JPH10255782A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH10255782A
JPH10255782A JP9058181A JP5818197A JPH10255782A JP H10255782 A JPH10255782 A JP H10255782A JP 9058181 A JP9058181 A JP 9058181A JP 5818197 A JP5818197 A JP 5818197A JP H10255782 A JPH10255782 A JP H10255782A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
alloy powder
alloy
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9058181A
Other languages
Japanese (ja)
Inventor
Yuichi Matsumura
勇一 松村
Akira Nakano
昭 中野
Minoru Kurokuzuhara
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP9058181A priority Critical patent/JPH10255782A/en
Publication of JPH10255782A publication Critical patent/JPH10255782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance low temperature and high efficiency discharge characteristics by setting a specific surface area of alloy powder of hydrogen storage alloy electrode which can store and discharge hydrogen reversibly in a specific range. SOLUTION: An alloy ingot of MmNi3.8 , Al10.3 , Co0.7 , and Mn0.2 is produced under inert atmosphere by a high frequency induction melting furnace, and a sample is obtained by annealing it at 1000 deg.C. In addition, Mn means mish metal which is a mixture of rare earth elements. This ingot is ground mechanically to a particle with a diameter of not more than 32μm to make hydrogen storage alloy powder. This alloy powder is immersed in acetic acid - sodium acetate buffer aqueous solution heated to 60 deg.C for 30 minutes and after agitating it, it is washed by water and dried to make an alloy powder sample treated by acetic acid. The hydrogen storage electrode is produced by making the alloy sample pasty, filling it in a porous nickel body and pressing it after drying. A specific surface area of the alloy powder used for the electrode is set at 0.2-1.0m<2> /g. As a result, a discharge capacity becomes large in 1C discharge at -20 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵合金を用い
た水素吸蔵電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】近年、水素吸蔵合金を負極材料として用
いるニッケル水素化物電池は、高エネルギー密度化が進
み、体積エネルギー密度では300Wh/リットル級の
ものが現われ、リチウムイオン電池をしのぐ勢いであ
る。その用途はノートタイプパソコンをはじめ、携帯電
話など小型ポータブル機器である。また、ニッケル水素
化物電池はEV用電源としても世界中から注目されてい
る。これらの電源として使用される条件下においては寿
命特性、高率放電特性、高温特性のほかに低温特性が重
要視される。特に、携帯電話の電源においては低温特性
の改良が望まれている。中でも低温高率放電特性は負極
である水素吸蔵電極による影響が大きく、水素吸蔵電極
の低温特性の改良が不可欠である。
2. Description of the Related Art In recent years, nickel hydride batteries using a hydrogen storage alloy as a negative electrode material have been increasing in energy density, and those having a volume energy density of 300 Wh / liter class have emerged, surpassing lithium ion batteries. Its applications are small portable devices such as mobile phones, including notebook computers. Nickel hydride batteries are also receiving worldwide attention as EV power supplies. Under the conditions used as these power sources, low-temperature characteristics are regarded as important in addition to life characteristics, high-rate discharge characteristics, and high-temperature characteristics. In particular, there is a demand for improved low-temperature characteristics of power supplies for mobile phones. Above all, the low-temperature high-rate discharge characteristics are greatly affected by the hydrogen storage electrode as the negative electrode, and it is essential to improve the low-temperature characteristics of the hydrogen storage electrode.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の水素吸
蔵電極の低温特性は必ずしも満足いくものではなかっ
た。本発明はこの問題点に鑑みてなされたものであり、
低温特性の優れた水素吸蔵電極を提供しようとするもの
である。
However, the low-temperature characteristics of the conventional hydrogen storage electrode have not always been satisfactory. The present invention has been made in view of this problem,
An object of the present invention is to provide a hydrogen storage electrode having excellent low-temperature characteristics.

【0004】[0004]

【課題を解決するための手段】本発明の第1は、水素を
可逆的に吸蔵放出し得る水素吸蔵合金を用いる電極であ
って、その水素吸蔵合金粉末の比表面積が0.2〜1.
0m2 /gであることを特徴とする水素吸蔵電極であ
る。
The first aspect of the present invention is an electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, wherein the specific surface area of the hydrogen storage alloy powder is 0.2 to 1.
It is a hydrogen storage electrode characterized by being 0 m 2 / g.

【0005】本発明の第2は、前記水素吸蔵合金が、ニ
ッケル、コバルトを主体とする遷移金属リッチ層を表面
に備えている水素吸蔵電極である。
A second aspect of the present invention is a hydrogen storage electrode in which the hydrogen storage alloy has a transition metal rich layer mainly composed of nickel and cobalt on its surface.

【0006】本発明の第3は、前記遷移金属リッチ層
が、アルカリ水溶液による表面処理、または酢酸ー酢酸
ナトリウム緩衝水溶液による表面処理により形成された
水素吸蔵電極である。
A third aspect of the present invention is a hydrogen storage electrode in which the transition metal rich layer is formed by a surface treatment with an aqueous alkali solution or a surface treatment with an aqueous acetic acid-sodium acetate buffer solution.

【0007】本発明の第4は、前記水素吸蔵合金の粒子
径が、32μm以下である水素吸蔵電極である。
A fourth aspect of the present invention is a hydrogen storage electrode in which the particle diameter of the hydrogen storage alloy is 32 μm or less.

【0008】一般に温度が低くなると物質の活性度は下
がる傾向がある。水素吸蔵電極についても同様で、低温
域では合金表面での電荷移動反応の活性度が低下するこ
とが予想される。本発明では、比表面積の大きい水素吸
蔵合金を用い、合金表面と電解液との接触界面を増大さ
せて前記問題点の解消を試みた。その手法としては、合
金粒子径を32μm以下の小径粒子を用い、さらにアル
カリ処理、酢酸処理などの表面処理により合金表面にポ
ーラスな遷移金属リッチ層を形成させることにより、比
表面積を0.2〜1.0m2 /gとした。
Generally, as the temperature decreases, the activity of the substance tends to decrease. The same is true for the hydrogen storage electrode, and it is expected that the activity of the charge transfer reaction on the alloy surface will decrease in the low temperature range. In the present invention, an attempt was made to solve the above problem by using a hydrogen storage alloy having a large specific surface area and increasing the contact interface between the alloy surface and the electrolyte. As a technique, a specific surface area of 0.2 to 0.2 μm is formed by using a small particle having an alloy particle diameter of 32 μm or less and forming a porous transition metal rich layer on the alloy surface by surface treatment such as alkali treatment and acetic acid treatment. 1.0 m 2 / g.

【0009】[0009]

【発明の実施の形態】以下、実施例により本発明を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to examples.

【0010】まず、MmNi3.8 Al0.3 Co0.7 Mn
0.2 の組成になるように各金属を所定量秤量し、不活性
雰囲気下、高周波誘導溶解炉で合金インゴットを作製
し、1000℃でアニールして試料を得た。なお、Mm
は希土類元素の混合物であるミッシュメタルを意味す
る。この合金インゴットの半分を粒径32μm以下に、
残りの半分を粒径75μm以下の大きさにそれぞれ機械
的に粉砕して水素吸蔵合金粉末とした。これらの粉末を
それぞれ合金粉末A(粒径32μm以下)および合金粉
末B(粒径75μm以下)とする。
First, MmNi 3.8 Al 0.3 Co 0.7 Mn
A predetermined amount of each metal was weighed so as to have a composition of 0.2 , an alloy ingot was prepared in a high-frequency induction melting furnace under an inert atmosphere, and annealed at 1000 ° C. to obtain a sample. In addition, Mm
Means misch metal which is a mixture of rare earth elements. Half of this alloy ingot has a particle size of 32 μm or less,
The other half was mechanically pulverized to a particle size of 75 μm or less to obtain a hydrogen storage alloy powder. These powders are referred to as alloy powder A (having a particle size of 32 μm or less) and alloy powder B (having a particle size of 75 μm or less).

【0011】合金粉末Aおよび合金粉末Bをそれぞれ6
0℃に加温した酢酸ー酢酸ナトリウム緩衝水溶液中に3
0分間浸漬して撹拌した後、水洗乾燥して酢酸処理合金
粉末試料とした。この合金試料に増粘剤を加えてペース
ト状にし、ニッケル多孔体に充填し、乾燥後プレスして
水素吸蔵電極を作製した。これを発明電極A1および発
明電極B1とする。
[0011] Alloy powder A and alloy powder B
3% in an aqueous solution of acetic acid-sodium acetate buffer heated to 0 ° C
After being immersed for 0 minutes and stirred, it was washed with water and dried to obtain an acetic acid-treated alloy powder sample. A thickener was added to the alloy sample to form a paste, and the paste was filled into a nickel porous body, dried and pressed to produce a hydrogen storage electrode. These are referred to as invention electrode A1 and invention electrode B1.

【0012】また、合金粉末Aおよび合金粉末BをKO
HとLiOHとを混合した高温アルカリ水溶液で表面処
理を行ったものを用いて、それ以外は発明電極A1、B
1と同様にして発明電極A2および比較電極B2を作製
した。
The alloy powder A and the alloy powder B are KO
H1 and LiOH were used and surface-treated with a high-temperature alkaline aqueous solution.
Inventive electrode A2 and comparative electrode B2 were produced in the same manner as in Example 1.

【0013】さらに、合金粉末Aおよび合金粉末Bを表
面処理を行わないで、それ以外は同様に比較電極A3お
よび比較電極B3を作製した。
Further, a comparative electrode A3 and a comparative electrode B3 were prepared in the same manner except that the surface treatment was not performed on the alloy powder A and the alloy powder B.

【0014】また、それぞれの電極に使用した合金の比
表面積をBET法により測定した結果を表1に示す。
Table 1 shows the results of measuring the specific surface area of the alloy used for each electrode by the BET method.

【0015】[0015]

【表1】 [Table 1]

【0016】上記のようにして作製した電極を用いて通
常の水酸化ニッケル電極を相手極として−20℃で充放
電試験を行った。その結果を図1に示す。表1および図
1から明かなとおり、発明電極A1、発明電極A2およ
び発明電極B1は、比表面積が0.2〜1.0m2 /g
と大きい合金を用いているので、比表面積の小さい合金
を用いたほかの比較電極よりも−20℃の1C放電にお
いて放電容量が大きいことが分かる。
A charge / discharge test was performed at −20 ° C. using the electrode prepared as described above and a normal nickel hydroxide electrode as a counter electrode. The result is shown in FIG. As is clear from Table 1 and FIG. 1, the invention electrode A1, the invention electrode A2, and the invention electrode B1 have a specific surface area of 0.2 to 1.0 m 2 / g.
It can be seen that the discharge capacity is larger at 1 C discharge at −20 ° C. than other comparative electrodes using an alloy having a smaller specific surface area.

【0017】図2に−20℃、1C放電における放電曲
線を示す。図2から明かなとおり、比表面積を増大させ
た発明電極A1、発明電極A2および発明電極B1は、
合金表面での反応の活性度が上がったため、放電初期の
分極が小さくなる効果が得られた。
FIG. 2 shows a discharge curve at -20.degree. As is clear from FIG. 2, the invention electrode A1, the invention electrode A2, and the invention electrode B1 whose specific surface areas are increased are:
Since the activity of the reaction on the alloy surface was increased, the effect of reducing the polarization at the initial stage of the discharge was obtained.

【0018】[0018]

【発明の効果】上記のように、本発明の水素吸蔵電極で
は0.2〜1.0m2 /gの大きな比表面積の水素吸蔵
合金粉末を用いたので、−20℃における低温高率放電
特性を向上させるという極めて優れた効果が得られる。
As described above, in the hydrogen storage electrode of the present invention, since the hydrogen storage alloy powder having a large specific surface area of 0.2 to 1.0 m 2 / g is used, low-temperature high-rate discharge characteristics at −20 ° C. And an extremely excellent effect of improving the

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電容量とサイクル数との関係図である。FIG. 1 is a relationship diagram between a discharge capacity and the number of cycles.

【図2】放電電位と放電容量との関係図である。FIG. 2 is a relationship diagram between a discharge potential and a discharge capacity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素を可逆的に吸蔵放出し得る水素吸蔵
合金を用いる電極であって、その水素吸蔵合金粉末の比
表面積が0.2〜1.0m2 /gであることを特徴とす
る水素吸蔵電極。
1. An electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, wherein the specific surface area of the hydrogen storage alloy powder is 0.2 to 1.0 m 2 / g. Hydrogen storage electrode.
【請求項2】 前記水素吸蔵合金が、ニッケル、コバル
トを主体とする遷移金属リッチ層を表面に備えている請
求項1記載の水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein the hydrogen storage alloy has a transition metal rich layer mainly composed of nickel and cobalt on its surface.
【請求項3】 前記遷移金属リッチ層が、アルカリ水溶
液による表面処理、または酢酸ー酢酸ナトリウム緩衝水
溶液による表面処理により形成された請求項2記載の水
素吸蔵電極。
3. The hydrogen storage electrode according to claim 2, wherein the transition metal rich layer is formed by a surface treatment with an alkaline aqueous solution or a surface treatment with an acetic acid-sodium acetate buffer aqueous solution.
【請求項4】 前記水素吸蔵合金の粒子径が、32μm
以下である請求項1又は2記載の水素吸蔵電極。
4. The hydrogen storage alloy has a particle diameter of 32 μm.
The hydrogen storage electrode according to claim 1, wherein:
JP9058181A 1997-03-13 1997-03-13 Hydrogen storage electrode Pending JPH10255782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9058181A JPH10255782A (en) 1997-03-13 1997-03-13 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9058181A JPH10255782A (en) 1997-03-13 1997-03-13 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH10255782A true JPH10255782A (en) 1998-09-25

Family

ID=13076849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9058181A Pending JPH10255782A (en) 1997-03-13 1997-03-13 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH10255782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135311A (en) * 1999-11-04 2001-05-18 Matsushita Electric Ind Co Ltd Alkaline storage battery

Similar Documents

Publication Publication Date Title
JP4316218B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and battery
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH10255782A (en) Hydrogen storage electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3572794B2 (en) Alkaline storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP2797554B2 (en) Nickel cadmium storage battery
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP2754800B2 (en) Nickel cadmium storage battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JPH0834100B2 (en) Hydrogen storage alloy electrode
JP3082341B2 (en) Hydrogen storage electrode
JPH11238507A (en) Alkaline storage battery
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode