距
離に関するデータを入力するようにしている。その場
合、埋設管の埋設が進行している最後方の所定の区間
は、埋設管の推進中に距離が絶えず変化するため、その
変化する距離に関するデータを連続的に自動入力する。
一方、埋設済みの埋設管が位置する他の区間は、最後方
の埋設管の埋設終了後、その後方で新たな埋設管の埋設
が再開されるまでは距離が変化しないので、その新たな
埋設管の埋設が再開される際に確定した距離に関するデ
ータを修正して再入力するというように断続的に手動で
入力する。その場合、当然のことながら、確定した距離
に関するデータは、隣接する計測ユニット間ごとに、そ
の間の各距離が分かるように区分して入力する。確定し
た距離に関するデータとして、管推進工事の場合には、
実測値や計画値のほか埋設済みの埋設管の数に基づいて
算出できる距離データを用いることができる。
【0032】シールド掘進機で地下坑2を施工する場
合、地下坑2のうち、掘削機1をシールドジャッキで推
進している最前方の区間は距離が時々刻々変動するが、
他の区間であるセグメントで覆工した区間は、距離が固
定されていて絶えず変動するようなことはない。こうし
たことから、シールド工事の場合には、図11に示すよ
うに、掘削機1で掘進中の最前方の所定の区間について
だけ、その距離をシールドジャッキのストローク計13
で自動的に検出して距離に関するデータを中央演算処理
装置7に入力し、セグメントで覆工した区間について
は、確定した距離に関するデータを入力するようにして
いる。その場合、掘削機1で掘進中の最前方の所定の区
間は、掘進中に距離が絶えず変化するため、その変化す
る距離に関するデータを連続的に自動入力する。一方、
セグメントで覆工した区間は、セグメントの1リング相
当分掘進して新たなセグメントを組み立てるまでは距離
が変化しないので、その新たなセグメントが組み立てら
れたときに確定した距離に関するデータを修正して再入
力するというように断続的に手動で入力する。その場合
も、管推進機で施工する場合と同様、確定した距離に関
するデータは、隣接する計測ユニット間ごとに区分して
入力する。確定した距離に関するデータとして、シール
ド工事の場合には、実測値や計画値のほかすでに組み立
てられたセグメントの種類と数に基づいて算出できる距
離データを用いることができる。以上述べた地下坑2の
距離データの中央演算処理装置7への入力手法によれ
ば、何れも、管推進機やシールドジャッキに通常付設さ
れている元押しジャッキのストローク計12やシールド
ジャッキのストローク計13を地下坑の距離の計測に二
重に活用していて、その距離の計測のために特別の距離
計測手段を新設する必要はないので、地下坑2の距離の
計測手段を設置するためのコストやスペースを節減する
ことができる。
【0033】以上述べた本発明の第1具体化例の地中掘
進機の位置計測装置では、計測ユニット4,5,6を、
特に、隣接する計測ユニットに拡散光を発することので
きる光源42と、隣接する計測ユニットの光源42から
の拡散光を集めることのできる凸レンズ411と、凸レ
ンズ411によりそれぞれ集められた光を受光しその受
光した光の位置により隣接する計測ユニットの光源の方
向を検出し得るように配置されたCCD撮像素子412
とで構成するようにしたので、光源42の光を受光手段
としてのCCD撮像素子412に常に確実に当てること
ができ、その結果、地中掘進機の掘進位置を計測する際
に光を受光手段に当てるための操作をしなくても済み、
そのための複雑な操作機構を要しない。また、計測ユニ
ット4の取付姿勢が不統一であったり、地中掘進機の掘
進時のヨーイングやピッチングによって変化したりして
も、こうしたことに影響されることなく、地中掘進機の
掘進位置を常に正しく演算して計測することができる。
【0034】次に、図12乃至図18を用いて、本発明
の第2具体化例の地中掘進機の位置計測装置について説
明する。図12は、本発明の第2具体化例の地中掘進機
の位置計測装置の全体像を概略的に示す水平断面図、図
13は、図12の地中掘進機の位置計測装置における中
間計測ユニットを示す斜視図、図14は、図12の地中
掘進機の位置計測装置で計測ユニット間の距離を算出す
る手法を説明するための概念図、図15は、計測ユニッ
トの一つがローリングした際にそのローリング量を図1
2の地中掘進機の位置計測装置で計測する基本原理を説
明するための概念図、図16は、計測ユニットの一つが
ローリングした際にそのローリング量を図12の地中掘
進機の位置計測装置で算出する手法を説明するための概
念図、図17は、隣接する計測ユニットの双方がローリ
ングした際に両者間の相対的なローリング量を図1の地
中掘進機の位置計測装置で算出する手法を説明するため
の概念図である。図12乃至図16中、第1具体化例の
装置の説明の際にすでに用いた図面と同一の符号を付け
た部分は、その図面と同等の部分を表す。
【0035】以上説明した本発明の第1具体化例の地中
掘進機の位置計測装置において、中間計測ユニット4、
基点計測ユニット5及び被測点計測ユニット6の何れか
に前後同じ方向に拡散光を発することのできる光源42
を複数個配置すると、第1具体化例の装置の機能に加
え、それら複数の光源を多角的に活用することにより、
次のような機能を併せ発揮することができる。 (ハ)第1具体化例の装置で地中掘進機の位置を演算す
る場合、前述のように、当該計測ユニットのレンズ41
1及び光源42の各中心位置が当該計測ユニットの一つ
の基準点に揃えられるようにそれらの各中心位置をX−
Y面方向及びZ軸方向に位置補正し、これに伴って光軸
と基準線Gとのなす角度Θ、角度Φについて補正をする
が、当該計測ユニットの前記の複数個の光源42を基準
線Gを挟んで対称に対をなすように配置して、こうした
配置の光源42を少なくとも1組設けると、当該計測ユ
ニットのレンズ411及び光源42の各中心位置がX−
Y面方向については当該計測ユニットの一つの基準点に
揃えられて、レンズ411及び光源42の各中心位置を
一つの基準点に揃えるための補正は、Z軸方向について
だけ行えばよくなり、簡略化される。 (ニ)当該計測ユニットの前記の複数個の光源42の適
宜の二つの光源42を利用することにより、当該計測ユ
ニットとその二つの光源42の拡散光を受光する計測ユ
ニットとの間の距離を計測することができる。 (ホ)当該計測ユニットの前記の複数個の光源42の適
宜の二つの光源42を利用することにより、当該計測ユ
ニットとその二つの光源42の拡散光を受光する計測ユ
ニットとの間のローリング量を計測することができる。
【0036】第2具体化例の地中掘進機の位置計測装置
は、これら(ハ)、(ニ)、(ホ)の機能を発揮できる
ようにするため、図12及び図13に示すように、前後
同じ方向に拡散光を発することのできる左光源42
(L)及び右光源42(R)とからなる一対の光源42
を、中間計測ユニット4には前側及び後側に1組ずつ、
基点計測ユニット5には前側に1組、被測点計測ユニッ
ト6には後側に1組設けるようにしている。その場合、
前記(ハ)の機能を発揮できるようにするため、前後同
じ方向に拡散光を発することのできる1対の光源42の
それぞれを、特に、基準線Gを挟んで対称位置に配置し
ている。こうして一つの計測ユニットの同じ側に一対の
光源42を配置すると、これら一対の光源42の各光
は、図12に示すように隣接する計測ユニットの一つの
光源方向検出手段41に入射し、光源方向検出手段41
でそれぞれの方向が検出されるが、一対の光源42は、
基準線Gを挟んで特に対称位置に配置されているため、
各光源42の方向に関する検出値を平均すると、その平
均値は、レンズ411の中心位置と同じX−Y面に設け
た一つの光源42が前記の隣接する計測ユニットに入射
したときの検出値に近似する値となる。その結果、レン
ズ411及び光源42の各中心位置を一つの基準点に揃
えることに伴って行う補正は、Z軸方向についてだけ行
えばよくなり、帰するところ、地中掘進機の位置を計測
するに際して行う演算が簡略化されることとなる。本具
体化例では、対称位置に配置される一対の光源42を各
計測ユニット4,5,6の同じ側に一組ずつしか設けて
いないが、こうした光源42を複数組設けて、これらの
光源42に関する光源方向検出手段41での各検出値を
平均するようにすれば、その補正の精度を一層向上させ
ることができる。
【0037】第2具体化例の地中掘進機の位置計測装置
を用いて前記(ニ)の機能を発揮させるための手法を、
図14を用いて説明する。図14は、任意の計測ユニッ
ト4(n)とその後方に隣接する計測ユニット4(n−
1)との間の距離を、この計測ユニット4(n−1)の
左右の光源42(L),42(R)を利用して算出する
手法を説明するためのものである。その距離の算出をす
るに当たっては、計測ユニット4(n)のCCD撮像素
子412の中心を原点にとり、その計測ユニット4
(n)の基準線Gn をいわゆるZ軸とするとともにこれ
に直交するδXn軸及びδYn軸をいわゆるX軸及びY
軸とした3次元位置座標と、計測ユニット4(n)の基
準線Gn をいわゆるZ軸とするとともにこれに直交する
n-1´軸及びYn-1´軸をいわゆるX軸及びY軸とし、
n-1´−Yn-1´面が計測ユニット4(n−1)の左右
の光源42(L),42(R)の中点を通るように設定
した3次元位置座標とを用いる。なお、前者の3次元位
置座標におけるδXn−δYn面は、計測ユニット4
(n)のCCD撮像素子412の面と同じ面をなす。計
測ユニット4(n)と計測ユニット4(n−1)の間の
距離の算出手法を説明をするに当たり、図面や以下の数
式に用いている記号の意味を説示する。
【0038】42L(n−1);計測ユニット4(n−
1)の左光源、 42R(n−1);計測ユニット4(n−1)の右光
源、 42C(n−1);左光源42L(n−1)と右光源4
2R(n−1)との中点、 42L(n−1)´;左光源42L(n−1)をX
n-1´−Yn-1´面に正投影し た
点、 42R(n−1)´;右光源42R(n−1)をX
n-1´−Yn-1´面に正投影し た
点、 δxnL;δXn−δYn面上への左光源42L(n−
1)の結像点のδXn軸方向の成分、 δynL;δXn−δYn面上への左光源42L(n−
1)の結像点のδYn軸方向の成分、 δxnR;δXn−δYn面上への右光源42R(n−
1)の結像点のδXn軸方向の成分、 δynR;δXn−δYn面上への右光源42R(n−
1)の結像点のδYn軸方向の成分、 ΘG ;計測ユニット4(n−1)の基準線Gn-1 をX
n-1 −Gn 平面上へ正投影した線と計測ユニット4
(n)の基準線Gn との交角、 ΦG ;計測ユニット4(n−1)の基準線Gn-1 をY
n-1 −Gn 平面上へ正投影した線と計測ユニット4
(n)の基準線Gn との交角、 LR;左光源42L(n−1)と右光源42R(n−
1)の離隔距離、 LR´;左光源42L(n−1)と右光源42R(n−
1)とを結ぶ線をXn -1´ −Yn-1´面に正投影した線
分の長さ、 LC;計測ユニット4(n)のレンズ411(n)の中
心からδXn軸に下した垂線の長さ、換言すると、レン
ズ411(n)の中心と計測ユニット4(n)のCCD
撮像素子412の中心の間の距離、 LD;δXn−δYn面上への左光源42L(n−1)
の結像点と右光源42R(n−1)の結像点との中点
と、計測ユニット4(n)のレンズ411(n)の中心
の間の距離、 いま、この第2具体化例の装置により算出しようとする
計測ユニット4(n)と計測ユニット4(n−1)の間
の距離を、中点42C(n−1)とレンズ411(n)
間の距離であると定めてその距離をLXとし、距離LX
の算出手法を説明する。
【0039】まず、距離LXの算出手法の要点を述べる
と、距離LXの算出の基本的な手法は、距離LR´に対
する距離LXの比率が「δXn−δYn面上への左光源
42L(n−1)の結像点(δxnL,δynL)と右光源
42R(n−1)の結像点(δxnR,δynR)の間の距
離」に対する距離LDの比率に等しいことを利用して距
離LXを算出しようとする点にあり、このことは、後記
(17)式に集約して表されている。距離LXの算出手
法を具体的に述べると、左光源42L(n−1)と右光
源42R(n−1)の離隔距離LRと、左右の光源42
L(n−1),42R(n−1)を結ぶ線をXn-1´
n-1´面に投影した線分の長さLR´との関係は、次
式で表すことができる。
【0040】
【数1】
【0041】一方、δXn−δYn面とXn-1´−Y
n-1´面は、何れも基準線Gn に直交する平面であって
平行であるから、次式が成立する。
【0042】
【数2】
【0043】なお、この(17)式において、(δxn
−δxnL)2 +(δynR−δynL)2 の平方根の項は、
「δXn−δYn面上への左光源42L(n−1)の結
像点(δxnL,δynL)と右光源42R(n−1)の結
像点(δxnR,δynR)の間の距離」を表す。
【0044】前式中の距離LDは、既知の値である距離
LCと、光源方向検出手段41の検出結果から算出でき
る左右の光源42L(n−1),42R(n−1)の結
像点間の中点の座標((δxnL+δxnR)/2,(δyn
L+δynR)/2)の値とを用いてピタゴラスの定理に
より次式で表すことができる。
【0045】
【数3】
【0046】前(18)式を用いて前(17)式中のL
Dを消去し、同式を変形すると、算出しようとする前後
の計測ユニット4(n),4(n−1)間の距離LXを
次式で表すことができる。
【0047】
【数4】
【0048】この(19)式に(16)式を代入してL
R´を消去すると、距離LXを次式で表すことができ
る。
【0049】
【数5】
【0050】この(20)式中、基準線Gn と基準線G
n-1 の交角(ΘG ,ΦG )は、計測ユニット4(n−
1)の検出結果に基づいて得られる角度ΘSn-1 ,ΦS
n-1 と計測ユニット4(n)の検出結果に基づいて得ら
れる角度ΘNn ,ΦNn との差から容易に求め得る数値
である。また、計測ユニット4(n)のCCD撮像素子
412で受光した左右の光源42L(n−1),42R
(n−1)の光の位置を表すδxnL,δynL,δxnR,
δynRの値は、計測ユニット4(n)の検出結果から得
られる値である。そして、前(20)式中の「左光源4
2L(n−1)と右光源42R(n−1)の離隔距離」
LRと「レンズ411(n)の中心と計測ユニット4
(n)のCCD撮像素子412の中心の間の距離」LC
は、何れも既知の値にすぎない。そうすると、前後の計
測ユニット4(n),4(n−1)間の距離LXは、帰
するところ、左右の光源42L(n−1),42R(n
−1)を有する計測ユニット4(n−1)とこれらの光
源の方向を検出する計測ユニット4(n)とで得られる
両計測ユニットの光源の方向に関するデータΘSn-1
ΦSn-1 ,ΘNn ,ΦNn と、計測ユニット4(n)で
得られる左右の光源42L(n−1),42R(n−
1)の光の受光位置に関するデータδxnL,δynL,δ
xnR,δynRとに基づいて計測できることとなる。
【0051】このように、本発明の第2具体化例の装置
を用いれば、計測基点に対する被計測点の相対位置を計
測する過程において計測ユニット4(n),4(n−
1)で得られるデータを、隣接する計測ユニット4
(n),4(n−1)間の距離の計測のためにほとんど
そのまま用いることができる。また、こうしたデータに
基づいてその距離を演算するときは、それらのデータを
中央演算処理装置7の演算部に入力し、前(20)式に
従って演算するようにすればよい。したがって、以上述
べた計測ユニット4(n),4(n−1)間の距離の計
測手段によれば、地下坑の距離の計測のために特別の距
離計測手段を新設する必要はないので、地下坑2の距離
の計測手段を設置するためのコストやスペースを節減す
ることができるとともに、地中掘進機の位置の計測のた
めに特別に設けた計測ユニット4,5,6を地下坑の距
離の計測のためにも利用できて、特設機器を多角的に活
用することができる。
【0052】図14による説明では、計測ユニット4
(n)と計測ユニット4(n−1)との間の距離を、こ
の計測ユニット4(n−1)の左右の光源42L(n−
1),42R(n−1)を利用して算出する手法を説明
したが、逆に、その距離を、計測ユニット4(n)の左
右の光源42L(n),42R(n)を利用して算出す
ることもできる。本具体化例では、特定の計測ユニット
4(n−1)に前後同じ方向に拡散光を発することので
きる光源42を2個配置した例を示したが、こうした光
源42を多数配置し、これらの光源42を二個ずつ組み
合わせて前述した手法で前後の計測ユニット4(n),
4(n−1)間の距離LXに関するデータを多数得るよ
うにしてもよく、その場合には、これらの多数のデータ
を総合することにより、距離LXの計測を一層正確に行
うことができる。図14に示すような手法で距離LXを
計測する場合において、基点計測ユニット5と被側点測
ユニット6の間に多数の中間計測ユニット4を設置しな
ければならないときには、距離LXに関する計測誤差が
僅少であったとしても、各計測ユニット4,5,6間の
多数の計測誤差が積み重ねられて無視できない集積誤差
が生じることも考えられる。こうしたことから、図14
のような計測手法を用いて第2具体化例の位置計測装置
により被側点測の位置を計測する場合、地中掘進機での
掘進がある程度進捗した段階において、冒頭で述べたよ
うな従来の各種の位置計測技術で被側点の位置を実測
し、第2具体化例の装置による被側点の位置の計測結果
をその実測による位置の計測結果と照合してこうした集
積誤差を修正するようにすれば、第2具体化例の装置に
よる位置計測を一層確実に行うことができる。以上述べ
た距離検出手段は、各計測ユニット4,5,6間の距離
を自動的に検出できるので、その距離データを利用する
場合には、前記(イ)、(ロ)に示した演算手段への距
離データの入力手法のうちの何れの手法も採用すること
ができる。
【0053】最後に、第2具体化例の地中掘進機の位置
計測装置を用いて前記(ホ)の機能を発揮させるための
手法を、図15乃至図17を用いて説明する。地中掘進
機の掘進過程において、管推進機にあっては埋設管や掘
削機1がローリングして中間計測ユニット4や被側点計
測ユニット6がローリングし、シールド掘進機にあって
は掘削機1がローリングして被側点計測ユニット6がロ
ーリングすることがあるため、地中掘進機の位置の計測
過程で光源42の方向に関するデータΘNn ,ΦNn
ΘSn ,ΦSn に変動が生じて、地中掘進機の位置の計
測結果に無視できない影響を及ぼすことがある。ここで
説明する技術手段は、地中掘進機の位置の計測結果の信
頼性を高めるため、第2具体化例の装置において、計測
ユニット4,5,6の左右の光源42(L),42
(R)を利用することにより、隣接する計測ユニット
4,5,6間のローリング量を計測して、こうした影響
を排除できるようにしたものである。なお、中間計測ユ
ニット4や被側点計測ユニット6は、通常、埋設管や掘
削機1の内周壁の近傍に取り付けるため、埋設管や掘削
機1がローリングすると、これらの中心軸線を中心とし
て公転するような位置の移動する。ここでいう中間計測
ユニット4や被側点計測ユニット6のローリングはこう
した公転するような位置の移動のことである。
【0054】図15は、任意の計測ユニット4(n)が
ローリングした際に、そのローリング量を、その後方の
計測ユニット4(n−1)の左右の光源42(L),4
2(R)を利用して計測する基本原理を説明するための
ものである。計測ユニット4(n)のCCD撮像素子4
12の面には、基準線Gn 上を原点にとり、δcX軸及
びδcY軸をいわゆるX軸とY軸とした2次元位置座標
が設定されており、これらの軸により、CCD撮像素子
412の面への光源42の結像点の基準線Gnからのず
れ量のX軸方向の成分δcx及びY軸方向の成分δcy
が把握できるようになっている。図15には、後方の計
測ユニット4(n−1)がその左右の光源42(L),
42(R)とともにローリング角γn-1 だけローリング
し、これに伴って、計測ユニット4(n)のCCD撮像
素子412に結像する光源42(L),42(R)の像
がその角度γn-1 相当分傾動するとともに、計測ユニッ
ト4(n)がローリング角γn だけローリングし、これ
に伴ってX軸としてのδcX軸がその角度γn 相当分傾
動した状態が図示されている。計測ユニット4(n)に
結像する光源42(L),42(R)の像は、こうした
状態において、δcX,δcY軸の2次元位置座標に対
してγn +γn-1 の角度だけ相対的に傾動することにな
る。また、その角度は、光源42(L),42(R)の
像の座標上の位置から一義的に定まる。ここで説明する
技術手段は、こうした現象を利用して、次に示す算出手
法により任意の計測ユニット4(n)のローリング量を
算出するようにしたものである。
【0055】最初に、計測ユニット4(1)についての
算出手法を、図16を用いて説明する。図16に示すよ
うに、計測ユニット4(1)がローリング角γ1 だけロ
ーリングすると、δcX,δcY軸に相当する線がロー
リング角γ1 だけ傾動してδcX´,δcY´の位置に
移動するとともに、計測ユニット4(1)のローリング
に伴う凸レンズ411のローリングに伴って、計測ユニ
ット4(1)に結像する基点計測ユニット5の光源42
(L),42(R)の像L,Rも、δcX軸に平行な水
平線に対して傾動する。いま、その場合の左右の像L,
Rが水平線に対して傾く角度をγ1s 、左右の像L,R
の座標位置(傾動しないδcX,δcY軸座標における
位置)をそれぞれ(δx1L,δy1L)、(δx1R,δy1
R)とすると、像L,R間の距離と像L,RのδcX軸
への投影点間の距離との関係から、角度をγ1s を次式
で求めることができる。
【0056】
【数6】
【0057】この計測ユニット4(1)に光を発する後
方の計測ユニット4(0)は、基点計測ユニット5であ
ってローリングすることはないため、この(21)式で
算出される角度γ1sの値は、ローリング角γ1 と等しい
ものとみることができ、結局、この角度γ1sが計測ユニ
ット4(1)のローリング量である。
【0058】次に、任意の計測ユニット4(n)とその
後方の計測ユニット4(n−1)が共にローリングした
ときの計測ユニット4(n)のローリング量の算出手法
を、図17を用いて説明する。後方の計測ユニット4
(n−1)がその左右の光源42(L),42(R)と
ともにローリング角度γn-1 だけローリングすると、こ
れに伴って、図17に示すように、計測ユニット4
(n)に結像する後方の計測ユニット4(n−1)の光
源42(L),42(R)の像L,Rもその角度γn- 1
相当分傾動する。また、図17に示すように、計測ユニ
ット4(n)がローリング角γn だけローリングする
と、δcX,δcY軸に相当する線もその角度γn 分傾
動してδcX´,δcY´の位置に移動するとともに、
計測ユニット4(n)のローリングに伴う凸レンズ41
1のローリング(掘削機1や埋設管の中心軸線を中心と
して公転するような位置の移動)に伴って、計測ユニッ
ト4(n)に結像する基点計測ユニット5の光源42
(L),42(R)の像L,Rも、δcX軸に平行な水
平線に対して角度γn 相当分傾動する。
【0059】いま、その場合の左右の像L,Rが水平線
に対して傾く角度をγns、左右の像L,Rの座標位置
(傾動しないδcX,δcY軸座標における位置)をそ
れぞれ(δxnL,δynL)、(δxnR,δynR)とする
と、前(21)式と同様に像L,R間の距離と像L,R
のδcX軸への投影点間の距離との関係から、角度をγ
nsを次式で求めることができる。なお、計測ユニット4
(n)がローリングした場合における傾動前のδcX,
δcY軸の位置は、計測ユニット4(n)の左右の光源
42についての後方の計測ユニット4(n−1)でのそ
れらの像に関する座標位置の計測結果から求めることが
できる。
【0060】
【数7】
【0061】この計測ユニット4(n)に光を発する後
方の計測ユニット4(n−1)は、ローリング角度γ
n-1 だけローリングするため、この(22)式で算出さ
れる角度γnsの値は、計測ユニット4(n)のローリン
グ角γn そのものではなく、そのローリング角γn は、
次式で表される。
【0062】γn =γns−γn-1 ……………(23) このローリング角γn は、前(23)式中のγn-1 の値
が計測ユニット4(n)よりも後方の各計測ユニット4
(n−1)のローリング量を計測する過程で演算により
順次求められるので、これらの値を基にして(23)式
から求めることができる。すなわち、前記(22)式で
得られた角度γ1sの値すなわちローリング角γ1 の値を
(23)式のγn-1 に代入して角度γ2 を算出し、その
算出結果を基に再び(23)式から角度γ3 を算出する
という演算を順送りに行って角度γn-1 の値を得ること
ができるので、最後に、これらの値を(23)式に代入
することにより角度γn を求めて計測ユニット4(n)
の実際のローリング量を求めることができる。こうした
計測ユニット4(n)の演算は、中央演算処理装置7の
演算部で行われ、計測ユニット4(n)より後方の各計
測ユニットに関するローリング角γ1 ,γ2 ,γ3 等の
ローリング量に関するデータは、オフセット量として中
央演算処理装置7の記憶部に記憶してその演算に用い
る。
【0063】この例では、各計測ユニット4(n)のロ
ーリング量を、こうした手法により精密に計測すること
ができるため、その計測されたローリング量に基づいて
地中掘進機の位置の計測過程で得られる光源42の方向
に関するデータを正しく補正することにより、計測ユニ
ット4(n)のローリングの影響を排除して地中掘進機
の位置の計測結果の信頼性を高めることができる。この
例では、各計測ユニット4(n)のローリング角γn
演算により順次算出するようにしているが、シールド掘
進機やセミシールド機で掘削した地下坑のように坑内に
人が入れる場合には、計測ユニット4(n)よりも後方
の計測ユニット4(n−1)について最初のローリング
を検出し次第、その計測ユニットをローリング量が0に
なるように設置し直し、以後、こうした作業を続行する
ようにしても、前記と同様の効果を発揮することができ
る。以上述べた計測ユニット4(n)のローリング量の
計測手段によれば、そのローリング量の計測のための特
別の計測機器を新設する必要はないので、こうした機器
を設置するためのコストやスペースを節減することがで
きるとともに、地中掘進機の位置の計測のために特別に
設けた計測ユニット4,5,6を計測ユニット4,6の
ローリング量の計測のためにも利用できて、特設機器を
多角的に活用することができる。
【0064】本発明の第2具体化例では、計測ユニット
4(n)のローリング量の計測手段に以上のような特別
の手段を用いているが、こうした手段を設ける代わりに
各計測ユニットに通常のローリング計(ローリング方向
の傾斜角を検出して電気信号に変換する計器)を内蔵さ
せるようにしてもよい。特に、シールド掘進機で地下坑
2を施工する場合、地下坑2のうち、シールドジャッキ
で推進している最前方の掘削機1の区間だけがローリン
グし、他のセグメントで覆工した区間はローリングしな
いので、こうしたローリング計を掘削機1の区間だけに
設ければよい。また、機器類を水平に保持してローリン
グさせないように設置するためのジンバルのような自動
整準手段を用いて中間計測ユニット4や被測点計測ユニ
ット6を設置するようにすれば、こうしたローリング量
の計測手段は設ける必要がないから、ローリング量の計
測手段は、本発明にとって不可欠の要件ではない。
【0065】
【発明の効果】以上の説明から明らかなように、本発明
は、課題を解決するための手段の項に示した技術手段を
採用しているので、本発明によれば、地中掘進機の掘進
位置を計測する際に光を受光手段に当てるための操作し
なくても済み、そのための操作機構を要しない地中掘進
機の位置計測装置が得られる。また、計測ユニットの取
付姿勢が不統一であったり、地中掘進機の掘進時のヨー
イングやピッチングによって変化したりしても、こうし
たことに影響されることなく、地中掘進機の掘進位置を
常に正しく演算して計測することができる。こうした効
果に加え、本発明を具体化すると、次のような効果を併
せ発揮することができる本発明を具体化する場合、特
に、特許請求範囲の請求項4に記載の技術手段を採用す
れば、中間計測ユニットに用いられる計測ユニットを基
点計測ユニットや被測点計測ユニットに兼用できること
により、製作する機器の種類を少なくできてそれらの製
作を省力化することができるだけでなく、使用する機器
の種類も少なくできて機器の使用上の便もよい。本発明
を具体化する場合、特に、特許請求範囲の請求項5に記
載の技術手段を採用すれば、延伸仮設体の撤去時に中間
計測ユニット4も自動的に撤去することができて至便で
ある。
【0066】本発明を具体化する場合、特に、特許請求
範囲の請求項7に記載の技術手段を採用すれば、地下坑
の距離の計測手段を設置するためのコストやスペースを
節減することができる。本発明を具体化する場合、特
に、特許請求範囲の請求項8又は請求項9に記載の技術
手段を採用すれば、こうした効果を発揮することに加
え、シールド掘進機又は管推進機に通常付設されている
シールドジャッキのストローク計又は元押しジャッキの
ストローク計を地下坑の距離の計測に二重に活用してい
て、その距離の計測のために特別の距離計測手段を新設
する必要はない。本発明を具体化する場合、特に、特許
請求範囲の請求項10に記載の技術手段を採用すれば、
対称に対をなすように配置された光源について光源の方
向に関する検出結果を平均することにより、地中掘進機
の位置を計測するに際して行う演算が簡略化される。本
発明を具体化する場合、特に、特許請求範囲の請求項1
1に記載の技術手段を採用すれば、地下坑の距離の計測
手段を設置するためのコストやスペースを節減すること
ができるとともに、地中掘進機の位置の計測のために特
別に設けた各計測ユニットを地下坑の距離の計測のため
にも利用できて、特設機器を多角的に活用することがで
きる。本発明を具体化する場合、特に、特許請求範囲の
請求項12に記載の技術手段を採用すれば、計測ユニッ
トのローリング量の計測のための特別の計測機器を新設
する必要はないので、こうした機器を設置するためのコ
ストやスペースを節減することができるとともに、地中
掘進機の位置の計測のために特別に設けた計測ユニット
を計測ユニットのローリング量の計測のためにも利用で
きて、特設機器を多角的に活用することができる。
【図面の簡単な説明】
【図1】本発明の第1具体化例の地中掘進機の位置計測
装置の全体像を概略的に示す水平断面図である。
【図2】図1の地中掘進機の位置計測装置における計測
ユニットで光源の方向を検出する原理を説明するための
概念図である。
【図3】図1の地中掘進機の位置計測装置における中間
計測ユニットを詳細に示す水平断面図である。
【図4】図1の地中掘進機の位置計測装置における中間
計測ユニットの作動時のイメージを示す斜視図である。
【図5】図1の地中掘進機の位置計測装置で光を授受し
ているときの状態を示す要部の水平断面図である。
【図6】図1の地中掘進機の位置計測装置で計測基点寄
りの計測ユニットの方向を算出する手法を説明するため
の概念図である。
【図7】図1の地中掘進機の位置計測装置で任意の地点
の計測ユニットの方向を算出する手法を説明するための
概念図である。
【図8】図1の地中掘進機の位置計測装置で地中掘進機
の掘進位置を算定する基本原理を説明するための概念図
である。
【図9】図1の地中掘進機の位置計測装置で地中掘進機
の掘進位置を算定する実際的な手法を説明するための概
念図である。
【図10】第1具体化例を管推進機に適用した場合にお
ける地下坑の距離に関するデータを中央演算処理装置に
入力する手法を説明するための水平断面図である。
【図11】第1具体化例をシールド掘進機に適用した場
合における図10と同様の図である。
【図12】本発明の第2具体化例の地中掘進機の位置計
測装置の全体像を概略的に示す水平断面図である。
【図13】図12の地中掘進機の位置計測装置における
中間計測ユニットを示す斜視図である。
【図14】図12の地中掘進機の位置計測装置で計測ユ
ニット間の距離を算出する手法を説明するための概念図
である。
【図15】計測ユニットの一つがローリングした際にそ
のローリング量を図12の地中掘進機の位置計測装置で
計測する基本原理を説明するための概念図である。
【図16】計測ユニットの一つがローリングした際にそ
のローリング量を図12の地中掘進機の位置計測装置で
算出する手法を説明するための概念図である。
【図17】隣接する計測ユニットの双方がローリングし
た際に両者間の相対的なローリング量を図1の地中掘進
機の位置計測装置で算出する手法を説明するための概念
図である。
【符号の説明】
1 掘削機 2 地下坑 3 発進立て坑 4 中間測量ユニット 41 光源方向検出手段 411 凸レンズ 412 CCD撮像素子 42 光源 42(L) 左光源 42(R) 右光源 43 コントローラ部 5 基点計測ユニット 6 被測点計測ユニット 7 中央演算処理装置 8 表示装置 12 元押しジャッキストローク計 13 シールドジャッキストローク計 L 左光源の像 R 右光源の像 Gn n番目の計測ユニットの基準線 Ln 隣合ったn−1番目とn番目の計測ユニットの
基準点間の距離、 LC;レンズの中心とCCD撮像素子の中心の間の距離 LR;左光源と右光源の離隔距離 V0 発進方向線 Vn n−1番目とn番目の計測ユニットを結ぶ見通
し線 Θn 見通し線Vn が発進方向線V0 に対してなす角
度のX−Z平面上の成分 Φn 見通し線Vn が発進方向線V0 に対してなす角
度のY−Z平面上の成分 ΘG 基準線Gn-1 をXn-1 −Gn 平面上へ正投影し
た線と基準線Gn との交角 ΦG 基準線Gn-1 をYn-1 −Gn 平面上へ正投影し
た線と基準線Gn との交角 γn n番目の計測ユニットのローリング角 γns 光源の左右の像が水平線に対して傾く角度 δxnL δXn−δYn面上への左光源の結像点のδX
n軸方向の成分 δynL δXn−δYn面上への左光源の結像点のδY
n軸方向の成分 δxnR δXn−δYn面上への右光源の結像点のδX
n軸方向の成分 δynR δXn−δYn面上への右光源の結像点のδY
n軸方向の成分
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 泰昭 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (72)発明者 下村 義昭 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 地下坑を掘削しながら地中を掘進する地
    中掘進機の掘進位置の計測に用いられ、掘進方向前方に
    配置しその掘進位置の指標となる被計測点の位置を、掘
    進方向後方に配置し計測の基点となる計測基点との位置
    関係で計測する地中掘進機の位置計測装置であって、前
    方に拡散光を発することのできる光源と前方の光源から
    の拡散光を集めることのできる集光手段と集光手段によ
    り集められた光を受光しその受光した光の位置により前
    方の光源の方向を検出し得るように配置された受光手段
    とを有し計測基点を設定する基点計測ユニットと、後方
    に拡散光を発することのできる光源と後方の光源からの
    拡散光を集めることのできる集光手段と集光手段により
    集められた光を受光しその受光した光の位置により後方
    の光源の方向を検出し得るように配置された受光手段と
    を有し被計測点を設定する被測点計測ユニットと、前方
    及び後方に拡散光を発することのできる光源と前方及び
    後方の光源からの拡散光をそれぞれ集めることのできる
    集光手段と集光手段によりそれぞれ集められた光を受光
    しその受光した各光の位置により前方及び後方の各光源
    の方向を検出し得るように配置された受光手段とを有し
    地下坑内における基点計測ユニットと被測点計測ユニッ
    トとの間に配置される少なくとも一つの中間計測ユニッ
    トとを設けて構成し、これら基点計測ユニット、被測点
    計測ユニット及び中間計測ユニットの各計測ユニットで
    の検出結果に基づいて得られる各光源の方向に関するデ
    ータと各計測ユニットにおける隣接する計測ユニット間
    の各距離に関するデータとに基づいて、計測基点に対す
    る被計測点の相対位置を演算手段で演算して計測するよ
    うにしたこと特徴とする地中掘進機の位置計測装置。
  2. 【請求項2】 集光手段と受光手段とを、それぞれ凸レ
    ンズとこれに平行に配置されたCCD撮像素子とで構成
    し、CCD撮像素子の面への光源の結像点が凸レンズの
    中心を通りCCD撮像素子の面に直交する線である基準
    線からずれるずれ量と凸レンズとCCD撮像素子の間の
    距離とに基づいて、光源の光軸が基準線となす角度を求
    めて光源の方向に関するデータが得られるようにしたこ
    とを特徴とする請求項1記載の地中掘進機の位置計測装
    置。
  3. 【請求項3】 受光手段が、フォトダイオードの表面抵
    抗を利用して光スポットの位置を知ることのできる位置
    検出素子であることを特徴とする請求項1記載の地中掘
    進機の位置計測装置。
  4. 【請求項4】 中間計測ユニットに用いることのできる
    計測ユニットを基点計測ユニット及び被測点計測ユニッ
    トの少なくとも一方に兼用することを特徴とする請求項
    1又は請求項2記載の地中掘進機の位置計測装置。
  5. 【請求項5】 中間計測ユニットを地下坑内に配置する
    場合、地下坑掘削の進展に伴って設置距離を延伸させな
    がら仮設し地下坑掘削の終了後に撤去する延伸仮設体に
    取り付けて配置するようにしたことを特徴とする請求項
    1又は請求項2記載の地中掘進機の位置計測装置。
  6. 【請求項6】 各計測ユニットでの検出結果に基づいて
    得られる各光源の方向に関するデータと各計測ユニット
    における隣接する計測ユニット間の各距離に関するデー
    タとに基づいて、計測基点に対する被計測点の相対位置
    を演算手段で演算して計測する場合に、各計測ユニット
    における隣接する計測ユニット間の各距離を自動的に検
    出できる距離検出手段を設け、その距離計測手段での検
    出結果により得られる各距離に関するデータを演算手段
    に自動的に入力するようにしたことを特徴とする請求項
    1記載の地中掘進機の位置計測装置。
  7. 【請求項7】 各計測ユニットでの検出結果に基づいて
    得られる各光源の方向に関するデータと各計測ユニット
    における隣接する計測ユニット間の各距離に関するデー
    タとに基づいて、計測基点に対する被計測点の相対位置
    を演算手段で演算して計測する場合に、地下坑の所定区
    間の変化する距離を自動的に検出できる距離検出手段を
    設け、距離が変化する区間については、その距離計測手
    段での検出結果により得られる距離に関するデータを演
    算手段に連続的に入力し、他の区間については、確定し
    た距離に関するデータを断続的に入力するようにしたこ
    とを特徴とする請求項1記載の地中掘進機の位置計測装
    置。
  8. 【請求項8】 地中掘進機が掘削機をシールドジャッキ
    で推進しながら地中を掘進するシールド掘進機であり、
    距離検出手段がシールドジャッキのストローク検出器で
    あることを特徴とする請求項7記載の地中掘進機の位置
    計測装置。
  9. 【請求項9】 地中掘進機が発進立坑内に設置した元押
    しジャッキで埋設管を推進する管推進機であり、距離検
    出手段が元押しジャッキのストローク検出器であること
    を特徴とする請求項7記載の地中掘進機の位置計測装
    置。
  10. 【請求項10】 基点計測ユニット、被測点計測ユニッ
    ト及び中間計測ユニットの少なくとも一つが、集光手段
    の中心を通り受光手段の面に直交する線を挟んで対称に
    対をなすように配置され前後同じ方向に拡散光を発する
    ことのできる光源を有することを特徴とする請求項1又
    は請求項2記載の地中掘進機の位置計測装置。
  11. 【請求項11】 基点計測ユニット、被測点計測ユニッ
    ト及び中間計測ユニットの少なくとも一つが、前後同じ
    方向に拡散光を発することのできる複数の光源を有し、
    この複数の光源を有する計測ユニットとこれらの光源の
    方向を検出し得るように配置された受光手段を有する隣
    接する計測ユニットとで得られる両計測ユニットの光源
    の方向に関するデータと、前記隣接する計測ユニットの
    受光手段で受光した複数の光源の光の位置に関するデー
    タとに基づいて、両計測ユニット間の距離を計測するよ
    うにしたことを特徴とする請求項1又は請求項2記載の
    地中掘進機の位置計測装置。
  12. 【請求項12】 基点計測ユニット、被測点計測ユニッ
    ト及び中間計測ユニットの少なくとも一つが、前後同じ
    方向に拡散光を発することのできる一対の光源を有し、
    この一対の光源が隣接する計測ユニットに結像する一対
    の像の傾斜に関するデータ基づいて、その隣接する計測
    ユニットのローリング量を計測するようにしたことを特
    徴とする請求項1又は請求項2記載の地中掘進機の位置
    計測装置。
JP10056397A 1997-04-17 1997-04-17 地中掘進機の位置計測装置 Expired - Fee Related JP3759281B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10056397A JP3759281B2 (ja) 1997-04-17 1997-04-17 地中掘進機の位置計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10056397A JP3759281B2 (ja) 1997-04-17 1997-04-17 地中掘進機の位置計測装置

Publications (2)

Publication Number Publication Date
JPH10293028A true JPH10293028A (ja) 1998-11-04
JP3759281B2 JP3759281B2 (ja) 2006-03-22

Family

ID=14277396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10056397A Expired - Fee Related JP3759281B2 (ja) 1997-04-17 1997-04-17 地中掘進機の位置計測装置

Country Status (1)

Country Link
JP (1) JP3759281B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033251A (ja) * 1999-07-23 2001-02-09 Sgs:Kk 反射プリズム用開閉装置及び反射プリズム用開閉装置を用いたトータルステーションによる測量方法
JP2002129872A (ja) * 2000-10-20 2002-05-09 San Shield Kk シールド機及びシールド機の姿勢検出装置並びに横坑の構築工法
JP2007212222A (ja) * 2006-02-08 2007-08-23 Sokkia Co Ltd 推進機位置計測システム
JP2008256573A (ja) * 2007-04-06 2008-10-23 Airec Engineering Corp レーザビーム角度計測方法及び装置並びに光中継方法及び光中継装置
JP2013170356A (ja) * 2012-02-17 2013-09-02 Kandenko Co Ltd 急曲線施工可能な小口径推進工法における位置計測法及びその装置
CN113756815A (zh) * 2021-08-16 2021-12-07 山西科达自控股份有限公司 设备位置图像识别系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033251A (ja) * 1999-07-23 2001-02-09 Sgs:Kk 反射プリズム用開閉装置及び反射プリズム用開閉装置を用いたトータルステーションによる測量方法
JP2002129872A (ja) * 2000-10-20 2002-05-09 San Shield Kk シールド機及びシールド機の姿勢検出装置並びに横坑の構築工法
JP2007212222A (ja) * 2006-02-08 2007-08-23 Sokkia Co Ltd 推進機位置計測システム
JP2008256573A (ja) * 2007-04-06 2008-10-23 Airec Engineering Corp レーザビーム角度計測方法及び装置並びに光中継方法及び光中継装置
JP2013170356A (ja) * 2012-02-17 2013-09-02 Kandenko Co Ltd 急曲線施工可能な小口径推進工法における位置計測法及びその装置
CN113756815A (zh) * 2021-08-16 2021-12-07 山西科达自控股份有限公司 设备位置图像识别系统
CN113756815B (zh) * 2021-08-16 2024-05-28 山西科达自控股份有限公司 设备位置图像识别系统

Also Published As

Publication number Publication date
JP3759281B2 (ja) 2006-03-22

Similar Documents

Publication Publication Date Title
US6480289B1 (en) Position measuring apparatus and optical deflection angle measuring apparatus for underground excavators
JP3390629B2 (ja) 推進工法の測量方法
JP3723661B2 (ja) 地中掘進機の位置計測装置
JP2007017318A (ja) 基線測定システムおよび基線測定方法
JP3787700B2 (ja) シールド推進工法における推進体の推進軌跡の計測装置ならびに計測方法
JP3759281B2 (ja) 地中掘進機の位置計測装置
JP3940619B2 (ja) トンネル掘削機の位置計測装置
JP3323779B2 (ja) 反射プリズム付き測量器械
JP2009198329A (ja) 位置計測システムおよび位置計測方法
JP3864102B2 (ja) 推進掘削工法における掘削路線の座標計測方法
JP3247143B2 (ja) 移動体の位置・姿勢測量装置
JPH0727564A (ja) 掘進機の位置および姿勢の計測装置
JP2003240552A (ja) 推進ヘッド位置方向計測方法及び推進ヘッド位置方向計測装置
JPS5938557Y2 (ja) 地下管埋設機の姿勢位置検出装置
JP2688690B2 (ja) 測量システム
JP3441006B2 (ja) 推進機の位置と姿勢角度の補正方法
JPH0726885A (ja) 推進工法
JP3711878B2 (ja) 推進ヘッド位置方向計測方法及び推進ヘッド位置方向計測装置
JP2589009Y2 (ja) 小口径管推進機の位置計測装置
JPH0324969B2 (ja)
JP3751076B2 (ja) ガイド光方向設定システム
JP2000161958A (ja) 地中掘進機の位置計測装置
JPH0451765B2 (ja)
JP2005172586A (ja) 推進装置先導体の推進方位計測装置
JPH03211409A (ja) シールド掘削機の位置測量方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051111

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees