JP2003119572A - Treatment liquid for surface control before phosphating metal, and surface controlling method - Google Patents

Treatment liquid for surface control before phosphating metal, and surface controlling method

Info

Publication number
JP2003119572A
JP2003119572A JP2002293417A JP2002293417A JP2003119572A JP 2003119572 A JP2003119572 A JP 2003119572A JP 2002293417 A JP2002293417 A JP 2002293417A JP 2002293417 A JP2002293417 A JP 2002293417A JP 2003119572 A JP2003119572 A JP 2003119572A
Authority
JP
Japan
Prior art keywords
phosphate
treatment liquid
surface conditioning
metal
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293417A
Other languages
Japanese (ja)
Inventor
Takaomi Nakayama
隆臣 中山
Yasuhiko Nagashima
康彦 永嶋
Kensuke Shimoda
健介 下田
Hirokatsu Sakauchi
洋勝 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP2002293417A priority Critical patent/JP2003119572A/en
Publication of JP2003119572A publication Critical patent/JP2003119572A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treatment liquid for surface control superior in temporal stability, which is used prior to forming the phosphated film, in order to efficiently form a phosphated film consisting of fine crystallites. SOLUTION: The treatment liquid for surface control prior to metal phosphating treatment is characterized by including one or more phosphate particles selected from phosphates containing one or more divalent metals or trivalent metals, and one or more orthophosphoric acids, polyphosphoric acids, or phosphates thereof, as an acceleration component. The phosphate particles preferably include those with particle diameters of 5 μm or less, and have a content of 0.001-30 g/L. The one or more divalent metals or trivalent metals are preferably selected among Zn, Fe, Mn, Ni, Co, Ca, and Al.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼、亜鉛めっき
鋼板、及びアルミニウム、及びマグネシウム合金等の金
属材料の表面に施されるりん酸塩被膜化成処理におい
て、その化成処理前に化成反応の促進および短時間化な
らびにりん酸塩被膜結晶の微細化を図るために用いられ
る表面調整用処理液及び表面調整方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphate film chemical conversion treatment applied to the surface of a steel material, a galvanized steel sheet, and a metal material such as aluminum and a magnesium alloy. The present invention also relates to a surface-conditioning treatment liquid and a surface-conditioning method which are used for shortening the time and making the crystals of the phosphate coating finer.

【0002】[0002]

【従来の技術】昨今、自動車のりん酸塩処理においては
塗装後の耐食性向上のため、また、塑性加工用のりん酸
塩処理においてはプレス時の摩擦低減またはプレス型寿
命延長のために金属表面に微細で緻密なりん酸塩被膜結
晶を形成することが求められている。そこで、微細で緻
密なりん酸塩被膜結晶を得るために金属表面を活性化
し、りん酸塩被膜結晶析出のための核をつくる目的で、
りん酸塩被膜化成処理工程の前に表面調整工程が採用さ
れている。以下に微細で緻密なりん酸塩被膜結晶を得る
ために行われている一般的なりん酸塩被膜化成工程を例
示する。
2. Description of the Related Art Recently, metal surfaces have been used to improve corrosion resistance after coating in automobile phosphate treatment, and to reduce friction during pressing or extend press die life in phosphate treatment for plastic working. It is required to form fine and dense phosphate-coated crystals. Therefore, for the purpose of activating the metal surface in order to obtain fine and dense phosphate film crystals, and forming nuclei for precipitation of phosphate film crystals,
A surface conditioning step is adopted before the phosphate film chemical conversion treatment step. The general phosphate coating chemical conversion process which is carried out to obtain fine and dense phosphate coating crystals is illustrated below.

【0003】 (1)脱脂 (2)水洗(多段) (3)表面調整 (4)りん酸塩被膜化成処理 (5)水洗(多段) (6)純水洗。[0003] (1) Degreasing (2) Washing with water (multi-stage) (3) Surface adjustment (4) Phosphate film conversion treatment (5) Washing with water (multi-stage) (6) Washing with pure water.

【0004】表面調整工程は、りん酸塩被膜結晶を微細
で緻密なものにするために用いられる。その組成物に関
しては、例えば米国特許第2874081号、第232
2349号、及び第2310239号などにより公知と
なっており、表面調整剤に含まれる主たる構成成分とし
てチタン、ピロリン酸イオン、オルソリン酸イオン及び
ナトリウムイオン等が開示されている。上記表面調整組
成物は「ジャーンステッド塩」と称され、その水溶液に
はチタンイオンとチタンコロイドが含まれる。
The surface conditioning step is used to make the phosphate coated crystals fine and dense. Regarding the composition thereof, for example, US Pat.
It is known from No. 2349 and No. 2310239, and titanium, pyrophosphate ion, orthophosphate ion, sodium ion and the like are disclosed as main constituents contained in the surface conditioner. The surface conditioning composition is referred to as "Jernstead salt", and its aqueous solution contains titanium ions and titanium colloid.

【0005】脱脂、水洗を行った金属を前記表面調整組
成物の水溶液に浸漬もしくは、噴霧することによってチ
タンコロイドが金属表面に吸着する。吸着したチタンコ
ロイドが次工程のりん酸塩被膜化成処理工程においてり
ん酸塩被膜結晶析出の核となり、化成反応の促進および
りん酸塩被膜結晶の微細化、緻密化が可能となる。現在
工業的に利用されている表面調整組成物は全てジャーン
ステッド塩を利用したものである。しかしながら、ジャ
ーンステッド塩から得られるチタンコロイドを表面調整
工程に用いた場合、種々の問題点があった。
The titanium colloid is adsorbed on the metal surface by immersing or spraying the degreased and washed metal in an aqueous solution of the surface conditioning composition. The adsorbed titanium colloid serves as a nucleus for precipitation of phosphate film crystals in the subsequent phosphate film chemical conversion treatment step, which makes it possible to accelerate the chemical conversion reaction and to make the phosphate film crystals finer and denser. All of the surface conditioning compositions currently used industrially utilize a Jernstead salt. However, when titanium colloid obtained from Jernstead salt is used in the surface conditioning step, there are various problems.

【0006】第1の問題点としては、表面調整用処理液
の経時劣化が挙げられる。従来の表面調整組成物を用い
る場合、その組成物を水溶液とした直後はりん酸塩被膜
結晶の微細化及び緻密化に関して著しい効果を発揮す
る。しかし、水溶液とした後に数日間が経過すると、チ
タンコロイドが凝集することにより、前記表面調整用処
理液の使用の有無に関わらずその効果が失われ、得られ
るりん酸塩被膜結晶は粗大化する。
The first problem is the deterioration of the surface conditioning treatment liquid over time. When a conventional surface conditioning composition is used, it exhibits a remarkable effect on the fineness and densification of phosphate coating crystals immediately after the composition is made into an aqueous solution. However, after several days have passed since the solution was made into an aqueous solution, the titanium colloid aggregates to lose its effect regardless of whether or not the surface conditioning treatment liquid is used, and the obtained phosphate coating crystals become coarse. .

【0007】そこで、特開昭63−76883号公報に
は、表面調整用処理液中のチタンコロイドの平均粒径を
測定し平均粒径がある一定値未満になるように表面調整
用処理液を連続的に廃棄し、更に廃棄された分の表面調
整組成物を補給することによって表面調整効果を維持管
理する方法が提案されている。しかし、この方法は表面
調整用処理液の効果に対する要因を定量的に管理するこ
とを可能としたが、効果を維持するためには表面調整用
処理液を廃棄する必要があった。また、この方法で表面
調整用処理液の効果を、水溶液とした初期と同等に維持
するためには多量の表面調整用処理液の廃棄を必要とす
る。従って、実際には使用される工場の排水処理能力の
問題もあり、連続的な表面調整用処理液の廃棄と全量更
新を併用してその効果を維持している。
Therefore, in JP-A-63-76883, the average particle diameter of titanium colloid in the surface adjusting treatment solution is measured, and the surface adjusting treatment solution is prepared so that the average particle diameter becomes less than a certain value. A method has been proposed in which the surface conditioning effect is maintained and managed by continuously discarding and supplementing the discarded surface conditioning composition. However, although this method made it possible to quantitatively control the factors for the effect of the surface conditioning treatment liquid, it was necessary to discard the surface conditioning treatment liquid in order to maintain the effect. Further, in order to maintain the effect of the surface conditioning treatment liquid by this method at the same level as in the initial stage when the aqueous solution was prepared, it is necessary to discard a large amount of the surface conditioning treatment liquid. Therefore, there is also a problem with the wastewater treatment capacity of the factory that is actually used, and continuous disposal of the surface treatment liquid and total renewal are used together to maintain its effect.

【0008】第2の問題点としては、表面調整用処理液
を建浴する際に使用される水質によって、その効果及び
寿命が大きく左右されることが挙げられる。通常表面調
整用処理液を建浴する際には工業用水が使用される。し
かし、周知の通り工業用水にはカルシウム、マグネシウ
ム等の全硬度の元になるカチオン成分が含まれており、
その含有量は使用される工業用水の水源によってまちま
ちである。ここで、従来の表面調整用処理液の主成分で
あるチタンコロイドは、水溶液中でアニオン性の電荷を
持つことにより、その電気的反発力によって沈降せずに
分散していることが知られている。従って、工業用水中
にカチオン成分であるカルシウムやマグネシウムが多量
に存在するとチタンコロイドはカチオン成分によって電
気的に中和され、反発力を失い凝集沈澱を引き起こすこ
とによってその効果を失う。
A second problem is that the effect and life of the surface conditioning treatment liquid are greatly affected by the quality of water used when the bath is prepared. Usually, industrial water is used when the surface conditioning treatment liquid is set up. However, as is well known, industrial water contains cation components such as calcium and magnesium that are the basis of total hardness,
Its content varies depending on the source of the industrial water used. Here, it is known that the titanium colloid, which is the main component of the conventional surface conditioning treatment liquid, has an anionic charge in the aqueous solution and is dispersed without settling due to its electric repulsive force. There is. Therefore, when a large amount of cation components, calcium and magnesium, are present in industrial water, the titanium colloid is electrically neutralized by the cation component, loses its repulsive force and causes cohesive precipitation, thereby losing its effect.

【0009】そこで、カチオン成分を封鎖し、チタンコ
ロイドの安定性を維持する目的でピロリン酸塩等の縮合
りん酸塩を表面調整用処理液に添加する方法が提案され
ている。しかし、縮合りん酸塩を表面調整用処理液に多
量に添加すると縮合りん酸が鋼板表面と反応し不活性被
膜を形成するために、その後のりん酸塩被膜化成処理工
程において化成不良が発生する弊害を有する。また、極
端にマグネシウムやカルシウム含有量が多い地域では純
水を用いて表面調整用処理液の建浴及び給水を行う必要
があり経済面でも極めて不利である。第3の問題点とし
て、使用条件における温度、pHの制約が挙げられる。
具体的には、温度35℃以上、pH8.0〜9.5以外
の範囲ではチタンコロイドが凝集し表面調整効果を発揮
することが出来なくなる。従って、従来の表面調整組成
物を使用する際には定められた温度、pH範囲で使用す
る必要があり、かつ、脱脂剤等に表面調整組成物を添加
して金属表面の清浄化と活性化の効果を長時間に渡って
一液で発揮させることは不可能であった。
Therefore, a method has been proposed in which a condensed phosphate such as pyrophosphate is added to the surface conditioning treatment liquid for the purpose of blocking the cation component and maintaining the stability of the titanium colloid. However, when a large amount of condensed phosphate is added to the surface conditioning treatment liquid, condensed phosphoric acid reacts with the surface of the steel sheet to form an inactive film, resulting in poor chemical conversion in the subsequent phosphate film chemical conversion treatment process. It has harmful effects. Further, in an area having an extremely high magnesium or calcium content, it is necessary to use pure water for the bath preparation and water supply of the surface conditioning treatment liquid, which is extremely economically disadvantageous. The third problem is restrictions on temperature and pH under the usage conditions.
Specifically, when the temperature is 35 ° C. or higher and the pH is in the range other than 8.0 to 9.5, the titanium colloid agglomerates and the surface adjusting effect cannot be exerted. Therefore, when using the conventional surface conditioning composition, it is necessary to use it at a predetermined temperature and pH range, and the surface conditioning composition is added to a degreasing agent or the like to clean and activate the metal surface. It was impossible to exert the effect of 1 with one liquid for a long time.

【0010】第4の問題点として、表面調整用処理液の
効果によって得られるりん酸塩被膜結晶の微細化の限界
値が挙げられる。表面調整効果はチタンコロイドが金属
表面に吸着してりん酸塩被膜結晶析出の際の核を形成す
ることにより得られる。従って、表面調整工程で金属表
面に吸着したチタンコロイドの数が多ければ多いほど微
細で緻密なりん酸塩被膜結晶が得られる。
A fourth problem is a limit value for miniaturization of phosphate coating crystals obtained by the effect of the surface conditioning treatment liquid. The surface conditioning effect is obtained by the adsorption of titanium colloid on the metal surface to form nuclei for the precipitation of phosphate coating crystals. Therefore, the larger the number of titanium colloids adsorbed on the metal surface in the surface conditioning step, the finer and denser phosphate-coated crystals can be obtained.

【0011】その為には、表面調整用処理液中のチタン
コロイドの数を増やす、すなわちチタンコロイドの濃度
を高めることが容易に考えられる。しかし、濃度を増す
と表面調整用処理液中でのチタンコロイド同士の衝突頻
度が増し、衝突することによってチタンコロイドの凝集
沈澱が発生する。現在使用されているチタンコロイドの
濃度の上限は表面調整用処理液中のチタンとして100
ppm以下であり、それ以上にチタンコロイド濃度を増
やすことによってりん酸塩被膜結晶を微細化することは
従来技術では不可能であった。
For that purpose, it is easily conceivable to increase the number of titanium colloids in the surface conditioning treatment liquid, that is, increase the concentration of titanium colloids. However, when the concentration is increased, the frequency of collision between titanium colloids in the surface conditioning treatment liquid increases, and the collision causes coagulation and precipitation of titanium colloids. The upper limit of the concentration of titanium colloid currently used is 100 as titanium in the surface conditioning treatment liquid.
It is below ppm, and it has been impossible with the prior art to refine the phosphate coating crystal by increasing the titanium colloid concentration.

【0012】そこで、特開昭56−156778号公報
および特開昭57−23066号公報では、ジャーンス
テッド塩以外の表面調整剤として鋼帯表面に2価または
3価の金属の不溶性りん酸塩を含む懸濁液を加圧下に吹
き付ける表面調整方法が開示されている。しかし、この
表面調整方法は被処理物に懸濁液を加圧下に吹き付けて
初めてその効果が発揮されるため通常の浸漬および噴霧
処理によって施されるりん酸塩被膜化成処理の表面調整
には使用できなかった。
Therefore, in JP-A-56-156778 and JP-A-57-23066, an insoluble phosphate of a divalent or trivalent metal is added to the surface of the steel strip as a surface modifier other than the Jernstead salt. A surface conditioning method is disclosed in which the suspension containing is sprayed under pressure. However, this surface adjustment method is effective only when the suspension is sprayed on the object under pressure, so it is used for surface adjustment of the phosphate film chemical conversion treatment, which is usually performed by dipping and spraying. could not.

【0013】また、特公昭40−1095号公報では亜
鉛めっき鋼板を高濃度の2価または3価金属の不溶性り
ん酸塩懸濁液に浸漬する表面調整方法が開示されてい
る。しかし、この方法で示される実施例は亜鉛めっき鋼
板に限られており、かつ表面調整効果を得るためには最
低30g/L以上の高濃度の不溶性りん酸塩懸濁液を用
いる必要があった。従って、ジャーンステッド塩の問題
点は種々提示されているにも関わらず、現在までのとこ
ろ、それに代わりうる新しい技術は未だ提示されていな
いのである。
Further, Japanese Patent Publication No. 40-1095 discloses a surface conditioning method in which a galvanized steel sheet is immersed in a high-concentration divalent or trivalent metal insoluble phosphate suspension. However, the examples shown by this method are limited to galvanized steel sheets, and in order to obtain the surface conditioning effect, it was necessary to use a high concentration insoluble phosphate suspension of at least 30 g / L or more. . Therefore, despite the various problems of Jernstead salts being presented, to date, no new technology that can replace them has been presented.

【0014】[0014]

【発明が解決しようとする課題】本発明は従来技術の抱
える前記課題を解決し、りん酸塩被膜化成処理におい
て、化成反応の促進および短時間化、ならびに得られる
りん酸塩被膜結晶の微細化を図るために用いられる、経
時安定性に優れた新規な表面調整用処理液および表面調
整方法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems of the prior art and, in the phosphate film chemical conversion treatment, promotes the chemical conversion reaction and shortens the time, and makes the obtained phosphate film crystals finer. It is an object of the present invention to provide a novel treatment liquid for surface adjustment and a method for surface adjustment, which are used for the purpose of achieving excellent stability over time.

【0015】[0015]

【課題を解決するための手段】本発明者等は前記課題を
解決するための手段について鋭意検討し、従来方法にお
ける問題点を解決し、かつ、りん酸塩被膜結晶の品質を
さらに向上させることが可能である新規な表面調整用処
理液および表面調整方法を完成するに至った。
[Means for Solving the Problems] The present inventors have diligently studied means for solving the above problems, solving the problems in the conventional method, and further improving the quality of phosphate-coated crystals. The present inventors have completed a new surface conditioning treatment liquid and a surface conditioning method capable of achieving the above.

【0016】本発明は、2価およびまたは3価の金属の
1種以上を含有するりん酸塩から選ばれる1種以上のり
ん酸塩粒子と、促進成分として正りん酸、ポリりん酸の
1種以上とを含有することを特徴とする、金属のりん酸
塩被膜化成処理前の表面調整用処理液である。
In the present invention, one or more kinds of phosphate particles selected from phosphates containing one or more kinds of divalent and / or trivalent metals, and one of orthophosphoric acid and polyphosphoric acid as a promoting component. It is a treatment liquid for surface conditioning before metal phosphate coating conversion treatment, characterized by containing at least one species.

【0017】前記りん酸塩粒子は粒径5μm以下のもの
を含み、その濃度が0.001〜30g/Lであり、且
つ、前記2価もしくは3価の金属がZn、Fe、Mn、
Ni、Co、Ca、およびAlの中から選ばれる少なく
とも1種であることが好ましい。また促進成分の合計濃
度は1〜2000ppmであることが好ましい。
The phosphate particles include those having a particle size of 5 μm or less, the concentration thereof is 0.001 to 30 g / L, and the divalent or trivalent metal is Zn, Fe, Mn,
It is preferably at least one selected from Ni, Co, Ca, and Al. Further, the total concentration of the accelerating component is preferably 1 to 2000 ppm.

【0018】更に前記水溶液中にアルカリ金属塩もしく
はアンモニウム塩またはこれらの混合物を含有すること
が好ましい。前記アルカリ金属塩もしくはアンモニウム
塩がオルソりん酸塩、メタりん酸塩、オルソ珪酸塩、メ
タ珪酸塩、炭酸塩、重炭酸塩、硝酸塩、亜硝酸塩、硫酸
塩、ホウ酸塩、および有機酸塩の中から選ばれる少なく
とも1種であり、且つ、その濃度が0.5〜20g/L
であることが好ましい。
Further, it is preferable that the aqueous solution contains an alkali metal salt, an ammonium salt or a mixture thereof. The alkali metal salt or ammonium salt is one of orthophosphate, metaphosphate, orthosilicate, metasilicate, carbonate, bicarbonate, nitrate, nitrite, sulfate, borate, and organic acid salt. At least one selected from the above, and the concentration thereof is 0.5 to 20 g / L
Is preferred.

【0019】本発明の金属のりん酸塩被膜化成処理前の
表面調整方法は、該金属表面を前記表面調整用処理液と
接触させることを特徴とするものである。
The surface conditioning method before the metal phosphate coating conversion treatment of the present invention is characterized in that the metal surface is brought into contact with the surface conditioning treatment liquid.

【0020】更に、本発明品の表面調整用処理液は高p
H域での安定性および高温下での安定性が従来技術であ
るチタンコロイドと比較して非常に優れているため、ノ
ニオン性界面活性剤もしくはアニオン性界面活性剤、ま
たはこれらの混合物と、アルカリビルダーを添加するこ
とによって金属表面の清浄化と活性化を兼ねた脱脂兼表
面調整処理方法にも使用することができるのである。
Further, the surface conditioning treatment liquid of the present invention has a high p
Since the stability in the H range and the stability at high temperatures are extremely superior to the titanium colloids of the prior art, nonionic surfactants or anionic surfactants, or mixtures thereof, and alkali By adding a builder, it can be used also in a degreasing and surface conditioning treatment method that combines cleaning and activation of the metal surface.

【0021】以下に本発明品である表面調整用処理液を
脱脂兼表面調整工程に使用した、りん酸塩化成被膜処理
工程の1例を示す。本発明品である表面調整用処理液を
脱脂兼表面調整工程に用いることによって、従来技術で
は不可能であった脱脂表面調整間の水洗工程を省略する
ことができるのである。尚、本発明品である表面調整用
処理液は幅広いpH域で使用可能であり、且つ様々なア
ルカリ金属塩を添加することができるため、被処理金属
の表面汚染状況によっては、工程(1)の脱脂兼表面調
整工程の前に予備洗浄もしくは予備脱脂工程を使用する
ことができる。
An example of the phosphate chemical conversion coating treatment process in which the surface conditioning treatment liquid of the present invention is used in the degreasing and surface conditioning process is shown below. By using the surface conditioning treatment liquid of the present invention in the degreasing and surface conditioning step, it is possible to omit the water washing step during the degreasing surface conditioning, which was impossible in the prior art. Since the surface conditioning treatment liquid of the present invention can be used in a wide pH range and various alkali metal salts can be added, the step (1) may be performed depending on the surface contamination of the metal to be treated. Prior to the degreasing and surface conditioning step, the preliminary washing or preliminary degreasing step can be used.

【0022】 (1)脱脂兼表面調整 (2)りん酸塩被膜化成処理 (3)水洗(多段) (4)純水洗。[0022] (1) Degreasing and surface adjustment (2) Phosphate film conversion treatment (3) Washing with water (multi-stage) (4) Washing with pure water.

【0023】[0023]

【発明の実施の形態】本発明における各々の成分の作用
を詳細に説明する。2価およびまたは3価の金属の1種
以上を含有するりん酸塩から選ばれる1種以上のりん酸
塩粒子(以下、単に「2価もしくは3価の金属のりん酸
塩粒子」と称する)と、促進成分とは本発明における必
須成分である。本発明の目的は前記の通り、りん酸塩処
理前に金属表面を活性化し、りん酸塩被膜結晶析出のた
めの核をつくるために用いられる表面調整用処理液を提
供することにある。本発明者等は、ある特定の濃度、粒
径の2価もしくは3価の金属のりん酸塩粒子は、ある特
定の促進成分を含む水溶液中で被処理金属の表面に吸着
し、後のりん酸塩被膜結晶析出の際の核となり更にりん
酸塩化成処理反応速度を高めることを見出したのであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The action of each component in the present invention will be described in detail. One or more kinds of phosphate particles selected from phosphates containing one or more kinds of divalent and / or trivalent metals (hereinafter, simply referred to as "divalent or trivalent metal phosphate particles") And the promoting component are essential components in the present invention. As described above, the object of the present invention is to provide a surface conditioning treatment liquid used for activating the metal surface prior to the phosphate treatment and forming nuclei for the precipitation of phosphate coating crystals. The present inventors have found that divalent or trivalent metal phosphate particles having a certain specific concentration and particle size are adsorbed on the surface of the metal to be treated in an aqueous solution containing a certain specific accelerating component, and the phosphorus They have found that they act as nuclei for the precipitation of acid salt film crystals and further increase the reaction rate of phosphate chemical conversion treatment.

【0024】また、2価もしくは3価の金属のりん酸塩
粒子は、りん酸塩化成処理浴およびりん酸塩化成処理被
膜と類似した成分であるために、りん酸塩化成処理浴へ
持ち込まれても化成処理浴に悪影響を与えず、また、り
ん酸塩被膜中に核となって取り込まれてもりん酸塩化成
被膜の性能に悪影響を与えない利点も有している。本発
明で用いられる2価もしくは3価の金属のりん酸塩粒子
としては下記に示す様な例が挙げられる。
Further, since the divalent or trivalent metal phosphate particles are components similar to the phosphate chemical conversion treatment bath and the phosphate chemical conversion treatment film, they are brought into the phosphate chemical conversion treatment bath. However, it also has the advantage that it does not adversely affect the chemical conversion treatment bath and that it does not adversely affect the performance of the phosphate chemical conversion coating even if it is incorporated into the phosphate coating as nuclei. Examples of the divalent or trivalent metal phosphate particles used in the present invention include the following examples.

【0025】Zn3(PO4)2,Zn2Fe(PO4)2,Zn2Ni(PO4)2,Ni
3(PO4)2,Zn2Mn(PO4)2,Mn3(PO4)2,Mn2Fe(PO4)2,Ca3(PO4)
2,Zn2Ca(PO4)2,FePO4,AlPO4,CoPO4,Co3(PO4)2およびそ
れ等の水和物。
Zn 3 (PO 4 ) 2 , Zn 2 Fe (PO 4 ) 2 , Zn 2 Ni (PO 4 ) 2 , Ni
3 (PO 4 ) 2 , Zn 2 Mn (PO 4 ) 2 , Mn 3 (PO 4 ) 2 , Mn 2 Fe (PO 4 ) 2 , Ca 3 (PO 4 )
2, Zn 2 Ca (PO 4 ) 2, FePO 4, AlPO 4, CoPO 4, Co 3 (PO 4) 2 and its like hydrate.

【0026】また、被処理金属の表面に形成されるりん
酸塩被膜結晶の粒径は、反応初期に析出した単位面積あ
たりの結晶数が多いほど微細になることが知られてい
る。これは、りん酸塩被膜の結晶の成長は隣り合う結晶
同士が接触し金属表面を覆い尽くした時点で完結するこ
とから、反応初期に析出した結晶数が多ければ隣り合う
結晶間の距離が小さくなり短時間で微細な結晶が金属表
面を覆いつくすからである。従って、短時間で微細なり
ん酸塩結晶を析出させるためには、りん酸塩化成処理前
に結晶の核を多く付与することが効果的であり、その為
には核となる物質の粒径が小さいほど有利であることは
言うまでもない。
It is known that the grain size of the phosphate coating crystals formed on the surface of the metal to be treated becomes finer as the number of crystals deposited per unit area in the initial stage of the reaction increases. This is because the growth of crystals in the phosphate coating is completed when adjacent crystals come into contact with each other and completely cover the metal surface.Therefore, the larger the number of crystals precipitated in the initial stage of the reaction, the smaller the distance between adjacent crystals. This is because minute crystals cover the metal surface in a short time. Therefore, in order to precipitate fine phosphate crystals in a short time, it is effective to add a large number of crystal nuclei before the phosphate chemical conversion treatment. It goes without saying that the smaller is, the more advantageous.

【0027】また、不溶性物質を水溶液中で安定に分散
させるためにも本発明で用いられる2価もしくは3価の
金属のりん酸塩粒子の粒径は5μm以下であることが望
ましい。ただし、仮に5μm以上の粒径の2価もしくは
3価の金属のりん酸塩粒子が本発明における表面調整用
処理液中に存在しても、本発明の効果に対しては何ら影
響を与えることは無く、表面調整用処理液中の5μm以
下の微粒子の濃度が、ある濃度に達して初めてその効果
が発揮されるのである。
Further, in order to stably disperse the insoluble substance in the aqueous solution, it is desirable that the particle diameter of the divalent or trivalent metal phosphate particles used in the present invention is 5 μm or less. However, even if divalent or trivalent metal phosphate particles having a particle size of 5 μm or more are present in the surface conditioning treatment liquid of the present invention, they have no effect on the effect of the present invention. That is, the effect is exhibited only when the concentration of fine particles of 5 μm or less in the surface conditioning treatment liquid reaches a certain concentration.

【0028】更に本発明に用いられる2価もしくは3価
の金属のりん酸塩粒子は、りん酸塩結晶が析出する際の
核となるばかりではなく析出反応そのもを促進する効果
も担っている。すなわち表面調整処理工程において該金
属表面に吸着した2価もしくは3価の金属のりん酸塩粒
子の一部はりん酸塩化成処理浴中で溶解することによっ
て、該金属表面のごく近傍にりん酸塩結晶の主成分を供
給するため、りん酸塩結晶の初期析出反応を著しく促進
するのである。
Further, the divalent or trivalent metal phosphate particles used in the present invention not only serve as nuclei for the precipitation of phosphate crystals, but also have the effect of promoting the precipitation reaction. . That is, a part of the divalent or trivalent metal phosphate particles adsorbed on the metal surface in the surface conditioning treatment step is dissolved in the phosphate chemical conversion treatment bath, so that phosphoric acid is brought into close proximity to the metal surface. Since the main component of the salt crystals is supplied, the initial precipitation reaction of the phosphate crystals is significantly accelerated.

【0029】りん酸塩結晶が析出する際の核となり、且
つ、りん酸塩結晶の初期析出反応を促進するためには、
2価もしくは3価の金属のりん酸塩粒子濃度としては
0.001〜30g/Lが好ましい。なぜならば、2価
もしくは3価の金属のりん酸塩粒子の濃度が0.001
g/Lよりも小さいと金属表面に吸着する2価もしくは
3価の金属のりん酸塩粒子の量が少ないためにりん酸塩
結晶の初期析出反応を促進することができず、また結晶
の核となる2価もしくは3価の金属のりん酸塩粒子の数
も少ないために反応は促進されない。2価もしくは3価
の金属のりん酸塩粒子濃度が30g/Lよりも大きくて
も、それ以上はりん酸塩化成処理反応を更に促進する効
果は得られないために経済的に不利なだけである。
In order to serve as nuclei for the precipitation of the phosphate crystals and to accelerate the initial precipitation reaction of the phosphate crystals,
The phosphate particle concentration of the divalent or trivalent metal is preferably 0.001 to 30 g / L. This is because the concentration of divalent or trivalent metal phosphate particles is 0.001.
If it is less than g / L, the amount of divalent or trivalent metal phosphate particles adsorbed on the metal surface is too small to promote the initial precipitation reaction of the phosphate crystals, and the nuclei of the crystals are not promoted. The reaction is not promoted because the number of particles of the divalent or trivalent metal phosphate, which are Even if the phosphate particle concentration of the divalent or trivalent metal is higher than 30 g / L, the effect of further accelerating the phosphate chemical conversion reaction cannot be obtained, and thus it is economically disadvantageous. is there.

【0030】次に本発明の表面調整用処理液に必須に含
有せしめる促進成分を説明する 。従来技術にも示した
通り過去においても2価もしくは3価の金属の不溶性の
りん酸塩を加圧下に吹き付けて表面調整を行う方法が試
みられている。しかし、過去の方法ではあくまでも加圧
下に2価もしくは3価の金属の不溶性のりん酸塩を吹き
付ける必要があった。加圧下に吹き付ける理由は、表面
調整効果を発揮させるためには不溶性のりん酸塩を金属
表面にぶつけて反応させる、またはショットピーニング
の様に金属表面にキズをつける必要があったためであ
る。また、浸漬処理によって表面調整効果を得るために
は、従来方法では2価または3価の金属の不溶性のりん
酸塩の濃度を極端に高める必要があった。
Next, the accelerating component that is essentially contained in the surface conditioning treatment liquid of the present invention will be described. As shown in the prior art, in the past, a method of spraying an insoluble phosphate of a divalent or trivalent metal under pressure to adjust the surface has been tried. However, in the past methods, it was necessary to spray an insoluble phosphate of a divalent or trivalent metal under pressure. The reason for spraying under pressure is that in order to exert the surface conditioning effect, it was necessary to hit an insoluble phosphate against the metal surface to cause a reaction, or to scratch the metal surface like shot peening. Further, in order to obtain the surface conditioning effect by the dipping treatment, it has been necessary to extremely increase the concentration of the insoluble phosphate of the divalent or trivalent metal in the conventional method.

【0031】本発明者らは、後で述べる本発明の何れか
の促進成分が存在すると2価もしくは3価の金属のりん
酸塩粒子の濃度が低濃度で、且つ金属表面に物理的な力
を加えない浸漬処理においても表面調整効果が発揮され
ることを見出したのである。従って、本発明においては
表面調整用処理液に被処理物を接触させるだけで良く、
従来技術とは全く反応機構を異にするものである。
The present inventors have found that the presence of any of the accelerating components of the present invention to be described later results in a low concentration of divalent or trivalent metal phosphate particles and a physical force on the metal surface. It has been found that the surface conditioning effect can be exhibited even in the dipping treatment without addition of. Therefore, in the present invention, it suffices to bring the treated material into contact with the surface conditioning treatment liquid,
The reaction mechanism is completely different from that of the prior art.

【0032】本発明の促進成分は2価もしくは3価の金
属のりん酸塩粒子の分散安定性を高め、且つ、2価もし
くは3価の金属のりん酸塩粒子の金属表面への吸着を促
進する働きを有している。すなわち促進成分は、2価も
しくは3価の金属のりん酸塩粒子表面に吸着し、その電
荷による反発力および立体障害作用によって表面調整用
処理液中での2価もしくは3価の金属のりん酸塩同士の
衝突を妨げることによって凝集沈降を防止する。また促
進成分は、その構造上金属表面への吸着能力を有してい
るため2価もしくは3価の金属のりん酸塩粒子の金属表
面への吸着を促進し表面調整用処理液へ被処理金属を接
触させるだけで表面調整効果が得られる様になるのであ
る。
The accelerating component of the present invention enhances the dispersion stability of divalent or trivalent metal phosphate particles and promotes the adsorption of divalent or trivalent metal phosphate particles on the metal surface. Have a function to do. That is, the accelerating component is adsorbed on the surface of the divalent or trivalent metal phosphate particles, and due to the repulsive force and steric hindrance of the charge, the phosphoric acid of the divalent or trivalent metal in the surface conditioning treatment liquid is used. Prevents coagulation and sedimentation by preventing collision between salts. Further, since the accelerating component has the ability to adsorb to the metal surface due to its structure, it promotes the adsorption of divalent or trivalent metal phosphate particles to the metal surface, and the surface conditioning treatment liquid is treated with the metal to be treated. The surface conditioning effect can be obtained simply by contacting.

【0033】促進成分の濃度は1〜2000ppmであ
ることが望ましい。この濃度が1ppm未満では被処理
金属を表面調整用処理液に接触させただけでは表面調整
効果が発揮されず、2000ppmを越えるとそれ以上
の効果は期待できないばかりか、過剰な促進成分が被処
理金属表面に吸着しりん酸塩化成処理性を妨害する恐れ
がある。
The concentration of the accelerating component is preferably 1-2000 ppm. If this concentration is less than 1 ppm, the surface conditioning effect will not be exhibited only by bringing the metal to be treated into contact with the surface conditioning treatment solution, and if it exceeds 2000 ppm, no further effect can be expected, and an excessive accelerating component will not be treated. It may be adsorbed on the metal surface and interfere with the phosphate conversion treatment.

【0034】前記(1)の本発明では促進成分として単
糖類、多糖類及びその誘導体から選ばれる1種以上を含
有せしめる。本発明に用いられる単糖類、多糖類、及び
その誘導体の基本構成糖類としては、例えばフルクトー
ス、タガトース、プシコース、スルボース、エリトロー
ス、トレオース、リボース、アラビノース、キシロー
ス、リキソース、アロース、アルトロース、グルコー
ス、マンノース、グロース、イドース、ガラクトース及
びタロースなどから選ぶことができる。
In the present invention (1) above, one or more kinds selected from monosaccharides, polysaccharides and derivatives thereof are contained as a promoting component. Examples of the basic saccharides of the monosaccharides, polysaccharides, and derivatives thereof used in the present invention include fructose, tagatose, psicose, sucrose, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose. , Gulose, idose, galactose and talose.

【0035】従って、単糖類を用いる場合は前記基本構
成糖類そのものを、多糖類を用いる場合は前記基本構成
糖類のホモ多糖もしくはヘテロ多糖を、また、それらの
誘導体としては、基本構成糖類の水酸基をNO2,C
3,C24OH,CH2CH(OH)CH3,CH2CO
OH等の置換基でエーテル化して得られる単糖類や、前
記置換基で置換された単糖類を構造に含むホモ多糖やヘ
テロ多糖を使用することもでき、また数種類の単糖類、
多糖類、及びその誘導体を組み合わせて使用しても構わ
ない。
Therefore, when a monosaccharide is used, the basic constituent saccharide itself is used, when a polysaccharide is used, a homopolysaccharide or a heteropolysaccharide of the basic constituent saccharide is used, and as a derivative thereof, a hydroxyl group of the basic constituent saccharide is used. NO 2 , C
H 3 , C 2 H 4 OH, CH 2 CH (OH) CH 3 , CH 2 CO
A monosaccharide obtained by etherification with a substituent such as OH or the like, a homopolysaccharide or a heteropolysaccharide containing a monosaccharide substituted with the substituent in its structure can also be used, and several kinds of monosaccharides,
Polysaccharides and their derivatives may be used in combination.

【0036】糖類の分類を行う際に、加水分解の度合い
によって単糖類、小糖類、及び多糖類と分類される場合
があるが、本発明では加水分解により2個以上の単糖類
を生ずるものを多糖類、それ自身が、それ以上加水分解
されない糖類を単糖類とした。
When the saccharides are classified, they may be classified into monosaccharides, oligosaccharides, and polysaccharides depending on the degree of hydrolysis, but in the present invention, those that produce two or more monosaccharides by hydrolysis. A polysaccharide, a saccharide that is not hydrolyzed by itself, is a monosaccharide.

【0037】本発明の用途は生体化学反応とは無関係で
あるため基本構成糖類の立体配置および施光性によって
効果が左右されることはなく、D−単糖、L−単糖と施
光性(+,−)のいかなる組み合わせでも使用すること
ができる。また、単糖類、多糖類、及びその誘導体の水
溶性を高めるために前記単糖類、多糖類、及びその誘導
体のナトリウム塩またはアンモニウム塩を使用してもな
んら問題はない。更に前記構造で水溶化が困難な場合は
予め水と相溶性を有する有機溶剤に溶解した後に使用し
ても構わない。
Since the use of the present invention is irrelevant to the biochemical reaction, the effect is not influenced by the configuration of the basic constituent sugars and the light-transmitting property. Any combination of (+,-) can be used. Further, there is no problem even if the sodium salt or ammonium salt of the monosaccharide, the polysaccharide, and the derivative thereof is used to increase the water solubility of the monosaccharide, the polysaccharide, and the derivative thereof. Further, when it is difficult to solubilize water with the above structure, it may be used after being dissolved in an organic solvent having compatibility with water in advance.

【0038】前記(2)の本発明では促進成分として、
正りん酸、ポリりん酸または有機ホスホン酸化合物の1
種以上を含有せしめる。正りん酸はオルソりん酸であ
り、ポリりん酸としてはピロりん酸、トリりん酸、トリ
メタりん酸、テトラメタりん酸、ヘキサメタりん酸もし
くはそのナトリウム塩及びアンモニウム塩を使用するこ
とができる。また、有機ホスホン酸化合物としてはアミ
ノトリメチレンホスホン酸、1−ヒドロキシエチリデン
−1,1−ジホスホン酸、エチレンジアミンテトラメチ
レンホスホン酸、ジエチレントリアミンペンタメチレン
ホスホン酸もしくはそのナトリウム塩等を使用すること
ができる。更に、前記正りん酸、ポリりん酸または有機
ホスホン酸化合物の1種類を使用しても何種類かを組み
合わせて使用してもなんら差し支えない。
In the present invention of the above (2), as the accelerating component,
Orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compounds 1
Contains more than one seed. Orthophosphoric acid is orthophosphoric acid, and as polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid or their sodium salts and ammonium salts can be used. As the organic phosphonic acid compound, aminotrimethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid or sodium salt thereof can be used. Further, it is possible to use one kind of orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compound or a combination of several kinds thereof.

【0039】前記(3)の本発明では促進剤として、酢
酸ビニルの重合体またはその誘導体もしくは酢酸ビニル
と共重合可能な単量体と酢酸ビニルとの共重合体からな
る水溶性高分子化合物の1種以上を含有せしめる。本発
明における酢酸ビニルの重合体またはその誘導体として
は、酢酸ビニル重合体のケン化物であるポリビニルアル
コール、更にポリビニルアルコールをアクリロニトリル
によるシアノエチル化して得られるシアノエチル化ポリ
ビニルアルコール、ポリビニルアルコールをホルマリン
によるアセタール化して得られるホルマール化ポリビニ
ルアルコール、ポリビニルアルコールを尿素によるウレ
タン化して得られるウレタン化ポリビニルアルコール、
及びポリビニルアルコールにカルボキシル基、スルホン
基、アミド基等を導入した水溶性高分子化合物を使用す
ることができる。また、本発明における酢酸ビニルと共
重合可能な単量体としてはアクリル酸、クロトン酸、無
水マレイン酸等を使用することができる。
In the present invention of the above (3), as a promoter, a water-soluble polymer compound comprising a vinyl acetate polymer or its derivative or a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate and vinyl acetate is used. Contains one or more. As the vinyl acetate polymer or its derivative in the present invention, polyvinyl alcohol which is a saponified product of vinyl acetate polymer, cyanoethylated polyvinyl alcohol obtained by further cyanoethylating polyvinyl alcohol with acrylonitrile, and acetalizing polyvinyl alcohol with formalin. Formalized polyvinyl alcohol obtained, urethane-ized polyvinyl alcohol obtained by urethane-forming polyvinyl alcohol with urea,
Also, a water-soluble polymer compound obtained by introducing a carboxyl group, a sulfone group, an amide group or the like into polyvinyl alcohol can be used. Further, acrylic acid, crotonic acid, maleic anhydride or the like can be used as the monomer copolymerizable with vinyl acetate in the present invention.

【0040】前記酢酸ビニルの重合体またはその誘導体
もしくは酢酸ビニルと共重合可能な単量体と酢酸ビニル
との共重合体は水溶性でさえあれば本発明における効果
を十分に発揮することができる。従ってその重合度及び
官能基の導入率に効果が左右されること無く、また前記
単量体もしくは共重合体の1種類を使用しても何種類か
を組み合わせて使用しても何ら差し支えはない。
The above-mentioned vinyl acetate polymer or its derivative or the copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate and vinyl acetate can sufficiently exhibit the effects of the present invention as long as they are water-soluble. . Therefore, the effect is not affected by the degree of polymerization and the rate of introduction of functional groups, and it is possible to use one kind or a combination of several kinds of the above-mentioned monomers or copolymers. .

【0041】次に前記(4)の本発明の促進成分である
下記化学式1に示される単量体もしくはα,β不飽和カ
ルボン酸単量体の中から選ばれる少なくとも1種以上
と、前記単量体と共重合可能な単量体50重量%以下と
を重合して得られる重合体または共重合体の効果につい
て説明する。
Next, at least one or more selected from the monomer represented by the following chemical formula 1 or the α, β unsaturated carboxylic acid monomer, which is the promoting component of the present invention (4), and The effect of the polymer or copolymer obtained by polymerizing the monomer and 50% by weight or less of the copolymerizable monomer will be described.

【0042】[0042]

【化1】 [Chemical 1]

【0043】化学式1に示される単量体としてはアクリ
ル酸チメル、アクリル酸エチル、アクリル酸プロピル、
アクリル酸ブチル、アクリル酸ペンチル、メタクリル酸
メチル、メタクリル酸エチル、メタクリル酸プロピル、
メタクリル酸ブチル、メタクリル酸ペンチル、アクリル
酸ヒドロキシメチル、アクリル酸ヒドロキシエチル、ア
クリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブ
チル、アクリル酸ヒドロキシペンチル、メタクリル酸ヒ
ドロキシメチル、メタクリル酸ヒドロキシエチル、メタ
クリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシ
ブチル、メタクリル酸ヒドロキシペンチル等を使用する
ことができる。
As the monomer represented by the chemical formula 1, thimel acrylate, ethyl acrylate, propyl acrylate,
Butyl acrylate, pentyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate,
Butyl methacrylate, pentyl methacrylate, hydroxymethyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypentyl acrylate, hydroxymethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, methacrylic acid Hydroxybutyl, hydroxypentyl methacrylate, etc. can be used.

【0044】またα,β不飽和カルボン酸単量体として
はアクリル酸、メタアクリル酸、マレイン酸等を使用す
ることができる。前記単量体と共重合可能な単量体とし
ては酢酸ビニル、スチレン、塩化ビニル、ビニルスルホ
ン酸等を使用することができる。また、前記単量体のう
ち1種類の単量体を重合して得られた重合体を使用して
も、前記単量体の何種類かを組み合わせて重合して得ら
れた共重合体を使用しても何ら差し支えない。
As the α, β unsaturated carboxylic acid monomer, acrylic acid, methacrylic acid, maleic acid or the like can be used. Vinyl acetate, styrene, vinyl chloride, vinyl sulfonic acid and the like can be used as the monomer copolymerizable with the above monomer. Further, even if a polymer obtained by polymerizing one kind of the above-mentioned monomers is used, a copolymer obtained by polymerizing a combination of several kinds of the above-mentioned monomers is used. You can use it without any problem.

【0045】更に本発明の表面調整用処理液にはアルカ
リ金属塩もしくはアンモニウム塩またはそれらの混合物
を含有することができる。アルカリ金属塩もしくはアン
モニウム塩としてはオルソりん酸塩、メタりん酸塩、オ
ルソ珪酸塩、メタ珪酸塩、炭酸塩、重炭酸塩、硝酸塩、
亜硝酸塩、硫酸塩、ホウ酸塩、および有機酸塩の群から
選ばれる少なくとも1種の塩の形であれば特に限定され
るものではない。また、前記アルカリ金属塩もしくはア
ンモニウム塩を2種以上組み合わせて使用しても何ら問
題はない。
Further, the treatment liquid for surface conditioning of the present invention may contain an alkali metal salt, an ammonium salt or a mixture thereof. Examples of the alkali metal salt or ammonium salt include orthophosphate, metaphosphate, orthosilicate, metasilicate, carbonate, bicarbonate, nitrate,
There is no particular limitation as long as it is in the form of at least one salt selected from the group consisting of nitrite, sulfate, borate, and organic acid salt. Further, there is no problem even if two or more kinds of the alkali metal salts or ammonium salts are used in combination.

【0046】本発明に使用されるアルカリ金属塩もしく
はアンモニウム塩は一般的には工業用洗浄剤に使用され
るアルカリビルダーに準ずるものである。すなわち工業
用洗浄剤のアルカリビルダーに期待される効果、硬水軟
化性、油分の洗浄作用により本発明に用いられる表面調
整用処理液の液安定性を更に高め、且つ、洗浄剤として
の効果を発揮させるのである。
The alkali metal salt or ammonium salt used in the present invention generally conforms to the alkali builder used in industrial detergents. That is, the effect expected of an alkaline builder of an industrial cleaning agent, the softening property in water, and the cleaning action of an oil component further enhance the liquid stability of the surface conditioning treatment liquid used in the present invention, and exhibit the effect as a cleaning agent. Let them do it.

【0047】アルカリ金属塩もしくはアンモニウム塩の
濃度は0.5〜20g/Lであることが望ましい。濃度
が0.5g/L未満では硬水軟化作用、洗浄作用が発揮
されず、20g/Lを越えるとそれ以上の効果は期待で
きず経済的に不利なだけである。
The concentration of the alkali metal salt or ammonium salt is preferably 0.5 to 20 g / L. If the concentration is less than 0.5 g / L, the water softening action and the cleaning action are not exhibited, and if it exceeds 20 g / L, no further effect can be expected and it is economically disadvantageous.

【0048】本発明における表面調整用処理液は従来法
と異なりあらゆる使用環境でその効果を継続することが
可能である。すなわち、従来法と比較して下記に示す様
な利点を有している。(1)経時安定性が高い。(2)
Ca、Mg等の硬度成分が混入しても効果が衰えにく
い。(3)高温度での使用が可能である。(4)様々な
アルカリ金属塩を添加することができる。(5)幅広い
pH域での安定性が高い。
Unlike the conventional method, the treatment liquid for surface conditioning in the present invention can continue its effect in any use environment. That is, it has the following advantages as compared with the conventional method. (1) High temporal stability. (2)
Even if a hardness component such as Ca or Mg is mixed, the effect does not deteriorate. (3) It can be used at high temperatures. (4) Various alkali metal salts can be added. (5) High stability in a wide pH range.

【0049】従って、従来法では継続して安定した品質
を維持することができなかった脱脂兼表面調整剤として
も使用する事が可能である。その際、脱脂兼表面調整工
程における洗浄力を高めるために前記アルカリ金属塩も
しくはアンモニウム塩以外の公知の無機アルカリビルダ
ー、有機ビルダー、及び界面活性剤等を添加しても構わ
ない。また、脱脂兼表面調整に関わらず表面調整用処理
液に持ち込まれたカチオン成分等による影響を打ち消す
ために公知のキレート剤、縮合りん酸塩等を添加しても
構わない。
Therefore, it can also be used as a degreasing and surface conditioning agent which could not maintain a stable quality in the conventional method. At that time, in order to enhance the degreasing and cleaning power in the surface conditioning step, known inorganic alkali builders other than the alkali metal salts or ammonium salts, organic builders, and surfactants may be added. In addition, a known chelating agent, condensed phosphate or the like may be added in order to cancel the influence of the cation component brought into the surface conditioning treatment liquid regardless of the degreasing and surface conditioning.

【0050】また、本発明の表面調整方法は表面調整用
処理液と金属表面を接触させるだけで良く、接触時間、
表面調整用処理液の温度等に制限はない。更に本発明の
表面調整方法は、鉄鋼、亜鉛めっき鋼板、アルミニウム
またはアルミニウム合金、及びマグネシウム合金等のり
ん酸塩処理が施される、あらゆる金属素材に適用可能で
ある。
In the surface conditioning method of the present invention, it is sufficient to bring the surface conditioning treatment liquid into contact with the metal surface.
There is no limitation on the temperature of the surface conditioning treatment liquid. Furthermore, the surface conditioning method of the present invention can be applied to any metal material that is subjected to a phosphate treatment such as steel, galvanized steel sheet, aluminum or aluminum alloy, and magnesium alloy.

【0051】更に本発明の表面調整処理の後に施される
りん酸塩化成処理方法に関しては、浸漬処理方法、スプ
レー処理方法、電解処理方法等のあらゆる工法を適用す
ることができる。また、析出させるりん酸塩被膜に関し
ても、りん酸塩であればりん酸亜鉛、りん酸マンガン、
及びりん酸亜鉛カルシウム等、なんら限定されるもので
はない。
Further, with respect to the phosphate chemical conversion treatment method which is carried out after the surface conditioning treatment of the present invention, any method such as a dipping treatment method, a spray treatment method and an electrolytic treatment method can be applied. Regarding the phosphate film to be deposited, if it is a phosphate, zinc phosphate, manganese phosphate,
And zinc calcium phosphate are not limited.

【0052】[0052]

【実施例】次に本発明の表面調整用処理液を適用した際
の効果を実施例と比較例を用いて詳細に説明する。ただ
し、りん酸塩処理の一例として、塗装下地用のりん酸亜
鉛処理を示したものであり、本発明における表面調整用
処理液の用途を何ら限定するものでは無い。
EXAMPLES Next, the effects of applying the treatment liquid for surface conditioning of the present invention will be described in detail using examples and comparative examples. However, as an example of the phosphate treatment, zinc phosphate treatment for a coating base is shown, and the use of the surface conditioning treatment liquid in the present invention is not limited at all.

【0053】(供試板)実施例と比較例に用いた供試板
の略号と内訳を以下に示す。 SPC(冷延鋼板:JIS−G−3141) EG(両面電気亜鉛めっき鋼板:めっき目付量20g/
2) GA(両面合金化溶融亜鉛めっき鋼板:めっき目付量4
5g/m2) Zn−Ni(両面電気亜鉛ニッケルめっき鋼板:めっき
目付量20g/m2) Al(アルミニウム板:JIS−5052) MP(マグネシウム合金板:JIS−H−4201)。
(Sample Plate) Abbreviations and details of the sample plates used in Examples and Comparative Examples are shown below. SPC (cold rolled steel sheet: JIS-G-3141) EG (double-sided electrogalvanized steel sheet: coating weight 20 g /
m 2 ) GA (double-sided alloyed hot-dip galvanized steel sheet: coating weight 4
5 g / m 2 ) Zn-Ni (double-sided electrogalvanized nickel-plated steel sheet: plating basis weight 20 g / m 2 ) Al (aluminum plate: JIS-5052) MP (magnesium alloy plate: JIS-H-4201).

【0054】(処理工程)各供試板は下記の工程で処理
した。アルカリ脱脂→水洗→表面調整処理→りん酸亜鉛
被膜の形成→水洗→脱イオン水洗。アルカリ脱脂は、実
施例、比較例ともに、ファインクリーナーL4460(登録
商標:日本パーカライジング(株)製)を2%に水道水で
希釈し、42℃、120秒スプレーして使用した。
(Treatment Step) Each test plate was treated in the following steps. Alkali degreasing → Washing → Surface conditioning → Zinc phosphate coating formation → Water washing → Deionized water washing. For alkaline degreasing, Fine Cleaner L4460 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) was diluted to 2% with tap water and sprayed at 42 ° C. for 120 seconds in both Examples and Comparative Examples.

【0055】表面調整処理には、後述する実施例、比較
例の各表面調整用処理液を使用し被処理物を浸漬して行
った。りん酸亜鉛被膜の形成は、実施例、比較例とも
に、パルボンドL3020(登録商標:日本パーカライジン
グ(株)製)を4.8%に水道水で希釈し、成分濃度、全
酸度、遊離酸度、促進剤濃度を現在、自動車用りん酸亜
鉛処理として一般に用いられている濃度に調整し、42
℃、120秒浸漬して使用した。水洗及び脱イオン水洗
は何れも、室温、30秒スプレーである。
The surface conditioning treatment was carried out by immersing the object to be treated using the surface conditioning treatment liquids of Examples and Comparative Examples described later. For the formation of the zinc phosphate coating, Palbond L3020 (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) was diluted to 4.8% with tap water in both the Examples and Comparative Examples to accelerate the component concentration, total acidity, free acidity, and acceleration. The concentration of the agent is adjusted to the concentration generally used for zinc phosphate treatment for automobiles at present, and
It was used by dipping for 120 seconds at ℃. Both the water washing and the deionized water washing are spraying at room temperature for 30 seconds.

【0056】(りん酸亜鉛被膜の評価方法)表面調整処
理後に形成したりん酸亜鉛被膜は、下記の方法により、
その外観、被膜重量(C.W)、被膜結晶サイズ(C.
S)、P比を測定した。外観:目視観察により、りん酸
亜鉛被膜のスケ、ムラの有無を評価した。◎:均一良好
な外観、 ○:一部ムラあり、 △:ムラ、スケあり、
×:スケ多し、 ××:化成被膜なし。
(Evaluation Method of Zinc Phosphate Coating) The zinc phosphate coating formed after the surface conditioning treatment was subjected to the following method.
Its appearance, coating weight (C.W), coating crystal size (C.W.).
S) and P ratio were measured. Appearance: The presence or absence of scaliness and unevenness of the zinc phosphate coating was evaluated by visual observation. ⊚: Uniform and good appearance, ◯: Partially uneven, Δ: Uneven and scaled,
×: There is a lot of scaling, and ×: No chemical conversion film.

【0057】被膜重量(C.W):りん酸亜鉛被膜形成
後の供試板の重量を測定し(W1(g)とする)、次に下記
に示す剥離液、剥離条件にてりん酸亜鉛被膜を剥離し供
試板の重量を測定し(W2(g)とする)、下記式により
求めた。被膜重量(g/m2)=(W1−W2)/(面
積)。冷延鋼板の場合は、剥離液:50%クロム酸水溶
液、剥離条件:75℃、15分の浸漬で、また亜鉛めっ
き鋼板の場合は、剥離液:重クロム酸アンモニウム2重
量%+28%アンモニア水49重量%+純粋49重量
%、剥離条件:常温、15分の浸漬で行った。またアル
ミニウム及びマグネシウム合金の場合は、蛍光X線分析
装置でりん酸亜鉛被膜中のPを定量し、Pの含有量から
ホパイト被膜の付着量を算出した。被膜結晶サイズ
(C.S):りん酸亜鉛被膜を走査型電子顕微鏡(SE
M)を用いて1500倍に拡大した像を観察し、結晶粒
径を調査した。P比:実施例、比較例ともにSPC鋼板
についてのみ、X線回折装置を用いてりん酸亜鉛被膜中
のフォスフォフィライト結晶のX線強度(P)とホバイ
トのX線強度(H)を測定し、下記式によりP比を求め
た。 P比=P/(P+H)。
Coating weight (CW): The weight of the test plate after forming the zinc phosphate coating (W1 (g)) was measured, and then zinc phosphate was used under the following stripping solution and stripping conditions. The coating was peeled off, the weight of the test plate was measured (W2 (g)), and the value was calculated by the following formula. Coating weight (g / m 2 ) = (W1-W2) / (area). Stripping solution: 50% chromic acid aqueous solution for cold-rolled steel sheet, stripping condition: dipping at 75 ° C for 15 minutes, and stripping solution: 2% by weight ammonium dichromate + 28% ammonia water for galvanized steel sheet 49% by weight + pure 49% by weight, peeling conditions: Dipping at room temperature for 15 minutes. In the case of aluminum and magnesium alloys, P in the zinc phosphate coating was quantified with a fluorescent X-ray analyzer, and the amount of adhering the hopeite coating was calculated from the P content. Film crystal size (CS): Zinc phosphate film was scanned with a scanning electron microscope (SE).
M) was used to observe an image magnified 1500 times to investigate the crystal grain size. P ratio: Only for SPC steel sheets in both Examples and Comparative Examples, the X-ray intensity (P) of phosphophyllite crystals in the zinc phosphate coating and the X-ray intensity (H) of hovite were measured using an X-ray diffractometer. Then, the P ratio was calculated by the following formula. P ratio = P / (P + H).

【0058】表1に本発明の請求項1の実施例で使用し
た表面調整用処理液の組成を示した。表2は比較例で使
用した各表面調整用処理液の組成である。使用した単糖
類、多糖類、及びその誘導体は市販品、例えばダイセル
化学工業株式会社、第1工業製薬株式会社、旭化成工業
株式会社製、大日本製薬株式会社等、の中から、その基
本構成糖の種類、重合度、置換基、置換度をもとに選定
した。尚、置換基については化学式2に基本構成糖の一
つであるグルコースを例示した。
Table 1 shows the composition of the surface conditioning treatment liquid used in the embodiment of claim 1 of the present invention. Table 2 shows the composition of each surface conditioning treatment liquid used in Comparative Examples. The monosaccharides, polysaccharides, and their derivatives used are commercially available products such as Daicel Chemical Industries, Ltd., Daiichi Kogyo Seiyaku Co., Ltd., Asahi Kasei Kogyo Co., Ltd., Dainippon Pharmaceutical Co., Ltd. It was selected based on the type, degree of polymerization, substituents and degree of substitution. Regarding the substituents, chemical formula 2 exemplifies glucose, which is one of the basic constituent sugars.

【0059】[0059]

【化2】 [Chemical 2]

【0060】グルコースの場合はR1、R2、R3の3ヵ
所の水酸基をエーテル化することができる。本実施例で
は置換基の種類と、置換度(置換基による基本構成糖1
単位あたりの水酸基の置換数)変えてその効果を調査し
た。また、水溶性が低い単糖類、多糖類、及びその誘導
体についてはナトリウム塩を使用した。なお、経時試験
は表面調整用処理液を調整後、10日間室温で放置した
後に実施した。
In the case of glucose, the three hydroxyl groups R 1 , R 2 and R 3 can be etherified. In this example, the kind of the substituent and the degree of substitution (basic constituent sugar 1 by the substituent 1
The effect was investigated by changing the number of substitution of hydroxyl groups per unit). In addition, sodium salts were used for monosaccharides, polysaccharides and their derivatives having low water solubility. The aging test was performed after preparing the surface conditioning treatment liquid and leaving it at room temperature for 10 days.

【0061】(実施例1)50℃に加温した0.5mol
/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛
溶液100mLおよび1mol/Lのりん酸1水素ナトリウム
溶液100mLを交互に加え沈澱を生成させた。沈澱を含
む水溶液を90℃で1時間加温して沈澱粒子を熟成させ
た後、傾斜洗浄を10回繰り返し実施した。濾過して得
られた沈澱物を乾燥しX線回折で分析した結果、沈澱物
は一部第3りん酸鉄を含むフォスフォフィライト(Zn2Fe
(PO4)2・4H2O)であった。前記フォスフォフィライト1
kgに対し表1に示す単糖類、多糖類、及びその誘導体
を予めイソプロピルアルコールと水で10wt%に希釈溶
解したものを50g添加した後、直径0.5mmのジル
コニアビーズを用いたボールミルで約1時間粉砕した。
粉砕後、水道水で懸濁液中のフォスフォフィライト濃度
が1g/Lとなるように調整して表面調整用処理液とし
て使用した。調整後の懸濁液中の微粒子の平均粒径をレ
ーザー回折/散乱式粒度分布測定装置(LA−920:
(株)堀場製作所)で測定した結果、0.5μmであっ
た。
(Example 1) 0.5 mol heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite (Zn 2 Fe) partially containing ferric phosphate.
It was (PO 4) 2 · 4H 2 O). Phosphophyllite 1
After adding 50 g of the monosaccharides, polysaccharides, and their derivatives shown in Table 1 previously diluted and dissolved in isopropyl alcohol and water to 10 wt% with respect to kg, about 1 with a ball mill using zirconia beads having a diameter of 0.5 mm. Crushed for hours.
After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device (LA-920:
As a result of measurement by HORIBA, Ltd., it was 0.5 μm.

【0062】(実施例2)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト(Zn2Fe(PO4)2
・4H2O)であった。表1に示す単糖類、多糖類、及びそ
の誘導体を予めイソプロピルアルコールと水で10wt%
に希釈溶解したもの1kgに対し、前記フォスフォフィ
ライト100g添加した後、直径0.5mmのジルコニ
アビーズを用いたボールミルで約1時間粉砕した。粉砕
後、水道水で懸濁液中のフォスフォフィライト濃度が1
g/Lとなるように調整して表面調整用処理液として使
用した。調整後の懸濁液中の微粒子の平均粒径を前記の
レーザー回折/散乱式粒度分布測定装置で測定した結
果、0.5μmであった。
(Example 2) 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite (Zn 2 Fe (PO 4 ) 2 ) partially containing ferric phosphate.
・ 4H 2 O). The monosaccharides, polysaccharides, and their derivatives shown in Table 1 were previously mixed with isopropyl alcohol and water at 10 wt%.
After adding 100 g of the phosphophyllite to 1 kg of the diluted and dissolved product, it was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After crushing, the concentration of phosphophyllite in the suspension was 1 with tap water.
It was adjusted to g / L and used as a surface adjustment treatment liquid. The average particle size of the fine particles in the adjusted suspension was 0.5 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device.

【0063】(実施例3)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト(Zn2Fe(PO4)2
・4H2O)であった。前記フォスフォフィライト1kgに
対し表1に示す単糖類、多糖類、及びその誘導体を予め
水で10wt%に希釈溶解したものを100g添加した
後、直径0.5mmのジルコニアビーズを用いたボール
ミルで約1時間粉砕した。粉砕後、水道水で懸濁液中の
フォスフォフィライト濃度が1g/Lとなるように調整
した。調整後の懸濁液中の微粒子の平均粒径を前記のレ
ーザー回折/散乱式粒度分布測定装置で測定した結果、
0.5μmであった。更にアルカリ塩として亜硝酸ナト
リウム試薬を0.5g/L添加したものを表面調整用処
理液として使用した。
Example 3 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite (Zn 2 Fe (PO 4 ) 2 ) partially containing ferric phosphate.
・ 4H 2 O). To 1 kg of the phosphophyllite, 100 g of monosaccharides, polysaccharides and their derivatives shown in Table 1 which had been previously diluted and dissolved in water to 10 wt% were added, and then a ball mill using zirconia beads having a diameter of 0.5 mm was used. Crushed for about 1 hour. After pulverization, tap water was adjusted so that the concentration of phosphophyllite in the suspension was 1 g / L. As a result of measuring the average particle size of the fine particles in the suspension after adjustment with the laser diffraction / scattering type particle size distribution measuring device,
It was 0.5 μm. Further, 0.5 g / L of sodium nitrite reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0064】(実施例4)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
・4H2O]であった。表1に示す単糖類、多糖類、及びそ
の誘導体を予め水で10wt%に希釈溶解したもの1kg
に対し、前記フォスフォフィライト50g添加した後、
直径0.5mmのジルコニアビーズを用いたボールミル
で約1時間粉砕した。粉砕後、水道水で懸濁液中のフォ
スフォフィライト濃度が1g/Lとなるように調整し
た。調整後の懸濁液中の微粒子の平均粒径を前記のレー
ザー回折/散乱式粒度分布測定装置で測定した結果、
0.5μmであった。更にアルカリ塩として硫酸マグネ
シウム7水和物試薬を0.5g/L添加したものを表面
調整用処理液として使用した。
Example 4 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
・ 4H 2 O]. 1 kg of monosaccharides, polysaccharides, and their derivatives shown in Table 1 previously diluted and dissolved in water to 10 wt%
On the other hand, after adding 50 g of the phosphophyllite,
It was crushed for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After pulverization, tap water was adjusted so that the concentration of phosphophyllite in the suspension was 1 g / L. As a result of measuring the average particle size of the fine particles in the suspension after adjustment with the laser diffraction / scattering type particle size distribution measuring device,
It was 0.5 μm. Further, 0.5 g / L of magnesium sulfate heptahydrate reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0065】(実施例5)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
・4H2O]であった。表1に示す単糖類、多糖類、及びそ
の誘導体を予め水で10wt%に希釈溶解したもの1kg
に対し、前記フォスフォフィライト50g添加した後、
直径0.5mmのジルコニアビーズを用いたボールミル
で約1時間粉砕した。粉砕後、水道水で懸濁液中のフォ
スフォフィライト濃度が1g/Lとなるように調整して
表面調整用処理液として使用した。調整後の懸濁液中の
微粒子の平均粒径を前記のレーザー回折/散乱式粒度分
布測定装置で測定した結果、0.5μmであった。
Example 5 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
・ 4H 2 O]. 1 kg of monosaccharides, polysaccharides, and their derivatives shown in Table 1 previously diluted and dissolved in water to 10 wt%
On the other hand, after adding 50 g of the phosphophyllite,
It was crushed for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was 0.5 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device.

【0066】(実施例6)50℃に加温した0.5mol/L
の硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液10
0mLおよび1mol/Lのりん酸1水素ナトリウム溶液10
0mLを交互に加え沈澱を生成させた。沈澱を含む水溶液
を90℃で1時間加温して沈澱粒子を熟成させた後、傾
斜洗浄を10回繰り返し実施した。濾過して得られた沈
澱物を乾燥しX線回折で分析した結果、沈澱物は一部第
3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
4H2O]であった。表1に示す単糖類、多糖類、及びその
誘導体を予め水で10wt%に希釈溶解したもの1kgに
対し、前記フォスフォフィライト1kg添加した後、直
径0.5mmのジルコニアビーズを用いたボールミルで
約1時間粉砕した。粉砕後、水道水で懸濁液中のフォス
フォフィライト濃度が1g/Lとなるように調整して表
面調整用処理液として使用した。調整後の懸濁液中の微
粒子の平均粒径を前記のレーザー回折/散乱式粒度分布
測定装置で測定した結果、0.5μmであった。
Example 6 0.5 mol / L heated to 50 ° C.
1 mol / L zinc sulphate solution 10 per 1 L iron (II) sulfate solution
0 mL and 1 mol / L sodium monohydrogen phosphate solution 10
0 mL was added alternately to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
4H 2 O]. 1 kg of the monosaccharides, polysaccharides, and their derivatives shown in Table 1 previously diluted and dissolved in water to 10 wt% was added to 1 kg of the phosphophyllite, and then a ball mill using zirconia beads having a diameter of 0.5 mm was used. Crushed for about 1 hour. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was 0.5 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device.

【0067】(実施例7)表1に示す単糖類、多糖類、
及びその誘導体を予め水で10wt%に希釈溶解したもの
1kgに対し、Zn3(PO4)2・4H2O試薬1kg添加した
後、直径0.5mmのジルコニアビーズを用いたボール
ミルで約1時間粉砕した。粉砕後、水道水で懸濁液中の
Zn3(PO4)2・4H2O濃度が1g/Lとなるように調整して
表面調整用処理液として使用した。調整後の懸濁液中の
微粒子の平均粒径を前記レーザー回折/散乱式粒度分布
測定装置で測定した結果、0.6μmであった。
Example 7 Monosaccharides and polysaccharides shown in Table 1
1 kg of Zn 3 (PO 4 ) 2 .4H 2 O reagent was added to 1 kg of water and its derivative diluted to 10 wt% in water, and then ball mill using zirconia beads with a diameter of 0.5 mm for about 1 hour. Crushed. After crushing, suspend in tap water
Zn 3 (PO 4) 2 · 4H 2 O concentration was used as a treatment liquid for surface conditioning was adjusted to a 1 g / L. The average particle size of the fine particles in the adjusted suspension was measured by the laser diffraction / scattering type particle size distribution measuring device, and was found to be 0.6 μm.

【0068】(実施例8)Zn3(PO4)2・4H2O試薬1kg
に対し表1に示す単糖類、多糖類、及びその誘導体を予
め水で10wt%に希釈溶解したものを10g添加した
後、直径10mmのジルコニアビーズを用いたボールミ
ルで約1時間粉砕した。粉砕後、水道水で懸濁液中のZn
3(PO4)2・4H2O濃度が1g/Lとなるように調整した。
調整後の懸濁液中の微粒子の平均粒径を前記のレーザー
回折/散乱式粒度分布測定装置で測定した結果、1.2
μmであった。更にアルカリ塩としてメタ珪酸ナトリウ
ム試薬を5g/L添加したものを表面調整用処理液とし
て使用した。
Example 8 Zn 3 (PO 4) 2.4H 2 O Reagent 1 kg
On the other hand, 10 g of a monosaccharide, a polysaccharide, and a derivative thereof shown in Table 1 which had been previously diluted and dissolved in water to 10 wt% were added, and then the mixture was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 10 mm. Zn in suspension with tap water after crushing
3 (PO 4) 2 · 4H 2 O concentration was adjusted to 1 g / L.
As a result of measuring the average particle size of the fine particles in the suspension after adjustment with the above-mentioned laser diffraction / scattering type particle size distribution measuring device, 1.2
was μm. Further, 5 g / L of sodium metasilicate reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0069】(実施例9)50℃に加温した0.1mol/L
の硝酸カルシウム溶液1Lに1mol/Lの硝酸亜鉛溶液2
00mLを加え、更に1mol/Lのりん酸1水素ナトリウム
溶液200mLを加えて沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
ショルタイト[Zn2Ca(PO4)2・2H2O]であった。前記ショ
ルタイト1kgに対し表1に示す単糖類、多糖類、及び
その誘導体を予め水で10wt%に希釈溶解したものを1
0g添加した後、直径0.5mmのジルコニアビーズを
用いたボールミルで約1時間粉砕した。粉砕後、水道水
で懸濁液中のショルタイト濃度が10g/Lとなるよう
に調整した。調整後の懸濁液中の微粒子の平均粒径を前
記のレーザー回折/散乱式粒度分布測定装置で測定した
結果、0.4μmであった。更にアルカリ塩として炭酸
ナトリウム試薬を1g/L添加したものを表面調整用処
理液として使用した。
(Example 9) 0.1 mol / L heated to 50 ° C.
1 mol / L zinc nitrate solution 2 per 1 L calcium nitrate solution
00 mL was added, and 200 mL of a 1 mol / L sodium dihydrogen phosphate solution was further added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. The monosaccharides, polysaccharides, and their derivatives shown in Table 1 were diluted and dissolved in water to 10 wt% with respect to 1 kg of the above-mentioned Scholtite.
After adding 0 g, it was ground for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After crushing, taphol was used to adjust the concentration of schortite in the suspension to 10 g / L. The average particle size of the fine particles in the adjusted suspension was 0.4 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device. Further, a solution containing 1 g / L of a sodium carbonate reagent as an alkali salt was used as a surface conditioning treatment liquid.

【0070】(実施例10)50℃に加温した0.1mol
/Lの硝酸カルシウム溶液1Lに、1mol/Lの硝酸亜鉛溶
液200mLを加え、更に1mol/Lのりん酸1水素ナトリ
ウム溶液200mLを加えて沈澱を生成させた。沈澱を含
む水溶液を90℃で1時間加温して沈澱粒子を熟成させ
た後、傾斜洗浄を10回繰り返し実施した。濾過して得
られた沈澱物を乾燥しX線回折で分析した結果、沈澱物
はショルタイト[Zn2Ca(PO4)2・2H2O]であった。前記シ
ョルタイト1kgに対し表1に示す単糖類、多糖類、及
びその誘導体を予め水で10wt%に希釈溶解したものを
10g添加した後、直径0.5mmのジルコニアビーズ
を用いたボールミルで約1時間粉砕した。粉砕後、水道
水で懸濁液中のショルタイト濃度が5g/Lとなるよう
に調整した。調整後の懸濁液中の微粒子の平均粒径を前
記のレーザー回折/散乱式粒度分布測定装置で測定した
結果、0.4μmであった。更にアルカリ塩として第3
りん酸ナトリウム試薬を10g/L、界面活性剤として
市販のポリオキシエチレンノニルフェノールエーテル2
g/L添加したものを表面調整用処理液として使用し
た。尚、本実施例では脱脂処理を行なわず、防錆油が付
着したままのテストピースに、直接、洗浄を兼ねた表面
調整処理を行った。
(Example 10) 0.1 mol heated to 50 ° C
To 1 L of a calcium nitrate solution of / L, 200 mL of a 1 mol / L zinc nitrate solution was added, and further 200 mL of a 1 mol / L sodium monohydrogen phosphate solution was added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. After adding 10 g of the monosaccharides, polysaccharides, and their derivatives shown in Table 1 previously diluted and dissolved in water to 10 wt% with respect to 1 kg of schortite, a ball mill using zirconia beads having a diameter of 0.5 mm for about 1 hour. Crushed. After the pulverization, the scholtite concentration in the suspension was adjusted to 5 g / L with tap water. The average particle size of the fine particles in the adjusted suspension was 0.4 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device. Furthermore, the third as an alkali salt
10 g / L of sodium phosphate reagent, commercially available polyoxyethylene nonylphenol ether 2 as a surfactant
What added g / L was used as a surface adjustment treatment liquid. In this example, the degreasing treatment was not performed, and the test piece on which the rust preventive oil had been adhered was directly subjected to the surface conditioning treatment also for cleaning.

【0071】(比較例1)従来技術の表面調整用処理液
であるプレパレンZN(登録商標:日本パーカライジン
グ(株)製)水溶液の標準条件で表面調整処理を行った。
(Comparative Example 1) A surface conditioning treatment was carried out under standard conditions of an aqueous solution of PREPAREN ZN (registered trademark: manufactured by Nippon Parkerizing Co., Ltd.) which is a conventional surface conditioning treatment liquid.

【0072】(比較例2)従来技術の表面調整用処理液
であるプレパレンZN水溶液に、表2に示す通りアルカ
リ塩として硫酸マグネシウム7水和物試薬を0.5g/
L添加したものを表面調整用処理液として使用した。
(Comparative Example 2) As shown in Table 2, 0.5 g of magnesium sulfate heptahydrate reagent as an alkali salt was added to an aqueous solution of preparene ZN which is a conventional surface conditioning treatment liquid.
What added L was used as a surface adjustment treatment liquid.

【0073】(比較例3)50℃に加温した0.5mol/L
の硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
・4H2O]であった。前記フォスフォフィライトを直径
0.5mmのジルコニアビーズを用いたボールミルで前
記のレーザー回折/散乱式粒度分布測定装置で測定した
懸濁液中の平均粒径が0.5μmになるまで粉砕した。
粉砕後、水道水で懸濁液中のフォスフォフィライト濃度
が1g/Lとなるように調整して表面調整用処理液とし
て使用した。
Comparative Example 3 0.5 mol / L heated to 50 ° C.
1L of iron (II) sulfate solution of 1 mol / L of zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
・ 4H 2 O]. The phosphophyllite was pulverized with a ball mill using zirconia beads having a diameter of 0.5 mm until the average particle size in the suspension measured by the laser diffraction / scattering particle size distribution analyzer was 0.5 μm.
After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment.

【0074】(比較例4)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
・4H2O]であった。前記フォスフォフィライトを乳鉢で
約2分間粉砕した。粉砕後、水道水で希釈し5μmのペ
ーパーフィルターで濾過を行い濾液を廃棄した。得られ
た沈澱物を80℃で1時間乾燥し、乾燥した粉末1kg
に対し表1に示す単糖類、多糖類、及びその誘導体を予
めイソプロピルアルコールと水で10wt%に希釈溶解し
たものを50g添加した。前記乾燥粉末と高分子単糖
類、多糖類、及びその誘導体を乾燥粉末の濃度が1g/
Lとなるように水道水で調整して表面調整用処理液とし
て使用した。調整後の懸濁液中の微粒子の平均粒径を前
記のレーザー回折/散乱式粒度分布測定装置で測定した
結果、6.5μmであった。
Comparative Example 4 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
・ 4H 2 O]. The phosphophyllite was ground in a mortar for about 2 minutes. After crushing, it was diluted with tap water, filtered through a 5 μm paper filter, and the filtrate was discarded. The obtained precipitate was dried at 80 ° C for 1 hour, and 1 kg of dried powder
On the other hand, 50 g of a monosaccharide, a polysaccharide, and a derivative thereof shown in Table 1 which had been diluted and dissolved in isopropyl alcohol and water to 10 wt% were added. The dry powder and high molecular weight monosaccharides, polysaccharides, and their derivatives have a dry powder concentration of 1 g /
It was adjusted to L by tap water and used as a surface adjusting treatment liquid. The average particle size of the fine particles in the adjusted suspension was measured by the above laser diffraction / scattering type particle size distribution measuring device, and was 6.5 μm.

【0075】表3に実施例における表面調整用処理液を
用いたりん酸亜鉛処理において得られた化成処理被膜の
被膜特性を示す。表4は各比較例における表面調整用処
理液を用いたりん酸亜鉛処理において得られた化成処理
被膜の被膜特性である。
Table 3 shows the coating characteristics of the chemical conversion coatings obtained by the zinc phosphate treatment using the surface conditioning treatment liquid in the examples. Table 4 shows the coating characteristics of the chemical conversion coating obtained in the zinc phosphate treatment using the surface conditioning treatment liquid in each comparative example.

【0076】表3および表4より本発明品である表面調
整用処理液は従来技術の欠点であった経時安定性が著し
く向上していることが確認される。比較例3と実施例1
および実施例2から表面調整効果に対する単糖類、多糖
類、及びその誘導体の効果が明らかとなっている。ま
た、比較例3においては表面調整用処理液として調整し
た直後は実施例1よりも劣るものの従来技術である比較
例1と同等以上の表面調整効果を有していた。
From Tables 3 and 4, it is confirmed that the surface conditioning treatment liquid of the present invention has significantly improved stability over time, which was a drawback of the prior art. Comparative Example 3 and Example 1
And from Example 2, the effects of monosaccharides, polysaccharides, and their derivatives on the surface conditioning effect have been clarified. Further, in Comparative Example 3, immediately after being prepared as the surface conditioning treatment liquid, although it was inferior to Example 1, it had a surface conditioning effect equal to or higher than that of Comparative Example 1 which is a conventional technique.

【0077】しかし比較例3では、2価もしくは3価の
金属のりん酸塩の粉砕が著しく困難であり、且つ、10
日経時後の処理液には2価もしくは3価の金属のりん酸
塩の沈澱が生じていた。これは比較例3においては単糖
類、多糖類、及びその誘導体を添加していないため、2
価もしくは3価の金属のりん酸塩の再凝集が起こったた
めである。更に単糖類、多糖類、及びその誘導体、アル
カリ金属の種類、及び処理温度を変えてもその効果は変
わらず従来技術と同等以上に緻密で微細な結晶を得るこ
とができた。
However, in Comparative Example 3, it was extremely difficult to grind the divalent or trivalent metal phosphate, and 10
Precipitation of a divalent or trivalent metal phosphate salt occurred in the treatment solution after the passage of time. This is because in Comparative Example 3, the monosaccharide, the polysaccharide, and the derivative thereof are not added.
This is because re-aggregation of trivalent or trivalent metal phosphate has occurred. Further, even if the monosaccharide, the polysaccharide and its derivative, the kind of the alkali metal, and the treatment temperature were changed, the effect was not changed, and it was possible to obtain a fine and fine crystal which is equal to or more than the prior art.

【0078】表5に本発明の請求項2の実施例で使用し
た表面調整用処理液の組成を示す。尚、表5及び表2の
比較例5では正りん酸、ポリりん酸または有機ホスホン
酸化合物を単に「りん化合物」と記した。表5の実施例
及び比較例5に使用したりん化合物は試薬及び市販品
(例えば日本モンサント工業(株)製等)の中から、その
構造をもとに選定した。また、本発明の効果に表面調整
用処理液のpHの制限はないが、りん化合物のpHが著
しく低い場合は、2価もしくは3価の金属のりん酸塩の
溶解を防止するため予め水酸化ナトリウムでりん化合物
のpHを中性に調整した。なお、経時試験は表面調整用
処理液を調整後、10日間室温で放置した後に実施し
た。
Table 5 shows the composition of the surface conditioning treatment liquid used in the second embodiment of the present invention. In Comparative Examples 5 of Tables 5 and 2, orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compounds are simply referred to as "phosphorus compounds". The phosphorus compounds used in Examples and Comparative Examples 5 in Table 5 were selected from reagents and commercially available products (for example, manufactured by Nippon Monsanto Industry Co., Ltd.) based on their structures. The effect of the present invention is not limited to the pH of the surface-treating treatment liquid, but when the pH of the phosphorus compound is extremely low, it is preliminarily hydroxylated to prevent dissolution of the divalent or trivalent metal phosphate. The pH of the phosphorus compound was adjusted to neutral with sodium. The aging test was performed after preparing the surface conditioning treatment liquid and leaving it at room temperature for 10 days.

【0079】(実施例11)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。前記フォスフォフィライト1k
gに対し表5に示すりん化合物を予め水で10wt%に希
釈溶解したものを2g添加した後、直径0.5mmのジ
ルコニアビーズを用いたボールミルで約1時間粉砕し
た。粉砕後、水道水で懸濁液中のフォスフォフィライト
濃度が5g/Lとなるように調整した。調整後の懸濁液
中の微粒子の平均粒径を前記のレーザー回折/散乱式粒
度分布測定装置で測定した結果、0.5μmであった。
更にアルカリ塩として硫酸マグネシウム7水和物試薬を
0.5g/L添加したものを表面調整用処理液として使
用した。
Example 11 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. Phosphophyllite 1k
After adding 2 g of the phosphorus compound shown in Table 5 previously diluted and dissolved in water to 10 wt% with respect to g, it was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 5 g / L. The average particle size of the fine particles in the adjusted suspension was 0.5 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device.
Further, 0.5 g / L of magnesium sulfate heptahydrate reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0080】(実施例12)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。前記フォスフォフィライト1k
gに対し表5に示すりん化合物を予め水で10wt%に希
釈溶解したものを1kg添加した後、直径0.5mmの
ジルコニアビーズを用いたボールミルで約1時間粉砕し
た。粉砕後、水道水で懸濁液中のフォスフォフィライト
濃度が1g/Lとなるように調整した。調整後の懸濁液
中の微粒子の平均粒径を前記のレーザー回折/散乱式粒
度分布測定装置で測定した結果、0.5μmであった。
更にアルカリ塩としてメタ珪酸ナトリウム試薬を1g/
L添加したものを表面調整用処理液として使用した。
Example 12 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. Phosphophyllite 1k
1 kg of a phosphorus compound shown in Table 5 previously diluted and dissolved in water to 10 wt% with respect to g was added, and then pulverized with a ball mill using zirconia beads having a diameter of 0.5 mm for about 1 hour. After pulverization, tap water was adjusted so that the concentration of phosphophyllite in the suspension was 1 g / L. The average particle size of the fine particles in the adjusted suspension was 0.5 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device.
1 g / sodium metasilicate reagent as an alkali salt
What added L was used as a surface adjustment treatment liquid.

【0081】(実施例13)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。表5に示すりん化合物を予め水
で10wt%に希釈溶解したもの1kgに対し、前記フォ
スフォフィライト200g添加した後、直径10mmの
ジルコニアビーズを用いたボールミルで約1時間粉砕し
た。粉砕後、水道水で懸濁液中のフォスフォフィライト
濃度が1g/Lとなるように調整して表面調整用処理液
として使用した。調整後の懸濁液中の微粒子の平均粒径
を前記のレーザー回折/散乱式粒度分布測定装置で測定
した結果、1.7μmであった。
(Example 13) 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. After adding 200 g of the above phosphophyllite to 1 kg of the phosphorus compound shown in Table 5 diluted and dissolved in water to 10 wt% in advance, it was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 10 mm. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was measured by the above-mentioned laser diffraction / scattering type particle size distribution measuring device and found to be 1.7 μm.

【0082】(実施例14)Zn3(PO4)2・4H2O 試薬1k
gに対し、表5に示すりん化合物を予め水で10wt%に
希釈溶解したもの100gを添加した後、直径0.5m
mのジルコニアビーズを用いたボールミルで約1時間粉
砕した。粉砕後、水道水で懸濁液中の Zn3(PO4)2・4H2O
濃度が5g/Lとなるように調整した。調整後の懸濁液
中の微粒子の平均粒径を前記のレーザー回折/散乱式粒
度分布測定装置で測定した結果、0.6μmであった。
更にアルカリ塩として炭酸ナトリウム試薬を5g/L添
加したものを表面調整用処理液として使用した。
[0082] (Example 14) Zn 3 (PO 4) 2 · 4H 2 O reagent 1k
After adding 100 g of the phosphorus compound shown in Table 5 previously diluted and dissolved in water to 10 wt%, the diameter of 0.5 m
Milled for about 1 hour with a ball mill using m zirconia beads. After milling, Zn 3 (PO 4) in suspension in tap water 2 · 4H 2 O
The concentration was adjusted to 5 g / L. The average particle diameter of the fine particles in the adjusted suspension was measured by the above-mentioned laser diffraction / scattering type particle size distribution measuring device, and was found to be 0.6 μm.
Further, 5 g / L of a sodium carbonate reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0083】(実施例15)50℃に加温した0.1mo
l/Lの硝酸カルシウム溶液1Lに1mol/Lの硝酸亜鉛溶液
200mLを加え、更に1mol/Lのりん酸1水素ナトリウ
ム溶液200mLを加えて沈澱を生成させた。沈澱を含む
水溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
ショルタイト[Zn2Ca(PO4)2・2H2O]であった。表5に示
すりん化合物を予め水で10wt%に希釈溶解したもの1
kgに対し前記ショルタイト1kgを添加した後、直径
0.5mmのジルコニアビーズを用いたボールミルで約
1時間粉砕した。粉砕後、水道水で懸濁液中のショルタ
イト濃度が10g/Lとなるように調整した。調整後の
懸濁液中の微粒子の平均粒径を前記のレーザー回折/散
乱式粒度分布測定装置で測定した結果、0.5μmであ
った。更にアルカリ塩として第3りん酸ナトリウム試薬
を10g/L、界面活性剤として市販のポリオキシエチ
レンノニルフェノールエーテル2g/L添加したものを
表面調整用処理液として使用した。尚、本実施例では脱
脂処理を行なわず、防錆油が付着したままのテストピー
スに、直接、洗浄を兼ねた表面調整処理を行った。
(Example 15) 0.1 mo heated to 50 ° C
To 1 L of a 1 / L calcium nitrate solution, 200 mL of a 1 mol / L zinc nitrate solution was added, and further 200 mL of a 1 mol / L sodium monohydrogen phosphate solution was added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. A phosphorus compound shown in Table 5 which was previously diluted and dissolved in water to 10 wt% 1
After adding 1 kg of scholtite to kg, it was crushed for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After crushing, taphol was used to adjust the concentration of schortite in the suspension to 10 g / L. The average particle size of the fine particles in the adjusted suspension was 0.5 μm as a result of measurement with the laser diffraction / scattering type particle size distribution measuring device. Further, 10 g / L of a trisodium phosphate reagent was added as an alkali salt, and 2 g / L of a commercially available polyoxyethylene nonylphenol ether was added as a surfactant, which was used as a surface conditioning treatment liquid. In this example, the degreasing treatment was not performed, and the test piece on which the rust preventive oil had been adhered was directly subjected to the surface conditioning treatment also for cleaning.

【0084】(比較例5)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
・4H2O]であった。前記フォスフォフィライトを乳鉢で
約2分間粉砕した。粉砕後、水道水で希釈し5μmのペ
ーパーフィルターで濾過を行い濾液を廃棄した。得られ
た沈澱物を80℃で1時間乾燥して粉末を得た。表2の
比較例5に示すりん化合物を予め水で10wt%に希釈し
たもの500gに対し、前記乾燥粉末100gを添加し
た後、乾燥粉末の濃度が1g/Lとなるように水道水で
調整して表面調整用処理液として使用した。調整後の縣
濁液中の微粒子の平均粒径を前記のレーザー回折/散乱
式粒度分布測定装置で測定した結果、6.5μmであっ
た。
Comparative Example 5 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
・ 4H 2 O]. The phosphophyllite was ground in a mortar for about 2 minutes. After crushing, it was diluted with tap water, filtered through a 5 μm paper filter, and the filtrate was discarded. The obtained precipitate was dried at 80 ° C for 1 hour to obtain a powder. 100 g of the dry powder was added to 500 g of the phosphorus compound shown in Comparative Example 5 in Table 2 which had been previously diluted to 10 wt% with water, and the concentration of the dry powder was adjusted to 1 g / L with tap water. Used as a surface conditioning treatment liquid. The average particle size of the fine particles in the suspension after adjustment was 6.5 μm as a result of measurement by the above-mentioned laser diffraction / scattering type particle size distribution measuring device.

【0085】表6に実施例における表面調整用処理液を
用いたりん酸亜鉛処理において得られた化成処理被膜の
被膜特性を示す。また表4の比較例5に比較例5におけ
る表面調整用処理液を用いたりん酸亜鉛処理において得
られた化成処理被膜の被膜特性を示す。
Table 6 shows the coating characteristics of the chemical conversion coatings obtained by the zinc phosphate treatment using the surface conditioning treatment liquid in the examples. Further, Comparative Example 5 in Table 4 shows coating characteristics of the chemical conversion coating obtained by the zinc phosphate treatment using the surface conditioning treatment liquid in Comparative Example 5.

【0086】表6および表4より本発明品である表面調
整用処理液は従来技術の欠点であった経時安定性が著し
く向上していることが確認される。比較例3と実施例1
3から表面調整効果に対する正りん酸、ポリりん酸また
は有機ホスホン酸化合物の効果が明らかとなっている。
From Tables 6 and 4, it is confirmed that the surface conditioning treatment liquid of the present invention has significantly improved stability over time, which was a drawback of the prior art. Comparative Example 3 and Example 1
The effect of orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compound on the surface conditioning effect is clear from 3.

【0087】また、比較例3においては表面調整用処理
液として調整した直後は実施例11よりも劣るものの従
来技術である比較例1と同等以上の表面調整効果を有し
ていた。しかし比較例3では、2価もしくは3価の金属
のりん酸塩の粉砕が著しく困難であり、且つ、10日経
時後の処理液には2価もしくは3価の金属のりん酸塩が
沈澱が生じていた。これは比較例3においては正りん
酸、ポリりん酸または有機ホスホン酸化合物を添加して
いないため、2価もしくは3価の金属のりん酸塩の再凝
集が起こったためである。更に正りん酸、ポリりん酸ま
たは有機ホスホン酸化合物、アルカリ金属の種類、及び
処理温度を変えてもその効果は変わらず従来技術と同等
以上に緻密で微細な結晶を得ることができた。
Immediately after preparation as a surface conditioning treatment liquid, Comparative Example 3 had a surface conditioning effect equal to or higher than that of Comparative Example 1 which is a conventional technique, although it was inferior to that of Example 11. However, in Comparative Example 3, it was extremely difficult to grind the divalent or trivalent metal phosphate, and the divalent or trivalent metal phosphate was not precipitated in the treatment solution after 10 days. It was happening. This is because in Comparative Example 3, orthophosphoric acid, polyphosphoric acid or an organic phosphonic acid compound was not added, so that re-aggregation of the divalent or trivalent metal phosphate occurred. Further, even if the orthophosphoric acid, the polyphosphoric acid or the organic phosphonic acid compound, the kind of the alkali metal, and the treatment temperature were changed, the effect was not changed, and it was possible to obtain a fine and fine crystal which is equal to or more than the prior art.

【0088】表7に本発明の請求項3の実施例で使用し
た表面調整用処理液の組成を示す。尚、表7及び表2の
比較例6では酢酸ビニルの重合体またはその誘導体もし
くは酢酸ビニルと共重合可能な単量体と酢酸ビニルとの
共重合体からなる水溶性高分子化合物を単に「水溶性高
分子化合物」と記した。表中の酢酸ビニルの重合体また
はその誘導体は、過酸化物を開始剤として酢酸ビニルを
重合し、更にケン化反応やアセタール化反応等によって
実施例に示す官能基を付与した。また、酢酸ビニルと共
重合可能な単量体と酢酸ビニルとの共重合体は、酢酸ビ
ニルと各々の単量体の重合反応によって合成した。な
お、経時試験は表面調整用処理液を調整後、10日間室
温で放置した後に実施した。
Table 7 shows the composition of the surface conditioning treatment liquid used in the embodiment of claim 3 of the present invention. In Comparative Examples 6 of Tables 7 and 2, a water-soluble polymer compound composed of a vinyl acetate polymer or its derivative or a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate was simply referred to as “water-soluble polymer”. Polymer compound ". The vinyl acetate polymer or its derivative in the table was obtained by polymerizing vinyl acetate using a peroxide as an initiator and further imparting the functional groups shown in the examples by a saponification reaction, an acetalization reaction and the like. Further, a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate was synthesized by a polymerization reaction of vinyl acetate and each monomer. The aging test was performed after preparing the surface conditioning treatment liquid and leaving it at room temperature for 10 days.

【0089】(実施例16)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。前記フォスフォフィライト1k
gに対し表7に示す水溶性高分子化合物を予め水で10
wt%に希釈溶解したものを2g添加した後、直径0.5
mmのジルコニアビーズを用いたボールミルで約1時間
粉砕した。粉砕後、水道水で懸濁液中のフォスフォフィ
ライト濃度が5g/Lとなるように調整した。調整後の
懸濁液中の微粒子の平均粒径をレーザー回折/散乱式粒
度分布測定装置で測定した結果、0.5μmであった。
更にアルカリ塩としてメタ珪酸ナトリウム試薬を0.5
g/L添加したものを表面調整用処理液として使用し
た。
(Example 16) 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. Phosphophyllite 1k
10 g of the water-soluble polymer compound shown in Table 7 in advance with water.
0.5g after adding 2g diluted to wt%
It was crushed for about 1 hour by a ball mill using mm zirconia beads. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 5 g / L. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 0.5 μm.
Furthermore, 0.5% sodium metasilicate reagent as an alkali salt
What added g / L was used as a surface adjustment treatment liquid.

【0090】(実施例17)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。表7に示す水溶性高分子化合物
を予め水で10wt%に希釈溶解したもの500gに対
し、前記フォスフォフィライト100g添加した後、直
径0.5mmのジルコニアビーズを用いたボールミルで
約1時間粉砕した。粉砕後、水道水で懸濁液中のフォス
フォフィライト濃度が1g/Lとなるように調整して表
面調整用処理液として使用した。調整後の懸濁液中の微
粒子の平均粒径をレーザー回折/散乱式粒度分布測定装
置で測定した結果、0.5μmであった。
(Example 17) 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. After adding 100 g of the phosphophyllite to 500 g of the water-soluble polymer compound shown in Table 7, which had been previously diluted and dissolved in water to 10 wt%, and then pulverized with a ball mill using zirconia beads having a diameter of 0.5 mm for about 1 hour. did. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 0.5 μm.

【0091】(実施例18)表7に示す水溶性高分子化
合物を予め水で10wt%に希釈溶解したもの1kgに対
し、Zn3(PO4)2・4H2O試薬50g添加した後、直径0.
5mmのジルコニアビーズを用いたボールミルで約1時
間粉砕した。粉砕後、水道水で懸濁液中のZn3(PO4)2・4
H2O濃度が1g/Lとなるように調整した。調整後の懸
濁液中の微粒子の平均粒径をレーザー回折/散乱式粒度
分布測定装置で測定した結果、0.5μmであった。更
にアルカリ塩として硫酸マグネシウム7水和物試薬を
0.5g/L添加したものを表面調整用処理液として使
用した。
[0091] For 1kg those diluted dissolved in 10 wt% in water in advance (Example 18) a water-soluble polymer compounds shown in Table 7, Zn 3 (PO 4) 2 · 4H 2 O reagent 50g After the addition, the diameter 0.
It was crushed for about 1 hour by a ball mill using 5 mm zirconia beads. After milling, Zn 3 of suspension in tap water (PO 4) 2 · 4
The H 2 O concentration was adjusted to 1 g / L. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 0.5 μm. Further, 0.5 g / L of magnesium sulfate heptahydrate reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0092】(実施例19)50℃に加温した0.1mo
l/Lの硝酸カルシウム溶液1Lに1mol/Lの硝酸亜鉛溶液
200mLを加え、更に1mol/Lのりん酸1水素ナトリウ
ム溶液200mLを加えて沈澱を生成させた。沈澱を含む
水溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
ショルタイト[Zn2Ca(PO4)2・2H2O]であった。表7に示
す水溶性高分子化合物を予め水で10wt%に希釈溶解し
たもの1kgに対し、前記ショルタイト500g添加し
た後、直径10mmのジルコニアビーズを用いたボール
ミルで約1時間粉砕した。粉砕後、水道水で懸濁液中の
ショルタイト濃度が5g/Lとなるように調整した。調
整後の懸濁液中の微粒子の平均粒径をレーザー回折/散
乱式粒度分布測定装置で測定した結果、1.6μmであ
った。更にアルカリ塩として炭酸ナトリウム試薬を5g
/L添加したものを表面調整用処理液として使用した。
Example 19 0.1 mo heated to 50 ° C.
To 1 L of a 1 / L calcium nitrate solution, 200 mL of a 1 mol / L zinc nitrate solution was added, and further 200 mL of a 1 mol / L sodium monohydrogen phosphate solution was added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. To 1 kg of the water-soluble polymer compound shown in Table 7 previously diluted and dissolved in water to 10 wt%, 500 g of scholtite was added, and then pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 10 mm. After the pulverization, the scholtite concentration in the suspension was adjusted to 5 g / L with tap water. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was found to be 1.6 μm. Furthermore, 5 g of sodium carbonate reagent as an alkali salt
What added / L was used as a surface adjustment treatment liquid.

【0093】(実施例20)50℃に加温した0.1mo
l/Lの硝酸カルシウム溶液1Lに1mol/Lの硝酸亜鉛溶液
200mLを加え、更に1mol/Lのりん酸1水素ナトリウ
ム溶液200mLを加えて沈澱を生成させた。沈澱を含む
水溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
ショルタイト[Zn2Ca(PO4)2・2H2O]であった。前記ショ
ルタイト1kgに対し表7に示す水溶性高分子化合物を
予め水で10wt%に希釈溶解したもの10g添加した
後、直径0.5mmのジルコニアビーズを用いたボール
ミルで約1時間粉砕した。粉砕後、水道水で懸濁液中の
ショルタイト濃度が30g/Lとなるように調整した。
調整後の懸濁液中の微粒子の平均粒径をレーザー回折/
散乱式粒度分布測定装置で測定した結果、0.3μmで
あった。更にアルカリ塩として第3りん酸ナトリウム試
薬を10g/L、界面活性剤として市販のポリオキシエ
チレンノニルフェノールエーテル2g/L添加したもの
を表面調整用処理液として使用した。尚本実施例では脱
脂処理を行わず、防錆油が付着したままのテストピース
に、直接、洗浄を兼ねた表面調整処理を行った。
(Example 20) 0.1 mo heated to 50 ° C
To 1 L of a 1 / L calcium nitrate solution, 200 mL of a 1 mol / L zinc nitrate solution was added, and further 200 mL of a 1 mol / L sodium monohydrogen phosphate solution was added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. 10 g of the water-soluble polymer compound shown in Table 7 previously diluted and dissolved in water to 10 wt% was added to 1 kg of schortite, and the mixture was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After the pulverization, the scholtite concentration in the suspension was adjusted to 30 g / L with tap water.
The average particle size of the fine particles in the adjusted suspension is determined by laser diffraction /
As a result of measurement with a scattering type particle size distribution measuring device, it was 0.3 μm. Further, 10 g / L of a trisodium phosphate reagent was added as an alkali salt, and 2 g / L of a commercially available polyoxyethylene nonylphenol ether was added as a surfactant, which was used as a surface conditioning treatment liquid. In this example, the degreasing treatment was not performed, and the test piece with the rust-preventing oil still attached was directly subjected to the surface conditioning treatment which also serves as cleaning.

【0094】(比較例6)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mおよび1mol/Lのりん酸1水素ナトリウム溶液10
0mLを交互に加え沈澱を生成させた。沈澱を含む水溶液
を90℃で1時間加温して沈澱粒子を熟成させた後、傾
斜洗浄を10回繰り返し実施した。濾過して得られた沈
澱物を乾燥しX線回折で分析した結果、沈澱物は一部第
3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
4H2O]であった。前記フォスフォフィライトを乳鉢で約
2分間粉砕した。粉砕後、水道水で希釈し5μmのペー
パーフィルターで濾過を行い濾液を廃棄した。得られた
沈澱物を80℃で1時間乾燥して粉末を得た。表2の比
較例6に示す水溶性高分子化合物を予め水で10wt%に
希釈溶解したもの500gに対し、前記乾燥粉末100
g添加した後、乾燥粉末の濃度が1g/Lとなるように
水道水で調整して表面調整用処理液として使用した。調
整後の懸濁液中の微粒子の平均粒径をレーザー回折/散
乱式粒度分布測定装置で測定した結果、6.5μmであ
った。
Comparative Example 6 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00m and 1mol / L sodium monohydrogen phosphate solution 10
0 mL was added alternately to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
4H 2 O]. The phosphophyllite was ground in a mortar for about 2 minutes. After crushing, it was diluted with tap water, filtered through a 5 μm paper filter, and the filtrate was discarded. The obtained precipitate was dried at 80 ° C for 1 hour to obtain a powder. The water-soluble polymer compound shown in Comparative Example 6 in Table 2 was diluted and dissolved in water to 10 wt% to 500 g, and 100 parts of the dry powder was used.
After adding g, it was adjusted with tap water so that the concentration of the dry powder would be 1 g / L, and used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 6.5 μm.

【0095】表8に実施例における表面調整用処理液を
用いたりん酸亜鉛処理において得られた化成処理被膜の
被膜特性を示す。また表4の比較例6に比較例6におけ
る表面調整用処理液を用いたりん酸亜鉛処理において得
られた化成処理被膜の被膜特性を示す。
Table 8 shows the coating properties of the chemical conversion coatings obtained by the zinc phosphate treatment using the surface conditioning treatment liquid in the examples. In addition, Comparative Example 6 in Table 4 shows the film characteristics of the chemical conversion treatment film obtained by the zinc phosphate treatment using the surface conditioning treatment liquid in Comparative Example 6.

【0096】表8および表4より本発明品である表面調
整用処理液は従来技術の欠点であった経時安定性が著し
く向上していることが確認される。比較例3と実施例1
7から表面調整効果に対する酢酸ビニルの重合体または
その誘導体もしくは酢酸ビニルと共重合可能な単量体と
酢酸ビニルとの共重合体からなる水溶性高分子化合物の
効果が明らかとなっている。また、比較例3においては
表面調整用処理液として調整した直後は実施例16より
は劣るものの従来技術である比較例1と同等以上の表面
調整効果を有していた。
From Tables 8 and 4, it is confirmed that the surface conditioning treatment liquid of the present invention has significantly improved stability over time, which was a drawback of the prior art. Comparative Example 3 and Example 1
From 7 it is clear that the effect of the water-soluble polymer compound consisting of a vinyl acetate polymer or its derivative or a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate on the surface conditioning effect. Further, in Comparative Example 3, immediately after being prepared as the surface conditioning treatment liquid, although it was inferior to Example 16, it had a surface conditioning effect equal to or higher than that of Comparative Example 1 which is a conventional technique.

【0097】しかし比較例3では、2価もしくは3価の
金属のりん酸塩の粉砕が著しく困難であり、且つ、10
日経時後の処理液には2価もしくは3価の金属のりん酸
塩の沈澱が生じていた。これは比較例3においては酢酸
ビニルの重合体またはその誘導体もしくは酢酸ビニルと
共重合可能な単量体と酢酸ビニルとの共重合体からなる
水溶性高分子化合物を添加していないため、2価もしく
は3価の金属のりん酸塩の再凝集が起こったためであ
る。更に酢酸ビニルの重合体またはその誘導体もしくは
酢酸ビニルと共重合可能な単量体と酢酸ビニルとの共重
合体からなる水溶性高分子化合物、アルカリ金属の種
類、及び処理温度を変えてもその効果は変わらず従来技
術と同等以上に緻密で微細な結晶を得ることができた。
However, in Comparative Example 3, it was extremely difficult to grind the divalent or trivalent metal phosphate, and 10
Precipitation of a divalent or trivalent metal phosphate salt occurred in the treatment solution after the passage of time. This is because in Comparative Example 3, a water-soluble polymer compound composed of a vinyl acetate polymer or its derivative or a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate and a vinyl acetate was not added, and thus the divalent polymer was used. Another reason is that re-aggregation of trivalent metal phosphate occurred. Further, the effect is obtained even if the water-soluble polymer compound consisting of a vinyl acetate polymer or its derivative or a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate, a kind of alkali metal, and a treatment temperature are changed. As a result, it was possible to obtain a fine and fine crystal having a size equal to or higher than that of the conventional technique.

【0098】表9に本発明の請求項4の実施例で使用し
た表面調整用処理液の組成を示す。表9及び表2の比較
例7の単量体を過硫酸アンモニウムを触媒として重合し
重合体または共重合体を得た。また、水溶性に難点のあ
る単量体については市販の界面活性剤を使用して乳化し
た後に重合した。本発明の効果に表面調整用処理液のp
Hの制限はないが、重合体または共重合体のpHが著し
く低い場合は、2価もしくは3価の金属のりん酸塩の溶
解を防止するため、予め水酸化ナトリウムで重合体また
は共重合体のpHを中性に調整した。なお、経時試験は
表面調整用処理液を調整後、10日間室温で放置した後
に実施した。
Table 9 shows the composition of the surface conditioning treatment liquid used in the embodiment of claim 4 of the present invention. Polymers or copolymers were obtained by polymerizing the monomers of Comparative Example 7 in Tables 9 and 2 with ammonium persulfate as a catalyst. Further, with respect to a monomer having a difficulty in water solubility, it was polymerized after emulsification using a commercially available surfactant. In addition to the effect of the present invention,
There is no limitation on H, but when the pH of the polymer or copolymer is extremely low, the polymer or copolymer is preliminarily treated with sodium hydroxide in order to prevent dissolution of the divalent or trivalent metal phosphate. Was adjusted to neutral pH. The aging test was performed after preparing the surface conditioning treatment liquid and leaving it at room temperature for 10 days.

【0099】(実施例21)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。前記フォスフォフィライト1k
gに対し表9に示す重合体または共重合体を予め水で1
0wt%に希釈溶解したものを1g添加した後、直径0.
5mmのジルコニアビーズを用いたボールミルで約1時
間粉砕した。粉砕後、水道水で懸濁液中のフォスフォフ
ィライト濃度が10g/Lとなるように調整した。調整
後の懸濁液中の微粒子の平均粒径をレーザー回折/散乱
式粒度分布測定装置で測定した結果、0.5μmであっ
た。更にアルカリ塩として亜硝酸ナトリウム試薬を0.
5g/L添加したものを表面調整用処理液として使用し
た。
(Example 21) 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (Pn
O 4) was 2 · 4H 2 O]. Phosphophyllite 1k
1 g of the polymer or copolymer shown in Table 9 in advance with water.
After adding 1 g of a diluted solution of 0 wt%, the diameter was adjusted to 0.
It was crushed for about 1 hour by a ball mill using 5 mm zirconia beads. After crushing, the phosphophyllite concentration in the suspension was adjusted to 10 g / L with tap water. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 0.5 μm. Furthermore, sodium nitrite reagent as an alkali salt was added to 0.1.
The solution added with 5 g / L was used as a treatment liquid for surface conditioning.

【0100】(実施例22)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。表9に示す重合体または共重合
体を予め水で10wt%に希釈溶解したもの500gに対
し、前記フォスフォフィライト100g添加した後、直
径0.5mmのジルコニアビーズを用いたボールミルで
約1時間粉砕した。粉砕後、水道水で懸濁液中のフォス
フォフィライト濃度が1g/Lとなるように調整して表
面調整用処理液として使用した。調整後の懸濁液中の微
粒子の平均粒径をレーザー回折/散乱式粒度分布測定装
置で測定した結果、0.5μmであった。
(Example 22) 0.5 mo heated to 50 ° C
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. 100 g of the phosphophyllite was added to 500 g of the polymer or copolymer shown in Table 9 which had been previously diluted and dissolved in water to 10 wt%, and then the ball mill using zirconia beads having a diameter of 0.5 mm for about 1 hour. Crushed. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 1 g / L, and the solution was used as a treatment liquid for surface adjustment. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 0.5 μm.

【0101】(実施例23)50℃に加温した0.5mo
l/Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液
100mLおよび1mol/Lのりん酸1水素ナトリウム溶液
100mLを交互に加え沈澱を生成させた。沈澱を含む水
溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
一部第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(P
O4)2・4H2O]であった。表9に示す重合体または共重合
体を予め水で10wt%に希釈溶解したもの1kgに対
し、前記フォスフォフィライト25g添加した後、直径
0.5mmのジルコニアビーズを用いたボールミルで約
1時間粉砕した。粉砕後、水道水で懸濁液中のフォスフ
ォフィライト濃度が0.5g/Lとなるように調整し
た。調整後の懸濁液中の微粒子の平均粒径をレーザー回
折/散乱式粒度分布測定装置で測定した結果、0.5μ
mであった。更にアルカリ塩として硫酸マグネシウム7
水和物試薬を0.5g/L添加したものを表面調整用処
理液として使用した。
(Example 23) 0.5 mo heated to 50 ° C.
To 1 L of a 1 / L iron (II) sulfate solution, 100 mL of a 1 mol / L zinc sulfate solution and 100 mL of a 1 mol / L sodium monohydrogen phosphate solution were alternately added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (P
O 4) was 2 · 4H 2 O]. After adding 25 g of the above phosphophyllite to 1 kg of the polymer or copolymer shown in Table 9 previously diluted and dissolved in water to 10 wt%, it is about 1 hour in a ball mill using zirconia beads having a diameter of 0.5 mm. Crushed. After pulverization, tap water was used to adjust the concentration of phosphophyllite in the suspension to 0.5 g / L. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device and found to be 0.5 μm.
It was m. Furthermore, magnesium sulfate 7 as an alkali salt
The hydrate reagent added at 0.5 g / L was used as a surface conditioning treatment liquid.

【0102】(実施例24)50℃に加温した0.1mo
l/Lの硝酸カルシウム溶液1Lに1mol/Lの硝酸亜鉛溶液
200mLを加え、更に1mol/Lのりん酸1水素ナトリウ
ム溶液200mLを加えて沈澱を生成させた。沈澱を含む
水溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
ショルタイト[Zn2Ca(PO4)2・2H2O]であった。前記ショ
ルタイト1kgに対し表9に示す重合体または共重合体
を予め水で10wt%に希釈溶解したものを1.5g添加
した後、直径0.5mmのジルコニアビーズを用いたボ
ールミルで約1時間粉砕した。粉砕後、水道水で懸濁液
中のショルタイト濃度が10g/Lとなるように調整し
た。調整後の懸濁液中の微粒子の平均粒径をレーザー回
折/散乱式粒度分布測定装置で測定した結果、0.6μ
mであった。更にアルカリ塩として炭酸ナトリウム試薬
を1g/L添加したものを表面調整用処理液として使用
した。
Example 24 0.1 mo heated to 50 ° C.
To 1 L of a 1 / L calcium nitrate solution, 200 mL of a 1 mol / L zinc nitrate solution was added, and further 200 mL of a 1 mol / L sodium monohydrogen phosphate solution was added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. To 1 kg of schortite, 1.5 g of the polymer or copolymer shown in Table 9 previously diluted and dissolved in water to 10 wt% was added, and then pulverized with a ball mill using zirconia beads having a diameter of 0.5 mm for about 1 hour. did. After crushing, taphol was used to adjust the concentration of schortite in the suspension to 10 g / L. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device and found to be 0.6 μm.
It was m. Further, a solution containing 1 g / L of a sodium carbonate reagent as an alkali salt was used as a surface conditioning treatment liquid.

【0103】(実施例25)50℃に加温した0.1mo
l/Lの硝酸カルシウム溶液1Lに1mol/Lの硝酸亜鉛溶液
200mLを加え、更に1mol/Lのりん酸1水素ナトリウ
ム溶液200mLを加えて沈澱を生成させた。沈澱を含む
水溶液を90℃で1時間加温して沈澱粒子を熟成させた
後、傾斜洗浄を10回繰り返し実施した。濾過して得ら
れた沈澱物を乾燥しX線回折で分析した結果、沈澱物は
ショルタイト[Zn2Ca(PO4)2・2H2O]であった。前記ショ
ルタイト1kgに対し表9に示す重合体または共重合体
を予め水で10wt%に希釈溶解したものを20g添加し
た後、直径0.5mmのジルコニアビーズを用いたボー
ルミルで約1時間粉砕した。粉砕後、水道水で懸濁液中
のショルタイト濃度が5g/Lとなるように調整した。
調整後の懸濁液中の微粒子の平均粒径をレーザー回折/
散乱式粒度分布測定装置で測定した結果、0.6μmで
あった。更にアルカリ塩として第3りん酸ナトリウム試
薬を10g/L添加したものを表面調整用処理液として
使用した。
(Example 25) 0.1 mo heated to 50 ° C
To 1 L of a 1 / L calcium nitrate solution, 200 mL of a 1 mol / L zinc nitrate solution was added, and further 200 mL of a 1 mol / L sodium monohydrogen phosphate solution was added to form a precipitate. The aqueous solution containing the precipitate was heated at 90 ° C. for 1 hour to age the precipitated particles, and then gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was schortite [Zn 2 Ca (PO 4 ) 2 .2H 2 O]. 20 g of a polymer or copolymer shown in Table 9 previously diluted and dissolved in water to 10 wt% was added to 1 kg of schortite, and the mixture was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. After the pulverization, the scholtite concentration in the suspension was adjusted to 5 g / L with tap water.
The average particle size of the fine particles in the adjusted suspension is determined by laser diffraction /
As a result of measurement with a scattering type particle size distribution measuring device, it was 0.6 μm. Further, 10 g / L of a trisodium phosphate reagent was added as an alkali salt to be used as a surface conditioning treatment liquid.

【0104】(実施例26)表9に示す重合体または共
重合体を予め水で10wt%に希釈溶解したもの1kgに
対し、Zn3(PO4)2・4H2O試薬1kg添加した後、直径1
0mmのジルコニアビーズを用いたボールミルで約1時
間粉砕した。粉砕後、水道水で懸濁液中のZn3(PO4)2・4
H2O濃度が1g/Lとなるように調整した。調整後の懸
濁液中の微粒子の平均粒径をレーザー回折/散乱式粒度
分布測定装置で測定した結果、1.2μmであった。更
にアルカリ塩としてメタ珪酸ナトリウム試薬を5g/
L、界面活性剤として市販のポリオキシエチレンノニル
フェノールエーテル2g/L添加したものを表面調整用
処理液として使用した。尚、本実施例では脱脂処理を行
わず、防錆油が付着したままのテストピースに、直接、
洗浄を兼ねた表面調整処理を行った。
Example 26 After adding 1 kg of Zn 3 (PO 4 ) 2 .4H 2 O reagent to 1 kg of the polymer or copolymer shown in Table 9 previously diluted and dissolved in water to 10 wt%, Diameter 1
It was crushed for about 1 hour with a ball mill using 0 mm zirconia beads. After milling, Zn 3 of suspension in tap water (PO 4) 2 · 4
The H 2 O concentration was adjusted to 1 g / L. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device and found to be 1.2 μm. Furthermore, as an alkali salt, 5 g of sodium metasilicate reagent /
L, commercially available polyoxyethylene nonylphenol ether 2 g / L as a surfactant was used as a surface conditioning treatment liquid. In this example, the degreasing process was not performed, and the test piece with the rust-preventive oil still attached was directly
A surface conditioning treatment that also serves as cleaning was performed.

【0105】(実施例27)Zn3(PO4)2・4H2O試薬1k
gに対し表9に示す重合体または共重合体を予め水で1
0wt%に希釈溶解したものを50g添加した後、直径
0.5mmのジルコニアビーズを用いたボールミルで約
1時間粉砕した。粉砕後、水道水で懸濁液中のZn3(PO4)
2・4H2O濃度が1g/Lとなるように調整して表面調整
用処理液として使用した。調整後の懸濁液中の微粒子の
平均粒径をレーザー回折/散乱式粒度分布測定装置で測
定した結果、0.5μmであった。
[0105] (Example 27) Zn 3 (PO 4) 2 · 4H 2 O reagent 1k
1 g of the polymer or copolymer shown in Table 9 in advance with water.
After adding 50 g of a solution that was diluted and dissolved to 0 wt%, it was pulverized for about 1 hour by a ball mill using zirconia beads having a diameter of 0.5 mm. Zn 3 (PO 4 ) in suspension with tap water after grinding
It was adjusted to a concentration of 2.4H 2 O of 1 g / L and used as a surface conditioning treatment liquid. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 0.5 μm.

【0106】(比較例7)50℃に加温した0.5mol/
Lの硫酸鉄(II)溶液1Lに、1mol/Lの硫酸亜鉛溶液1
00mLおよび1mol/Lのりん酸1水素ナトリウム溶液1
00mLを交互に加え沈澱を生成させた。沈澱を含む水溶
液を90℃で1時間加温して沈澱粒子を熟成させた後、
傾斜洗浄を10回繰り返し実施した。濾過して得られた
沈澱物を乾燥しX線回折で分析した結果、沈澱物は一部
第3りん酸鉄を含むフォスフォフィライト[Zn2Fe(PO4)2
・4H2O]であった。前記フォスフォフィライトを乳鉢で
約2分間粉砕した。粉砕後、水道水で希釈し5μmのペ
ーパーフィルターで濾過を行い濾液を廃棄した。得られ
た沈澱物を80℃で1時間乾燥し、乾燥した粉末1kg
に対し表2の比較例7に示す重合体または共重合体を予
め水で10wt%に希釈溶解したものを100g添加し
た。前記乾燥粉末と重合体または共重合体の混合物を乾
燥粉末の濃度が1g/Lとなるように水道水で調整して
表面調整用処理液として使用した。調整後の懸濁液中の
微粒子の平均粒径をレーザー回折/散乱式粒度分布測定
装置で測定した結果、6.5μmであった。
Comparative Example 7 0.5 mol / heated to 50 ° C.
1 mol of iron (II) sulfate solution 1 L, 1 mol / L zinc sulfate solution 1
00mL and 1mol / L sodium hydrogen phosphate solution 1
00 mL was added alternately to form a precipitate. After heating the aqueous solution containing the precipitate at 90 ° C. for 1 hour to age the precipitated particles,
Gradient washing was repeated 10 times. The precipitate obtained by filtration was dried and analyzed by X-ray diffraction. As a result, the precipitate was found to contain phosphophyllite [Zn 2 Fe (PO 4 ) 2
・ 4H 2 O]. The phosphophyllite was ground in a mortar for about 2 minutes. After crushing, it was diluted with tap water, filtered through a 5 μm paper filter, and the filtrate was discarded. The obtained precipitate was dried at 80 ° C for 1 hour, and 1 kg of dried powder
On the other hand, 100 g of the polymer or copolymer shown in Comparative Example 7 in Table 2 was previously diluted and dissolved in water to 10 wt% and added. A mixture of the dry powder and the polymer or copolymer was adjusted with tap water so that the concentration of the dry powder was 1 g / L, and the mixture was used as a surface conditioning treatment liquid. The average particle size of the fine particles in the adjusted suspension was measured by a laser diffraction / scattering type particle size distribution measuring device, and was 6.5 μm.

【0107】表10に実施例における表面調整用処理液
を用いたりん酸亜鉛処理において得られた化成処理被膜
の被膜特性を示す。また表4の比較例7に比較例7にお
いて得られた化成処理被膜の被膜特性を示す。
Table 10 shows the coating characteristics of the chemical conversion coating obtained by the zinc phosphate treatment using the surface conditioning treatment liquid in the examples. In addition, Comparative Example 7 in Table 4 shows the film properties of the chemical conversion treatment film obtained in Comparative Example 7.

【0108】表10および表4より本発明品である表面
調整用処理液は従来技術の欠点であった経時安定性が著
しく向上していることが確認される。比較例3と実施例
22および実施例27から表面調整効果に対する重合体
または共重合体の効果が明らかとなっている。
From Tables 10 and 4, it is confirmed that the surface conditioning treatment liquid of the present invention has significantly improved stability over time, which was a drawback of the prior art. From Comparative Example 3 and Examples 22 and 27, the effect of the polymer or copolymer on the surface conditioning effect is clear.

【0109】また、比較例3においては表面調整用処理
液として調整した直後は実施例21よりは劣るものの従
来技術である比較例1と同等以上の表面調整効果を有し
ていた。しかし比較例3では、2価もしくは3価の金属
のりん酸塩の粉砕が著しく困難であり、且つ、10日経
時後の処理液には2価もしくは3価の金属のりん酸塩の
沈澱が生じていた。これは比較例3においては重合体ま
たは共重合体を添加していないため、2価もしくは3価
の金属のりん酸塩の再凝集が起こった為である。更に重
合体または共重合体、アルカリ金属の種類、及び処理温
度を変えてもその効果は変わらず従来技術と同等以上に
緻密で微細な結晶を得ることができた。
Immediately after preparation as the surface conditioning treatment liquid in Comparative Example 3, it had a surface conditioning effect equivalent to or better than that of Comparative Example 1 which is a conventional technique, though inferior to Example 21. However, in Comparative Example 3, it was extremely difficult to grind the divalent or trivalent metal phosphate, and the precipitation of the divalent or trivalent metal phosphate was observed in the treatment solution after 10 days. It was happening. This is because the polymer or copolymer was not added in Comparative Example 3, so that re-aggregation of the divalent or trivalent metal phosphate occurred. Furthermore, even if the type of polymer or copolymer, the type of alkali metal, and the treatment temperature were changed, the effect did not change, and it was possible to obtain finer and finer crystals than the prior art.

【0110】[0110]

【表1】 [Table 1]

【0111】[0111]

【表2】 [Table 2]

【0112】[0112]

【表3】 [Table 3]

【0113】[0113]

【表4】 [Table 4]

【0114】[0114]

【表5】 [Table 5]

【0115】[0115]

【表6】 [Table 6]

【0116】[0116]

【表7】 [Table 7]

【0117】[0117]

【表8】 [Table 8]

【0118】[0118]

【表9】 [Table 9]

【0119】[0119]

【表10】 [Table 10]

【0120】[0120]

【発明の効果】前述した通り本発明の表面調整用処理液
は従来技術であるチタンコロイドの欠点であった経時安
定性を格段に向上し、従来技術では不可能であったりん
酸塩被膜結晶サイズを更に微細化することを可能とし
た。従って、本発明の表面調整用処理液を用いた技術は
従来技術と比較して経済的に有利であり、かつ従来技術
と同等以上の性能を与えることを可能としたのである。
As described above, the surface conditioning treatment liquid of the present invention markedly improves the stability over time which is a drawback of the titanium colloid of the prior art, and phosphate coating crystals which were impossible with the prior art. It is possible to further miniaturize the size. Therefore, the technique using the surface conditioning treatment liquid of the present invention is economically advantageous as compared with the conventional technique, and it is possible to provide the performance equal to or higher than that of the conventional technique.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 健介 東京都中央区日本橋1丁目15番1号 日本 パーカライジング株式会社内 (72)発明者 坂内 洋勝 東京都中央区日本橋1丁目15番1号 日本 パーカライジング株式会社内 Fターム(参考) 4K026 AA01 AA02 AA07 AA09 AA12 CA16 CA18 CA23 CA27 CA32 CA33 CA38 EA10 EA15    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kensuke Shimoda             1-151-1 Nihonbashi, Chuo-ku, Tokyo Japan             Within Parkerizing Co., Ltd. (72) Inventor Hirokatsu Sakauchi             1-151-1 Nihonbashi, Chuo-ku, Tokyo Japan             Within Parkerizing Co., Ltd. F-term (reference) 4K026 AA01 AA02 AA07 AA09 AA12                       CA16 CA18 CA23 CA27 CA32                       CA33 CA38 EA10 EA15

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】2価およびまたは3価の金属の1種以上を
含有するりん酸塩から選ばれる1種以上のりん酸塩粒子
と、促進成分として正りん酸もしくはポリりん酸または
これらのりん酸塩の1種以上とを含有することを特徴と
する、金属のりん酸塩被膜化成処理前の表面調整用処理
液。
1. Particles of one or more kinds of phosphates selected from phosphates containing one or more kinds of divalent and / or trivalent metals, and orthophosphoric acid or polyphosphoric acid or phosphorus thereof as a promoting component. A treatment liquid for surface conditioning before metal phosphate coating conversion treatment, which comprises one or more acid salts.
【請求項2】上記促進成分は、上記りん酸塩粒子の表面
に吸着する能力を有していることを特徴とする、請求項
1の表面調整用処理液。
2. The surface conditioning treatment liquid according to claim 1, wherein the accelerating component has an ability to be adsorbed on the surface of the phosphate particles.
【請求項3】上記促進成分は、被処理金属表面に吸着す
る能力を有していることを特徴とする、請求項1または
請求項2の表面調整用処理液。
3. The surface conditioning treatment liquid according to claim 1, wherein the accelerating component has the ability to be adsorbed on the surface of the metal to be treated.
【請求項4】上記りん酸塩粒子が凝集沈降しないことを
特徴とする、請求項1ないし請求項3の表面調整用処理
液。
4. The surface conditioning treatment liquid according to any one of claims 1 to 3, wherein the phosphate particles do not aggregate and settle.
【請求項5】上記りん酸塩粒子が粒径5μm以下のもの
を含み、その濃度が0.001〜30g/Lであり、且
つ、2価およびまたは3価の金属の1種以上がZn、F
e、Mn、Ni、Co、Ca、およびAlの中から選ば
れることを特徴とする、請求項1から請求項4の何れか
の金属のりん酸塩被膜化成処理前の表面調整用処理液。
5. The phosphate particles include those having a particle size of 5 μm or less, the concentration thereof is 0.001 to 30 g / L, and one or more kinds of divalent and / or trivalent metals are Zn, F
A treatment liquid for surface conditioning before metal phosphate coating conversion treatment according to any one of claims 1 to 4, which is selected from e, Mn, Ni, Co, Ca, and Al.
【請求項6】上記促進成分の合計濃度が1〜2000p
pmである、請求項1から請求項5の何れかの金属のり
ん酸塩被膜化成処理前の表面調整用処理液。
6. The total concentration of the accelerating component is 1 to 2000 p.
The surface conditioning treatment liquid before the metal phosphate coating conversion treatment according to any one of claims 1 to 5, which is pm.
【請求項7】更にアルカリ金属塩もしくはアンモニウム
塩またはこれらの混合物を含有することを特徴とする請
求項1から請求項6の何れかの金属のりん酸塩被膜化成
処理前の表面調整用処理液。
7. A treatment liquid for surface conditioning before metal phosphate conversion treatment according to any one of claims 1 to 6, which further contains an alkali metal salt, an ammonium salt or a mixture thereof. .
【請求項8】アルカリ金属塩もしくはアンモニウム塩が
オルソりん酸塩、メタりん酸塩、オルソ珪酸塩、メタ珪
酸塩、炭酸塩、重炭酸塩、硝酸塩、亜硝酸塩、硫酸塩、
ホウ酸塩、および有機酸塩の中から選ばれる少なくとも
1種であり、且つ、その濃度が0.5〜20g/Lであ
る、請求項7に記載の金属のりん酸塩被膜化成処理前の
表面調整用処理液。
8. An alkali metal salt or ammonium salt is orthophosphate, metaphosphate, orthosilicate, metasilicate, carbonate, bicarbonate, nitrate, nitrite, sulfate,
Before metal phosphate coating conversion treatment according to claim 7, which is at least one selected from borate and organic acid salt, and the concentration thereof is 0.5 to 20 g / L. Treatment liquid for surface conditioning.
【請求項9】2価およびまたは3価の金属の1種以上を
含有するりん酸塩から選ばれる1種以上のりん酸塩粒子
と、促進成分を含有することを特徴とする、金属のりん
酸塩被膜化成処理前の表面調整用処理液であって、上記
促進成分は、上記りん酸塩粒子の表面に吸着する能力
と、被処理金属表面に吸着する能力を有していることを
特徴とする、表面調整用処理液。
9. Phosphorus metal comprising one or more phosphate particles selected from phosphates containing one or more divalent and / or trivalent metals and a promoting component. A surface conditioning treatment liquid before acid salt film conversion treatment, wherein the accelerating component has the ability to be adsorbed on the surface of the phosphate particles and the metal surface to be treated. And a treatment liquid for surface conditioning.
【請求項10】上記りん酸塩粒子が凝集沈降しないこと
を特徴とする、請求項9の表面調整用処理液。
10. The surface conditioning treatment liquid according to claim 9, wherein the phosphate particles do not aggregate and settle.
【請求項11】金属表面にりん酸塩化成被膜を形成する
にあたり、あらかじめ該金属表面を請求項1〜10のい
ずれか1項に記載の表面調整用処理液と接触させること
を特徴とする金属のりん酸塩被膜化成処理前の表面調整
方法。
11. A metal characterized by contacting the metal surface with the treatment liquid for surface conditioning according to any one of claims 1 to 10 before forming a phosphate conversion coating on the metal surface. Method of surface preparation before phosphate coating conversion treatment of.
【請求項12】金属表面にりん酸塩化成被膜を形成する
にあたり、金属表面の活性化と清浄化を兼ねて、あらか
じめ該金属表面をノニオン性界面活性剤もしくはアニオ
ン性界面活性剤、またはこれらの混合物と、アルカリビ
ルダーを含む請求項1〜10に記載の表面調整用処理液
と接触させることを特徴とする金属のりん酸塩被膜化成
処理前の表面調整方法。
12. When forming a phosphate chemical conversion coating on a metal surface, the metal surface is previously activated by a nonionic surfactant or anionic surfactant, or both of them are used to activate and clean the metal surface. A surface conditioning method before metal phosphate coating conversion treatment, which comprises bringing the mixture into contact with the surface conditioning treatment solution according to claim 1 containing an alkali builder.
JP2002293417A 1998-07-21 2002-10-07 Treatment liquid for surface control before phosphating metal, and surface controlling method Pending JP2003119572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293417A JP2003119572A (en) 1998-07-21 2002-10-07 Treatment liquid for surface control before phosphating metal, and surface controlling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-204635 1998-07-21
JP20463598 1998-07-21
JP2002293417A JP2003119572A (en) 1998-07-21 2002-10-07 Treatment liquid for surface control before phosphating metal, and surface controlling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13197499A Division JP3451337B2 (en) 1998-07-21 1999-05-12 Treatment solution for surface conditioning before chemical conversion treatment of metal phosphate film and surface conditioning method

Publications (1)

Publication Number Publication Date
JP2003119572A true JP2003119572A (en) 2003-04-23

Family

ID=26514568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293417A Pending JP2003119572A (en) 1998-07-21 2002-10-07 Treatment liquid for surface control before phosphating metal, and surface controlling method

Country Status (1)

Country Link
JP (1) JP2003119572A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257491A (en) * 2005-03-17 2006-09-28 Jfe Steel Kk Method for producing surface-treated steel sheet having excellent corrosion resistance and visual color tone
JP2006299379A (en) * 2005-04-25 2006-11-02 Nippon Paint Co Ltd Surface conditioner and surface conditioning method
WO2009057435A1 (en) * 2007-11-01 2009-05-07 Nihon Parkerizing Co., Ltd. Process for producing surface-regulated aluminum cast
CN101805896A (en) * 2010-03-31 2010-08-18 南车戚墅堰机车车辆工艺研究所有限公司 Casting surface treatment agent and preparation method thereof
CN102094196A (en) * 2011-03-24 2011-06-15 上海奉贤钢管厂 Process for parkerising internal surface of long thin steel tube with manganese phosphate
KR101043076B1 (en) 2003-11-24 2011-06-21 주식회사 포스코 Composition for forming phosphate film of electro-galvanized steel sheets and phosphate treatment method using the same
CN116219418A (en) * 2023-02-13 2023-06-06 东风柳州汽车有限公司 Method for adjusting and phosphating front surface of automobile coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043076B1 (en) 2003-11-24 2011-06-21 주식회사 포스코 Composition for forming phosphate film of electro-galvanized steel sheets and phosphate treatment method using the same
JP2006257491A (en) * 2005-03-17 2006-09-28 Jfe Steel Kk Method for producing surface-treated steel sheet having excellent corrosion resistance and visual color tone
JP2006299379A (en) * 2005-04-25 2006-11-02 Nippon Paint Co Ltd Surface conditioner and surface conditioning method
WO2009057435A1 (en) * 2007-11-01 2009-05-07 Nihon Parkerizing Co., Ltd. Process for producing surface-regulated aluminum cast
JP2009114472A (en) * 2007-11-01 2009-05-28 Nippon Parkerizing Co Ltd Method for producing surface-regulated aluminum casting
US8486491B2 (en) 2007-11-01 2013-07-16 Henkel Ag & Co. Kgaa Process for producing surface conditioned aluminum castings
CN101805896A (en) * 2010-03-31 2010-08-18 南车戚墅堰机车车辆工艺研究所有限公司 Casting surface treatment agent and preparation method thereof
CN102094196A (en) * 2011-03-24 2011-06-15 上海奉贤钢管厂 Process for parkerising internal surface of long thin steel tube with manganese phosphate
CN116219418A (en) * 2023-02-13 2023-06-06 东风柳州汽车有限公司 Method for adjusting and phosphating front surface of automobile coating

Similar Documents

Publication Publication Date Title
JP3451337B2 (en) Treatment solution for surface conditioning before chemical conversion treatment of metal phosphate film and surface conditioning method
JP3451334B2 (en) Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method
RU2428519C2 (en) Composition for prepararation of metal surface before application of coating and procedure for preparing metal surface before application of coating
KR20030096065A (en) Zinc phosphate-containing surface conditioning agent, phosphate conversion-treated steel plate and painted steel plate, and zinc phosphate dispersion
JP3545974B2 (en) Phosphate conversion treatment method for metal materials
JP2001207270A (en) Phosphate chemical conversion treating method for zinc- containing metal plated steel sheet
US6478860B1 (en) Conditioning metal surfaces before phosphating them
JP2003119572A (en) Treatment liquid for surface control before phosphating metal, and surface controlling method
JP3544634B2 (en) Management method of surface conditioning treatment solution for phosphate coating chemical conversion treatment
KR100609482B1 (en) Conditioning liquid and conditioning process used in pretreatment for formation of phosphate layer on the metallic surface
JP2002206176A (en) Aqueous surface conditioner for phosphate treatment and surface conditioning method
JPWO2002031223A1 (en) Surface treatment agent for metal material excellent in press moldability and chemical conversion treatment property and treatment method
US20040112471A1 (en) Aqueous surface conditioner and surface conditioning method for phospating treatment
US4957568A (en) Composition and process for activating metal surfaces prior to zinc phosphating and process for making said composition
WO2002086038A1 (en) Lubricating agent for use in working of metal material, and method for treatment thereof
JP2003119571A (en) Pretreatment liquid for surface control before phosphating metal, and surface controlling method
JP2003160882A (en) Pretreatment liquid for surface conditioning prior to phosphate treatment of metal, and method of surface conditioning
MXPA01000609A (en) Conditioning metal surfaces before phosphating them
JP2003119571A5 (en)
EP0759097B1 (en) Production of phosphate-containing activating agents for phosphatization with the aid of microwaves
CN116590698A (en) Treating agent for forming chemical film layer on metal surface and preparation method thereof
CA3183541A1 (en) Improved activation agent for manganese phosphating processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826