JPH1025528A - 水素吸蔵合金 - Google Patents

水素吸蔵合金

Info

Publication number
JPH1025528A
JPH1025528A JP8314521A JP31452196A JPH1025528A JP H1025528 A JPH1025528 A JP H1025528A JP 8314521 A JP8314521 A JP 8314521A JP 31452196 A JP31452196 A JP 31452196A JP H1025528 A JPH1025528 A JP H1025528A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
rare earth
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8314521A
Other languages
English (en)
Inventor
Masahiro Wada
正弘 和田
Yoshio Takizawa
与司夫 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8314521A priority Critical patent/JPH1025528A/ja
Priority to DE69704003T priority patent/DE69704003T2/de
Priority to EP97107413A priority patent/EP0806803B1/en
Priority to US08/852,356 priority patent/US5900334A/en
Priority to CN97114943A priority patent/CN1174894A/zh
Publication of JPH1025528A publication Critical patent/JPH1025528A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 水素吸収放出速度が速く、かつ実用に際して
すぐれた初期活性化を示す水素吸蔵合金を提供する。 【解決手段】 水素吸蔵合金を、重量%で、Laおよび
/またはCeを主体とする希土類元素:32〜38%、
Co:0.1〜17%、Al:0.5〜3.5%、M
n:0.5〜10%、水素:0.005〜0.5%を含
有し、残りがNiと不可避不純物からなる全体組成を有
し、かつCaCu5 型結晶構造を有する素地に微細な希
土類元素水素化物が0.5〜20面積%の割合で分散分
布した組織をもったNi基合金で構成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、水素吸収および
放出速度がきわめて速く、かつ例えば電池の電極などと
して実用に供するに際してはすぐれた初期活性化を発揮
する水素吸蔵合金に関するものである。
【0002】
【従来の技術】従来、一般に水素吸蔵合金として数多く
のものが提案されているが、中でも平成6年11月に名
古屋市で開催された第35回電池討論会(講演要旨集第
369頁)で発表された水素吸蔵合金は、特に電池の電
極用として注目されている。この水素吸蔵合金は、重量
%で(以下、%の表示は重量%を示す)、 Laおよび/またはCeを主体とする希土類元素:33.2%、 Co:9.8%、 Al:1.9%、 Mn:5.2%、 を含有し、残りがNiと不可避不純物からなる換算組成
を有し、かつCaCu5型結晶構造の単相組織を有する
Ni基合金からなるものである。また、一般に水素吸蔵
合金は、所定の成分組成を有する合金溶湯を調製し、イ
ンゴットに鋳造することによって製造され、これを例え
ば電池の電極として実用に供するに際しては、必要に応
じて前記インゴットに真空または不活性ガスの非酸化性
雰囲気中、900〜1050℃の範囲内の所定温度に所
定時間保持の条件で均質化熱処理を施し、さらに前記の
鋳造ままの状態、あるいは前記均質化熱処理状態のイン
ゴットを、通常の機械的粉砕により所定粒度の粉末とす
るか、あるいは加圧水素中、10〜200℃の範囲内の
所定温度に加熱の水素吸収と、真空排気による水素放出
からなる水素化粉砕によって粉末とされている。さら
に、水素吸蔵合金を、例えば電池の電極に適用する場合
には、水素吸蔵合金が組込まれた前記電極が使用初めか
ら充分な放電容量をもつようにするために、予め加圧水
素雰囲気中に所定時間保持の条件で初期活性化が行なわ
れ、この初期活性化が行なわれた状態で実用に供される
ものである。
【0003】
【発明が解決しようとする課題】一方、近年、水素吸蔵
合金が多く適用されている電池やヒートポンプなどの高
出力化および高性能化、さらに省エネ化に対する要求は
強く、これに伴ない、水素吸蔵合金には上記従来水素吸
蔵合金における水素吸収放出速度よりも一段と速い水素
吸収放出速度と共に、より短時間での初期活性化が強く
望まれている。
【0004】
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記のNi基合金からなる従来
水素吸蔵合金に着目し、これの水素吸収放出速度および
初期活性化の向上をはかるべく研究を行なった結果、上
記の鋳放し状態あるいは均質化熱処理状態のインゴット
からなる従来水素吸蔵合金に、水素雰囲気中、600〜
950℃、望ましくは700〜900℃の範囲内の所定
の温度に所定時間保持後冷却の条件で水素化熱処理を施
すと、この結果の合金は、CaCu5 型結晶構造の素地
に微細な希土類元素水素化物が分散分布した組織をもつ
ようになり、この希土類元素水素化物は、その割合が
0.5〜20面積%である場合、放電容量を損なうこと
なく、水素吸収および水素放出を著しく促進する触媒作
用を発揮することから、上記従来水素吸蔵合金に比して
一段と速い速度での水素吸収および水素放出が可能とな
り、かつ初期活性化の著しい促進がはかられるようにな
るという研究結果を得たのである。
【0005】この発明は、上記の研究結果に基づいてな
されたものであって、 Laおよび/またはCeを主体とする希土類元素:32〜38%、 Co:0.1〜17%、 Al:0.5〜3.5%、 Mn:0.5〜10%、 水素:0.005〜0.5%、 を含有し、残りがNiと不可避不純物からなる組成、お
よびCaCu5 型結晶構造を有する素地に微細な希土類
元素水素化物が0.5〜20面積%の割合で分散分布し
た組織をもったNi基合金で構成された、水素吸収放出
速度が速く、かつ初期活性化のすぐれた水素吸蔵合金に
特徴を有するものである。
【0006】つぎに、この発明の水素吸蔵合金におい
て、これを構成するNi基合金の組成および希土類元素
水素化物の割合を上記の通りに限定した理由を説明す
る。 (a) Laおよび/またはCeを主体とする希土類元
素 これらの希土類元素は、Niと共に水素吸蔵作用を有す
るCaCu5 型結晶構造の素地を形成すると共に、水素
吸収放出速度の促進および初期活性化の向上に寄与する
希土類元素水素化物を形成するが、その含有量が32%
未満でも、またその含有量が38%を越えても放電容量
が低下するようになることから、その含有量を32〜3
8%、望ましくは33〜35%と定めた。
【0007】(b) Co Co成分には、素地に固溶して、水素の吸収放出時の体
積の膨張収縮を抑制し、もって合金の微粉化を防止し、
使用寿命の延命化に寄与する作用があるが、その含有量
が0.1%未満では、前記作用に所望の効果が得られ
ず、一方その含有量が17%を越えると、放電容量およ
び初期活性化作用に低下傾向が現れるようになることか
ら、その含有量を0.1〜17%、望ましくは6〜12
%と定めた。
【0008】(c) Al Al成分には、素地に固溶して、これの耐食性を向上さ
せる作用があるが、その含有量が0.5%未満では所望
の耐食性向上効果が得られず、一方その含有量が3.5
%を越えると放電容量が低下するようになることから、
その含有量を0.5〜3.5%、望ましくは1〜2%と
定めた。
【0009】(d) Mn Mn成分には、素地に固溶して、これの平衡水素解離圧
を低下させ、もって放電容量の拡大に寄与する作用があ
るが、その含有量が0.5%未満では所望の放電容量拡
大効果が得られず、一方その含有量が10%を越える
と、放電容量に低下傾向が現れるようになることから、
その含有量を0.5〜10%、望ましくは1〜4.5%
と定めた。
【0010】(e) 水素および希土類元素水素化物 水素は、高温での水素化熱処理で優先的に希土類元素と
結合して、水素吸収放出速度および初期活性化の向上に
寄与する希土類元素水素化物を形成するが、その含有量
が0.005%未満では、前記希土類元素水素化物の割
合が0.5面積%未満となり、これのもつ作用効果を十
分に発揮することができず、一方その含有量が0.5%
を越えると、前記希土類元素水素化物の割合も20面積
%を越えて多くなり過ぎてしまい、この結果放電容量が
急激に低下するようになることから、その含有量を0.
005〜0.5%、望ましくは0.01〜0.2%と定
め、この結果として素地に微細に分散分布する希土類元
素水素化物の割合が0.5〜20面積%、望ましくは
0.7〜9面積%となるようにした。
【0011】
【発明の実施の形態】つぎに、この発明の水素吸蔵合金
を実施例により具体的に説明する。通常の高周波誘導溶
解炉にて、原料としてそれぞれ99.9%以上の純度を
もったNi、La、Ce、Co、Al、およびMn、さ
らにミッシュメタルを用い、真空中で溶解して、所定の
組成をもったNi基合金溶湯を調製し、水冷銅鋳型に鋳
造してインゴットとし、このインゴットに、真空中、8
50〜1050℃の範囲内の所定温度に10時間保持の
条件で均質化熱処理を施し、さらに引続いて1〜1.2
気圧の範囲の圧力の水素雰囲気とし、この水素雰囲気に
室温で1時間保持した後、昇温を開始して600〜95
0℃の範囲内の所定温度に加熱し、この温度に1時間保
持してから300℃以下の温度に冷却後、真空雰囲気中
に6時間保持の条件で水素化熱処理を施すことにより、
いずれも200mesh以下の粒度をもった粉末状にし
て、それぞれ表1、2に示される成分組成をもった本発
明水素吸蔵合金(以下、本発明合金という)1〜22を
それぞれ製造した。また、比較の目的で、合金溶湯の組
成を表2に示される通りとし、かつ均質化熱処理後の水
素化熱処理を行わず、これに代わって、圧力容器に封入
し、水素雰囲気圧力:8気圧、加熱温度:200℃、保
持時間:1時間の条件での水素吸収と、真空排気による
水素放出からなる水素化粉砕を行って200mesh以
下の粒度を有する粉末とする以外は同一の条件で従来水
素吸蔵合金(以下、従来合金という)を製造した。この
結果得られた水素吸蔵合金について、その組織を走査型
電子顕微鏡(倍率:5万倍)、透過型電子顕微鏡(倍
率:5万倍)、および粉末X線回析装置を用いて観察し
たところ、本発明合金1〜22は、いずれもCaCu5
型結晶構造を有する素地に微細な希土類元素水素化物が
分散分布した組織を示し、この希土類元素水素化物の割
合(面積率)を測定したところ、それぞれ表1、2に示
される結果を示し、かつ前記素地がCaCu5 型結晶構
造をもつこと、並びに前記素地に分散分布するのが希土
類元素水素化物であることを、X線回析パターンにより
確認した。さらに従来合金についても観察したところ、
CaCu5 型結晶構造の単相組織をもつことが確認され
た。
【0012】つぎに、上記の本発明合金1〜22および
従来合金について、それぞれ水素吸収速度と水素放出速
度の測定をJIS・H7202の「水素吸蔵合金の水素
化速度試験測定法」にもとづき、以下に示す条件で行っ
た。まず、水素吸収速度については、図1に概略説明図
で示される通り、(a) 合金粉末を浴(油または水)
に浸漬した容器内に封入し、前記浴の温度を200℃に
保持した状態で、弁Vb:閉、弁VaおよびVc:開と
して水素ボンベから加圧水素を系内に導入し、系内を3
0気圧とした時点で弁Va:閉とし、系内の圧力が一定
圧力に降下する(合金粉末による水素吸収完了)まで放
置して合金粉末の初期活性化を行ない、(b) 系内の
圧力が一定圧力(約20気圧程度)に降下した時点で弁
Vb:開とし、真空ポンプで系内を10-2トルの真空雰
囲気とした後、浴温を20℃とし、弁VbおよびVc:
閉、弁Va:開にして容器を除く系内に水素を導入し、
その圧力が30気圧となった時点で弁Va:閉、弁V
c:開とし、この状態で系内の時間に対する圧力降下を
測定し、この結果の圧力降下曲線から合金粉末の水素吸
蔵量が80%になった時点の水素吸蔵量とそれまでに要
した時間を求め、(80%吸蔵時の水素吸蔵量)÷(8
0%水素吸蔵に要した時間)を算出し、この値を水素吸
収速度とした。
【0013】また、水素放出速度については、上記の水
素吸収速度測定後の状態、すなわち弁VaおよびVb:
閉、弁Vc:開であって系内の圧力が一定圧(通常20
気圧前後)となった状態で、浴温を100〜300℃の
範囲内の合金粉末の水素放出適正温度、例えば120℃
とした後、弁Vb:開、弁Vc:閉として容器を除く系
内を10-2トルに排気し、ついで弁Vb:閉、弁Vc:
開とした状態で、系内の時間に対する圧力上昇を測定
し、この結果の圧力上昇曲線から合金粉末の水素放出量
が80%になった時点の水素放出量とそれまでに要した
時間を求め、(80%放出時の水素放出量)÷(80%
水素放出に要した時間)を算出し、この値を水素放出速
度とした。これらの結果を表3に示した。
【0014】さらに、上記本発明合金1〜22および従
来合金について、初期活性化を評価する目的で、以下に
詳述する通り、これを電池に負極の活物質として組み込
み、前記電池が最大放電容量を示すに至るまで、これに
充放電を繰り返し施し、前記最大放電容量の97%に相
当する放電容量を示すまでの充放電回数を測定した。す
なわち、上記本発明合金1〜22および従来合金のそれ
ぞれに、導電剤として酸化第一銅(Cu2 O)、結着剤
としてポリテトラフルオロエチレン(PTFE)、およ
び増粘剤としてカルボキシルメチルセルロース(CM
C)を加えてペースト状とした後、95%の気孔率を有
する市販の多孔質Ni焼結板に充填し、乾燥し、加圧し
て、平面寸法:30mm×40mm、厚さ:0.40〜0.
43mmの形状(前記活物質粉末充填量:約1.8g)と
し、これの一辺にリードとなるNi薄板を溶接により取
り付けて負極を形成し、一方正極は、活物質としてNi
(OH)2 を用い、これに導電剤として一酸化コバルト
(CoO)、結着剤としてポリテトラフルオロエチレン
(PTFE)、および増粘剤としてカルボキシルメチル
セルロース(CMC)を加えてペースト状とし、これを
上記多孔質Ni焼結板に充填し、乾燥し、加圧して、平
面寸法:30mm×40mm、厚さ:0.71〜0.73mm
の形状とし、同じくこれの一辺にNi薄板を取り付ける
ことにより形成し、ついで、上記負極の両側に、それぞ
れポリプロピレンポリエチレン共重合体のセパレータ板
を介して上記正極を配置し、さらに前記正極のそれぞれ
の外面から活物質の脱落を防止する目的で塩化ビニール
製の保護板ではさんで一体化し、これを塩化ビニール製
のセルに装入し、前記セルに電解液として28%KOH
水溶液を装入することにより電池を製造した。ついで、
上記電池に、充電速度:0.25C、放電速度:0.2
5C、充電電気量:負極容量の135%の条件で充放電
を行ない、前記充電と放電を充放電1回と数え、前記電
池が最大放電容量を示すに至るまで前記充放電を繰り返
し行なった。表3に、この結果測定された最大放電容量
を示すと共に、前記最大放電容量の97%の放電容量を
示すに要した充放電回数を示し、これによって初期活性
化を評価した。
【0015】
【表1】
【0016】
【表2】
【0017】
【表3】
【0018】
【発明の効果】表1〜3に示される結果から、本発明合
金1〜22は、いずれも従来合金と同等の放電容量を示
し、かつCaCu5 型結晶構造を有する素地に微細な希
土類元素水素化物が分散分布した組織を有し、この希土
類元素水素化物の作用で、水素吸収放出速度が相対的に
きわめて速いものとなり、かつ初期活性化も著しく促進
されるようになるのに対して、従来合金においては、組
織がCaCu5 型結晶構造の単相だけからなるので、水
素吸収放出速度は希土類元素水素化物が存在しない分だ
け相対的に遅くならざるを得ず、かつ初期活性化も遅い
ものとなることが明らかである。上述のように、この発
明の水素吸蔵合金は、水素吸収および放出速度がきわめ
て速く、かつ実用に際してはすぐれた初期活性化を示す
ので、水素吸蔵合金が適用されている各種機械装置の高
出力化および高性能化、さらに省エネ化に大いに寄与す
るものである。
【図面の簡単な説明】
【図1】水素吸蔵合金の水素吸収放出速度を測定するの
に用いた装置の概略説明図である。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 重量%で、 Laおよび/またはCeを主体とする希土類元素:32〜38%、 Co:0.1〜17%、 Al:0.5〜3.5%、 Mn:0.5〜10%、 水素:0.005〜0.5%、 を含有し、残りがNiと不可避不純物からなる全体組成
    を有し、かつCaCu5型結晶構造をもった素地に微細
    な希土類元素水素化物が0.5〜20面積%の割合で分
    散分布した組織を有するNi基合金で構成したことを特
    徴とする水素吸蔵合金。
JP8314521A 1996-05-09 1996-11-26 水素吸蔵合金 Pending JPH1025528A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8314521A JPH1025528A (ja) 1996-05-09 1996-11-26 水素吸蔵合金
DE69704003T DE69704003T2 (de) 1996-05-09 1997-05-06 Wasserstoffabsorbierende Legierung, Verfahren zu ihrer Herstellung und Elektrode
EP97107413A EP0806803B1 (en) 1996-05-09 1997-05-06 Hydrogen occluding alloy, process for its preparation and electrode
US08/852,356 US5900334A (en) 1996-05-09 1997-05-07 Hydrogen occluding alloy
CN97114943A CN1174894A (zh) 1996-05-09 1997-05-09 储氢合金

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-114763 1996-05-09
JP11476396 1996-05-09
JP8314521A JPH1025528A (ja) 1996-05-09 1996-11-26 水素吸蔵合金

Publications (1)

Publication Number Publication Date
JPH1025528A true JPH1025528A (ja) 1998-01-27

Family

ID=26453436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8314521A Pending JPH1025528A (ja) 1996-05-09 1996-11-26 水素吸蔵合金

Country Status (1)

Country Link
JP (1) JPH1025528A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036171A1 (en) * 1998-12-15 2000-06-22 Mitsui Mining & Smelting Company, Ltd. Hydrogen storage alloy and method for preparation thereof
US7317498B2 (en) 2002-04-24 2008-01-08 Nitto Denko Corporation Viewing angle magnification liquid crystal display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036171A1 (en) * 1998-12-15 2000-06-22 Mitsui Mining & Smelting Company, Ltd. Hydrogen storage alloy and method for preparation thereof
US6372059B1 (en) 1998-12-15 2002-04-16 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy and method for preparation thereof
US7317498B2 (en) 2002-04-24 2008-01-08 Nitto Denko Corporation Viewing angle magnification liquid crystal display unit

Similar Documents

Publication Publication Date Title
JP3965209B2 (ja) 低Co水素吸蔵合金
JP5856056B2 (ja) 希土類−Mg−Ni系水素吸蔵合金の製造方法
JP5681729B2 (ja) 水素吸蔵合金粉末、負極及びニッケル水素二次電池
US5900334A (en) Hydrogen occluding alloy
EP0753590B1 (en) Hydrogen occluding alloy and electrode made of the alloy
US6083327A (en) Hydrogen occluding alloy
JPH1025528A (ja) 水素吸蔵合金
JPH10152740A (ja) 水素吸蔵合金
EP0761833B1 (en) Hydrogen occluding alloy and electrode made of the alloy
CN111118346B (zh) 含锆或钛a2b7型储氢合金、负极、电池及制备方法
JPH10195575A (ja) 初期活性の良好な水素貯蔵合金
JP2000129379A (ja) 水素吸蔵合金
JPH09176777A (ja) 水素吸蔵合金
JPH10195574A (ja) 初期活性の良好な水素貯蔵合金
JP2000345265A (ja) 電池の高率放電を可能にする水素吸蔵合金
JP2000345263A (ja) 電池の高率放電を可能にする水素吸蔵合金
JPH0987784A (ja) 水素吸蔵合金
JPS61292855A (ja) 密閉型金属酸化物・水素電池
JPH10195584A (ja) 初期活性の良好な水素貯蔵合金
JPH10212509A (ja) 水素吸蔵合金粉末の製造方法
JPH0978176A (ja) 水素吸蔵合金
JPH10195580A (ja) 初期活性の良好な水素貯蔵合金
JPH10195569A (ja) 初期活性の良好な水素貯蔵合金
JPH0959733A (ja) 水素吸蔵合金
JPH09176776A (ja) 水素吸蔵合金