JP3545974B2 - Phosphate conversion treatment method for metal materials - Google Patents

Phosphate conversion treatment method for metal materials Download PDF

Info

Publication number
JP3545974B2
JP3545974B2 JP23006099A JP23006099A JP3545974B2 JP 3545974 B2 JP3545974 B2 JP 3545974B2 JP 23006099 A JP23006099 A JP 23006099A JP 23006099 A JP23006099 A JP 23006099A JP 3545974 B2 JP3545974 B2 JP 3545974B2
Authority
JP
Japan
Prior art keywords
phosphate
chemical conversion
metal
metal material
conversion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23006099A
Other languages
Japanese (ja)
Other versions
JP2001049451A (en
JP2001049451A5 (en
Inventor
洋勝 坂内
康彦 永嶋
隆臣 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP23006099A priority Critical patent/JP3545974B2/en
Priority to US10/049,767 priority patent/US6723178B1/en
Priority to CA002381774A priority patent/CA2381774A1/en
Priority to PCT/US2000/022335 priority patent/WO2001012341A1/en
Priority to EP00955545A priority patent/EP1230033A4/en
Publication of JP2001049451A publication Critical patent/JP2001049451A/en
Application granted granted Critical
Publication of JP3545974B2 publication Critical patent/JP3545974B2/en
Publication of JP2001049451A5 publication Critical patent/JP2001049451A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の属する技術分野】
本発明は、鋼板、亜鉛めっき鋼板、アルミニウム合金、マグネシウム合金等の金属材料に対して塗装密着性、塗装後耐食性に優れた均一被膜を形成させ、且つ、ニッケルイオンを含まないようなりん酸塩化成処理液を使用する金属材料のりん酸塩化成処理方法に関するものである。
【0001】
【従来の技術】
現在、自動車ボディーには、耐食性及び鋼板と塗装との密着性を向上させるために、塗装前処理としてりん酸塩化成処理を施している。これは、金属をチタンコロイド系の表面調整液に接触させた後、りん酸イオン、亜鉛イオン、ニッケルイオン及びマンガンイオンを含む酸性溶液に接触させることにより、金属上にりん酸塩皮膜を析出させる方法である。
【0002】
しかしながら、昨今、環境保全意識の高まりの中、特にヨーロッパにおいてはニッケルの排水規制が厳しくなっており、将来的に日本においてもニッケルの排水規制が厳しくなることが懸念されている。
【0003】
上記のような理由からりん酸亜鉛処理に用いる化成処理液の無ニッケル化が求められている。
【0004】
しかしながら上記のりん酸塩処理プロセスにおけるりん酸塩処理液からニッケルを除いてしまうと、弊害としてりん酸塩被膜結晶の粗大化、りん酸塩被膜の不均一化、塗装後耐食性の低下および亜鉛めっき素材での耐水二次密着性の低下を招いてしまい満足する塗装性能を得ることが出来ない。
【0005】
上記問題点を解決するために、ニッケルを含まないりん酸塩処理方法が特表平7−505445に開示されている。これは、亜鉛イオン0.2〜2g/L、銅イオン0.5〜25mg/L、りん酸イオン5〜30g/Lを含有するりん酸塩化成処理を行う事でニッケルを含有しないりん酸塩被膜を形成させる処理方法である。この方法は銅をニッケル代替金属として使用しているが、銅は化成処理液中での許容量0.5〜25mg/Lと微量であり、実際のラインでこの濃度を管理することは困難であるばかりか、銅めっきに起因する装置(設備)の電食も懸念されるといった問題がある。
【0006】
このような背景からニッケルを含まずとも、現行のニッケル含有りん酸塩化成処理と同等の塗装後密着性や塗装後耐食性を有するりん酸塩化成処理方法の開発が望まれている。
【0007】
【発明が解決しようとする課題】
本発明は、前記従来技術が有するりん酸塩処理の無ニッケル化に伴う問題点を解決するためになされたものであり、金属材料表面をニッケルを含まない化成処理液で処理し、塗装後耐食性及び塗装密着性に優れるりん酸塩化成被膜を形成させるためのりん酸塩化成処理方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、りん酸塩処理の無ニッケル化に伴う問題点を解決するための手段について鋭意検討し、金属材料を特定の表面調整処理後、りん酸塩化成処理すると、化成処理液中にニッケルイオンを含まずとも従来技術と同等の塗装後耐食性及び塗装密着性を付与させることが出来ることを新たに見出し、本発明を完成するに至った。
【0009】
すなわち本発明の第1の金属材料のりん酸塩化成処理方法は、金属材料を粒径が5μm以下の2価およびまたは3価の金属の1種以上を含有するりん酸塩から選ばれる1種以上のりん酸塩粒子と、促進成分として単糖類、多糖類およびその誘導体から選ばれる1種以上とを含有する表面調整液に接触させた後、ニッケルを含まず、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g/L及び化成促進剤を含有するりん酸塩化成処理液に接触させることを特徴とするものである。
【0010】
また、第2の化成処理方法は、金属材料を粒径が5μm以下の2価およびまたは3価の金属の1種以上を含有するりん酸塩から選ばれる1種以上のりん酸塩粒子と、促進成分として正りん酸、ポリりん酸または有機ホスホン酸化合物の1種以上とを含有する表面調整液に接触させた後、ニッケルを含まず、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g/L及び化成促進剤を含有するりん酸塩化成処理液に接触させることを特徴とするものである。
【0011】
また、第3の化成処理方法は、金属材料を粒径が5μm以下の2価およびまたは3価の金属の1種以上を含有するりん酸塩から選ばれる1種以上のりん酸塩粒子と、促進成分として酢酸ビニルの重合体またはその誘導体もしくは酢酸ビニルと共重合可能な単量体と酢酸ビニルとの共重合体からなる水溶性高分子化合物の1種以上とを含有する表面調整液に接触させた後、ニッケルを含まず、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g/L及び化成促進剤を含有するりん酸塩化成処理液に接触させることを特徴とするものである。
【0012】
また、第4の化成処理方法は、金属材料を粒径が5μm以下の2価およびまたは3価の金属の第3りん酸塩から選ばれる1種以上のりん酸塩粒子と、促進成分として下記化学式1に示される単量体もしくはα、β不飽和カルボン酸単量体の中から選ばれる少なくとも1種以上と、酢酸ビニル単量体と共重合可能な単量体50重量%以下とを重合して得られる重合体または共重合体の1種以上とを含有する表面調整液に接触させた後、ニッケルを含まず、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g/L及び化成促進剤を含有するりん酸塩化成処理液に接触させることを特徴とするものである。
【化2】
C=C(R)−COOR ……………化学式1
(式中RはHまたはCH、RはH、Cが1〜5のアルキル基またはCが1〜5のヒドロキシアルキル基)
【0013】
更に、前記化成処理液中に、マグネシウムイオン、コバルトイオン、マンガンイオン、カルシウムイオン、タングステン酸イオン及びストロンチウムイオンからなる群から選ばれる少なくとも1種以上の金属イオンを0.1〜3.0g/L含有させるのが好ましい。
【0014】
【発明の実施の形態】
以下に本発明の内容を詳しく説明する。、本発明のりん酸塩処理方法を施される金属は、特に制限を受けるものではないが、鋼板、亜鉛めっき鋼板、亜鉛合金めっき鋼板、マグネシウム合金およびアルミニウム合金であることが好ましい。
【0015】
本発明においては、まず、りん酸塩化成処理の前に金属材料の表面を清浄にしておく必要がある。従って、予め表面が清浄な金属材料であれば、そのまま表面調整液に接触させることが可能であるが、鉄粉、ゴミ、油等の付着物により表面が汚染されている金属材料を処理する場合は、水系のアルカリ脱脂、エマルジョン脱脂、溶剤脱脂等の洗浄方法により表面に付着している汚染物質を除去しておく必要がある。なお、水系洗浄剤を使用する場合は洗浄後に水洗工程等を設け、金属表面に付着している洗浄液を除去しておくことが好ましい。
【0016】
次に本発明の表面調整工程について詳細に説明する。本発明表面調整液中に含まれる2価もしくは3価の金属のりん酸塩粒子は、粒径が5μm以下である事が必要である。この適用外では、水溶液中に不溶性物質が安定に存在できない場合があるので好ましくない。このりん酸塩粒子は、りん酸塩の結晶が析出する際の核となるばかりでなく析出反応そのものを促進する効果を担っている。すなわち表面調整工程において金属表面に吸着した2価もしくは3価の金属のりん酸塩粒子の一部はりん酸塩化成処理浴中で溶解することによって、金属表面のごく近傍にりん酸塩結晶の主成分を供給するため、りん酸塩結晶の初期析出反応を著しく促進するのである。
【0017】
尚、2価もしくは3価の金属としては、特に限定は無いが、Zn、Fe、Mn、Co、Ca、Mg及びAlの中から選ばれる少なくとも1種が好ましい。りん酸塩結晶が析出する際の核となり、且つ、りん酸塩結晶の初期析出反応を促進するためには、2価もしくは3価の金属のりん酸塩粒子濃度としては0.001〜30g/Lが好ましい。なぜならば、2価もしくは3価の金属のりん酸塩粒子の濃度が0.001g/Lよりも小さいと金属表面に吸着する2価もしくは3価の金属のりん酸塩粒子の量が少ないためにりん酸塩結晶の初期析出反応を促進することが出来ず、また結晶の核となる2価もしくは3価の金属のりん酸塩粒子が少ないために結晶の析出反応は促進されない。2価もしくは3価の金属のりん酸塩粒子濃度が30g/Lより大きくても、それ以上はりん酸塩化成処理反応を更に促進する効果は期待できず経済的に不利なだけである。
【0018】
本発明の表面調整液に必須に含有せしめる促進成分は2価もしくは3価の金属のりん酸塩粒子の分散安定性を高め、且つ、2価もしくは3価の金属のりん酸塩粒子の金属表面への吸着を促進する働きを有している。すなわち促進成分は、2価もしくは3価の金属のりん酸塩粒子表面に吸着し、その電荷による反発力および立体障害作用によって表面調整液中での2価もしくは3価の金属のりん酸塩粒子同士の衝突を妨げることによって凝集沈降を防止する。また促進成分は、その構造上金属表面への吸着能力を有しているため2価もしくは3価の金属のりん酸塩粒子の金属表面への吸着を促進し表面調整液へ被処理金属を接触させるだけで表面調整効果が得られるようになるのである。
【0019】
前記促進成分の濃度は、1〜2000ppmであることが望ましい。この濃度が1ppm未満では被処理金属を表面調整液に接触させただけでは表面調整効果が発揮されず、2000ppmを越えるとそれ以上の効果は期待できないばかりか、過剰な重合体または共重合体が被処理金属表面に吸着しりん酸塩化成処理を妨害する恐れがある。
【0020】
本発明の第1のりん酸塩化成処理方法における表面調整工程では、促進成分として単糖類、多糖類及びその誘導体から選ばれる1種以上を含有せしめる。本発明に用いられる単糖類、多糖類、及びその誘導体の基本構成糖類としては、例えばフルクトース、タガトース、プシコース、スルボース、エリトース、トレオース、リボース、アラビノース、キシロース、リキソース、アロース、アルトース、グルコース、マンノース、グロース、イドース、ガラクトース及びタロースなどから選ぶことが出来る。
【0021】
また、単糖類、多糖類及びその誘導体のナトリウム塩またはアンモニウム塩を使用しても何ら問題はない。
【0022】
本発明の第2のりん酸塩化成処理方法における表面調整工程では、促進成分として、正りん酸、ポリりん酸または有機ホスホン酸化合物の1種以上を含有せしめる。正りん酸はオルソりん酸であり、ポリりん酸としてはピロりん酸、トリりん酸、トリメタりん酸、テトラメタりん酸、ヘキサメタりん酸もしくはそのナトリウム塩及びアンモニウム塩を使用することができる。また、有機ホスホン酸化合物としてはアミノトリメチレンホスホン酸、1−ヒドロキシエチリデン−1、1−ジホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸もしくはそのナトリウム塩等を使用することができる。更に、前記正りん酸、ポリりん酸または有機ホスホン酸化合物の1種類を使用しても何種類かを組み合わせて使用しても何ら差し支えない。
【0023】
本発明の第3のりん酸塩化成処理方法における表面調整工程では、促進成分として酢酸ビニルの重合体またはその誘導体もしくは酢酸ビニルと共重合可能な単量体と酢酸ビニルとの共重合体からなる水溶性高分子化合物の1種以上を含有せしめる。本発明における酢酸ビニルの重合体またはその誘導体としては、酢酸ビニル重合体のケン化物であるポリビニルアルコール、更にポリビニルアルコールをアクリロニトリルによるシアノエチル化して得られるシアノエチル化ポリビニルアルコール、ポリビニルアルコールをホルマリンによるアセタール化して得られるホルマール化ポリビニルアルコール、ポリビニルアルコールを尿素によるウレタン化して得られるウレタン化ポリビニルアルコール、及びポリビニルアルコールにカルボキシル基、スルホン基、アミド基を導入した水溶性高分子化合物を使用することが出来る。また、本発明における酢酸ビニルと共重合可能な単量体としてはアクリル酸、クロトン酸、無水マレイン酸等を使用することが出来る。
【0024】
前記酢酸ビニルの重合体またはその誘導体もしくは酢酸ビニルと共重合可能な単量体と酢酸ビニルとの共重合体は水溶性でさえあれば本発明における効果を十分に発揮することが出来る。従ってその重合度及び官能基の導入率に効果が左右されることはなく、また前記単量体もしくは共重合体の1種類を使用しても何種類かを組み合わせて使用しても何ら差し支えない。
【0025】
本発明の第4のりん酸塩化成処理方法における表面調整工程では、促進成分として下記化学式1に示される単量体もしくはα、β不飽和カルボン酸単量体の中から選ばれる少なくとも1種以上と前記単量体と共重合可能な単量体50重量%以下とを重合して得られる重合体もしくは共重合体を含有せしめる。
【0026】
【化3】
C=C(R)−COOR ……………化学式1
(式中RはHまたはCH、RはH、Cが1〜5のアルキル基またはCが1〜5のヒドロキシアルキル基)
【0027】
化学式1に示される単量体としてはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヒドロキシメチル、アクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、アクリル酸ヒドロキシブチル、アクリル酸ヒドロキシペンチル、メタクリル酸ヒドロキシメチル、メタクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシペンチル等を使用することができる。
【0028】
またα、β不飽和カルボン酸単量体としてはアクリル酸、メタクリル酸、マレイン酸等を使用することができる。前記単量体と共重合可能な単量体としては酢酸ビニル、スチレン、塩化ビニル、ビニルスルホン酸等を使用することができる。また前記単量体のうち1種類の単量体を重合して得られた重合体を使用しても、前記単量体の何種類かを組み合わせて重合して得られた共重合体を使用しても何ら差し支えない。
【0029】
更に本発明のりん酸塩処理方法で用いる表面調整液にはアルカリ金属塩もしくはアンモニウム塩またはそれらの混合物を含有することができる。アルカリ金属塩もしくはアンモニウム塩としてはオルソりん酸塩、メタりん酸塩、オルソケイ酸塩、メタケイ酸塩、炭酸塩、重炭酸塩、硝酸塩、亜硝酸塩、硫酸塩、ホウ酸塩、および有機酸塩の群から選ばれる少なくとも1種の塩の形であれば特に限定されるものではない。また、前記アルカリ金属塩もしくはアンモニウム塩を2種以上組み合わせて使用しても何ら問題はない。その濃度としては特に限定は無いが、0.5〜20g/Lである事が好ましい。
【0030】
次に本発明のりん酸塩化成処理工程について詳細に説明する。
本発明で用いられるりん酸塩化成処理液は、基本的にニッケルイオンを含まず、亜鉛イオン、りん酸イオン、及び化成促進剤を含有する酸性水溶液である。このりん酸塩化成処理液における亜鉛イオン濃度は0.5〜5.0g/Lであることが好ましい。亜鉛イオンが0.5g/L未満であると、充分な量の被膜を形成することができないことがあり、形成させるりん酸塩結晶の被覆率が低下するので、塗装後の耐食性が不十分になることがある。またそれが5.0g/Lを越えた場合、被膜結晶が粗大化し、特に塗装後の密着性が低下することがある。
【0031】
りん酸塩化成処理液中のりん酸イオン濃度は5.0〜30g/Lであることが好ましい。それが5.0g/L未満であると、正常な化成被膜の形成が困難になることがあり、またそれが30.0g/Lを越えると、その効果が飽和し経済的に不利になることがある。りん酸イオンは、りん酸またはその水溶液をりん酸塩化成処理液に添加するか、あるいはナトリウム、マグネシウムまたは亜鉛等のりん酸塩をりん酸塩化成処理液中に溶解することにより供給することができる。
【0032】
化成処理液中には化成促進剤と称される酸化剤を含有せしめる。本発明中りん酸塩化成処理工程で使用される化成促進剤は、その酸化作用により、エッチング時に生ずるカソード部において水素イオンと被処理金属表面から供給される電子から水を生ずることができる物質、即ち、エッチング時の水素発生を抑えるような作用(減極作用)を示すものであれば、特に限定されるものではない。
【0033】
更に、本発明においては、りん酸塩化成処理液には、マグネシウムイオン、コバルトイオン、マンガンイオン、カルシウムイオン、タングステン酸イオン及びストロンチウムイオンからなる群から選ばれる少なくとも1種以上の金属イオンまたは金属酸化物イオンを0.1g/L〜3.0g/L含有せしめることができる。これらの成分は、りん酸塩皮膜に取り込まれるか或いはりん酸塩とは別の形態で析出することにより、塗装後耐食性或いは塗装後密着性において更なる性能向上を付与するためにりん酸塩化成処理液中に含有する。これら金属イオンまたは金属酸化物イオンの濃度が0.1g/Lよりも小さい場合、塗装性能に対する向上効果は期待できず無意味である。また、これら金属イオンまたは金属酸化物イオンの濃度が3.0g/Lよりも大きい場合、塗装性能に対する向上効果が飽和し経済的に不利であるばかりか、りん酸塩処理の主成分たるりん酸亜鉛の析出を妨害することがある。
【0034】
また、前記金属イオン源には、各金属の酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩、りん酸塩等を用いることが出来る。前記金属酸化物イオン源には、ナトリウム塩、カリウム塩等を用いることが出来る。
【0035】
尚、前記金属イオンまたは金属酸化物イオンは、1種類を含有しても何種類かを組み合わせて含有しても何ら差し支えない。
【0036】
りん酸塩化成処理液中には、被処理金属表面を均一にエッチングさせるためにエッチング剤を添加していてもよい。エッチング剤としてはフッ化物イオン、あるいは珪フッ化物イオン等の錯フッ化物イオンを用いることができる。これらのフッ素化合物としては、例えばフッ化水素酸、珪フッ化水素酸あるいはそれぞれの金属塩(ナトリウム塩、カリウム塩)を用いることができる。
【0037】
りん酸塩化成処理は、浸漬法、スプレー法あるいはこれらの組み合わせにより行うことができる。処理時間は1〜5分程度でよく、これによって実用上充分な化成被膜を形成することができる。また、りん酸塩化成処理液の温度は30〜60℃であることが好ましい。
【0038】
尚、りん酸塩化成処理後は、水洗し、最終水洗に脱イオン水を用いるのが好ましい。
【0039】
本技術を塗装下地用として使用する場合、被膜重量1.5〜5g/mの薄膜で緻密なりん酸塩化成被膜の形成が必要である。しかしながら、従来のチタンコロイド系の表面調整処理後、ニッケル成分を含まないりん酸塩化成処理行うと、薄膜で緻密なりん酸塩化成皮膜を得ることは難しく、本発明における表面調整工程が、薄膜で緻密なりん酸塩化成皮膜を得るための必須条件となる。
【0040】
【実施例】
次に実際の処理について実施例と比較例を示し、本発明の効果を具体的に説明する。なお、実施例は、本発明の用途例を挙げたにすぎず、本発明の用途、および対応素材を何ら制限するものではない。
【0041】
1.試験材料
電気亜鉛めっき鋼板[EG](板厚:0.8mm、めっき付着量:20g/m)、合金化溶融亜鉛めっき鋼板[GA](板厚:0.8mm、めっき付着量:45g/m)、冷延鋼板[CRS](板厚:0.8mm、SPCC−SD)、下記の実施例および比較例の処理を行った。
【0042】
実施例および比較例に共通の処理工程を以下に示す。
(1)脱脂[ファインクリーナーL4460(登録商標:日本パーカライジング(株)社製アルカリ脱脂剤)]A剤20g/L、B剤12g/L、43℃、120秒、浸漬
(2)水洗[水道水]
常温、30秒、スプレー
(3)表面調整
条件は後記実施例および比較例中に記載した。尚、チタンコロイド系の表面調整処理を行ったものについては、プレパレンZN(日本ハ゜ーカライシ゛ンク゛(株) 製)を使用した。
(4)りん酸塩化成処理
条件は後記実施例および比較例中に記載
但し、処理時間は全て120秒に設定した
(5)水洗[水道水]
常温、30秒、スプレー
(6)脱イオン水[脱イオン水(電気伝導度:0.2μS/cm以下)]
常温、20秒、スプレー
(7)水切り乾燥 90℃熱風、120秒
【0043】
実施例及び比較例により処理した試験材料の塗装性能試験方法について説明する。
【0044】
被膜外観評価については、○および×の2グレードで評価した。
○:均一な被膜
×:スケムラの著しい被膜
【0045】
耐水二次密着試験条件および評価方法について説明する。温度を40℃に保持し、エアーバブリングを施してある温水浴に3コート板を240時間浸漬させた。温水浴から引き上げた後、2時間放置し、2mm碁盤目カットを施しテープ剥離により剥離状況を評価した。
(評価方法)
剥離状況を◎○×の3グレードで評価した。
◎:全く剥離しなかったもの
○:碁盤目カットエッヂ部に若干の剥離が認められるもの
×:剥離が著しいもの
【0046】
温塩水浸漬試験条件および評価方法について説明する。温度を55℃に保持し、エアーバブリングを施してある5wt%の塩水浴に、アクリルカッターにてクロスカットを入れた電着単膜板を240時間浸漬させた。塩水浴から引き上げ、1時間放置した後、クロスカット部をテープ剥離し、カット部からの剥離幅にて評価した。
(評価方法)
剥離状況を◎○×の3グレードで評価した。

Figure 0003545974
【0047】
塩水噴霧試験条件および評価方法について説明する。温度を35℃に保持し、5wt%塩水を用いた塩水噴霧試験機を用いて、アクリルカッターにてクロスカットを入れた電着単膜板を試験した。(JIS Z 2371に準ずる)規定時間後取り出し、水洗後クロスカット部の腐食状況を評価した。
(評価方法)
腐食状況を◎○×の3グレードで評価した。
CRS(塩水噴霧試験時間:960時間)
◎:両側最大錆幅4mm未満
○:両側最大錆幅4mm以上 5mm未満
×:両側最大錆幅5mm以上
Znめっき(塩水噴霧試験時間:480時間)
◎:片側最大錆幅4mm未満
○:片側最大錆幅4mm以上 5mm未満
×:両側最大錆幅5mm以上
【0048】
【実施例1〜25】
実施例1〜25の表面調整方法びりん酸塩処理方法を表1,2,7,12,17に示す。
【0049】
【比較例1〜40】
比較例1〜40の表面調整方法びりん酸塩処理方法を表3,4,8,9,13,14,18,19に示す。
【0050】
各実施例および比較例により処理した試験材料の化成外観および塗装性能試験結果を表5,6,10,11,15,16,20,21に示す。
【0051】
【表1】
実施例1〜5
Figure 0003545974
【0052】
【表2】
実施例6〜10
Figure 0003545974
【0053】
【表3】
比較例1〜5
Figure 0003545974
【0054】
【表4】
比較例6〜10
Figure 0003545974
【0055】
【表5】
実施例1〜10の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0056】
【表6】
比較例1〜10の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0057】
【表7】
実施例11〜15
Figure 0003545974
【0058】
【表8】
比較例11〜15
Figure 0003545974
【0059】
【表9】
比較例16〜20
Figure 0003545974
【0060】
【表10】
実施例11〜15の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0061】
【表11】
比較例11〜20の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0062】
【表12】
実施例16〜20
Figure 0003545974
【0063】
【表13】
比較例21〜25
Figure 0003545974
【0064】
【表14】
比較例26〜30
Figure 0003545974
【0065】
【表15】
実施例16〜20の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0066】
【表16】
比較例21〜30の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0067】
【表17】
実施例21〜25
Figure 0003545974
【0068】
【表18】
比較例31〜35
Figure 0003545974
【0069】
【表19】
比較例36〜40
Figure 0003545974
【0070】
【表20】
実施例21〜25の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0071】
【表21】
比較例31〜40の化成被膜外観及び塗装性能試験結果
Figure 0003545974
【0072】
【発明の効果】
以上記載したとおり、本発明の金属材料のりん酸塩処理方法は、ニッケルを含まず環境保全の点で優れており、且つ、鉄鋼、亜鉛めっき等いろいろな金属材料表面に充分に均一なりん酸塩被膜が得られ、塗装密着性、塗装後耐食性に優れている点で非常に有用である。BACKGROUND OF THE INVENTION
The present invention forms a uniform film excellent in coating adhesion and post-coating corrosion resistance on a metal material such as a steel plate, a galvanized steel plate, an aluminum alloy, and a magnesium alloy, and does not contain nickel ions. The present invention relates to a phosphate chemical conversion treatment method for metal materials using a chemical treatment solution.
[0001]
[Prior art]
Currently, in order to improve the corrosion resistance and the adhesion between the steel sheet and the coating, the automobile body is subjected to a phosphate chemical conversion treatment as a pretreatment for coating. This is because a phosphate film is deposited on a metal by bringing the metal into contact with a titanium colloidal surface conditioning solution and then in contact with an acidic solution containing phosphate ions, zinc ions, nickel ions and manganese ions. Is the method.
[0002]
However, in recent years, with increasing awareness of environmental conservation, nickel drainage regulations have become stricter, especially in Europe, and there are concerns that nickel drainage regulations will become stricter in Japan in the future.
[0003]
For the above reasons, there is a demand for nickel-free chemical conversion treatment solutions used for zinc phosphate treatment.
[0004]
However, if nickel is removed from the phosphating solution in the phosphating process described above, adverse effects include coarsening of the phosphate coating crystals, non-uniformity of the phosphate coating, reduced corrosion resistance after coating, and galvanization. The water-resistant secondary adhesion of the material is lowered, and satisfactory coating performance cannot be obtained.
[0005]
In order to solve the above-mentioned problems, a nickel-free phosphating method is disclosed in JP 7-505445. This is a phosphate that does not contain nickel by performing a phosphate conversion treatment containing zinc ions 0.2 to 2 g / L, copper ions 0.5 to 25 mg / L, and phosphate ions 5 to 30 g / L. It is the processing method which forms a film. Although this method uses copper as a nickel substitute metal, copper is a trace amount of 0.5 to 25 mg / L in the chemical conversion solution, and it is difficult to control this concentration in an actual line. In addition, there is a problem that there is a concern about electrolytic corrosion of equipment (equipment) due to copper plating.
[0006]
From such a background, it is desired to develop a phosphate chemical conversion treatment method having post-coating adhesion and post-coating corrosion resistance equivalent to those of the current nickel-containing phosphate chemical conversion treatment, even without nickel.
[0007]
[Problems to be solved by the invention]
The present invention was made to solve the problems associated with the nickel-free phosphate treatment of the prior art, and the metal material surface was treated with a chemical conversion treatment solution containing no nickel, followed by corrosion resistance after coating. It is another object of the present invention to provide a phosphate chemical conversion treatment method for forming a phosphate chemical conversion film having excellent coating adhesion.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied a means for solving the problems associated with nickel-free phosphoric acid treatment, and when a metal material is subjected to a phosphate chemical conversion treatment after a specific surface conditioning treatment, Thus, the present inventors have newly found that post-coating corrosion resistance and paint adhesion equivalent to those of the prior art can be imparted without including nickel ions.
[0009]
That is, the first metal material phosphate conversion treatment method of the present invention is a metal material selected from phosphates containing one or more divalent and / or trivalent metals having a particle size of 5 μm or less. After contacting with the surface conditioning liquid containing the above phosphate particles and one or more selected from monosaccharides, polysaccharides and derivatives thereof as an accelerating component, nickel is not included, and zinc ions are added in an amount of 0.5 to It is characterized in that it is brought into contact with a phosphate chemical conversion treatment solution containing 5 g / L, 5 to 30 g / L of phosphate ions and a chemical conversion accelerator.
[0010]
Further, the second chemical conversion treatment method comprises one or more phosphate particles selected from phosphates containing one or more of divalent and / or trivalent metals having a particle size of 5 μm or less as the metal material, After contacting with a surface conditioning solution containing at least one of orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compound as an accelerating component, nickel is not contained, zinc ion is 0.5-5 g / L, phosphoric acid Ion is brought into contact with a phosphate chemical conversion treatment solution containing 5 to 30 g / L and a chemical conversion accelerator.
[0011]
Further, the third chemical conversion treatment method comprises one or more phosphate particles selected from phosphates containing one or more of divalent and / or trivalent metals having a particle size of 5 μm or less as the metal material, Contact with a surface conditioning solution containing, as an accelerating component, a polymer of vinyl acetate or a derivative thereof, or a monomer copolymerizable with vinyl acetate and one or more water-soluble polymer compounds comprising a copolymer of vinyl acetate. Then, it is made to contact with a phosphate chemical conversion treatment solution containing no nickel, 0.5 to 5 g / L of zinc ions, 5 to 30 g / L of phosphate ions, and a chemical conversion accelerator. Is.
[0012]
Further, the fourth chemical conversion treatment method includes one or more phosphate particles selected from divalent and / or trivalent metal tertiary phosphates having a particle size of 5 μm or less, and the following as an accelerating component: Polymerize at least one selected from monomers represented by Chemical Formula 1 or α, β unsaturated carboxylic acid monomers and 50 wt% or less of monomers copolymerizable with vinyl acetate monomer. After contact with a surface conditioning solution containing one or more of the polymers or copolymers obtained in this way, nickel is not included, zinc ions are 0.5-5 g / L, phosphate ions 5-30 g. / L and a chemical conversion treatment solution containing a chemical conversion accelerator are brought into contact with each other.
[Chemical formula 2]
H 2 C═C (R 1 ) -COOR 2 ............ chemical formula 1
(Wherein R 1 is H or CH 3 , R 2 is H, C is an alkyl group of 1 to 5 or C is a hydroxyalkyl group of 1 to 5)
[0013]
Furthermore, 0.1 to 3.0 g / L of at least one metal ion selected from the group consisting of magnesium ions, cobalt ions, manganese ions, calcium ions, tungstate ions and strontium ions in the chemical conversion solution. It is preferable to contain.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described in detail below. The metal subjected to the phosphate treatment method of the present invention is not particularly limited, but is preferably a steel plate, a galvanized steel plate, a zinc alloy plated steel plate, a magnesium alloy, and an aluminum alloy.
[0015]
In the present invention, first, it is necessary to clean the surface of the metal material before the phosphate chemical conversion treatment. Therefore, if the metal material has a clean surface in advance, it can be brought into contact with the surface conditioning solution as it is. However, when processing a metal material whose surface is contaminated with deposits such as iron powder, dust and oil. It is necessary to remove contaminants adhering to the surface by a cleaning method such as aqueous alkaline degreasing, emulsion degreasing and solvent degreasing. In addition, when using a water-system cleaning agent, it is preferable to provide the water washing process etc. after washing | cleaning and to remove the washing | cleaning liquid adhering to the metal surface.
[0016]
Next, the surface adjustment process of the present invention will be described in detail. The divalent or trivalent metal phosphate particles contained in the surface conditioning solution of the present invention must have a particle size of 5 μm or less. Outside this application, insoluble substances may not be stably present in the aqueous solution, which is not preferable. These phosphate particles not only serve as nuclei for precipitation of phosphate crystals, but also promote the precipitation reaction itself. That is, a part of the divalent or trivalent metal phosphate particles adsorbed on the metal surface in the surface conditioning step is dissolved in the phosphate chemical treatment bath, so that phosphate crystals are formed in the vicinity of the metal surface. Since the main component is supplied, the initial precipitation reaction of phosphate crystals is significantly accelerated.
[0017]
The divalent or trivalent metal is not particularly limited, but at least one selected from Zn, Fe, Mn, Co, Ca, Mg, and Al is preferable. In order to serve as a nucleus for precipitation of phosphate crystals and promote the initial precipitation reaction of phosphate crystals, the concentration of divalent or trivalent metal phosphate particles is 0.001 to 30 g / L is preferred. This is because when the concentration of divalent or trivalent metal phosphate particles is less than 0.001 g / L, the amount of divalent or trivalent metal phosphate particles adsorbed on the metal surface is small. The initial precipitation reaction of the phosphate crystal cannot be promoted, and the crystal precipitation reaction is not promoted because there are few divalent or trivalent metal phosphate particles serving as the nucleus of the crystal. Even if the phosphate particle concentration of the divalent or trivalent metal is higher than 30 g / L, the effect of further promoting the phosphate chemical conversion reaction cannot be expected, and it is only economically disadvantageous.
[0018]
The accelerating component essential to be included in the surface conditioning liquid of the present invention enhances the dispersion stability of divalent or trivalent metal phosphate particles, and the metal surface of divalent or trivalent metal phosphate particles. It has a function of promoting adsorption. That is, the accelerating component is adsorbed on the surface of the divalent or trivalent metal phosphate particles, and the divalent or trivalent metal phosphate particles in the surface conditioning solution due to the repulsive force and steric hindrance due to the charge. Aggregation and sedimentation are prevented by preventing collision between each other. The accelerating component also has the ability to adsorb to the metal surface due to its structure, so that the adsorption of divalent or trivalent metal phosphate particles to the metal surface is promoted and the treated metal is brought into contact with the surface conditioning solution. The surface adjustment effect can be obtained simply by making it.
[0019]
The concentration of the promoting component is preferably 1 to 2000 ppm. If the concentration is less than 1 ppm, the surface adjustment effect cannot be exhibited only by bringing the metal to be treated into contact with the surface adjustment liquid. If the concentration exceeds 2000 ppm, not only a further effect can be expected, but an excessive amount of polymer or copolymer may not be obtained. There is a risk of adsorbing on the surface of the metal to be treated and hindering the phosphate chemical conversion treatment.
[0020]
In the surface conditioning step in the first phosphate chemical treatment method of the present invention, at least one selected from monosaccharides, polysaccharides and derivatives thereof is contained as an accelerating component. Examples of basic constituent sugars of monosaccharides, polysaccharides and derivatives thereof used in the present invention include, for example, fructose, tagatose, psicose, sulbose, erythose, threose, ribose, arabinose, xylose, lyxose, allose, altose, glucose, mannose, You can choose from growth, idose, galactose and talose.
[0021]
There is no problem even if sodium salts or ammonium salts of monosaccharides, polysaccharides and derivatives thereof are used.
[0022]
In the surface conditioning step in the second phosphate chemical conversion treatment method of the present invention, at least one of orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compound is contained as an accelerating component. Orthophosphoric acid is orthophosphoric acid, and as polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, trimetaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid or a sodium salt and an ammonium salt thereof can be used. As the organic phosphonic acid compound, aminotrimethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid or a sodium salt thereof can be used. Further, one kind of the above-mentioned orthophosphoric acid, polyphosphoric acid or organic phosphonic acid compound may be used or several kinds may be used in combination.
[0023]
The surface conditioning step in the third phosphate chemical conversion treatment method of the present invention comprises a vinyl acetate polymer or a derivative thereof or a copolymer of vinyl acetate and a monomer copolymerizable with vinyl acetate as an accelerating component. One or more water-soluble polymer compounds are contained. Examples of the vinyl acetate polymer or derivative thereof in the present invention include polyvinyl alcohol which is a saponified product of vinyl acetate polymer, cyanoethylated polyvinyl alcohol obtained by cyanoethylating polyvinyl alcohol with acrylonitrile, and polyvinyl alcohol acetalized with formalin. Formalized polyvinyl alcohol, urethanized polyvinyl alcohol obtained by urethanizing polyvinyl alcohol with urea, and water-soluble polymer compounds in which carboxyl groups, sulfone groups, and amide groups are introduced into polyvinyl alcohol can be used. Moreover, acrylic acid, crotonic acid, maleic anhydride, etc. can be used as a monomer copolymerizable with vinyl acetate in the present invention.
[0024]
The vinyl acetate polymer or a derivative thereof, or a copolymer of a monomer copolymerizable with vinyl acetate and a vinyl acetate copolymer can sufficiently exhibit the effects of the present invention as long as it is water-soluble. Therefore, the effect is not affected by the degree of polymerization and the rate of introduction of functional groups, and there is no problem even if one kind of the monomer or copolymer is used or several kinds are used in combination. .
[0025]
In the surface conditioning step in the fourth phosphate chemical conversion treatment method of the present invention, at least one or more selected from monomers represented by the following chemical formula 1 or α, β unsaturated carboxylic acid monomers as an accelerating component: And a polymer or copolymer obtained by polymerizing 50% by weight or less of a monomer copolymerizable with the monomer.
[0026]
[Chemical Formula 3]
H 2 C═C (R 1 ) -COOR 2 ............ chemical formula 1
(Wherein R 1 is H or CH 3 , R 2 is H, C is an alkyl group of 1 to 5 or C is a hydroxyalkyl group of 1 to 5)
[0027]
As the monomer represented by Chemical Formula 1, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, hydroxymethyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, Hydroxypentyl acrylate, hydroxymethyl methacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, hydroxypentyl methacrylate, and the like can be used.
[0028]
Further, acrylic acid, methacrylic acid, maleic acid and the like can be used as the α, β unsaturated carboxylic acid monomer. As the monomer copolymerizable with the monomer, vinyl acetate, styrene, vinyl chloride, vinyl sulfonic acid and the like can be used. In addition, even if a polymer obtained by polymerizing one kind of monomers among the above monomers is used, a copolymer obtained by polymerizing several kinds of the monomers is used. It doesn't matter what.
[0029]
Furthermore, the surface conditioning solution used in the phosphating method of the present invention may contain an alkali metal salt, an ammonium salt or a mixture thereof. Alkali metal salts or ammonium salts include orthophosphates, metaphosphates, orthosilicates, metasilicates, carbonates, bicarbonates, nitrates, nitrites, sulfates, borates, and organic acid salts. There is no particular limitation as long as it is in the form of at least one salt selected from the group. Further, there is no problem even if two or more alkali metal salts or ammonium salts are used in combination. Although there is no limitation in particular as the density | concentration, it is preferable that it is 0.5-20 g / L.
[0030]
Next, the phosphate chemical conversion treatment step of the present invention will be described in detail.
The phosphate chemical conversion treatment solution used in the present invention is an acidic aqueous solution basically containing no nickel ions but containing zinc ions, phosphate ions, and a chemical conversion accelerator. The zinc ion concentration in the phosphate chemical conversion treatment solution is preferably 0.5 to 5.0 g / L. If the zinc ion is less than 0.5 g / L, a sufficient amount of the coating may not be formed, and the coverage of the phosphate crystals to be formed is lowered, resulting in insufficient corrosion resistance after coating. May be. Moreover, when it exceeds 5.0 g / L, a film crystal | crystallization will coarsen and the adhesiveness after a coating may fall especially.
[0031]
The phosphate ion concentration in the phosphate chemical conversion treatment solution is preferably 5.0 to 30 g / L. If it is less than 5.0 g / L, it may be difficult to form a normal chemical conversion film. If it exceeds 30.0 g / L, the effect is saturated and economically disadvantageous. There is. Phosphate ions can be supplied by adding phosphoric acid or its aqueous solution to the phosphate chemical treatment solution or by dissolving phosphates such as sodium, magnesium or zinc in the phosphate chemical treatment solution. it can.
[0032]
The chemical conversion treatment liquid contains an oxidizing agent called a chemical conversion accelerator. The chemical conversion accelerator used in the phosphate chemical conversion treatment step in the present invention is a substance capable of generating water from the hydrogen ions and electrons supplied from the surface of the metal to be processed at the cathode portion generated during the etching due to its oxidation action. That is, there is no particular limitation as long as it exhibits an action (depolarization action) that suppresses the generation of hydrogen during etching.
[0033]
Furthermore, in the present invention, the phosphate chemical conversion treatment solution contains at least one metal ion selected from the group consisting of magnesium ion, cobalt ion, manganese ion, calcium ion, tungstate ion and strontium ion, or metal oxidation. Physical ions can be contained in an amount of 0.1 g / L to 3.0 g / L. These components are incorporated into the phosphate coating or deposited in a form different from the phosphate, thereby providing a phosphate conversion to further improve performance in post-coating corrosion resistance or post-coating adhesion. Contained in the processing solution. If the concentration of these metal ions or metal oxide ions is less than 0.1 g / L, an improvement effect on the coating performance cannot be expected and is meaningless. In addition, when the concentration of these metal ions or metal oxide ions is larger than 3.0 g / L, the improvement effect on the coating performance is saturated, which is economically disadvantageous, and phosphoric acid which is a main component of the phosphate treatment. May interfere with zinc deposition.
[0034]
In addition, as the metal ion source, oxides, hydroxides, carbonates, sulfates, nitrates, phosphates and the like of each metal can be used. As the metal oxide ion source, a sodium salt, a potassium salt, or the like can be used.
[0035]
The metal ions or metal oxide ions may be contained in one kind or in combination of several kinds.
[0036]
In the phosphate chemical conversion treatment solution, an etching agent may be added to uniformly etch the surface of the metal to be treated. As the etching agent, fluoride ions or complex fluoride ions such as silicofluoride ions can be used. As these fluorine compounds, for example, hydrofluoric acid, hydrosilicofluoric acid or respective metal salts (sodium salt, potassium salt) can be used.
[0037]
The phosphate chemical conversion treatment can be performed by an immersion method, a spray method, or a combination thereof. The treatment time may be about 1 to 5 minutes, whereby a practically sufficient chemical conversion film can be formed. Moreover, it is preferable that the temperature of a phosphate chemical conversion liquid is 30-60 degreeC.
[0038]
In addition, it is preferable to wash with water after the phosphate chemical conversion treatment and use deionized water for the final water washing.
[0039]
When this technique is used as a coating base, it is necessary to form a dense phosphate conversion coating with a thin film having a coating weight of 1.5 to 5 g / m 2 . However, when a phosphate conversion treatment that does not contain a nickel component is performed after the surface adjustment treatment of the conventional titanium colloid system, it is difficult to obtain a dense phosphate conversion coating with a thin film. This is an essential condition for obtaining a dense phosphochemical conversion film.
[0040]
【Example】
Next, examples of the actual processing and comparative examples will be shown to specifically explain the effects of the present invention. In addition, an Example only gave the example of a use of this invention, and does not restrict | limit the use of this invention and a corresponding raw material at all.
[0041]
1. Test materials Electrogalvanized steel sheet [EG] (plate thickness: 0.8 mm, plating adhesion amount: 20 g / m 2 ), galvannealed steel sheet [GA] (plate thickness: 0.8 mm, plating adhesion amount: 45 g / m) m 2 ), cold-rolled steel sheet [CRS] (plate thickness: 0.8 mm, SPCC-SD), and the following examples and comparative examples were processed.
[0042]
Processing steps common to the examples and comparative examples are shown below.
(1) Degreasing [Fine Cleaner L4460 (registered trademark: Alkaline Degreasing Agent manufactured by Nippon Parkerizing Co., Ltd.)] Agent A 20 g / L, Agent B 12 g / L, 43 ° C., 120 seconds, immersion (2) Washing water [Tap water ]
Room temperature, 30 seconds, spray (3) Surface conditioning conditions are described in Examples and Comparative Examples below. In addition, the preparene ZN (manufactured by Nippon Hakari Co., Ltd.) was used for the titanium colloidal surface-treated one.
(4) Phosphate conversion treatment conditions are described in the examples and comparative examples described later, but the treatment times were all set to 120 seconds. (5) Water washing [tap water]
Normal temperature, 30 seconds, spray (6) deionized water [deionized water (electric conductivity: 0.2 μS / cm or less)]
Normal temperature, 20 seconds, spray (7) Draining and drying 90 ° C hot air, 120 seconds
The coating performance test method of the test material processed by the Example and the comparative example is demonstrated.
[0044]
The coating appearance evaluation was evaluated with two grades of ○ and ×.
○: Uniform film ×: Film with remarkable skettle [0045]
The water resistance secondary adhesion test conditions and the evaluation method will be described. The temperature was maintained at 40 ° C., and the 3-coated plate was immersed in a warm water bath that had been subjected to air bubbling for 240 hours. After pulling up from the hot water bath, it was allowed to stand for 2 hours, and a 2 mm grid cut was applied, and the peeling state was evaluated by tape peeling.
(Evaluation methods)
The peeling condition was evaluated with three grades of ○○ ×.
A: Not peeled at all ○: Slight peeling is observed at the cross cut edge portion ×: Peeling is remarkable
The hot salt water immersion test conditions and the evaluation method will be described. The electrodeposited single membrane plate with a cross cut cut with an acrylic cutter was immersed in a 5 wt% salt water bath with the temperature maintained at 55 ° C. and subjected to air bubbling for 240 hours. After lifting from the salt water bath and allowing to stand for 1 hour, the cross cut part was peeled off with tape, and the peel width from the cut part was evaluated.
(Evaluation methods)
The peeling condition was evaluated with three grades of ○○ ×.
Figure 0003545974
[0047]
The salt spray test conditions and the evaluation method will be described. The electrodeposited single membrane plate into which the cross cut was put with the acrylic cutter was tested using the salt spray test machine using 5 wt% salt water, hold | maintaining temperature at 35 degreeC. It was taken out after a specified time (according to JIS Z 2371), and the corrosion state of the crosscut part was evaluated after washing with water.
(Evaluation methods)
Corrosion status was evaluated with three grades of ○ ××.
CRS (salt spray test time: 960 hours)
A: Both sides maximum rust width less than 4 mm ○: Both sides maximum rust width 4 mm or more, less than 5 mm ×: Both sides maximum rust width 5 mm or more Zn plating (salt spray test time: 480 hours)
◎: One side maximum rust width less than 4mm ○: One side maximum rust width 4mm or more, less than 5mm ×: Both sides maximum rust width 5mm or more [0048]
Examples 1 to 25
Tables 1, 2, 7, 12, and 17 show the surface conditioning and biphosphate treatment methods of Examples 1 to 25.
[0049]
[Comparative Examples 1 to 40]
Tables 3, 4, 8, 9, 13, 14, 18, and 19 show the surface adjustment method and the phosphate treatment method of Comparative Examples 1 to 40.
[0050]
Tables 5, 6, 10, 11, 15, 16, 20, and 21 show the chemical appearance and the coating performance test results of the test materials processed according to the examples and comparative examples.
[0051]
[Table 1]
Examples 1-5
Figure 0003545974
[0052]
[Table 2]
Examples 6-10
Figure 0003545974
[0053]
[Table 3]
Comparative Examples 1-5
Figure 0003545974
[0054]
[Table 4]
Comparative Examples 6-10
Figure 0003545974
[0055]
[Table 5]
Results of chemical conversion film appearance and coating performance test of Examples 1-10
Figure 0003545974
[0056]
[Table 6]
Chemical film appearance and coating performance test results of Comparative Examples 1-10
Figure 0003545974
[0057]
[Table 7]
Examples 11-15
Figure 0003545974
[0058]
[Table 8]
Comparative Examples 11-15
Figure 0003545974
[0059]
[Table 9]
Comparative Examples 16-20
Figure 0003545974
[0060]
[Table 10]
Results of chemical film appearance and coating performance test of Examples 11-15
Figure 0003545974
[0061]
[Table 11]
Chemical film appearance and coating performance test results of Comparative Examples 11-20
Figure 0003545974
[0062]
[Table 12]
Examples 16-20
Figure 0003545974
[0063]
[Table 13]
Comparative Examples 21-25
Figure 0003545974
[0064]
[Table 14]
Comparative Examples 26-30
Figure 0003545974
[0065]
[Table 15]
Results of chemical film appearance and coating performance test of Examples 16-20
Figure 0003545974
[0066]
[Table 16]
Chemical film appearance and coating performance test results of Comparative Examples 21-30
Figure 0003545974
[0067]
[Table 17]
Examples 21-25
Figure 0003545974
[0068]
[Table 18]
Comparative Examples 31-35
Figure 0003545974
[0069]
[Table 19]
Comparative Examples 36-40
Figure 0003545974
[0070]
[Table 20]
Results of chemical film appearance and coating performance test of Examples 21 to 25
Figure 0003545974
[0071]
[Table 21]
Chemical film appearance and coating performance test results of Comparative Examples 31-40
Figure 0003545974
[0072]
【The invention's effect】
As described above, the phosphate treatment method for a metal material according to the present invention is excellent in terms of environmental protection without containing nickel, and sufficiently uniform phosphoric acid on the surfaces of various metal materials such as steel and galvanization. A salt coating is obtained, which is very useful in that it has excellent coating adhesion and post-coating corrosion resistance.

Claims (8)

金属材料を、濃度が0.001-30g/Lであり、粒径が5μm以下の2価または3価の金属にか
かる1種以上のりん酸塩粒子と促進成分とを含有する表面調整液に接触させた後、亜鉛イ
オンを0.5〜5g/L、りん酸イオンを5〜30g/L含有するりん酸塩化成処理液に
接触させることを特徴とする金属材料のりん酸塩化成処理方法。
A metal material is brought into contact with a surface conditioning solution containing one or more phosphate particles and a promoting component on a divalent or trivalent metal having a concentration of 0.001-30 g / L and a particle size of 5 μm or less. Then, a phosphate chemical conversion treatment method for a metal material, comprising contacting a phosphate chemical conversion solution containing 0.5 to 5 g / L of zinc ions and 5 to 30 g / L of phosphate ions.
金属材料を、粒径が5μm以下の2価または3価の金属にかかる1種以上のりん酸塩粒
子と単糖類、多糖類およびその誘導体から選ばれる1種以上からなる成分とを含有する表
面調整液に接触させた後、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g/
L含有するりん酸塩化成処理液に接触させることを特徴とする金属材料のりん酸塩化成処
理方法。
A surface containing one or more types of phosphate particles and a component consisting of one or more selected from monosaccharides, polysaccharides, and derivatives thereof of a metal material with a bivalent or trivalent metal having a particle size of 5 μm or less After contacting with the adjustment liquid, zinc ion is 0.5-5 g / L, phosphate ion is 5-30 g / L.
A method for phosphate conversion treatment of a metal material, which comprises contacting with a phosphate conversion solution containing L.
金属材料を、粒径が5μm以下の2価または3価の金属にかかる1種以上のりん酸塩粒
子と有機ホスホン酸化合物とを含有する表面調整液に接触させた後、亜鉛イオンを0.5
〜5g/L、りん酸イオンを5〜30g/L含有するりん酸塩化成処理液に接触させるこ
とを特徴とする金属材料のりん酸塩化成処理方法。
The metal material is brought into contact with a surface conditioning solution containing one or more phosphate particles and an organic phosphonic acid compound applied to a divalent or trivalent metal having a particle size of 5 μm or less, and then zinc ions are added to a concentration of 0.1%. 5
A phosphate chemical conversion treatment method for a metal material, which comprises contacting a phosphate chemical conversion solution containing ˜5 g / L and 5-30 g / L of phosphate ions.
金属材料を、粒径が5μm以下の2価または3価の金属にかかる1種以上のりん酸塩粒
子と、酢酸ビニルの重合体またはその誘導体もしくは酢酸ビニルと共重合可能な単量体と
酢酸ビニルとの共重合体からなる水溶性高分子化合物の1種以上である成分とを含有する
表面調整液に接触させた後、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g
/L含有するりん酸塩化成処理液に接触させることを特徴とする金属材料のりん酸塩化成
処理方法。
A metal material is composed of one or more phosphate particles of a divalent or trivalent metal having a particle size of 5 μm or less, a vinyl acetate polymer or a derivative thereof, a monomer copolymerizable with vinyl acetate, and acetic acid. After contacting with a surface conditioning solution containing one or more components of a water-soluble polymer compound comprising a copolymer with vinyl, zinc ions are 0.5 to 5 g / L, phosphate ions are 5 to 30g
A phosphate chemical conversion treatment method for a metal material, characterized by contacting with a phosphate chemical conversion solution containing / L.
金属材料を、粒径が5μm以下の2価または3価の金属にかかる1種以上のりん酸塩粒
子、下記化学式1に示される単量体もしくはα、β不飽和カルボン酸単量体の中から選ば
れる少なくとも1種以上と、前記単量体と共重合可能な単量体50重量%以下とを重合して
得られる重合体または共重合体の1種以上である成分とを含有する表面調整液に接触させ
た後、亜鉛イオンを0.5〜5g/L、りん酸イオンを5〜30g/L含有するりん酸塩
化成処理液に接触させることを特徴とする金属材料のりん酸塩化成処理方法。
Among metal materials, one or more types of phosphate particles covering a divalent or trivalent metal having a particle size of 5 μm or less, a monomer represented by the following chemical formula 1, or an α, β unsaturated carboxylic acid monomer A surface containing at least one selected from the group consisting of a component obtained by polymerizing at least 50% by weight of a monomer copolymerizable with the monomer, or a component that is at least one of copolymers. Phosphate formation of a metal material characterized by contacting with a conditioning solution, followed by contacting with a phosphate chemical treatment solution containing 0.5 to 5 g / L of zinc ions and 5 to 30 g / L of phosphate ions The processing method.
前記粒径が5μm以下の2価または3価の金属にかかる1種以上のりん酸塩粒子の濃度
が0.001-30g/Lである、請求項2〜5のいずれか1項に記載の金属材料のりん酸塩化成処
理方法。
The metal material according to any one of claims 2 to 5, wherein a concentration of one or more kinds of phosphate particles applied to a divalent or trivalent metal having a particle size of 5 µm or less is 0.001 to 30 g / L. Phosphate chemical conversion treatment method.
前記りん酸塩化成処理液が、マグネシウムイオン、コバルトイオン、マンガンイオン、
カルシウムイオン、タングステン酸イオン及びストロンチウムイオンからなる群から選ば
れる少なくとも1種以上の金属イオンを0.1〜3.0g/L含有するものである請求項
1ないし6に記載の金属材料のりん酸塩化成処理方法。
The phosphate chemical conversion treatment solution is magnesium ion, cobalt ion, manganese ion,
7. The phosphoric acid of a metal material according to claim 1, which contains 0.1 to 3.0 g / L of at least one metal ion selected from the group consisting of calcium ion, tungstate ion and strontium ion. Chlorination treatment method.
前記りん酸塩化成処理液がニッケルイオンを含まないものである請求項1ないし6に記
載の金属材料のりん酸塩化成処理方法。
The method for phosphate conversion treatment of a metal material according to claim 1, wherein the phosphate chemical conversion treatment liquid does not contain nickel ions.
JP23006099A 1999-08-16 1999-08-16 Phosphate conversion treatment method for metal materials Expired - Fee Related JP3545974B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23006099A JP3545974B2 (en) 1999-08-16 1999-08-16 Phosphate conversion treatment method for metal materials
US10/049,767 US6723178B1 (en) 1999-08-16 2000-08-16 Process for forming a phosphate conversion coating on metal
CA002381774A CA2381774A1 (en) 1999-08-16 2000-08-16 Process for forming a phosphate conversion coating on metal
PCT/US2000/022335 WO2001012341A1 (en) 1999-08-16 2000-08-16 Process for forming a phosphate conversion coating on metal
EP00955545A EP1230033A4 (en) 1999-08-16 2000-08-16 Process for forming a phosphate conversion coating on metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23006099A JP3545974B2 (en) 1999-08-16 1999-08-16 Phosphate conversion treatment method for metal materials

Publications (3)

Publication Number Publication Date
JP2001049451A JP2001049451A (en) 2001-02-20
JP3545974B2 true JP3545974B2 (en) 2004-07-21
JP2001049451A5 JP2001049451A5 (en) 2004-09-16

Family

ID=16901934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23006099A Expired - Fee Related JP3545974B2 (en) 1999-08-16 1999-08-16 Phosphate conversion treatment method for metal materials

Country Status (4)

Country Link
EP (1) EP1230033A4 (en)
JP (1) JP3545974B2 (en)
CA (1) CA2381774A1 (en)
WO (1) WO2001012341A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300113B2 (en) * 2001-04-27 2013-09-25 日本表面化学株式会社 Metal surface treatment agent, metal surface treatment method using metal surface treatment agent, and iron component subjected to surface treatment
KR100554740B1 (en) * 2001-12-17 2006-02-24 주식회사 포스코 A method for manufacturing a electro-galvanized steel sheet having the phosphated film formed thereon
JP4081276B2 (en) * 2002-01-11 2008-04-23 日本パーカライジング株式会社 Water-based surface treatment agent, surface treatment method, and surface-treated material
DE60311708D1 (en) * 2002-06-13 2007-03-29 Nippon Paint Co Ltd Zinc phosphate conditioning agent for phosphate conversion coating of steel plate and corresponding product
US7767111B2 (en) 2004-02-20 2010-08-03 Nippon Paint Co., Ltd. Surface conditioner and method of surface conditioning
JP2006299379A (en) * 2005-04-25 2006-11-02 Nippon Paint Co Ltd Surface conditioner and surface conditioning method
WO2007097139A1 (en) * 2006-02-20 2007-08-30 Sumitomo Metal Industries, Ltd. Process for producing hot-dip galvanized steel sheet with zinc phosphate coat
DE102008017523A1 (en) * 2008-03-20 2009-09-24 Henkel Ag & Co. Kgaa Optimized electrocoating of assembled and partially pre-phosphated components
JP6083020B2 (en) * 2012-10-24 2017-02-22 株式会社正信 Surface treatment method of magnesium or magnesium alloy, acid detergent and chemical conversion treatment agent, and chemical conversion treatment structure of magnesium or magnesium alloy
JP6175500B2 (en) * 2013-07-23 2017-08-02 旭化成株式会社 Copper and / or copper oxide dispersion, and conductive film formed using the dispersion
US20170306497A1 (en) * 2016-04-25 2017-10-26 Ppg Industries Ohio, Inc. System for nickel-free zinc phosphate pretreatment
US20180044796A1 (en) * 2016-08-12 2018-02-15 Ppg Industries Ohio, Inc. Two-step pretreatment system and method
CN109563628A (en) * 2016-08-12 2019-04-02 Prc-迪索托国际公司 Sealing compositions
EP3504356A1 (en) * 2016-08-24 2019-07-03 PPG Industries Ohio, Inc. Alkaline composition for treating metal substrates
EP3392376A1 (en) * 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Method for forming zinc phosphate coatings on metallic components in series
PL3392375T3 (en) * 2017-04-21 2020-05-18 Henkel Ag & Co. Kgaa Sludge-free zinc phosphate coating forming method for metallic components in series
CN112236546B (en) * 2018-06-11 2023-08-08 汉高股份有限及两合公司 Aqueous dispersion for activating metal surfaces and method for phosphating same
EP3964606A1 (en) * 2020-09-04 2022-03-09 Henkel AG & Co. KGaA Single stage zinc phosphating method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084017A (en) * 1963-09-30 1967-09-20 Jawata Iron & Steel Co Ltd Pretreating process for phosphate-treating steel sheets or plated steel sheets
US4717431A (en) * 1987-02-25 1988-01-05 Amchem Products, Inc. Nickel-free metal phosphating composition and method for use
US5326408A (en) * 1993-06-15 1994-07-05 Henkel Corporation Rapidly dissolving and storage stable titanium phosphate containing activating composition
CN1130925A (en) * 1993-09-17 1996-09-11 布伦特国际公司 Pre-rinsing liquid for phosphating metal surfaces
US5494504A (en) * 1994-09-12 1996-02-27 Ppg Industries, Inc. Liquid rinse conditioner for phosphate conversion coatings
JP3451334B2 (en) * 1997-03-07 2003-09-29 日本パーカライジング株式会社 Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method
JPH116076A (en) * 1997-06-13 1999-01-12 Nippon Parkerizing Co Ltd Phosphate treatment of steel material

Also Published As

Publication number Publication date
EP1230033A1 (en) 2002-08-14
CA2381774A1 (en) 2001-02-22
WO2001012341A1 (en) 2001-02-22
EP1230033A4 (en) 2004-12-08
JP2001049451A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
JP3545974B2 (en) Phosphate conversion treatment method for metal materials
JP5446057B2 (en) Zinc-based galvanized steel sheet for chemical conversion treatment, method for producing the same, and chemical conversion treated steel sheet
JPH10245685A (en) Pretreating liquid for surface conditioning before phosphate film chemical conversion treatment of metal and surface conditioning method
US6723178B1 (en) Process for forming a phosphate conversion coating on metal
CN1978704A (en) Method for surface treatment of aluminum alloy
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JP2000096256A (en) Treating solution for surface conditioning of metal before phosphate coating conversion treatment and method for conditioning surface
JP2011504550A (en) Zirconium phosphate treatment of metal structural members, especially iron structural members
JP2008297594A (en) Composition for treating metal surface and surface-treated aluminum-based metal plate
TW557329B (en) Phosphate chemical conversion treating method for zinc-containing metal plated steel sheet
JPH07278891A (en) Pretreatment for coating of metal material
TW500830B (en) Process for phosphating using metal-containing final rinse
JP2002206176A (en) Aqueous surface conditioner for phosphate treatment and surface conditioning method
US20040011428A1 (en) Surface-treating agent for metallic material with excellent suitability for press forming and chemical treatment and method of treatment
US5888315A (en) Composition and process for forming an underpaint coating on metals
JP2003119572A (en) Treatment liquid for surface control before phosphating metal, and surface controlling method
WO2008054016A1 (en) Phosphate-treated galvanized steel sheet and method for producing the same
JP3417653B2 (en) Pretreatment method for painting aluminum material
JP4258924B2 (en) Phosphate conversion treatment method for galvanized steel sheet
JPH0788585B2 (en) Phosphate film treatment agent
KR20140037149A (en) Electrolytic freezing of zinc surfaces
US11124880B2 (en) Method for nickel-free phosphating metal surfaces
JP2001295063A (en) Method for forming phosphate film to nonferrous metallic material and plated steel sheet
US20060086282A1 (en) Phosphate conversion coating and process
WO1997020964A1 (en) Composition and process for zinc phosphate conversion coating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Ref document number: 3545974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees