JPH10245685A - Pretreating liquid for surface conditioning before phosphate film chemical conversion treatment of metal and surface conditioning method - Google Patents

Pretreating liquid for surface conditioning before phosphate film chemical conversion treatment of metal and surface conditioning method

Info

Publication number
JPH10245685A
JPH10245685A JP9052181A JP5218197A JPH10245685A JP H10245685 A JPH10245685 A JP H10245685A JP 9052181 A JP9052181 A JP 9052181A JP 5218197 A JP5218197 A JP 5218197A JP H10245685 A JPH10245685 A JP H10245685A
Authority
JP
Japan
Prior art keywords
phosphate
metal
surface conditioning
divalent
pretreatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9052181A
Other languages
Japanese (ja)
Other versions
JP3451334B2 (en
Inventor
Takaomi Nakayama
隆臣 中山
Yasuhiko Nagashima
康彦 永嶋
Kensuke Shimoda
健介 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12907647&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10245685(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP05218197A priority Critical patent/JP3451334B2/en
Priority to MYPI98000677A priority patent/MY124633A/en
Priority to ZA981796A priority patent/ZA981796B/en
Priority to TW087103138A priority patent/TW371675B/en
Priority to IDP980332A priority patent/ID20532A/en
Priority to KR10-1998-0007469A priority patent/KR100473603B1/en
Priority to AU66736/98A priority patent/AU6673698A/en
Priority to DE69817803T priority patent/DE69817803T2/en
Priority to CA002283387A priority patent/CA2283387C/en
Priority to CNB981054668A priority patent/CN1198958C/en
Priority to PCT/US1998/003934 priority patent/WO1998039498A1/en
Priority to ES98908792T priority patent/ES2205456T3/en
Priority to EP98908792A priority patent/EP0977908B1/en
Publication of JPH10245685A publication Critical patent/JPH10245685A/en
Priority to US09/380,700 priority patent/US6214132B1/en
Publication of JP3451334B2 publication Critical patent/JP3451334B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pretreating liquid and pretreatment method for accelerating chemical reaction and making phosphate film crystals finer in phosphate film chemical conversion treatment of metallic materials. SOLUTION: This pretreating liquid contains >=1 kinds selected from phosphate contg. at least one kind among bivalent or tervalent metals including particles having a grain size of <=5μm and alkaline metal salts or ammonium salts or their mixtures and is adjusted in its pH to 4 to 13. The concn. of the particles having the grain size of <=5μm may be confined to 0.001 to 30g/L. The bivalent or tervalent metals may be >=1 kinds selected from Zn, Fe, Mn, Ni, Co, Ca and Al. The alkaline metal salts or ammonium salts may be >=1 kinds selected from orthophosphate, metaphosphate, orthosilicate, metasilicate, carbonate, bicarbonate and borate. The pretreatment method may be executed by previously bringing the metallic surfaces into contact with the pretreating liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、鉄鋼、亜鉛めっき
鋼板、及びアルミニウム等の金属材料の表面に施される
りん酸塩皮膜化成処理において、その化成処理前に化成
反応の促進および短時間化ならびにりん酸塩皮膜結晶の
微細化を図るために用いられる表面調整用前処理液及び
表面調整方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphate film chemical conversion treatment applied to the surface of a metal material such as iron and steel, galvanized steel sheet, and aluminum. The present invention also relates to a preconditioning solution for surface conditioning and a surface conditioning method used for miniaturizing phosphate film crystals.

【0002】[0002]

【従来の技術】昨今、自動車のりん酸塩処理においては
塗装後の耐食性向上のため、また、塑性加工用のりん酸
塩処理においてはプレス時の摩擦低減またはプレス型寿
命延長のために金属表面に微細で緻密なりん酸塩皮膜結
晶を形成することが求められている。そこで、微細で緻
密なりん酸塩皮膜結晶を得るために金属表面を活性化
し、りん酸塩皮膜結晶析出のための核をつくる目的で、
りん酸塩皮膜化成処理工程の前に表面調整工程が採用さ
れている。以下に微細で緻密なりん酸塩皮膜結晶を得る
ために行われている一般的なりん酸塩皮膜化成工程を例
示する。 (1)脱脂 (2)水洗(多段) (3)表面調整 (4)りん酸塩皮膜化成処理 (5)水洗(多段) (6)純水洗
2. Description of the Related Art In recent years, in the case of phosphate treatment for automobiles, metal surfaces have been used to improve corrosion resistance after painting, and in the case of phosphate treatment for plastic working, in order to reduce friction during pressing or extend the life of the press die. It is required to form fine and dense phosphate film crystals. Therefore, in order to activate the metal surface to obtain fine and dense phosphate film crystals, and to create nuclei for phosphate film crystal deposition,
A surface conditioning step is employed before the phosphate film conversion treatment step. The following is an example of a general phosphate film conversion process performed to obtain fine and dense phosphate film crystals. (1) Degreasing (2) Rinse with water (multi-stage) (3) Surface conditioning (4) Chemical conversion treatment of phosphate film (5) Rinse with water (multi-stage) (6) Rinse with pure water

【0003】表面調整工程は、りん酸塩皮膜結晶を微細
で緻密なものにするために用いられる。その組成物に関
しては、例えば米国特許第2874081号、第232
2349号、及び第2310239号などにより公知と
なっており、表面調整剤に含まれる主たる構成成分とし
てチタン、ピロリン酸イオン、オルソリン酸イオン及び
ナトリウムイオン等が開示されている。上記表面調整組
成物は「ジャーンステッド塩」と称され、その水溶液に
はチタンイオンとチタンコロイドが含まれる。脱脂、水
洗を行った金属を前記表面調整組成物の水溶液に浸漬も
しくは、金属に表面調整用前処理液を噴霧することによ
ってチタンコロイドが金属表面に吸着する。吸着したチ
タンコロイドが次工程のりん酸塩皮膜化成処理工程にお
いてりん酸塩皮膜結晶析出の核となり、化成反応の促進
およびりん酸塩皮膜結晶の微細化、緻密化が可能とな
る。現在工業的に利用されている表面調整組成物は全て
ジャーンステッド塩を利用したものである。しかしなが
ら、ジャーンステッド塩から得られるチタンコロイドを
表面調整工程に用いた場合、種々の問題点があった。
The surface conditioning step is used to make the phosphate film crystals fine and dense. Regarding the composition, for example, U.S. Pat.
Nos. 2349 and 2310239 disclose titanium, pyrophosphate ion, orthophosphate ion, sodium ion and the like as main components contained in the surface conditioner. The surface conditioning composition is called "Jernsted salt", and its aqueous solution contains titanium ions and titanium colloid. The titanium colloid is adsorbed on the metal surface by immersing the degreased and washed metal in an aqueous solution of the surface conditioning composition or by spraying the metal with a surface conditioning pretreatment liquid. The adsorbed titanium colloid serves as a nucleus for depositing phosphate film crystals in the subsequent phosphate film conversion treatment step, thereby facilitating the chemical conversion reaction and making the phosphate film crystals finer and denser. All surface conditioning compositions currently used industrially are based on Jernstead salts. However, when a titanium colloid obtained from the Jernsted salt is used in the surface conditioning step, there are various problems.

【0004】第1の問題点としては、表面調整用前処理
液の経時劣化が挙げられる。従来の表面調整組成物を用
いる場合、その組成物を水溶液とした直後はりん酸塩皮
膜結晶の微細化及び緻密化に関して著しい効果を発揮す
る。しかし、水溶液とした後に数日間が経過すると、チ
タンコロイドが凝集することによって経過日数の間の表
面調整用前処理液の使用の有無に関わらずその効果が失
われ、得られるりん酸塩皮膜結晶は粗大化する。そこ
で、特開昭63−76883号公報には、表面調整用前
処理液中のチタンコロイドの平均粒径を測定し平均粒径
がある一定値未満になるように表面調整用前処理液を連
続的に廃棄し、更に廃棄された分の表面調整組成物を補
給することによって表面調整効果を維持管理する方法が
提案されている。しかし、この方法は表面調整用前処理
液の効果に対する要因を定量的に管理することを可能と
したが、効果を維持するためには表面調整用前処理液を
廃棄する必要があった。また、この方法で表面調整用前
処理液の効果を水溶液とした初期と同等に維持するため
には多量の表面調整用前処理液の廃棄を必要とする。従
って、実際には使用される工場の排水処理能力の問題も
あり、連続的な表面調整用前処理液の廃棄と全量更新を
併用してその効果を維持している。
A first problem is that the surface treatment pretreatment liquid deteriorates with time. When a conventional surface conditioning composition is used, immediately after the composition is made into an aqueous solution, a remarkable effect is achieved with respect to miniaturization and densification of phosphate film crystals. However, when several days elapse after being made into an aqueous solution, the effect is lost irrespective of the use of the surface conditioning pretreatment liquid during the elapsed days due to the aggregation of the titanium colloid, and the obtained phosphate film crystal Becomes coarse. Therefore, JP-A-63-76883 discloses that the average particle size of titanium colloid in the pretreatment liquid for surface adjustment is measured, and the pretreatment liquid for surface adjustment is continuously applied so that the average particle diameter is smaller than a certain value. There has been proposed a method for maintaining and controlling the surface conditioning effect by discarding the surface and further replenishing the discarded surface conditioning composition. However, although this method enabled quantitative management of the factors for the effect of the surface conditioning pretreatment liquid, it was necessary to discard the surface conditioning pretreatment liquid in order to maintain the effect. In addition, in order to maintain the effect of the surface conditioning pretreatment liquid in this method at the same level as when the aqueous solution is initially used, a large amount of the surface conditioning pretreatment liquid needs to be discarded. Therefore, there is also a problem of the wastewater treatment capacity of a factory actually used, and the effect is maintained by using both continuous disposal of the pretreatment liquid for surface conditioning and renewal of the entire amount.

【0005】第2の問題点としては、表面調整用前処理
液を建浴する際に使用される水質によって、その効果及
び寿命が大きく左右されることが挙げられる。通常表面
調整用前処理液を建浴する際には工業用水が使用され
る。しかし、周知の通り工業用水にはカルシウム、マグ
ネシウム等の全硬度の元になるカチオン成分が含まれて
おり、その含有量は使用される工業用水の水源によって
まちまちである。ここで、従来の表面調整用前処理液の
主成分であるチタンコロイドは、水溶液中でアニオン性
の電荷を持つことにより、その電気的反発力によって沈
降せずに分散していることが知られている。
[0005] The second problem is that the effect and life are greatly affected by the quality of the water used for bathing the surface conditioning pretreatment liquid. In general, industrial water is used for bathing the surface treatment pretreatment liquid. However, as is well known, industrial water contains cation components such as calcium and magnesium which cause the total hardness, and the content varies depending on the industrial water source used. Here, it is known that the titanium colloid, which is the main component of the conventional pretreatment liquid for surface conditioning, has an anionic charge in an aqueous solution and is dispersed without settling due to its electric repulsion. ing.

【0006】従って、工業用水中にカチオン成分である
カルシウムやマグネシウムが多量に存在するとチタンコ
ロイドはカチオン成分によって電気的に中和され、反発
力を失い凝集沈殿を引き起こすことによってその効果を
失う。そこで、カチオン成分を封鎖しチタンコロイドの
安定性を維持する目的でピロリン酸塩等の縮合りん酸塩
を表面調整用前処理液に添加する方法が提案されてい
る。しかし、縮合りん酸塩を表面調整用前処理液に多量
に添加すると縮合りん酸が鋼板表面と反応し不活性皮膜
を形成するために、その後のりん酸塩皮膜化成処理工程
において化成不良が発生する弊害を有する。また、極端
にマグネシウムやカルシウム含有量が多い地域では純水
を用いて表面調整用前処理液の建浴及び給水を行う必要
があり経済面でも極めて不利である。
Accordingly, when a large amount of calcium or magnesium as a cation component is present in industrial water, the titanium colloid is electrically neutralized by the cation component, loses repulsive force and causes coagulation and sedimentation, thereby losing its effect. Therefore, a method has been proposed in which a condensed phosphate such as pyrophosphate is added to a preconditioning solution for surface conditioning in order to block the cation component and maintain the stability of the titanium colloid. However, when a large amount of condensed phosphate is added to the surface treatment pretreatment liquid, the condensed phosphoric acid reacts with the steel sheet surface to form an inactive film, so that formation of a phosphate film in the subsequent phosphate film chemical conversion treatment step results in defective formation. Have the adverse effect of Further, in an area where the content of magnesium and calcium is extremely high, it is necessary to perform bathing and water supply of the pretreatment liquid for surface adjustment using pure water, which is extremely disadvantageous in terms of economy.

【0007】第3の問題点として、使用条件における温
度、pHの制約が挙げられる。具体的には、温度35℃
以上、pH8.0〜9.5以外の範囲ではチタンコロイ
ドが凝集し表面調整効果を発揮することが出来なくな
る。従って、従来の表面調整組成物を使用する際には定
められた温度、pH範囲で使用する必要があり、かつ、
脱脂剤等に表面調整組成物を添加して金属表面の清浄化
と活性化の効果を長時間に渡って一液で発揮させること
は不可能であった。
As a third problem, there are restrictions on temperature and pH under use conditions. Specifically, the temperature is 35 ° C.
As described above, when the pH is outside the range of 8.0 to 9.5, the titanium colloid aggregates and the surface adjusting effect cannot be exhibited. Therefore, when using the conventional surface conditioning composition, it is necessary to use a predetermined temperature, pH range, and,
It has not been possible to add the surface conditioning composition to a degreasing agent or the like to exert the effects of cleaning and activating the metal surface in one liquid over a long period of time.

【0008】第4の問題点として、表面調整用前処理液
の効果によって得られるりん酸塩皮膜結晶の微細化の限
界値が挙げられる。表面調整効果はチタンコロイドが金
属表面に吸着してりん酸塩皮膜結晶析出の際の核を形成
することにより得られる。従って、表面調整工程で金属
表面に吸着したチタンコロイドの数が多ければ多いほど
微細で緻密なりん酸塩皮膜結晶が得られる。その為に
は、表面調整用前処理液中のチタンコロイドの数を増や
す、すなわちチタンコロイドの濃度を高めることが容易
に考えられる。しかし、濃度を増すと表面調整用前処理
液中でのチタンコロイド同士の衝突頻度が増し、衝突す
ることによってチタンコロイドの凝集沈殿が発生する。
現在使用されているチタンコロイドの濃度の上限は表面
調整用前処理液中のチタンとして100ppm以下であ
り、それ以上にチタンコロイド濃度を増やすことによっ
てりん酸塩皮膜結晶を微細化することは従来技術では不
可能であった。
A fourth problem is a limit value of miniaturization of phosphate film crystals obtained by the effect of the pretreatment liquid for surface conditioning. The surface conditioning effect can be obtained by the titanium colloid being adsorbed on the metal surface to form nuclei when depositing phosphate film crystals. Therefore, as the number of titanium colloids adsorbed on the metal surface in the surface conditioning step increases, finer and more dense phosphate film crystals can be obtained. For that purpose, it is easily conceivable to increase the number of titanium colloids in the pretreatment liquid for surface conditioning, that is, to increase the concentration of titanium colloids. However, when the concentration is increased, the frequency of collision between titanium colloids in the surface treatment pretreatment liquid increases, and the collision causes coagulation and precipitation of titanium colloid.
The upper limit of the concentration of titanium colloid currently used is 100 ppm or less as titanium in the pretreatment liquid for surface conditioning, and it is a conventional technique to increase the concentration of titanium colloid to further refine the phosphate film crystal. Was not possible.

【0009】そこで、特開昭56−156778号公報
および特開昭57−23066号公報では、ジャーンス
テッド塩以外の表面調整剤として鋼帯表面に2価または
3価の金属の不溶性りん酸塩を含む縣濁液を加圧下に吹
き付ける表面調整方法が開示されている。しかし、この
表面調整方法は被処理物に縣濁液を加圧下に吹き付けて
初めてその効果が発揮されるため通常の浸漬および噴霧
処理によって施されるりん酸塩皮膜化成処理の表面調整
には使用できなかった。
Therefore, in JP-A-56-156778 and JP-A-57-23066, an insoluble phosphate of a divalent or trivalent metal is added to the surface of a steel strip as a surface conditioner other than the Jernsted salt. A surface conditioning method for spraying a suspension containing the same under pressure is disclosed. However, this surface conditioning method is only effective when the suspension is sprayed under pressure on the material to be treated, so it is used for surface conditioning in phosphate film chemical conversion treatment, which is usually performed by dipping and spraying. could not.

【0010】また、特公昭40−1095号公報では亜
鉛めっき鋼板を高濃度の2価または3価金属の不溶性り
ん酸塩縣濁液に浸漬する表面調整方法が開示されてい
る。しかし、この方法で示される実施例は亜鉛めっき鋼
板に限られており、かつ表面調整効果を得るためには最
低30g/L以上の高濃度の不溶性りん酸塩縣濁液を用
いる必要があった。
Japanese Patent Publication No. 40-1095 discloses a surface conditioning method in which a galvanized steel sheet is immersed in a high-concentration divalent or trivalent metal insoluble phosphate suspension. However, the examples shown by this method are limited to galvanized steel sheets, and in order to obtain a surface conditioning effect, it was necessary to use a high-concentration insoluble phosphate suspension of at least 30 g / L or more. .

【0011】従って、ジャーンステッド塩の問題点は種
々提示されているにも関わらず、現在までのところ、そ
れに代わりうる新しい技術は未だ提示されていないので
ある。
[0011] Accordingly, although various problems of the Jernsted salt have been proposed, a new technology which can replace it has not yet been proposed.

【0012】[0012]

【発明が解決しようとする課題】本発明は従来技術の抱
える前記課題を解決し、りん酸塩皮膜化成処理におい
て、化成反応の促進および短時間化、ならびに得られる
りん酸塩皮膜結晶の微細化を図るために用いられる、経
時安定性に優れた新規な表面調整用前処理液および表面
調整方法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and accelerates and shortens the chemical conversion reaction and reduces the size of the obtained phosphate film crystal in the phosphate film conversion treatment. It is an object of the present invention to provide a novel surface treatment pretreatment liquid having excellent stability over time and a method for conditioning the surface, which are used to achieve the following.

【0013】[0013]

【課題を解決するための手段】本発明者等は前記課題を
解決するための手段について鋭意検討し、従来方法にお
ける問題点を解決し、かつ、りん酸塩皮膜結晶の品質を
さらに向上させることが可能である新規な表面調整用前
処理液および表面調整方法を完成するに至った。すなわ
ち、本発明の金属のりん酸塩皮膜化成処理前の表面調整
用前処理液は、粒径が5μm以下の粒子を含む2価もし
くは3価の金属の少なくとも1種を含有するりん酸塩の
1種以上と、アルカリ金属塩もしくはアンモニウム塩ま
たはこれらの混合物を含有し、且つ、pHを4〜13に
調整したことを特徴とするものである。
Means for Solving the Problems The present inventors diligently study means for solving the above-mentioned problems, solve the problems in the conventional method, and further improve the quality of the phosphate film crystal. A novel pretreatment liquid for surface preparation and a method for surface preparation, which can perform the above, have been completed. That is, the pretreatment liquid for surface conditioning before the metal phosphate film chemical conversion treatment of the present invention is a phosphate containing at least one divalent or trivalent metal containing particles having a particle size of 5 μm or less. It is characterized by containing one or more kinds, an alkali metal salt or an ammonium salt or a mixture thereof, and adjusting the pH to 4 to 13.

【0014】前記5μm以下の粒子の濃度が0.001
〜30g/Lであり、前記2価もしくは3価の金属がZ
n、Fe、Mn、Ni、Co、Ca、およびAlの中か
ら選ばれる少なくとも1種であることが好ましい。前記
アルカリ金属塩もしくはアンモニウム塩がオルソりん酸
塩、メタりん酸塩、オルソ珪酸塩、メタ珪酸塩、炭酸
塩、重炭酸塩、およびホウ酸塩の中から選ばれた少なく
とも1種の塩であり、且つ、その濃度が0.5〜20g
/Lであることが好ましい。更に、アニオン性に帯電し
分散した酸化物微粒子、アニオン性の水溶性有機高分
子、ノニオン性の水溶性有機高分子、アニオン性界面活
性剤、およびノニオン性界面活性剤の群から選ばれる少
なくとも1種を含むことが好ましい。前記アニオン性に
帯電し分散した酸化物微粒子の平均粒径が0.5μm以
下であり、且つ、その濃度が0.001〜5g/Lであ
ることが好ましい。また、前記アニオン性に帯電し分散
した酸化物微粒子がSi、B、Ti、Zr、Al、S
b、Mg、Se、Zn、Sn、Fe、Mo、およびV酸
化物の中から選ばれる少なくとも1種であることが望ま
しい。
The concentration of the particles having a particle size of 5 μm or less is 0.001.
-30 g / L, and the divalent or trivalent metal is Z
It is preferably at least one selected from n, Fe, Mn, Ni, Co, Ca, and Al. The alkali metal salt or ammonium salt is at least one salt selected from orthophosphate, metaphosphate, orthosilicate, metasilicate, carbonate, bicarbonate, and borate. And its concentration is 0.5 to 20 g
/ L is preferable. Further, at least one selected from the group consisting of anionic charged and dispersed oxide fine particles, an anionic water-soluble organic polymer, a nonionic water-soluble organic polymer, an anionic surfactant, and a nonionic surfactant. Preferably, it contains a species. It is preferable that the anionic charged and dispersed oxide fine particles have an average particle diameter of 0.5 μm or less and a concentration of 0.001 to 5 g / L. Further, the anionic charged and dispersed oxide fine particles are composed of Si, B, Ti, Zr, Al, S
It is desirably at least one selected from b, Mg, Se, Zn, Sn, Fe, Mo, and V oxide.

【0015】本発明の金属のりん酸塩皮膜化成処理前の
表面調整方法は、該金属表面を前記表面調整用前処理液
と接触させることを特徴とするものである。
The surface conditioning method of the present invention before the metal phosphate coating conversion treatment is characterized in that the metal surface is brought into contact with the surface conditioning pretreatment liquid.

【0016】更に、本発明品である表面調整用前処理液
は高pH域での安定性および高温下での安定性が従来品
と比較して非常に優れているため、ノニオン性界面活性
剤もしくはアニオン性界面活性剤、またはこれらの混合
物と、ビルダーを添加することによって金属表面の清浄
化と活性化を兼ねた脱脂兼表面処理方法にも使用するこ
とができるものである。
Furthermore, the pretreatment liquid for surface conditioning according to the present invention is very excellent in stability in a high pH range and stability at high temperature as compared with conventional products, and therefore, a nonionic surfactant is used. Alternatively, by adding an anionic surfactant or a mixture thereof and a builder, it can also be used in a degreasing and surface treatment method that combines cleaning and activation of the metal surface.

【0017】[0017]

【作用】本発明における各々の成分の作用を詳細に説明
する。
The function of each component in the present invention will be described in detail.

【0018】2価もしくは3価の金属の少なくとも1種
を含有するりん酸塩の1種以上(以下、単に「2価もし
くは3価の金属のりん酸塩」と称する)は本発明におけ
る必須成分である。本発明の目的は前記の通り、りん酸
塩処理前に金属表面を活性化し、りん酸塩皮膜結晶析出
のための核をつくるために用いられる表面調整用前処理
液を提供することにある。本発明者等は、ある特定の濃
度、粒径の2価もしくは3価の金属のりん酸塩はある特
定の添加物を含む水溶液中で被処理物表面に吸着し後の
りん酸塩皮膜結晶析出の際の核となり更にりん酸塩化成
処理反応速度を高めることを発明したのである。
One or more phosphates containing at least one divalent or trivalent metal (hereinafter simply referred to as "divalent or trivalent metal phosphate") are essential components in the present invention. It is. As described above, an object of the present invention is to provide a preconditioning solution for surface conditioning which is used for activating a metal surface before phosphating and forming nuclei for depositing a phosphate film crystal. The present inventors have reported that a phosphate of a divalent or trivalent metal having a specific concentration and a particle size is adsorbed on the surface of an object to be treated in an aqueous solution containing a specific additive, and then the phosphate film crystal is formed. It was invented to increase the rate of the phosphate conversion treatment by forming a nucleus during precipitation.

【0019】また、2価もしくは3価の金属のりん酸塩
は、りん酸塩化成処理浴およびりん酸塩化成処理皮膜と
類似した成分であるために、りん酸塩化成処理浴へ持ち
込まれても化成処理浴に悪影響を与えず、また、りん酸
塩皮膜中に核となって取り込まれてもりん酸塩化成皮膜
の性能に悪影響を与えない利点も有している。本発明で
用いられる2価もしくは3価の金属のりん酸塩としては
下記に示す様な例が挙げられる。 2価もしくは3価の金属のりん酸塩 Zn3(PO4)2,Zn2Fe(PO4)2,Zn2Ni(PO4)2,Ni3(PO4)2,Zn2Mn
(PO4)2,Mn3(PO4)2,Mn2Fe(PO4)2,Ca3(PO4)2,Zn2Ca(P
O4)2,FePO4,AlPO4,CoPO4,Co3(PO4)2
Further, since the phosphate of the divalent or trivalent metal is a component similar to the phosphate chemical conversion treatment bath and the phosphate chemical conversion treatment film, it is carried into the phosphate chemical conversion treatment bath. They also have the advantage that they do not adversely affect the chemical conversion treatment bath and that they do not adversely affect the performance of the phosphate conversion coating even if they are taken into the phosphate coating as nuclei. Examples of the divalent or trivalent metal phosphate used in the present invention include the following examples. Phosphates of divalent or trivalent metals Zn 3 (PO 4 ) 2 , Zn 2 Fe (PO 4 ) 2 , Zn 2 Ni (PO 4 ) 2 , Ni 3 (PO 4 ) 2 , Zn 2 Mn
(PO 4 ) 2 , Mn 3 (PO 4 ) 2 , Mn 2 Fe (PO 4 ) 2 , Ca 3 (PO 4 ) 2 , Zn 2 Ca (P
O 4 ) 2 , FePO 4 , AlPO 4, CoPO 4 , Co 3 (PO 4 ) 2

【0020】また、金属表面に形成されるりん酸塩皮膜
結晶の粒径は反応初期に析出した単位面積あたりの結晶
数が多いほど微細になることが知られている。これは、
りん酸塩皮膜の結晶の成長は隣り合う結晶同士が接触し
金属表面を覆い尽くした時点で完結することから、反応
初期に析出した結晶数が多ければ隣り合う結晶間の距離
が小さくなり短時間で微細な結晶が金属表面を覆いつく
すからである。従って、短時間で微細なりん酸塩結晶を
析出させるためには、りん酸塩化成処理前に結晶の核を
多く付与することが効果的であり、その為には核となる
物質の粒径が小さい方が有利であることは言うまでもな
い。また、不溶性物質を水溶液中で安定に分散させるた
めにも本発明で用いられる2価もしくは3価の金属のり
ん酸塩の粒径は5μm以下であることが望ましい。ただ
し、仮に5μm以上の粒径の2価もしくは3価の金属の
りん酸塩が本発明における表面調整用前処理液中に存在
しても、本発明の効果に対しては何ら影響を与えること
は無く、表面調整調整用水溶液中の5μm以下の微粒子
の濃度が、ある濃度に達して初めてその効果が発揮され
るのである。
It is known that the particle size of the phosphate film crystal formed on the metal surface becomes finer as the number of crystals per unit area precipitated in the early stage of the reaction increases. this is,
Since the growth of the phosphate film crystals is completed when the adjacent crystals come in contact with each other and cover the metal surface, if the number of crystals deposited in the initial stage of the reaction is large, the distance between the adjacent crystals will be small and the time will be short. This is because fine crystals cover the metal surface. Therefore, in order to precipitate fine phosphate crystals in a short time, it is effective to add many crystal nuclei before the phosphate conversion treatment. It is needless to say that a smaller value is advantageous. Further, in order to stably disperse the insoluble substance in the aqueous solution, the particle diameter of the divalent or trivalent metal phosphate used in the present invention is desirably 5 μm or less. However, even if a divalent or trivalent metal phosphate having a particle diameter of 5 μm or more is present in the surface treatment pretreatment liquid of the present invention, it does not affect the effects of the present invention at all. The effect is exhibited only when the concentration of the fine particles of 5 μm or less in the aqueous solution for adjusting the surface reaches a certain concentration.

【0021】また、本発明においては2価もしくは3価
の金属のりん酸塩の粒径をコントロールすることによっ
て、得られるりん酸塩皮膜結晶の粒径をコントールする
ことが可能である。微細に粉砕された2価もしくは3価
の金属のりん酸塩を用いることによって前記した理由に
より極微細なりん酸塩結晶を析出させることが可能とな
るのである。
In the present invention, by controlling the particle size of the phosphate of the divalent or trivalent metal, it is possible to control the particle size of the phosphate film crystals obtained. By using a finely ground phosphate of a divalent or trivalent metal, ultrafine phosphate crystals can be precipitated for the above-described reason.

【0022】りん酸塩化成処理反応の反応速度は単位時
間あたりに被処理物表面へ到達することができる活性り
ん酸塩イオン量で決定されFickの法則によって説明され
ている。
The reaction rate of the phosphate conversion treatment reaction is determined by the amount of active phosphate ions that can reach the surface of the object to be treated per unit time, and is described by Fick's law.

【0023】[0023]

【数1】 (Equation 1)

【0024】ここで、dnが大きいほどりん酸塩化成処
理反応の反応速度は大きい。従って、りん酸塩化成処理
の反応速度を大きくする為には(1)式の右辺の分母を
小さくするか、もしくは分子を大きくする必要がある。
しかし、分母は密着層の厚さであり密着層の厚さを小さ
くするためにはりん酸塩化成処理工程における攪拌を強
くする等の物理的効果に頼らざるを得ない。また拡散係
数はりん酸塩化成処理浴の浴組成で決定されるため大き
く変わることはない。従って、分子を大きくする、すな
わち反応速度を大きくするためにはりん酸塩化成処理浴
中の活性りん酸塩イオン量を多くする以外に手段が無い
わけである。
[0024] Here, the reaction rate of d n is large enough phosphate chemical conversion treatment reaction is large. Therefore, in order to increase the reaction rate of the phosphate conversion treatment, it is necessary to reduce the denominator on the right side of the equation (1) or increase the numerator.
However, the denominator is the thickness of the adhesion layer, and in order to reduce the thickness of the adhesion layer, it is necessary to rely on physical effects such as increasing the stirring in the phosphate conversion treatment step. Also, the diffusion coefficient does not change significantly because it is determined by the bath composition of the phosphate conversion treatment bath. Therefore, there is no other way to increase the molecule, that is, increase the reaction rate, except to increase the amount of active phosphate ions in the phosphate conversion treatment bath.

【0025】本発明者等は前記したFickの法則における
反応初期の状態に着目して検討を行った。反応開始、す
なわち金属がりん酸塩処理液と接触した段階でのCB
0であり、りん酸塩皮膜結晶が析出し得る濃度にCB
した時に初めてりん酸塩皮膜結晶の析出がおこる。従っ
てdnが大きい程CBが前記濃度に達するまでの時間が小
さく、(1)式からCAが大きいほど初期反応は起こり
やすいと考えられる。しかし、CA すなわち、りん酸塩
化成処理浴中のりん酸塩イオン濃度をいたずらに高める
と、加水分解による余剰スラッジの析出および得られる
りん酸塩化成処理皮膜の粗大化を招くために得策ではな
い。そこで表面調整処理によってりん酸塩化成処理反応
初期のCBを高めることと同じ効果が得られる手法を発
明したのである。すなわち表面調整用前処理液中の2価
もしくは3価の金属のりん酸塩は結晶析出の際の核とな
るだけではなく、りん酸塩化成処理液のpHが低いため
に、その一部が溶解し反応初期における金属表面のCB
を高める働きを有するのである。従って、目標とするり
ん酸塩化成皮膜の成分と表面調整剤水溶液中の2価もし
くは3価の金属のりん酸塩の成分が近いほどその効果は
大きくなるのである。
The present inventors have focused on the initial state of the reaction in the Fick's law described above and made an investigation. The start of the reaction, that is, C B are 0 at the stage of metal is in contact with the phosphating solution, the first phosphate coating crystals precipitated occur upon reaching C B to a concentration capable of precipitated phosphate coating crystals . Thus small time until d n is the more C B larger reaches the concentration is believed that the initial reaction is likely to occur as the C A is larger (1) below. However, C A i.e., increasing needlessly the phosphate ion concentration in the phosphate chemical treatment bath, expedient to cause the coarsening of precipitates and the resulting phosphate conversion coating surplus sludge by hydrolysis Absent. So it's possible the same effect as increasing the surface conditioning treatment by phosphate chemical conversion treatment reaction initial C B invented a technique obtained. That is, the phosphate of the divalent or trivalent metal in the pretreatment liquid for surface conditioning not only serves as a nucleus for crystal precipitation but also has a low pH in the phosphate conversion treatment liquid. C B on the metal surface in the early stage of dissolution and reaction
It has the function of increasing Accordingly, the closer the target component of the phosphate conversion coating and the component of the divalent or trivalent metal phosphate in the aqueous surface conditioner solution are, the greater the effect is.

【0026】初期のりん酸塩化成処理反応におけるCB
を高めるためには2価もしくは3価の金属のりん酸塩濃
度としては0.001〜30g/Lが好ましい。なぜな
らば、2価もしくは3価の金属のりん酸塩濃度が0.0
01g/Lよりも小さいと金属表面に吸着する2価もし
くは3価の金属のりん酸塩量が少ないためにりん酸塩化
成処理反応を促進し得る濃度までCBが高められず、ま
た結晶の核となる2価もしくは3価の金属のりん酸塩の
数も少ないために反応は促進されない。2価もしくは3
価の金属のりん酸塩濃度が30g/Lよりも大きくて
も、それ以上はりん酸塩化成処理反応を更に促進する効
果は得られないために経済的に不利なだけである。
C B in the initial phosphate conversion treatment
In order to increase the concentration, the phosphate concentration of the divalent or trivalent metal is preferably 0.001 to 30 g / L. This is because the phosphate concentration of the divalent or trivalent metal is 0.0
01G / small and not enhanced is C B to a concentration capable of promoting the phosphate chemical conversion treatment reaction for divalent or trivalent phosphate of the metal is hardly adsorbed on the metal surface than L, also crystals The reaction is not promoted because the number of divalent or trivalent metal phosphates serving as nuclei is also small. Divalent or three
Even if the phosphate concentration of the monovalent metal is greater than 30 g / L, the effect of further promoting the phosphate conversion treatment reaction cannot be obtained, and it is only economically disadvantageous.

【0027】次に本発明の必須成分としてアルカリ金属
塩もしくはアンモニウム塩またはこれらの混合物(以
下、単に「アルカリ金属塩もしくはアンモニウム塩」と
称する)が挙げられる。従来技術にも示した通り過去に
おいても2価もしくは3価の金属の不溶性のりん酸塩を
加圧下に吹き付けて表面調整を行う方法が試みられてい
る。しかし、過去の方法ではあくまでも加圧下に2価も
しくは3価の金属の不溶性のりん酸塩を吹き付ける必要
があった。加圧下に吹き付ける理由は、表面調整効果を
発揮させるためには不溶性のりん酸塩を金属表面にぶつ
けて反応させる、またはショットピーニングの様に金属
表面にキズをつける必要があったためである。また、浸
漬処理によって表面調整効果を得るためには、従来方法
では2価または3価の金属の不溶性のりん酸塩の濃度を
極端に高める必要があった。
Next, as an essential component of the present invention, an alkali metal salt or an ammonium salt or a mixture thereof (hereinafter, simply referred to as "alkali metal salt or ammonium salt") is exemplified. As shown in the prior art, a method of adjusting the surface by spraying an insoluble phosphate of a divalent or trivalent metal under pressure has been attempted in the past. However, in the past methods, it was necessary to spray a divalent or trivalent metal insoluble phosphate under pressure. The reason for spraying under pressure is that in order to exert a surface conditioning effect, it is necessary to cause an insoluble phosphate to strike the metal surface and react, or to scratch the metal surface as in shot peening. In addition, in order to obtain a surface conditioning effect by immersion treatment, in the conventional method, it was necessary to extremely increase the concentration of the insoluble phosphate of a divalent or trivalent metal.

【0028】本発明者らは、アルカリ金属塩もしくはア
ンモニウム塩が存在すると2価もしくは3価の金属のり
ん酸塩の濃度が低濃度で、且つ金属表面に物理的な力を
加えない浸漬処理においても表面調整効果が発揮される
ことを発明したのである。従って、本発明においては表
面調整用前処理液に被処理物を接触させるだけで良く、
従来技術とは全く反応機構を異にするものである。その
ための必須成分としてアルカリ金属塩もしくはアンモニ
ウム塩が必要なのである。
The present inventors have found that when an alkali metal salt or an ammonium salt is present, the concentration of a phosphate of a divalent or trivalent metal is low and the immersion treatment in which a physical force is not applied to the metal surface. They invented that the surface conditioning effect was also exhibited. Therefore, in the present invention, it is only necessary to contact the object to be treated with the surface treatment pretreatment liquid,
The reaction mechanism is completely different from the prior art. For this purpose, an alkali metal salt or an ammonium salt is required as an essential component.

【0029】アルカリ金属塩もしくはアンモニウム塩と
してはオルソりん酸塩、メタりん酸塩、オルソ珪酸塩、
メタ珪酸塩、炭酸塩、重炭酸塩、およびホウ酸塩の群か
ら選ばれる少なくとも1種の塩の形であれば特に限定さ
れるものではない。また、前記アルカリ金属塩もしくは
アンモニウム塩を2種以上組み合わせて使用しても何ら
問題はない。
As the alkali metal salt or ammonium salt, orthophosphate, metaphosphate, orthosilicate,
There is no particular limitation as long as it is in the form of at least one salt selected from the group consisting of metasilicate, carbonate, bicarbonate, and borate. Further, there is no problem even if two or more of the above alkali metal salts or ammonium salts are used in combination.

【0030】アルカリ金属塩もしくはアンモニウム塩の
濃度は0.5〜20g/Lであることが望ましい。濃度
が0.5g/L未満では被処理物を表面調整用前処理液
に接触させただけでは表面調整効果が発揮されず、20
g/L以上ではそれ以上の効果は期待できず経済的に不
利なだけである。
The concentration of the alkali metal salt or ammonium salt is desirably 0.5 to 20 g / L. When the concentration is less than 0.5 g / L, the surface conditioning effect is not exhibited only by bringing the object to be treated into contact with the pretreatment liquid for surface conditioning.
Above g / L, no further effect can be expected and it is only economically disadvantageous.

【0031】本発明における表面調整用前処理液はpH
4〜13の範囲に調整する必要がある。pH4未満では
表面調整用前処理液中で金属が腐食することによって酸
化膜等が発生し、りん酸塩化成処理不良を起こす恐れが
ある。またpHが13を越える場合、りん酸塩化成処理
水溶液は酸性であるために表面調整用前処理液がりん酸
塩化成処理工程に持ち込まれた際にりん酸塩化成処理浴
を中和し、浴のバランスをくずす恐れがあるからであ
る。
The pretreatment liquid for surface conditioning in the present invention has a pH of
It is necessary to adjust to a range of 4 to 13. If the pH is lower than 4, the metal is corroded in the surface treatment pretreatment liquid to form an oxide film or the like, which may cause a poor phosphate conversion treatment. If the pH exceeds 13, the phosphate conversion aqueous solution is acidic, so that when the surface conditioning pretreatment liquid is brought into the phosphate conversion treatment step, the phosphate conversion treatment bath is neutralized. This is because there is a risk of breaking the balance of the bath.

【0032】本発明においてはアニオン性に帯電し分散
した酸化物微粒子を添加することが好ましい。以下のに
酸化物微粒子の作用を説明する。
In the present invention, it is preferable to add anionic charged and dispersed oxide fine particles. The function of the oxide fine particles will be described below.

【0033】第1に酸化物微粒子は金属表面に吸着しり
ん酸塩結晶析出における核、すなわちマイクロカソード
となってりん酸塩化成処理反応の起点となる。
First, the oxide fine particles are adsorbed on the metal surface and become nuclei in phosphate crystal precipitation, that is, become microcathodes and serve as starting points for a phosphate conversion treatment reaction.

【0034】第2には表面調整用前処理液中の2価もし
くは3価の金属のりん酸塩の分散安定性の向上が挙げら
れる。酸化物微粒子が表面調整用前処理液中に分散させ
た2価もしくは3価の金属のりん酸塩に吸着もしくは2
価もしくは3価の金属のりん酸塩同士の衝突を防ぐこと
によって2価もしくは3価の金属のりん酸塩の凝集沈殿
を防止し安定性を向上させるのである。そのためには酸
化物微粒子の粒径が2価もしくは3価の金属のりん酸塩
の粒径よりも小さい必要がある。
Second, the dispersion stability of the phosphate of a divalent or trivalent metal in the pretreatment liquid for surface conditioning can be improved. Oxide fine particles are adsorbed on a divalent or trivalent metal phosphate dispersed in a preconditioning solution for surface conditioning or
By preventing collision of the phosphates of the divalent or trivalent metal, coagulation and precipitation of the phosphate of the divalent or trivalent metal are prevented, and the stability is improved. For this purpose, the particle size of the oxide fine particles must be smaller than the particle size of the divalent or trivalent metal phosphate.

【0035】具体的には0.5μm以下であることが好
ましい。本発明で使用される酸化物微粒子としては粒径
とアニオン性であることを満たしていれば、酸化物微粒
子の金属には制限されない。また、カチオン性の酸化物
微粒子に表面処理を施すことによって、その表面電荷を
アニオン性に変えたものでも差し支えない。本発明で用
いられる酸化物微粒子の一例を示すと以下の通りであ
る。 酸化物微粒子 SiO2,B2O3,TiO2,ZrO2,Al2O3,Sb2O5,Mg
O,SeO2,ZnO,SnO2,Fe2O3MoO3,Mo2O5,V2O5 尚、本発明における表面調整用前処理液の2価もしくは
3価の金属のりん酸塩の分散安定性を高める効果は、ア
ニオン性の水溶性有機高分子、ノニオン性の水溶性有機
高分子、アニオン性界面活性剤、及びノニオン性界面活
性剤などを用いても同様に得られる。
Specifically, the thickness is preferably 0.5 μm or less. The oxide fine particles used in the present invention are not limited to the metal of the oxide fine particles as long as they satisfy the particle size and the anionic property. Further, the surface charge may be changed to an anionic by subjecting the cationic oxide fine particles to a surface treatment. An example of the oxide fine particles used in the present invention is as follows. Oxide fine particles SiO 2 , B 2 O 3 , TiO 2 , ZrO 2 , Al 2 O 3 , Sb 2 O 5 , Mg
O, SeO 2 , ZnO, SnO 2 , Fe 2 O 3 MoO 3 , Mo 2 O 5 , V 2 O 5 In the present invention, the divalent or trivalent metal phosphate of the pretreatment liquid for surface conditioning is used. The effect of improving the dispersion stability can be similarly obtained by using an anionic water-soluble organic polymer, a nonionic water-soluble organic polymer, an anionic surfactant, a nonionic surfactant, or the like.

【0036】酸化物微粒子の濃度は0.001〜5g/
Lであることが望ましい。酸化物微粒子の濃度が0.0
01g/L未満では本発明における酸化物微粒子の用途
である表面調整用前処理液中の2価もしくは3価の金属
のりん酸塩の分散安定性を高めることができない。また
5g/L以上添加してもそれ以上に2価もしくは3価の
金属のりん酸塩の分散安定性を高める効果は大きくなら
ないために濃度の上限は5g/Lで十分である。
The concentration of the oxide fine particles is 0.001 to 5 g /
L is desirable. When the concentration of the oxide fine particles is 0.0
If it is less than 01 g / L, the dispersion stability of the divalent or trivalent metal phosphate in the surface treatment pretreatment liquid, which is the use of the oxide fine particles in the present invention, cannot be increased. Further, even if added in an amount of 5 g / L or more, the effect of enhancing the dispersion stability of the divalent or trivalent metal phosphate is not increased further, so that the upper limit of the concentration is sufficient at 5 g / L.

【0037】本発明における表面調整用前処理液は従来
法と異なりあらゆる使用環境でその効果を継続すること
が可能である。すなわち、従来法と比較して下記に示す
様な利点を有している。 (1)経時安定性が高い。 (2)Ca、Mg等の硬度成分が混入しても効果が衰え
ない。 (3)高温度での使用が可能である。 (4)様々なアルカリ金属塩を添加することができる。 (5)幅広いpH域での安定性が高い。 (6)得られるりん酸塩結晶の粒径をコントロールする
ことができる。
Unlike the conventional method, the pretreatment liquid for surface conditioning in the present invention can maintain its effect in any use environment. That is, it has the following advantages as compared with the conventional method. (1) High stability over time. (2) Even if hardness components such as Ca and Mg are mixed, the effect does not decrease. (3) Use at high temperatures is possible. (4) Various alkali metal salts can be added. (5) High stability in a wide pH range. (6) The particle size of the resulting phosphate crystals can be controlled.

【0038】従って、従来法では継続して安定した品質
を維持することができなかった脱脂兼表面調整剤として
も使用する事が可能である。その際、脱脂兼表面調整工
程における洗浄力を高めるために公知の無機アルカリビ
ルダー、有機ビルダー、及び界面活性剤等を添加しても
構わない。また、脱脂兼表面調整に関わらず表面調整用
前処理液に持ち込まれたカチオン成分等による影響を打
ち消すために公知のキレート剤、縮合りん酸塩等を添加
しても構わない。
Therefore, it can be used as a degreasing and surface conditioner which could not maintain a stable quality in the conventional method. At that time, known inorganic alkali builders, organic builders, surfactants and the like may be added in order to enhance the detergency in the degreasing and surface conditioning step. In addition, a known chelating agent, condensed phosphate, or the like may be added to cancel the influence of a cation component or the like brought into the surface treatment pretreatment liquid regardless of degreasing and surface conditioning.

【0039】また、本発明の表面調整方法は表面調整用
前処理液と金属表面を接触させるだけで良く、接触時
間、表面調整用前処理液の温度等に制限はない。更に本
発明の表面調整方法は、鉄鋼、亜鉛めっき鋼板、アルミ
ニウムまたはアルミニウム合金等のりん酸塩処理が施さ
れる、あらゆる金属素材に適用可能である。
The surface conditioning method of the present invention only requires contact of the surface conditioning pretreatment liquid with the metal surface, and there is no limitation on the contact time, the temperature of the surface conditioning pretreatment liquid, and the like. Further, the surface conditioning method of the present invention can be applied to any metal material which is subjected to a phosphate treatment such as steel, galvanized steel sheet, aluminum or aluminum alloy.

【0040】[0040]

【実施例】次に本発明の表面調整用前処理液を適用した
際の効果を実施例と比較例を用いて詳細に説明する。た
だし、りん酸塩処理の一例として、自動車用のりん酸亜
鉛処理を示したものであり、本発明における表面調整用
前処理液の用途を限定するものでは無い。
EXAMPLES Next, the effects of applying the surface treatment pretreatment liquid of the present invention will be described in detail with reference to examples and comparative examples. However, as an example of the phosphate treatment, zinc phosphate treatment for automobiles is shown, and the use of the surface conditioning pretreatment liquid in the present invention is not limited.

【0041】(供試板)実施例と比較例に用いた供試板
の略号と内訳を以下に示す。 SPC(冷延鋼板:JIS−G−3141) EG(両面電気亜鉛めっき鋼板:めっき目付量20g/
m2) GA(両面合金化溶融亜鉛めっき鋼板:めっき目付量4
5g/m2) Zn−Ni(両面電気亜鉛ニッケルめっき鋼板:めっき
目付量20g/m2) Al(アルミニウム板:J
IS−5052)
(Test plate) The abbreviations and details of the test plates used in the examples and comparative examples are shown below. SPC (cold rolled steel sheet: JIS-G-3141) EG (double-sided electrogalvanized steel sheet: plating weight 20g /
m2) GA (double-sided alloyed hot-dip galvanized steel sheet: coating weight 4)
5g / m2) Zn-Ni (double-sided galvanized nickel-plated steel sheet: plating weight 20g / m2) Al (aluminum sheet: J
IS-5052)

【0042】(アルカリ脱脂液)実施例、比較例ともに
ファインクリーナーL4460(登録商標:日本パーカ
ライジング(株)製)を2%に水道水で希釈して使用し
た。
(Alkaline Degreasing Solution) Fine Cleaner L4460 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) was diluted to 2% with tap water and used in both Examples and Comparative Examples.

【0043】(表面調整剤)表1に実施例で使用した表
面調整用前処理液の組成を、表2に比較例で使用した表
面調整用前処理液の組成を示す。なお、経時試験は表面
調整用前処理液を調整後、1週間室温で放置した後に実
施した。
(Surface Conditioning Agent) Table 1 shows the composition of the surface conditioning pretreatment solution used in the examples, and Table 2 shows the composition of the surface conditioning pretreatment solution used in the comparative example. The aging test was performed after the surface treatment pretreatment liquid was prepared and left at room temperature for one week.

【0044】実施例1 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液にアルカリ金属塩
として第3りん酸ナトリウム試薬を加えた後、pHを所
定の値として表1に示す表面調整用前処理液として調整
した。
Example 1 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. After adding a sodium tertiary phosphate reagent as an alkali metal salt to the suspension whose concentration was adjusted, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0045】実施例2 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 2 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0046】実施例3 Zn3(PO4)2・4H2O試薬を乳鉢で1分間粉砕したものを2価
もしくは3価の金属のりん酸塩として用いた。前記2価
もしくは3価の金属のりん酸塩を縣濁液とした後に5μ
mのペーパーフィルターで濾過し、濾液の平均粒径をサ
ブミクロン粒子アナライザー(コールターN4型:コー
ルター社)で測定した結果、4.2μmであった。更に
濾液中の2価もしくは3価の金属のりん酸塩の濃度が2
g/Lとなる様に調整した。前記濃度調整された縣濁液
に酸化物微粒子としてSiO2(AEROSIL#300:日本ア
エロジル(株)製)、更にアルカリ金属塩として第3り
ん酸ナトリウム試薬を加えた後、pHを所定の値として
表1に示す表面調整用前処理液として調整した。
Example 3 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent in a mortar for 1 minute was used as a phosphate of a divalent or trivalent metal. After making the phosphate of the divalent or trivalent metal a suspension,
m, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4 type: Coulter). As a result, it was 4.2 μm. Furthermore, the concentration of the phosphate of the divalent or trivalent metal in the filtrate is 2%.
g / L. After adding SiO 2 (AEROSIL # 300: manufactured by Nippon Aerosil Co., Ltd.) as fine oxide particles to the suspension whose concentration has been adjusted, and a sodium tertiary phosphate reagent as an alkali metal salt, the pH is adjusted to a predetermined value. It was adjusted as a pretreatment liquid for surface adjustment shown in Table 1.

【0047】実施例4 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで1時間粉砕したものを2価もしくは3価の金属の
りん酸塩として用いた。前記2価もしくは3価の金属の
りん酸塩を縣濁液とした後に5μmのペーパーフィルタ
ーで濾過し、濾液の平均粒径をサブミクロン粒子アナラ
イザー(コールターN4型:コールター社)で測定した
結果、0.09μmであった。更に濾液中の2価もしく
は3価の金属のりん酸塩の濃度が2g/Lとなる様に調
整した。前記濃度調整された縣濁液に酸化物微粒子とし
てSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 4 A reagent obtained by pulverizing a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 1 hour was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.09 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0048】実施例5 50℃に加温した0.5mol/Lの硫酸鉄(II)溶液1L
に、1mol/Lの硫酸亜鉛溶液100mLおよび1mol/Lのり
ん酸1水素ナトリウム溶液100mLを交互に加え沈殿を
生成させた。沈殿を含む水溶液を90℃で1時間加温し
て沈殿粒子を熟成させた後、傾斜洗浄を10回繰り返し
実施した。濾過して得られた沈殿物を乾燥しX線回折で
分析した結果、沈殿物は一部第3りん酸鉄を含むフォス
フォフィライト[Zn2Fe(PO4)2・4H2O]であった。前記フォ
スフォフィライトをジルコニアビーズを用いたボールミ
ルで10分間粉砕したものを2価もしくは3価の金属の
りん酸塩として用いた。前記2価もしくは3価の金属の
りん酸塩を縣濁液とした後に5μmのペーパーフィルタ
ーで濾過し、濾液の平均粒径をサブミクロン粒子アナラ
イザー(コールターN4型:コールター社)で測定した
結果、0.29μmであった。更に濾液中の2価もしく
は3価の金属のりん酸塩の濃度が2g/Lとなる様に調
整した。前記濃度調整された縣濁液に酸化物微粒子とし
てSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 5 1 L of 0.5 mol / L iron (II) sulfate solution heated to 50 ° C.
Then, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium hydrogen phosphate solution were alternately added to generate a precipitate. After the aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to mature the precipitated particles, the inclined washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was partially filtered with phosphophyllite [Zn 2 Fe (PO 4 ) 2 .4H 2 O] containing ferric phosphate. there were. The phosphophyllite was pulverized for 10 minutes by a ball mill using zirconia beads and used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). 0.29 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0049】実施例6 50℃に加温した0.1mol/Lの硝酸マンガン溶液1L
に1mol/Lの硝酸亜鉛溶液200mLを加え、更に1mol/L
のりん酸1水素ナトリウム溶液200mLを加えて沈殿を
生成させた。沈殿を含む水溶液を90℃で1時間加温し
て沈殿粒子を熟成させた後、傾斜洗浄を10回繰り返し
実施した。濾過して得られた沈殿物の一部を塩酸で溶解
し成分を原子吸光分析装置を用いて分析した結果、沈殿
物は[ZnXMnY(PO4)2 ]であった。前記[ZnXMnY(PO4)2 ]を
ジルコニアビーズを用いたボールミルで10分間粉砕し
たものを2価もしくは3価の金属のりん酸塩として用い
た。前記2価もしくは3価の金属のりん酸塩を縣濁液と
した後に5μmのペーパーフィルターで濾過し、濾液の
平均粒径をサブミクロン粒子アナライザー(コールター
N4型:コールター社)で測定した結果、0.32μm
であった。更に濾液中の2価もしくは3価の金属のりん
酸塩の濃度が2g/Lとなる様に調整した。前記濃度調
整された縣濁液に酸化物微粒子としてSiO2(AEROSIL#
300:日本アエロジル(株)製)、更にアルカリ金属
塩として第3りん酸ナトリウム試薬を加えた後、pHを
所定の値として表1に示す表面調整用前処理液として調
整した。
Example 6 1 L of a 0.1 mol / L manganese nitrate solution heated to 50 ° C.
200 mL of a 1 mol / L zinc nitrate solution is added to
Was added to generate a precipitate. After the aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to mature the precipitated particles, the inclined washing was repeated 10 times. A part of the precipitate obtained by filtration was dissolved in hydrochloric acid, and the components were analyzed using an atomic absorption spectrometer. As a result, the precipitate was [Zn X Mn Y (PO 4 ) 2 ]. The above [Zn X Mn Y (PO 4 ) 2 ] was pulverized for 10 minutes by a ball mill using zirconia beads, and used as a divalent or trivalent metal phosphate. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). 0.32μm
Met. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 as the oxide fine particles suspension wherein is density adjustment (AEROSIL #
300: manufactured by Nippon Aerosil Co., Ltd.) and a tertiary sodium phosphate reagent as an alkali metal salt, and the pH was adjusted to a predetermined value as a surface treatment pretreatment liquid shown in Table 1.

【0050】実施例7 50℃に加温した0.1mol/Lの硝酸カルシウム溶液1
Lに1mol/Lの硝酸亜鉛溶液200mLを加え、更に1mol
/Lのりん酸1水素ナトリウム溶液200mLを加えて沈殿
を生成させた。沈殿を含む水溶液を90℃で1時間加温
して沈殿粒子を熟成させた後、傾斜洗浄を10回繰り返
し実施した。濾過して得られた沈殿物を乾燥しX線回折
で分析した結果、沈殿物はショルタイト[Zn2Ca(PO4)2・4
H2O]であった。前記ショルタイトをジルコニアビーズを
用いたボールミルで10分間粉砕したものを2価もしく
は3価の金属のりん酸塩として用いた。前記2価もしく
は3価の金属のりん酸塩を縣濁液とした後に5μmのペ
ーパーフィルターで濾過し、濾液の平均粒径をサブミク
ロン粒子アナライザー(コールターN4型:コールター
社)で測定した結果、0.30μmであった。更に濾液
中の2価もしくは3価の金属のりん酸塩の濃度が2g/
Lとなる様に調整した。前記濃度調整された縣濁液に酸
化物微粒子としてSiO2(AEROSIL#300:日本アエロ
ジル(株)製)、更にアルカリ金属塩として第3りん酸
ナトリウム試薬を加えた後、pHを所定の値として表1
に示す表面調整用前処理液として調整した。
Example 7 0.1 mol / L calcium nitrate solution 1 heated to 50 ° C.
200 mL of a 1 mol / L zinc nitrate solution is added to
A 200 L / L solution of sodium hydrogen phosphate was added to form a precipitate. After the aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to mature the precipitated particles, the inclined washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, it was found that the precipitate was chortite [Zn 2 Ca (PO 4 ) 2.
It was H 2 O]. The above-mentioned choltite was pulverized for 10 minutes by a ball mill using zirconia beads and used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.30 μm. Further, the concentration of the phosphate of the divalent or trivalent metal in the filtrate is 2 g /
L was adjusted. After adding SiO 2 (AEROSIL # 300: manufactured by Nippon Aerosil Co., Ltd.) as fine oxide particles to the suspension whose concentration has been adjusted, and a sodium tertiary phosphate reagent as an alkali metal salt, the pH is adjusted to a predetermined value. Table 1
Was prepared as a pretreatment liquid for surface adjustment shown in Table 1.

【0051】実施例8 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が0.02g/Lとな
る様に調整した。前記濃度調整された縣濁液に酸化物微
粒子としてZrO2ゾル(NZS-30B:日産化学工業(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 8 A Zn 3 (PO 4 ) 2 .4H 2 O reagent was pulverized for 10 minutes by a ball mill using zirconia beads and used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of the divalent or trivalent metal in the filtrate was adjusted to be 0.02 g / L. ZrO 2 sol as oxide fine particles (NZS-30B: Nissan Chemical Industries, Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0052】実施例9 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が30g/Lとなる様
に調整した。前記濃度調整された縣濁液に酸化物微粒子
としてSb2O5ゾル(A-1530:日産化学工業(株)製)、
更にアルカリ金属塩として第3りん酸ナトリウム試薬を
加えた後、pHを所定の値として表1に示す表面調整用
前処理液として調整した。
Example 9 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 30 g / L. Sb 2 O 5 sol (A-1530: manufactured by Nissan Chemical Industries, Ltd.) as oxide fine particles in the concentration-adjusted suspension,
Further, after adding a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0053】実施例10 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩としてメタ珪酸ナトリウム試
薬を加えた後、pHを所定の値として表1に示す表面調
整用前処理液として調整した。
Example 10 A Zn 3 (PO 4 ) 2 .4H 2 O reagent was pulverized for 10 minutes by a ball mill using zirconia beads and used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium metasilicate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0054】実施例11 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩としてセスキ炭酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 11 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium sesquicarbonate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0055】実施例12 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 12 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0056】実施例13 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 13 A Zn 3 (PO 4 ) 2 .4H 2 O reagent was pulverized by a ball mill using zirconia beads for 10 minutes and used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0057】実施例14 実施例2と同じ処理液を用い、処理温度40℃で表面調
整用前処理を行った。
Example 14 Using the same processing solution as in Example 2, a pretreatment for surface conditioning was performed at a processing temperature of 40 ° C.

【0058】実施例15 実施例14の処理液に界面活性剤(ホ゜リオキシエチレンノニルフェノール
エーテル:EO11モル)を2g/L添加し、処理温度40℃で脱
脂を行わない塗油されたままのテストピースに対して脱
脂兼表面調整処理を行った。
Example 15 A surfactant (polyoxyethylene nonylphenol ether: 11 mol of EO) 2 g / L was added to the treatment liquid of Example 14, and the test piece as oiled at a treatment temperature of 40 ° C. without degreasing was performed. Was subjected to a degreasing and surface conditioning treatment.

【0059】実施例16 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩の濃度が2g/Lとなる様に調整した。縣濁
液の粒径をサブミクロン粒子アナライザー(コールター
N4型:コールター社)とコールターカウンター(コー
ルター社)で測定した結果、0.31μmと6.5μm
に粒度分布のピークがあり、6.5μmの粒子を20%
含んでいた。前記濃度調整された縣濁液に酸化物微粒子
としてSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Example 16 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The concentration of the divalent or trivalent metal phosphate was adjusted to 2 g / L. The particle diameter of the suspension was measured with a submicron particle analyzer (Coulter N4: Coulter) and a Coulter counter (Coulter), and as a result, 0.31 μm and 6.5 μm.
Has a particle size distribution peak, and 6.5% of particles are 20%
Included. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0060】比較例1 従来品の表面調整用前処理液であるプレパレンZN(登
録商標:日本パーカライジング(株)製)水溶液の標準条
件で表面調整用前処理を行った。
Comparative Example 1 A surface preparation pretreatment was performed under standard conditions of an aqueous solution of Preparen ZN (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.), which is a pretreatment liquid for surface preparation of a conventional product.

【0061】比較例2 従来品の表面調整用前処理液であるプレパレンZN水溶
液に、表2に示す通り酸化物微粒子としてSiO2(AEROSI
L#300:日本アエロジル(株)製)を加えて表面調
整用前処理を行った。
Comparative Example 2 As shown in Table 2, SiO 2 (AEROSI
L # 300: manufactured by Nippon Aerosil Co., Ltd.) and pretreated for surface conditioning.

【0062】比較例3 従来品の表面調整用前処理液であるプレパレンZN水溶
液ののpHを表2に示す値に調整して表面調整用前処理
を行った。
Comparative Example 3 The surface treatment pretreatment was carried out by adjusting the pH of a preparene ZN aqueous solution, which is a surface treatment pretreatment liquid of a conventional product, to the value shown in Table 2.

【0063】比較例4 従来品の表面調整用前処理液であるプレパレンZN水溶
液ののpHを表2に示す値に調整して表面調整用前処理
を行った。
Comparative Example 4 A surface preparation pretreatment was carried out by adjusting the pH of a preparene ZN aqueous solution which is a conventional surface preparation pretreatment liquid to the value shown in Table 2.

【0064】比較例5 従来品の表面調整用前処理液であるプレパレンZN水溶
液の処理温度を40℃として表面調整用前処理を行っ
た。
Comparative Example 5 A pretreatment for surface conditioning was carried out at a treatment temperature of 40 ° C. of an aqueous solution of preparen ZN, which is a pretreatment liquid for surface conditioning of a conventional product.

【0065】比較例6 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Comparative Example 6 A Zn 3 (PO 4 ) 2 .4H 2 O reagent was pulverized for 10 minutes by a ball mill using zirconia beads, and used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
Was added, and the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0066】比較例7 Zn3(PO4)2・4H2O試薬を2価もしくは3価の金属のりん酸
塩として用いた。前記2価もしくは3価の金属のりん酸
塩を縣濁液とした後に5μmのペーパーフィルターで濾
過し濾紙に残った粒子を再度水に分散し縣濁液とした。
縣濁液の平均粒径をコールターカウンター(コールター
社)で測定した結果、6.5μmであった。次に縣濁液
中の2価もしくは3価の金属のりん酸塩の濃度が2g/
Lとなる様に調整した。前記濃度調整された縣濁液に酸
化物微粒子としてSiO2(AEROSIL#300:日本アエロ
ジル(株)製)、更にアルカリ金属塩として第3りん酸
ナトリウム試薬を加えた後、pHを所定の値として表1
に示す表面調整用前処理液として調整した。
Comparative Example 7 A Zn 3 (PO 4 ) 2 .4H 2 O reagent was used as a phosphate of a divalent or trivalent metal. After making the divalent or trivalent metal phosphate a suspension, the mixture was filtered through a 5 μm paper filter, and the particles remaining on the filter paper were dispersed again in water to obtain a suspension.
As a result of measuring the average particle size of the suspension using a Coulter counter (Coulter), it was 6.5 μm. Next, the concentration of the divalent or trivalent metal phosphate in the suspension was 2 g /
L was adjusted. After adding SiO 2 (AEROSIL # 300: manufactured by Nippon Aerosil Co., Ltd.) as fine oxide particles to the suspension whose concentration has been adjusted, and a sodium tertiary phosphate reagent as an alkali metal salt, the pH is adjusted to a predetermined value. Table 1
Was prepared as a pretreatment liquid for surface adjustment shown in Table 1.

【0067】比較例8 Zn3(PO4)2・4H2O試薬をジルコニアビーズを用いたボール
ミルで10分間粉砕したものを2価もしくは3価の金属
のりん酸塩として用いた。前記2価もしくは3価の金属
のりん酸塩を縣濁液とした後に5μmのペーパーフィル
ターで濾過し、濾液の平均粒径をサブミクロン粒子アナ
ライザー(コールターN4型:コールター社)で測定し
た結果、0.31μmであった。更に濾液中の2価もし
くは3価の金属のりん酸塩の濃度が2g/Lとなる様に
調整した。前記濃度調整された縣濁液に酸化物微粒子と
してSiO2(AEROSIL#300:日本アエロジル(株)
製)、更にアルカリ金属塩として第3りん酸ナトリウム
試薬を加えた後、pHを所定の値として表1に示す表面
調整用前処理液として調整した。
Comparative Example 8 A reagent obtained by grinding a Zn 3 (PO 4 ) 2 .4H 2 O reagent with a ball mill using zirconia beads for 10 minutes was used as a phosphate of a divalent or trivalent metal. The suspension of the divalent or trivalent metal phosphate was filtered through a 5 μm paper filter, and the average particle size of the filtrate was measured with a submicron particle analyzer (Coulter N4: Coulter). It was 0.31 μm. Further, the concentration of the phosphate of a divalent or trivalent metal in the filtrate was adjusted to 2 g / L. SiO 2 (AEROSIL # 300: Nippon Aerosil Co., Ltd.)
After addition of a sodium tertiary phosphate reagent as an alkali metal salt, the pH was adjusted to a predetermined value as a pretreatment liquid for surface adjustment shown in Table 1.

【0068】(りん酸亜鉛処理液)実施例、比較例とも
にパルボンドL3020(登録商標:日本パーカライジ
ング(株)製)を4.8%に水道水で希釈し、成分濃度、
全酸度、遊離酸度、促進剤濃度を現在、自動用りん酸亜
鉛処理として一般に用いられている濃度に調整して使用
した。以下に処理工程を示す。
(Zinc Phosphate Treatment Solution) Palbond L3020 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) was diluted to 4.8% with tap water in each of the examples and comparative examples.
The total acidity, free acidity, and accelerator concentration were adjusted to the concentrations generally used at present for automatic zinc phosphate treatment. The processing steps are described below.

【0069】(処理工程) (1)アルカリ脱脂 42℃、120秒スプレー (2)水洗 室温、30秒スプレー (3)表面調整 室温、20秒浸漬 (4)りん酸亜鉛処理 42℃、120秒浸漬 (5)水洗 室温、30秒スプレー (6)脱イオン水洗 室温、30秒スプレー(Treatment process) (1) Alkaline degreasing, sprayed at 42 ° C for 120 seconds (2) Rinse with water, room temperature, sprayed for 30 seconds (3) Surface adjustment, room temperature, immersed for 20 seconds (4) Zinc phosphate treatment 42 ° C, immersed for 120 seconds (5) Rinse at room temperature for 30 seconds. (6) Deionized water wash at room temperature for 30 seconds.

【0070】(塗装および評価工程)実施例、比較例と
もにカチオン電着塗料(エレクロン2000:関西ペイ
ント社製)を膜厚20μmとなる様に塗装し、180℃
で25分間焼き付けた後に一部を塩水噴霧試験と耐塩温
水試験に供した。残りの電着塗装板を中塗り塗料(自動
車用中塗り塗料:関西ペイント社製)を中塗り塗装の膜
厚が40μmとなる様に塗装し140℃で30分間焼き
付けを行った。更に中塗り塗装が完了した供試板に上塗
り塗料(自動車用上塗り塗料:関西ペイント社製)を上
塗り塗装の膜厚が40μmとなる様に塗装し140℃で
30分間焼き付けた。得られた総合膜厚100μmの3
コート板を1次密着性評価試験、2次密着性評価試験に
供した。
(Coating and Evaluation Steps) In both Examples and Comparative Examples, a cationic electrodeposition paint (Electron 2000: manufactured by Kansai Paint Co., Ltd.) was applied so as to have a thickness of 20 μm.
After baking for 25 minutes at, a portion was subjected to a salt spray test and a salt-resistant hot water test. The remaining electrodeposited plates were coated with an intermediate coating (intermediate coating for automobiles: manufactured by Kansai Paint Co., Ltd.) so that the thickness of the intermediate coating was 40 μm, and baked at 140 ° C. for 30 minutes. Further, a top coat (automobile top coat: manufactured by Kansai Paint Co., Ltd.) was applied to the test plate after completion of the middle coat so that the film thickness of the top coat was 40 μm, and baked at 140 ° C. for 30 minutes. The obtained total film thickness of 100 μm 3
The coated plate was subjected to a primary adhesion evaluation test and a secondary adhesion evaluation test.

【0071】(りん酸亜鉛皮膜の評価方法) (1)外観 目視観察により、りん酸亜鉛皮膜のスケ、ムラの有無を
確認した。評価は以下の通りとした。 ◎ 均一良好な外観 ○ 一部ムラあり △ ムラ、スケあり × スケ多し ×× 化成皮膜なし
(Evaluation Method of Zinc Phosphate Film) (1) Appearance The presence or absence of invisibility and unevenness of the zinc phosphate film was confirmed by visual observation. The evaluation was as follows. ◎ Uniform and good appearance ○ Some unevenness △ Some unevenness and invisibility × Many invisibility ×× No conversion coating

【0072】(2)皮膜重量(C.W.) 化成処理後の処理板の重量を測定し(W1[g]とす
る)、次いで化成処理板に下記に示す剥離液、剥離条件
にて皮膜剥離処理を施し、その重量を測定し(W2
[g]とする)、式(I)を用いて算出した。 ・冷延鋼板の場合 剥離液 :5%クロム酸水溶液 剥離条件:75℃、15分、浸漬剥離 ・亜鉛めっき板の場合 剥離液 :重クロム酸アンモニウム2重量%+28%ア
ンモニア水49重量%+純水49重量% 剥離条件:常温、15分、浸漬剥離 皮膜重量[g/m2]=(W1−W2)/0.021 式(I)
(2) Film Weight (CW) The weight of the treated plate after the chemical conversion treatment was measured (referred to as W1 [g]). A peeling treatment was performed, and the weight was measured (W2
[G]), and calculated using the formula (I).・ In the case of cold rolled steel sheet Stripping solution: 5% chromic acid aqueous solution Stripping condition: 75 ° C, 15 minutes, immersion stripping ・ In the case of galvanized sheet Stripping solution: 2% by weight of ammonium bichromate + 28% ammonia water 49% by weight + pure 49% by weight of water Peeling condition: normal temperature, 15 minutes, immersion peeling Film weight [g / m2] = (W1-W2) /0.021 Formula (I)

【0073】(3)皮膜結晶サイズ(C.S.) 析出した皮膜結晶は走査型電子顕微鏡(SEM)を用い
て1500倍に拡大した像を観察し、結晶粒径を調査し
た。
(3) Film Crystal Size (CS) The deposited film crystals were observed at an magnification of 1500 times using a scanning electron microscope (SEM) to examine the crystal grain size.

【0074】(4)P比 実施例、比較例ともにSPC鋼板についてのみ、X線回
折装置を用いてりん酸亜鉛化成皮膜中のフォスフォフィ
ライト結晶のX線強度(P)とホパイト結晶のX線強度
(H)を測定した。得られたX線強度から式(II)を用
いてP比を算出した。 P比=P/(P+H) 式(II)
(4) P ratio In both the examples and the comparative examples, the X-ray intensity (P) of the phosphophyllite crystals and the X The linear strength (H) was measured. The P ratio was calculated from the obtained X-ray intensity using the formula (II). P ratio = P / (P + H) Formula (II)

【0075】(塗膜の評価方法)実施例、比較例ともに
下記に示す評価方法に従って塗膜の評価を実施した。
(Evaluation Method of Coating Film) In each of the Examples and Comparative Examples, the coating film was evaluated according to the following evaluation method.

【0076】(1)塩水噴霧試験(JIS−Z−237
1) クロスカットを入れた電着塗装板に5%塩水を960時
間噴霧した。噴霧終了後にクロスカットからの片側最大
錆幅を測定し評価した。
(1) Salt spray test (JIS-Z-237)
1) 5% salt water was sprayed onto the cross-cut electrodeposition coated plate for 960 hours. After the spraying, the maximum rust width on one side from the cross cut was measured and evaluated.

【0077】(2)耐塩温水試験 クロスカットを入れた電着塗装板を5%塩水中に240
時間浸漬した。浸漬終了後にクロスカットからの片側最
大錆幅を測定し評価した。
(2) Salt-resistant hot water test A cross-cut electrodeposited plate was placed in 5% salt water for 240 minutes.
Soaked for hours. After immersion, the maximum rust width on one side from the cross cut was measured and evaluated.

【0078】(3)1次密着性評価試験 3コート板に鋭利なカッターで2mm間隔の碁盤目を1
00個形成し、碁盤目上に粘着テープを粘着した後に剥
離して、剥離した碁盤目塗膜の数を評価した。
(3) Evaluation Test of Primary Adhesion A 3 mm grid was cut on a 3-coated board with a sharp cutter at intervals of 2 mm.
After forming 100 pieces, the pressure-sensitive adhesive tape was adhered on a grid, and then peeled off, and the number of peeled grid-coated films was evaluated.

【0079】(4)2次密着性評価試験 3コート板を40℃の脱イオン水に240時間浸漬し浸
漬終了後に1次密着性評価試験と同様の手順に従い碁盤
目剥離試験を実施し、剥離した碁盤目塗膜の数を評価し
た。
(4) Secondary adhesion evaluation test The 3-coated plate was immersed in deionized water at 40 ° C. for 240 hours, and after completion of the immersion, a cross-cut peel test was carried out according to the same procedure as the primary adhesion evaluation test. The number of cross-cut coating films evaluated was evaluated.

【0080】表3に実施例における表面調整用前処理液
を用いたりん酸亜鉛処理において得られた化成処理皮膜
の皮膜特性を示す。
Table 3 shows the film properties of the chemical conversion film obtained by the zinc phosphate treatment using the pretreatment liquid for surface conditioning in the examples.

【0081】表4に比較例における表面調整用前処理液
を用いたりん酸亜鉛処理において得られた化成処理皮膜
の皮膜特性を示す。
Table 4 shows the coating properties of the chemical conversion coating obtained in the zinc phosphate treatment using the pretreatment liquid for surface conditioning in the comparative example.

【0082】表5に実施例における表面調整用前処理液
を用いたりん酸亜鉛処理において得られた化成処理皮膜
の塗装後の性能評価結果を示す。
Table 5 shows the performance evaluation results of the chemical conversion coatings obtained in the zinc phosphate treatment using the preconditioning solution for surface conditioning in the examples after coating.

【0083】表6に比較例における表面調整用前処理液
を用いたりん酸亜鉛処理において得られた化成処理皮膜
の塗装後の性能評価結果を示す。
Table 6 shows the results of performance evaluation after coating of the chemical conversion coating obtained in the zinc phosphate treatment using the pretreatment liquid for surface conditioning in the comparative example.

【0084】表3および表4より本発明品である表面調
整用前処理液は従来品の欠点であった経時安定性が著し
く向上していることが確認される。また、実施例1およ
び実施例2から経時安定性に対する酸化物微粒子の効果
が明らかとなっている。更に酸化物微粒子およびアルカ
リ金属の種類、処理温度を変えてもその効果は変わらず
従来品と同等以上に緻密で微細な結晶を得ることがで
き、使用する2価もしくは3価の金属のりん酸塩の平均
粒径を制御することによって得られるりん酸塩皮膜結晶
のサイズを制御することも可能となった。
From Tables 3 and 4, it is confirmed that the surface treatment pretreatment liquid of the present invention significantly improves the stability with time, which is a disadvantage of the conventional product. Further, the effects of the oxide fine particles on the stability over time are clear from Examples 1 and 2. Furthermore, even if the type of oxide fine particles and alkali metal and the processing temperature are changed, the effect is not changed, and fine and fine crystals can be obtained at least equivalent to those of the conventional product, and the divalent or trivalent metal phosphoric acid used is used. It has also become possible to control the size of the phosphate film crystals obtained by controlling the average particle size of the salt.

【0085】表5および表6から本発明品である表面調
整用前処理液は従来品と同等以上の塗装性能を与えるも
のであることが解る。
From Tables 5 and 6, it can be seen that the surface treatment pretreatment liquid of the present invention gives a coating performance equal to or higher than that of the conventional product.

【0086】[0086]

【発明の効果】前述した通り本発明品は従来品の欠点で
あった経時安定性を格段に向上し、従来品では不可能で
あったりん酸塩皮膜結晶サイズの自由な制御も可能とし
た。従って、本発明品は従来品と比較して経済的に有利
であり、かつ従来品と同等以上の性能を与えることを可
能としたのである。
As described above, the product of the present invention significantly improves the stability over time, which was a disadvantage of the conventional product, and also allows free control of the crystal size of the phosphate film, which was impossible with the conventional product. . Therefore, the product of the present invention is economically advantageous as compared with the conventional product, and can provide the same or higher performance as the conventional product.

【0087】[0087]

【表1】 [Table 1]

【0088】[0088]

【表2】 [Table 2]

【0089】[0089]

【表3】 [Table 3]

【0090】[0090]

【表4】 [Table 4]

【0091】[0091]

【表5】 [Table 5]

【0092】[0092]

【表6】 [Table 6]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 粒径が5μm以下の粒子を含む2価もし
くは3価の金属の少なくとも1種を含有するりん酸塩の
中から選ばれる1種以上と、アルカリ金属塩もしくはア
ンモニウム塩またはこれらの混合物を含有し、且つ、p
Hを4〜13に調整したことを特徴とする金属のりん酸
塩皮膜化成処理前の表面調整用前処理液。
1. A phosphoric acid salt containing at least one divalent or trivalent metal containing particles having a particle size of 5 μm or less, and an alkali metal salt or an ammonium salt or a salt thereof. Containing a mixture and p
A pretreatment liquid for surface conditioning before a metal phosphate film conversion treatment, wherein H is adjusted to 4 to 13.
【請求項2】 前記粒径が5μm以下の粒子の濃度が
0.001〜30g/Lであり、且つ、前記2価もしく
は3価の金属がZn、Fe、Mn、Ni、Co、Ca、
およびAlの中から選ばれる少なくとも1種である請求
項1に記載の金属のりん酸塩皮膜化成処理前の表面調整
用前処理液。
2. The concentration of particles having a particle size of 5 μm or less is 0.001 to 30 g / L, and the divalent or trivalent metal is Zn, Fe, Mn, Ni, Co, Ca,
2. The pretreatment liquid for surface conditioning of a metal according to claim 1, which is at least one selected from the group consisting of Al and Al.
【請求項3】 前記アルカリ金属塩もしくはアンモニウ
ム塩がオルソりん酸塩、メタりん酸塩、オルソ珪酸塩、
メタ珪酸塩、炭酸塩、重炭酸塩、およびホウ酸塩の中か
ら選ばれた少なくとも1種の塩であり、且つ、その濃度
が0.5〜20g/Lである請求項1に記載の金属のり
ん酸塩皮膜化成処理前の表面調整用前処理液。
3. The method according to claim 2, wherein the alkali metal salt or ammonium salt is an orthophosphate, a metaphosphate, an orthosilicate,
The metal according to claim 1, which is at least one kind of salt selected from metasilicate, carbonate, bicarbonate, and borate, and has a concentration of 0.5 to 20 g / L. Pretreatment liquid for surface conditioning before phosphate film chemical conversion treatment.
【請求項4】 更に、水溶液にアニオン性に帯電し分散
した酸化物微粒子、アニオン性の水溶性有機高分子、ノ
ニオン性の水溶性有機高分子、アニオン性界面活性剤、
およびノニオン性界面活性剤の群から選ばれる少なくと
も1種を含む請求項1に記載の金属のりん酸塩皮膜化成
処理前の表面調整用前処理液。
4. An oxide fine particle anionically charged and dispersed in an aqueous solution, an anionic water-soluble organic polymer, a nonionic water-soluble organic polymer, an anionic surfactant,
The preconditioning solution for surface conditioning before a metal phosphate film conversion treatment according to claim 1, comprising at least one selected from the group consisting of a nonionic surfactant and a nonionic surfactant.
【請求項5】 前記アニオン性に帯電し分散した酸化物
微粒子の平均粒径が0.5μm以下であり、且つ、その
濃度が0.001〜5g/Lである請求項4に記載の金
属のりん酸塩皮膜化成処理前の表面調整用前処理液。
5. The metal according to claim 4, wherein the anionically charged and dispersed oxide fine particles have an average particle size of 0.5 μm or less and a concentration of 0.001 to 5 g / L. Pretreatment liquid for surface conditioning before phosphate film chemical conversion treatment.
【請求項6】 前記アニオン性に帯電し分散した酸化物
微粒子がSi、B、Ti、Zr、Al、Sb、Mg、S
e、Zn、Sn、Fe、Mo、およびVの酸化物の中か
ら選ばれる少なくとも1種であることを特徴とする請求
項4に記載の金属のりん酸塩皮膜化成処理前の表面調整
用前処理液。
6. The anionic charged and dispersed oxide fine particles are composed of Si, B, Ti, Zr, Al, Sb, Mg, S
5. The surface preparation before metal phosphate conversion treatment according to claim 4, wherein the metal is at least one selected from the group consisting of oxides of e, Zn, Sn, Fe, Mo, and V. Processing liquid.
【請求項7】 金属表面にりん酸塩化成皮膜を形成する
にあたり、あらかじめ該金属表面を請求項1〜6のいず
れか1項に記載の表面調整用前処理液と接触させること
を特徴とする金属のりん酸塩皮膜化成処理前の表面調整
方法。
7. A method for forming a phosphate conversion coating on a metal surface, wherein the metal surface is brought into contact with the preconditioning solution for surface conditioning according to claim 1 in advance. Surface conditioning method before metal phosphate coating conversion treatment.
【請求項8】 金属表面にりん酸塩化成皮膜を形成する
にあたり、金属表面の活性化と清浄化を兼ねて、あらか
じめ該金属表面をノニオン性界面活性剤もしくはアニオ
ン性界面活性剤、またはこれらの混合物と、ビルダーを
含む請求項1〜6に記載の表面調整用前処理液と接触さ
せることを特徴とする金属のりん酸塩皮膜化成処理前の
表面調整方法。 【0001】
8. When forming a phosphate conversion coating on a metal surface, the metal surface is previously treated with a nonionic surfactant or an anionic surfactant, or a combination thereof, for both activation and cleaning of the metal surface. A surface conditioning method before a metal phosphate film chemical conversion treatment, wherein the mixture is brought into contact with the surface conditioning pretreatment liquid according to any one of claims 1 to 6 containing a builder. [0001]
JP05218197A 1997-03-07 1997-03-07 Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method Expired - Lifetime JP3451334B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP05218197A JP3451334B2 (en) 1997-03-07 1997-03-07 Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method
MYPI98000677A MY124633A (en) 1997-03-07 1998-02-18 Conditioning metal surfaces prior to phosphate conversion coating
ZA981796A ZA981796B (en) 1997-03-07 1998-03-03 Conditioning metal surfaces prior to phosphate conversion
TW087103138A TW371675B (en) 1997-03-07 1998-03-04 Solution and process for conditioning metal surface prior to forming phosphate layer
IDP980332A ID20532A (en) 1997-03-07 1998-03-06 SOLUTIONS AND PROCESSES FOR PREPARATION OF METAL SURFACE BEFORE THE FORMING OF PHOSPHATE LAYERS
KR10-1998-0007469A KR100473603B1 (en) 1997-03-07 1998-03-06 Conditioning solution and conditioning process on metal surface before phosphate coating
CA002283387A CA2283387C (en) 1997-03-07 1998-03-09 Conditioning metal surfaces prior to phosphate conversion coating
DE69817803T DE69817803T2 (en) 1997-03-07 1998-03-09 CONDITIONING A MATERIAL SURFACE BEFORE PHOSPHATE CONVERSION COATING
AU66736/98A AU6673698A (en) 1997-03-07 1998-03-09 Conditioning metal surfaces prior to phosphate conversion coating
CNB981054668A CN1198958C (en) 1997-03-07 1998-03-09 Metallic surface pretreating liquid and method before formation and treatment of phosphate coating
PCT/US1998/003934 WO1998039498A1 (en) 1997-03-07 1998-03-09 Conditioning metal surfaces prior to phosphate conversion coating
ES98908792T ES2205456T3 (en) 1997-03-07 1998-03-09 CONDITIONING OF METAL SURFACES BEFORE CONVERSION COATING WITH PHOSPHATE.
EP98908792A EP0977908B1 (en) 1997-03-07 1998-03-09 Conditioning metal surfaces prior to phosphate conversion coating
US09/380,700 US6214132B1 (en) 1997-03-07 1999-03-09 Conditioning metal surfaces prior to phosphate conversion coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05218197A JP3451334B2 (en) 1997-03-07 1997-03-07 Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002293415A Division JP4338375B2 (en) 2002-10-07 2002-10-07 Pretreatment liquid for surface conditioning and surface conditioning method before phosphate coating treatment of metal
JP2002293416A Division JP2003160882A (en) 2002-10-07 2002-10-07 Pretreatment liquid for surface conditioning prior to phosphate treatment of metal, and method of surface conditioning

Publications (2)

Publication Number Publication Date
JPH10245685A true JPH10245685A (en) 1998-09-14
JP3451334B2 JP3451334B2 (en) 2003-09-29

Family

ID=12907647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05218197A Expired - Lifetime JP3451334B2 (en) 1997-03-07 1997-03-07 Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method

Country Status (13)

Country Link
EP (1) EP0977908B1 (en)
JP (1) JP3451334B2 (en)
KR (1) KR100473603B1 (en)
CN (1) CN1198958C (en)
AU (1) AU6673698A (en)
CA (1) CA2283387C (en)
DE (1) DE69817803T2 (en)
ES (1) ES2205456T3 (en)
ID (1) ID20532A (en)
MY (1) MY124633A (en)
TW (1) TW371675B (en)
WO (1) WO1998039498A1 (en)
ZA (1) ZA981796B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486001B1 (en) * 1999-03-10 2002-11-26 Kabushiki Kaisha Toshiba Fabricating method of semiconductor device
JP2005264326A (en) * 2004-02-20 2005-09-29 Nippon Paint Co Ltd Surface conditioner and surface conditioning method
JP2005264327A (en) * 2004-02-20 2005-09-29 Nippon Paint Co Ltd Concentrated solution for preparing surface conditioner, surface conditioner, and surface conditioning method
WO2007021025A1 (en) 2005-08-19 2007-02-22 Nippon Paint Co., Ltd. Surface-conditioning composition, method for production thereof, and surface conditioning method
WO2007021024A1 (en) 2005-08-19 2007-02-22 Nippon Paint Co., Ltd. Surface-conditioning composition, method for production thereof, and surface conditioning method
US7208054B2 (en) 2004-02-20 2007-04-24 Nippon Paint Co., Ltd. Concentrated solution for preparing a surface conditioner, surface conditioner and method of surface conditioning
WO2007097139A1 (en) * 2006-02-20 2007-08-30 Sumitomo Metal Industries, Ltd. Process for producing hot-dip galvanized steel sheet with zinc phosphate coat
WO2007117044A1 (en) 2006-04-07 2007-10-18 Nippon Paint Co., Ltd. Surface conditioning composition, method for producing the same, and surface conditioning method
US7666266B2 (en) 2003-12-04 2010-02-23 Sumitomo Metal Industries, Ltd. Surface conditioning prior to chemical conversion treatment of a steel member
US7749319B2 (en) 2005-08-19 2010-07-06 Chemetall Gmbh Composition for surface conditioning and a method for surface conditioning
US7767111B2 (en) 2004-02-20 2010-08-03 Nippon Paint Co., Ltd. Surface conditioner and method of surface conditioning
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE
JP2011052296A (en) * 2009-09-03 2011-03-17 Mazda Motor Corp Surface treatment method for metallic member
US8043531B2 (en) 2005-07-29 2011-10-25 Nippon Paint Co., Ltd. Surface conditioner and surface conditioning method
US8506728B2 (en) 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
US9096935B2 (en) 2006-04-07 2015-08-04 Chemetall Gmbh Surface conditioning composition, method for producing the same, and surface conditioning method
JP2018514653A (en) * 2015-05-07 2018-06-07 フォスファン エルティーディー Method of applying ultrafine phosphate conversion crystalline coating
JP2018537581A (en) * 2015-11-05 2018-12-20 フォスファン エルティーディー. Complex phosphate coating
JP2020084325A (en) * 2018-11-20 2020-06-04 東京製鐵株式会社 Hot-rolled steel plate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451337B2 (en) * 1998-07-21 2003-09-29 日本パーカライジング株式会社 Treatment solution for surface conditioning before chemical conversion treatment of metal phosphate film and surface conditioning method
US6723178B1 (en) 1999-08-16 2004-04-20 Henkel Corporation Process for forming a phosphate conversion coating on metal
JP3545974B2 (en) * 1999-08-16 2004-07-21 日本パーカライジング株式会社 Phosphate conversion treatment method for metal materials
JP2001295063A (en) * 2000-04-10 2001-10-26 Nippon Parkerizing Co Ltd Method for forming phosphate film to nonferrous metallic material and plated steel sheet
JP2002206176A (en) * 2001-01-09 2002-07-26 Nippon Parkerizing Co Ltd Aqueous surface conditioner for phosphate treatment and surface conditioning method
AU2002301945B2 (en) * 2001-11-21 2008-07-17 Chiyoda Chemical Co., Ltd Surface treatment method of metal member, and metal goods
BE1014525A3 (en) 2001-12-04 2003-12-02 Ct Rech Metallurgiques Asbl Coating process for metal surface.
DE60311708D1 (en) * 2002-06-13 2007-03-29 Nippon Paint Co Ltd Zinc phosphate conditioning agent for phosphate conversion coating of steel plate and corresponding product
CN101376970B (en) * 2007-08-28 2011-05-11 宝山钢铁股份有限公司 Surface conditioning solution used before manganese series phosphating, preparation and use
WO2009104773A1 (en) * 2008-02-18 2009-08-27 新日本製鐵株式会社 Plated steel sheet for can and process for producing the plated steel sheet
DE102008017523A1 (en) 2008-03-20 2009-09-24 Henkel Ag & Co. Kgaa Optimized electrocoating of assembled and partially pre-phosphated components
JP5462467B2 (en) 2008-10-31 2014-04-02 日本パーカライジング株式会社 Chemical treatment solution for metal material and treatment method
DE102011087314A1 (en) 2011-11-29 2013-05-29 Henkel Ag & Co. Kgaa Process for the regeneration of aqueous dispersions and cell pack for electrodialysis
DE102014105226A1 (en) * 2014-04-11 2015-10-15 Thyssenkrupp Ag Method for activating metal surfaces to be phosphated, preferably galvanized sheet steel
US20190003058A1 (en) 2015-12-25 2019-01-03 Nihon Parkerizing Co., Ltd. Surface-conditioning agent, as well as magnesium member or magnesium alloy material with film, and manufacturing method therefor
US20170306498A1 (en) * 2016-04-25 2017-10-26 Ppg Industries Ohio, Inc. Activating rinse and method for treating a substrate
CN107460468B (en) * 2016-06-06 2019-04-09 李力 A kind of iron-based antirust complex oxide film
EP3392376A1 (en) 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Method for forming zinc phosphate coatings on metallic components in series
EP3392375B1 (en) 2017-04-21 2019-11-06 Henkel AG & Co. KGaA Sludge-free zinc phosphate coating forming method for metallic components in series
EP3802915A1 (en) 2018-06-11 2021-04-14 Henkel AG & Co. KGaA Aqueous dispersion for activating a metal surface, and method for the phosphatisation thereof
EP3828306A1 (en) 2019-11-26 2021-06-02 Henkel AG & Co. KGaA Resource-conserving method for activating a metal surface prior to phosphating
EP3828307A1 (en) 2019-11-26 2021-06-02 Henkel AG & Co. KGaA Resource-conserving method for activating a metal surface prior to phosphating
EP3954805A1 (en) 2020-08-11 2022-02-16 Henkel AG & Co. KGaA Resource-efficient method for zinc phosphating a metal surface
EP3964606A1 (en) 2020-09-04 2022-03-09 Henkel AG & Co. KGaA Single stage zinc phosphating method
EP4174211A1 (en) 2021-11-02 2023-05-03 Henkel AG & Co. KGaA Multistage treatment for activated zinc phosphating of metallic components with zinc surfaces
CZ309976B6 (en) * 2022-10-31 2024-03-27 České vysoké učení technické v Praze A method of pre-treatment of the surface of steel components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156778A (en) * 1980-05-02 1981-12-03 Nippon Steel Corp Manufacture of continuously annealed steel strip with superior suitability to phosphating and superior corrosion resistance after coating
JPS5723066A (en) * 1980-07-17 1982-02-06 Nippon Steel Corp Preparation of box annealed steel plate with excellent phosphate treating property and corrosion resistance after painting
JPS59226181A (en) * 1983-03-01 1984-12-19 ヒルチ・アクチエンゲゼルシヤフト Metal surface pretreatment and composition therefor
JPH04254589A (en) * 1990-04-21 1992-09-09 Metallges Ag Phosphate-treated activator and method for use thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322349A (en) 1941-10-25 1943-06-22 Westinghouse Electric & Mfg Co Corrosion resistant coating for metal surfaces
IT429344A (en) 1941-10-25 1900-01-01
US2456947A (en) * 1944-12-21 1948-12-21 Westinghouse Electric Corp Corrosion resistant coating for metal surfaces
US2874081A (en) 1956-08-02 1959-02-17 Parker Rust Proof Co Pretreatment solution for phosphate coating, method of preparing the same and process of treating metal surfaces
GB1084017A (en) * 1963-09-30 1967-09-20 Jawata Iron & Steel Co Ltd Pretreating process for phosphate-treating steel sheets or plated steel sheets
DE1521889B1 (en) * 1966-11-30 1972-01-13 Metallgesellschaft Ag METHOD OF PHOSPHATING IRON AND STEEL
US3728163A (en) * 1970-05-25 1973-04-17 Balm Paints Ltd Alkaline liquids for cleaning metals
US3847663A (en) * 1970-07-24 1974-11-12 Lubrizol Corp Cleaning of metals with compositions containing alkali metal silicate and chloride
DE2207047A1 (en) * 1972-02-15 1973-08-30 Metallgesellschaft Ag PROCESS FOR THE PREPARATION OF STEEL PIECES FOR CHIPLESS COLD FORMING
JPS50153736A (en) * 1974-06-03 1975-12-11
JPS5140342A (en) * 1974-10-04 1976-04-05 Nippon Packaging Kk Tetsukonokaseishoriho
FR2375340A1 (en) 1976-12-23 1978-07-21 Produits Ind Cie Fse Iron and steel activation pretreatment prior to phosphating - by treating with magnesium ortho:phosphate suspension allowing good coverage and finer phosphating coating
FR2461020A1 (en) * 1979-07-06 1981-01-30 Produits Ind Cie Fse IMPROVEMENTS IN METHODS OF MANGANESE PHOSPHATION OF IRON AND STEEL SURFACES
US4497667A (en) * 1983-07-11 1985-02-05 Amchem Products, Inc. Pretreatment compositions for metals
JPS6039170A (en) * 1983-08-10 1985-02-28 Toyota Motor Corp Method and aqueous solution for surface regulation of steel plate before phosphate coating conversion treatment
JPH0674507B2 (en) 1986-09-19 1994-09-21 日本パ−カライジング株式会社 Management method of surface conditioning liquid for phosphate coating chemical conversion treatment
FR2612947A1 (en) * 1987-03-27 1988-09-30 Siderurgie Fse Inst Rech PROCESS FOR CHEMICAL SURFACE TREATMENT OF AN ALUMINOUS PRODUCT WITH A VIEW TO ITS PHOSPHATION
BR9407553A (en) * 1993-09-17 1996-12-31 Brent Int Plc Process for preparing a pre-rinse composition for phosphating metal surfaces using a suspension formed by the same composition for pre-rinsing metal surfaces and processes for using the composition or suspension and to form a phosphate coating on a substrate of metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156778A (en) * 1980-05-02 1981-12-03 Nippon Steel Corp Manufacture of continuously annealed steel strip with superior suitability to phosphating and superior corrosion resistance after coating
JPS5723066A (en) * 1980-07-17 1982-02-06 Nippon Steel Corp Preparation of box annealed steel plate with excellent phosphate treating property and corrosion resistance after painting
JPS59226181A (en) * 1983-03-01 1984-12-19 ヒルチ・アクチエンゲゼルシヤフト Metal surface pretreatment and composition therefor
JPH04254589A (en) * 1990-04-21 1992-09-09 Metallges Ag Phosphate-treated activator and method for use thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486001B1 (en) * 1999-03-10 2002-11-26 Kabushiki Kaisha Toshiba Fabricating method of semiconductor device
US7666266B2 (en) 2003-12-04 2010-02-23 Sumitomo Metal Industries, Ltd. Surface conditioning prior to chemical conversion treatment of a steel member
JP2005264326A (en) * 2004-02-20 2005-09-29 Nippon Paint Co Ltd Surface conditioner and surface conditioning method
JP2005264327A (en) * 2004-02-20 2005-09-29 Nippon Paint Co Ltd Concentrated solution for preparing surface conditioner, surface conditioner, and surface conditioning method
US7767111B2 (en) 2004-02-20 2010-08-03 Nippon Paint Co., Ltd. Surface conditioner and method of surface conditioning
US7208054B2 (en) 2004-02-20 2007-04-24 Nippon Paint Co., Ltd. Concentrated solution for preparing a surface conditioner, surface conditioner and method of surface conditioning
US8043531B2 (en) 2005-07-29 2011-10-25 Nippon Paint Co., Ltd. Surface conditioner and surface conditioning method
US7749319B2 (en) 2005-08-19 2010-07-06 Chemetall Gmbh Composition for surface conditioning and a method for surface conditioning
WO2007021025A1 (en) 2005-08-19 2007-02-22 Nippon Paint Co., Ltd. Surface-conditioning composition, method for production thereof, and surface conditioning method
US7722710B2 (en) 2005-08-19 2010-05-25 Toshio Inbe Surface-conditioning composition, method for production thereof, and surface conditioning method
US8119239B2 (en) 2005-08-19 2012-02-21 Nippon Paint Co., Ltd. Surface-conditioning composition comprising metal phosphate particles, metal alkoxide and stabilizer, and method of production thereof
WO2007021024A1 (en) 2005-08-19 2007-02-22 Nippon Paint Co., Ltd. Surface-conditioning composition, method for production thereof, and surface conditioning method
WO2007097139A1 (en) * 2006-02-20 2007-08-30 Sumitomo Metal Industries, Ltd. Process for producing hot-dip galvanized steel sheet with zinc phosphate coat
WO2007117044A1 (en) 2006-04-07 2007-10-18 Nippon Paint Co., Ltd. Surface conditioning composition, method for producing the same, and surface conditioning method
US9096935B2 (en) 2006-04-07 2015-08-04 Chemetall Gmbh Surface conditioning composition, method for producing the same, and surface conditioning method
US10072338B2 (en) 2006-04-07 2018-09-11 Chemetall Gmbh Surface conditioning composition, method for producing the same, and surface conditioning method
JP2011052296A (en) * 2009-09-03 2011-03-17 Mazda Motor Corp Surface treatment method for metallic member
US8506728B2 (en) 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
JP2011042879A (en) * 2010-10-26 2011-03-03 Jfe Steel Corp ULTRAHIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING HIGH DUCTILITY, EXCELLENT CHEMICAL CONVERSION TREATABILITY AND TENSILE STRENGTH OF 780 MPa OR MORE
JP2018514653A (en) * 2015-05-07 2018-06-07 フォスファン エルティーディー Method of applying ultrafine phosphate conversion crystalline coating
JP2021101042A (en) * 2015-05-07 2021-07-08 フォスファン エルティーディー Method for applying superfine phosphate chemical conversion crystalline coating
JP2018537581A (en) * 2015-11-05 2018-12-20 フォスファン エルティーディー. Complex phosphate coating
JP2020084325A (en) * 2018-11-20 2020-06-04 東京製鐵株式会社 Hot-rolled steel plate

Also Published As

Publication number Publication date
EP0977908A4 (en) 2000-06-07
KR100473603B1 (en) 2005-08-29
DE69817803D1 (en) 2003-10-09
CN1198958C (en) 2005-04-27
CA2283387A1 (en) 1998-09-11
DE69817803T2 (en) 2004-07-01
ES2205456T3 (en) 2004-05-01
EP0977908B1 (en) 2003-09-03
ZA981796B (en) 1998-09-07
EP0977908A1 (en) 2000-02-09
KR19980079984A (en) 1998-11-25
CN1197849A (en) 1998-11-04
AU6673698A (en) 1998-09-22
CA2283387C (en) 2007-07-03
MY124633A (en) 2006-06-30
ID20532A (en) 1999-01-07
WO1998039498A1 (en) 1998-09-11
TW371675B (en) 1999-10-11
JP3451334B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JP3451334B2 (en) Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
US6214132B1 (en) Conditioning metal surfaces prior to phosphate conversion coating
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
EP1815974B1 (en) Conditioning metal surfaces before phosphating them
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JPH09502768A (en) Pre-cleaning for phosphating metal surfaces
US6497771B1 (en) Aqueous solution and method for phosphatizing metallic surfaces
KR20010074527A (en) Method for forming phosphate coatings on galvanized steel
KR20040038635A (en) Surface treating composition, surface treating solution, surface treating method and product with metallic material
JPH10204649A (en) Aqueous phosphate treating solution for metallic surface and its treatment
JP2002206176A (en) Aqueous surface conditioner for phosphate treatment and surface conditioning method
JP2007224426A (en) Pretreatment liquid for surface control before phosphate film chemical conversion treatment of metal, and surface controlling method
JP4338375B2 (en) Pretreatment liquid for surface conditioning and surface conditioning method before phosphate coating treatment of metal
JP2003119571A5 (en)
JPH11200066A (en) Surface treatment of galvanized steel sheet
JPS63227786A (en) Phosphating method for pretreating steel sheet before coating by electrodeposition
JP2003160882A (en) Pretreatment liquid for surface conditioning prior to phosphate treatment of metal, and method of surface conditioning
JP2003119572A (en) Treatment liquid for surface control before phosphating metal, and surface controlling method
WO2008054016A1 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JPS6179782A (en) Treatment of phosphate
US4774145A (en) Zinc phosphate chemical conversion film and method for forming the same
JPH0788585B2 (en) Phosphate film treatment agent
JPS6123769A (en) Aluminum-containing galvanized alloy steel sheet subjected to chemical conversion treatment
MXPA99008172A (en) Conditioning metal surfaces prior to phosphate conversion coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

RVTR Cancellation due to determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5