WO2007097139A1 - Process for producing hot-dip galvanized steel sheet with zinc phosphate coat - Google Patents

Process for producing hot-dip galvanized steel sheet with zinc phosphate coat Download PDF

Info

Publication number
WO2007097139A1
WO2007097139A1 PCT/JP2007/050650 JP2007050650W WO2007097139A1 WO 2007097139 A1 WO2007097139 A1 WO 2007097139A1 JP 2007050650 W JP2007050650 W JP 2007050650W WO 2007097139 A1 WO2007097139 A1 WO 2007097139A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
zinc phosphate
steel sheet
hot
phosphate coating
Prior art date
Application number
PCT/JP2007/050650
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Ishigaki
Masaru Takahashi
Katsuji Kawanishi
Tooru Kuroda
Katsuhiro Nishihara
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006043099A external-priority patent/JP4645470B2/en
Priority claimed from JP2006043105A external-priority patent/JP4654346B2/en
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to CN2007800052042A priority Critical patent/CN101384750B/en
Priority to EP07713636.4A priority patent/EP1988189B1/en
Publication of WO2007097139A1 publication Critical patent/WO2007097139A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/13Orthophosphates containing zinc cations containing also nitrate or nitrite anions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/362Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds

Definitions

  • the present invention relates to a method for producing a hot-dip galvanized steel sheet having excellent lubricity and Z or adhesion, which is used for improving press formability in the automotive field and the like. Specifically, in a continuous hot-dip galvanized steel sheet production line, a hot-dip galvanized steel sheet with a zinc phosphate coating that can also improve productivity represented by the operability of hot-dip galvanized steel sheet production with the above performance.
  • the present invention relates to a method for manufacturing a steel sheet with a shell.
  • Patent Document 1 discloses a technique for improving lubricity by further providing an iron-zinc alloy electroplating film on the zinc plating film. It has been put into practical use. However, this technology requires an electrical plating facility, which greatly increases manufacturing costs.
  • the hot dip galvanized steel sheet having excellent lubricity is obtained by eliminating the galling film and forming the upper layer as a zinc phosphate film.
  • This technique is disclosed in Patent Document 2. This can be achieved by providing a zinc phosphate coating, for example when manufacturing automobile bodies! It constitutes a zinc-containing metal-plated steel plate composite with excellent high-speed press formability.
  • a zinc phosphate coating for example when manufacturing automobile bodies! It constitutes a zinc-containing metal-plated steel plate composite with excellent high-speed press formability.
  • Patent Documents 4 and 5 disclose that a substrate is washed and then immersed in a surface conditioner such as an aqueous titanium colloid solution for surface conditioning before contacting with a zinc phosphate aqueous solution. Yes.
  • a technique for applying an organic solid lubricating film such as wax or fat to a zinc-based surface has been disclosed for a long time (Patent Publication No. 3006455 etc.). Due to the occurrence of pressed product defects, there are also odor problems during welding and joining (organic matter is decomposed by the heat of welding and adversely affects the work environment).
  • the inorganic lubricating film is characterized in that stable formability can be obtained without problems such as offensive odor even during welding joining.
  • phosphoric acid-based coatings have been used in the past, and various techniques have been proposed.
  • Patent Document 6 discloses that a zinc phosphate coating containing Mg is provided on the surface of zinc plating and is suitably used for automobile bodies.
  • the inorganic lubricating film sometimes has a problem in adhesion to other members.
  • Patent Document 7 discloses a ZnO oxide is formed on the surface of the adhesive layer, and an Mn—Zn OH—P crystalline oxide is formed on the surface, thereby providing lubricity, chemical conversion treatment, and adhesive. It discloses that a zinc-based steel sheet with excellent compatibility can be obtained.
  • Patent Document 9 discloses a steel sheet having an inorganic lubricating film that exhibits sufficient adhesive strength even in various adhesives including mastic type.
  • the technology for forming these phosphoric acid-based films is referred to as so-called reactive surface chemical conversion treatment, and includes primary phosphoric acid, zinc, Ni, Mn, Mg, nitric acid, nitrous acid, and fluorine compounds.
  • This is a technique for forming a film by contacting and reacting a treatment agent containing the above with the surface of a zinc-plated steel plate. More specifically, the treatment agent is supplied to the surface of the zinc plating by spraying or the like, and the film forming reaction proceeds while etching the zinc plating. At this time, the zinc eluted in the etching is a force that exists as zinc ions in the treatment agent. As the zinc ion concentration increases, the pH of the treatment agent rises and the etching reaction becomes difficult to occur. Keeping pH and Zn concentration at a certain value by replenishing with acid is necessary to maintain a uniform film formation state.
  • Patent Document 1 JP-A-1-319661
  • Patent Document 2 Japanese Patent Laid-Open No. 7-138764
  • Patent Document 3 JP 2001-98383 A
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-54202
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2005-54203
  • Patent Document 6 Japanese Patent Laid-Open No. 11-315386
  • Patent Document 7 Japanese Patent No. 3153097
  • Patent Document 8 Japanese Patent No. 3199980
  • Patent Document 9 Japanese Patent Laid-Open No. 2002-53974
  • Patent Documents 7 and 8 have only one type of adhesive that has been confirmed, and there are a wide variety of sub-types.
  • the current automobile body manufacturing process in which materials are used is not necessarily compatible.
  • the present invention provides a method for producing a hot-dip zinc-based steel sheet having a zinc phosphate coating that can keep the composition balance of the treatment agent constant, reduce the production cost, and reduce the influence on the environment. It is an issue to provide. And this improves lubricity and adhesion It is an object to provide a zinc-based steel sheet having an excellent zinc phosphate coating. Means for solving the problem
  • the surface conditioner is an aqueous liquid containing a crystal nucleating agent of zinc phosphate.
  • an aqueous liquid in which Ti colloid is dispersed in an aqueous solution of sodium pyrophosphate, or particles of zinc phosphate are dispersed. Aqueous solution.
  • the orientation of P—O bond of zinc phosphate formed on the surface of the zinc-plated steel sheet is on the steel sheet surface, and the orientation in the direction perpendicular to the steel sheet surface is large, excellent lubricity is maintained. Adhesion can be improved. This is thought to be due to an increase in the interaction between the P—O bond and the C—O bond of the adhesive (mainly resin).
  • the orientation of the P—o bond of zinc phosphate is an absorption spectrum measurement method in which infrared light is incident on the surface normal of the steel plate from the direction of 60 ° and absorbed from the surface.
  • the adhesiveness can be judged in more detail.
  • the absorbance ratio between the P-polarized light and the s-polarized light in the absorption band it is possible to obtain a zinc-based steel sheet having a zinc phosphate film with better lubricity and adhesion.
  • the invention described in claim 1 is a method for continuously producing a hot dip zinc-based steel plate having a zinc phosphate coating, and supplying a surface conditioner to the surface of the hot dip zinc surface.
  • the said subject is solved by the manufacturing method of the hot dip zinc-based steel plate which has a zinc-phosphate film
  • the “hot galvanized steel sheet” is a concept including “alloyed molten galvanized steel sheet” in addition to “hot galvanized steel sheet”. Is a generic term including “electrogalvanized steel sheet”, “hot dip galvanized steel sheet” and “alloyed hot dip galvanized steel sheet”.
  • zinc phosphate in “zinc phosphate coating” means crystalline zinc phosphate (Zn (PO) ⁇ 4 ⁇ ⁇ ⁇ ⁇ ) that produces Hopete diffraction in normal X-ray diffraction analysis. To do.
  • the invention described in claim 2 is the surface adjuster in the surface adjuster supply step of the method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to claim 1. It is an aqueous liquid containing zinc phosphate particles.
  • the invention described in claim 3 is used as a surface conditioner in the surface conditioner supply step of the method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2.
  • the zinc phosphate particles contained have an average particle size of 10 ⁇ m or less.
  • the invention described in claim 4 is a surface conditioner in the surface conditioner supply step of the method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2.
  • the zinc phosphate particles contained have an average particle size of 10 m or less, and the pH of the surface conditioner is 5 or more.
  • the invention according to claim 5 is the surface of the method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 1 to 4.
  • the surface conditioner in the conditioner supply process contains zinc phosphate particles greater than Omol / L and 0.5 mol / L or less, and is selected from the group consisting of Li, Na, K, Be, Mg and Ca 1 It is characterized by containing not less than 0.3 molZL of seeds or more in total.
  • the invention according to claim 6 is a treatment of a method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 5.
  • the treatment agent in the agent supply step contains 0.001 to 0.7 molZL of phosphate radicals and contains zinc ions in a molar ratio of 0.7 or less with respect to the phosphate radicals.
  • the invention according to claim 7 is a process for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 6.
  • the zinc phosphate aqueous solution of the treatment agent in the agent supply process contains zinc ions and phosphate radicals, has a pH of 4 or less, and has a molar ratio of 0.2 or less with respect to the phosphate radicals other than the zinc ions and phosphate radicals. It is characterized by containing one or more kinds selected from the group power of strong electrolysis-ion power of nitrate group, nitrite group of 0.2 or less, hydrofluoric acid group of 0.1 or less, and sulfate group of 0.05 or less. To do.
  • the invention according to claim 8 is the surface of the method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 1 to 7. It is characterized in that P adhering to the surface of the molten zinc-based plating is adjusted to 30 to 500 mg / m 2 in terms of P by the adjusting agent supplying process and the treating agent supplying process.
  • the P adhesion amount in "P conversion” can be measured by chemical dissolution or by measuring force by fluorescent X-rays.
  • chemical dissolution method a plating layer of a zinc-plated steel sheet having a predetermined area is dissolved with a predetermined amount of strong acid (for example, hydrochloric acid), and the solution is dissolved in the solution by ICP (inductively coupled plasma emission analysis). P concentration is measured and converted.
  • ICP inductively coupled plasma emission analysis
  • the method using fluorescent X-rays produces samples with various P adhesion amounts, and the fluorescence caused by ⁇ by the fluorescent X-ray method.
  • the fluorescent X-ray intensity is obtained for the subsequent samples by the same method. According to this, it is possible to obtain the P adhesion amount without destruction.
  • the invention described in claim 9 is the surface adjuster in the surface adjuster supply step of the method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2.
  • the pH is 5 or more, and the average particle size of the zinc phosphate particles is 0.1 to 3 / ⁇ ⁇ .
  • the invention described in claim 10 is a process for supplying a surface conditioner in the method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to claim 2 or 9.
  • the zinc phosphate particles adhere to 0.01 to 5 mgZm 2 in terms of soot on the surface of a zinc-based steel plate that has been subjected to a pre-drying step.
  • the invention according to claim 11 is a hot dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 2, 9, or 10.
  • the treating agent in the treating agent supply step of the production method of the present invention contains zinc and phosphate radicals, has a pH of 4 or less, and, other than zinc and phosphate radicals, nitrate radicals in a molar ratio with respect to phosphate radical 1 are 0.2.
  • it is characterized in that it contains at least one or more selected strong electrolytes of which nitrous acid group is 0.2 or less, hydrofluoric acid group is 0.1 or less, and sulfate group is 0.05 or less.
  • the invention according to claim 12 is a molten zinc-based metal plate having the zinc phosphate coating according to any one of claims 2, 9 to 11. It has a post-drying step to dry the treatment agent in the post-treatment step of the processing agent supply step of the steel sheet manufacturing method, and after the post-drying step, 30 to 250 mg / m 2 of the zinc phosphate coating in terms of P is adhered. It is characterized by
  • the invention described in claim 13 is the surface of the method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 1 to 12. Any one or both of the method for supplying the surface adjusting agent in the adjusting agent supplying step and the method for supplying the treating agent in the treating agent supplying step is a roll coating method.
  • the crystalline zinc phosphate film is formed on the surface manufactured by the manufacturing method described in any one of claims 9 to 13.
  • a hot-dip zinc-based steel sheet with a zinc phosphate coating which reflects the reflected light power of infrared light incident on the surface from the direction normal to the surface of the zinc phosphate coating at 60 °.
  • the above-mentioned problem is solved by providing a hot-dip galvanized steel sheet having the following.
  • p-polarized light refers to polarized light with a component perpendicular to the surface
  • s-polarized light refers to polarized light with a component parallel to the surface.
  • Integral absorption intensity ratio means the integral intensity ratio of the absorption spectrum of P-polarized light and s-polarized light.
  • a crystalline zinc phosphate film is formed on the surface manufactured by the manufacturing method described in any one of claims 9 to 13.
  • the light vector has a plurality of absorption bands in the wavelength range of 8 to 12 m, and the absorbance power of p-polarized light in the wavelength range of 8.4 to 9.2 m is more than twice the absorbance of polarized light.
  • the absorbance power of p-polarized light in the wavelength range of 10.2 to L 1.0 m is greater than or equal to twice the absorbance of polarized light.
  • the composition of the treatment agent is not balanced because the surface adjustment agent is not brought into the treatment agent supply step as a liquid agent, and the treatment agent is not mixed in the treatment agent. Is maintained for a long time.
  • the crystal nucleation agent contained in the surface conditioner Therefore, the zinc phosphate film to be coated can be formed more stably.
  • the stability of the surface conditioner can be further improved, and the molten zinc having a zinc phosphate coating with further gain from the viewpoint of cost and environment
  • the manufacturing method of a steel plate can be provided. Further, the supplied zinc phosphate particles are more uniformly supplied to the zinc plating surface.
  • the stability of the surface conditioner is improved, and the total amount of the P adhesion amount at the time of supplying the treatment agent can be easily adjusted. As a result, lubricity can be improved.
  • the stability of the treating agent can be improved, and the molten zinc-based material having a zinc phosphate coating with further gain from the viewpoint of cost and environment.
  • a method for manufacturing a steel sheet with a shell can be provided.
  • lubricity can be improved.
  • FIG. 1 is a diagram schematically showing a flow of a method for producing a zinc-based plated steel sheet having a zinc phosphate coating according to the present invention.
  • FIG. 2 is a graph showing an example of the relationship between wavelength and absorbance obtained from an infrared absorption spectrum.
  • FIG. 3 is a schematic diagram of a T peel test method.
  • FIG. 4 is a schematic diagram of a shear tensile test method.
  • FIG. 1 shows a flow of a method for producing a zinc-based plated steel sheet having a zinc phosphate coating according to the present invention, which is effective in one embodiment.
  • This manufacturing method includes a surface conditioning agent supply step (S1) for supplying a surface conditioning agent to a substrate, a pre-drying step (S2) for drying the supplied surface conditioning agent, and a processing agent supply step for supplying a processing agent. (S3) and after the treatment agent supply step (S3) And a post-drying step (S4).
  • S1 for supplying a surface conditioning agent to a substrate
  • S2 pre-drying step
  • S3 processing agent supply step for supplying a processing agent.
  • S3 after the treatment agent supply step
  • S4 a post-drying step
  • the surface conditioning agent supplying step (S1) is a step of supplying a surface conditioning agent containing a crystal nucleating agent to the zinc-based plated steel sheet.
  • the method for supplying the surface conditioning agent in the surface conditioning agent supply step (S1) is not particularly limited. Examples of this include a roll coater, spray coating, and post-spray air knife, post-spray ringer roll, squeeze roll squeeze, etc. From the viewpoint of operability, a roll coater and squeeze roll squeeze after spray are preferred. Furthermore, among these, the roll coater method is preferable because the contact time between the zinc-based plating and the surface conditioner can be made shorter than other methods.
  • the crystal nucleating agent contained in the surface conditioner is not particularly limited, and those used in the usual paint substrate treatment process for automobile bodies can be used. Examples thereof include an aqueous liquid in which Ti colloid is dispersed in an aqueous solution of sodium pyrophosphate, or an aqueous liquid in which particles of zinc phosphate are dispersed. Among these, an aqueous liquid in which zinc phosphate particles are dispersed is particularly preferable. When the aqueous liquid is supplied, it can be adsorbed on the zinc-based surface without agglomeration while maintaining the particle size even when dried in the pre-drying step (S2) described later, and the particle form can be maintained. Because. On the other hand, for Ti colloids and the like, the crystal nucleating agent may dry and aggregate in the pre-drying step (S2).
  • adhesion amount of the surface modifier is less than 30MgZm 2 is preferred. This is because when 30 mgZm 2 or more, surface treatment spots occur and the appearance may be impaired. Preferably it is 15 mg Zm 2 or less, more preferably 10 mgZm 2 or less.
  • the upper limit is preferred because the effect as a base treatment is saturated even if it adheres more than that, and conversely it may affect the treatment agent in the subsequent process.
  • zinc phosphate particles are The supply amount of the dispersed aqueous liquid is preferably 0.01 to 5 mgZm 2 in terms of P in the zinc phosphate at the time of drying. If it is less than 0.01 mg / m 2, it is difficult to obtain adhesiveness, and if it exceeds 5 mg Zm 2 , the effect is saturated. Preferably is 0. l ⁇ 2mgZm 2.
  • the concentration of zinc phosphate may be 0.05 to 5 molZL.
  • the zinc phosphate particles used for crystal nucleus formation may be crystalline, amorphous, or a mixture thereof. Whether it is crystalline or not can be judged by general X-ray diffraction analysis.
  • the pH of the surface conditioner is preferably 5 or more. This is because, when the pH is less than 5, elution of zinc from the zinc-based metal occurs when the surface conditioner is supplied to the zinc-based metal. Furthermore, since the aqueous solution itself in which the zinc phosphate particles are dispersed may cause a slight reaction in the dissolution reaction of the zinc phosphate particles, the stability of the particles themselves may be impaired. More preferably, the pH is 7 to LO. This is because when the pH is higher than 10, a dissolution reaction of zinc phosphate itself occurs. Further, a buffer solution for adjusting the pH may be added to the surface conditioner. Examples of buffer solutions include buffer solutions consisting of K HPO and NaOH.
  • the concentration of the buffer solution in the surface conditioner is preferably from 0.1 to 2 gZL. This is because it is difficult to obtain a desired supply amount if less than 0.lgZL, and there is a possibility that uniform supply may be affected if it exceeds 2gZL.
  • the dispersed zinc phosphate particles preferably have a particle size of 10 ⁇ m or less. This is because the dispersion becomes unstable when it exceeds 10 m and the life of the aqueous liquid is reduced. Preferably, it is 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the lower limit of the particle diameter is not particularly limited, but is preferably 0.1 l ⁇ m or more from the viewpoint of the viscosity of the aqueous liquid. The following is preferable for the zinc-based steel plate having excellent adhesiveness described later. More preferably, it is 1 ⁇ m or less.
  • the particle size can be investigated with a laser diffractometer in the state of a dispersed aqueous liquid.
  • the content of zinc phosphate particles is 0.5 molZL or less. This is the concentration of zinc phosphate particles This is because the content of the dispersion becomes too high when the content exceeds 0.5 molZL, and the life of the aqueous liquid may be reduced.
  • the viewpoint power of the stability of the aqueous liquid is also preferably 0.3 molZL or less.
  • the content of zinc phosphate particles can be converted to atomic force as Zn (PO 4) by measuring the zinc concentration.
  • At least one or two or more selected from alkali metals of Li, Na and K and alkaline earth metals of Be, Mg and Ca may be added to the aqueous liquid. This is because the reaction of the substrate surface in the pre-drying step described later becomes more uniform, and a stable hot-dip galvanized steel sheet can be produced.
  • the concentration of these alkali metals and alkaline earth metals shall be 0.3 molZL or less in total for the above alkali metals and alkaline earth metals. This is because, if added in excess of 0.3mo 1ZL, these additives adhere to the substrate surface and carry over, and the stability of the processing agent and the like in the subsequent process may be reduced.
  • the alkali metal and alkaline earth metal can be added as orthophosphate, metaphosphate, pyrophosphate, orthosilicate, metasilicate, carbonate, bicarbonate, borate and the like.
  • an ammonium salt or an aqueous ammonium solution may be used for pH adjustment.
  • metal or metal salt particles such as Fe, Co, Ni, Cu, Mn, and Cr may be contained. It is preferable to mix a pH buffer or the like in the aqueous liquid.
  • An example is a buffer solution consisting of K HPO and NaOH. This
  • the pH change is reduced and stable production is possible.
  • a commercially available surface conditioner used for coating surface treatment or the like can be used.
  • the pre-drying step (S2) is a step in which the surface conditioner supplied to the substrate surface is dried without being washed with water.
  • the drying temperature is not particularly limited, but from the viewpoint of manufacturing cost and the like, it is preferable that the maximum temperature reached by the steel sheet is less than 200 ° C. More preferably, it is less than 150 ° C. Most preferably, it is 50 to 120 ° C.
  • the drying time is not particularly limited, but is preferably less than 30 seconds from the viewpoint of surface appearance and productivity. More preferably, it is less than 10 seconds.
  • the method for drying is not particularly limited and can be appropriately selected. Examples thereof include an air knife, a dryer, and an oven.
  • the surface conditioning agent is added to the treatment agent supply step (S3) described later.
  • the surface conditioning agent is added to the treatment agent supply step (S3) described later.
  • the activity of the zinc-based steel sheet can be temporarily stopped by drying after supplying the surface conditioner.
  • the zinc phosphate particles can be adsorbed on the zinc-based surface without agglomeration while maintaining the particle size by the drying, and the particle form can be maintained, and the action of the protective film can be applied to the treatment agent process. It is also possible to react the plating surface in the next drying process while suppressing the oxidation reaction on the steel sheet surface.
  • the crystal nucleating agent may be dried and aggregated.
  • the treatment agent supply step (S3) is a step of supplying a treatment agent for forming a zinc phosphate film on the substrate subjected to the above-mentioned pre-drying step (S2).
  • the supply method of the processing agent to a base material is not specifically limited, For example, a spray ringer method, a roll coat method, etc. can be mentioned.
  • the combination with the pre-drying step (S2) described above can effectively simplify the equipment, and the roll coating method can be used from the viewpoint that hot-dip galvanized steel sheets can be produced at a lower cost. It can be preferably applied. From the viewpoint of the operability of the treatment agent, treatment by a roll coating method is most preferable.
  • the temperature of the intruding material when the steel plate that has undergone the pre-drying step (S2) is allowed to enter the treatment material supplying step (S3) is preferably less than 80 ° C. This is because, when the steel sheet temperature is high, the activity of the steel sheet exceeds the protective film action of the surface conditioner, and the zinc plating film may be eluted into the treated material. Preferably it is less than 60 ° C.
  • the lower limit is preferably 30 ° C or higher. This is because if it is less than 30 ° C., the reaction due to heating in the drying step after the treatment step does not sufficiently occur, and the film formation may be non-uniform. Adjustment of the temperature of the ingress material can also be achieved by providing a cooling section of the steel plate. Temperature control by roll cooling such as a water-cooled roll is also possible.
  • the treatment agent supplied in the treatment agent supply step (S3) is an aqueous zinc phosphate solution.
  • the zinc phosphate aqueous solution is an aqueous solution containing phosphate groups and zinc ions.
  • phosphate group H PO _, HPO, PO is a generic term for [PO].
  • the zinc phosphate aqueous solution contains 0.001 to 0.7 molZL of phosphate radicals [containing three POs,
  • the concentration range of phosphate radicals was set to 0.001 to 0.7 molZL is that the stability of the treatment agent may be lowered if the phosphate radicals are increased beyond 0.7 molZL.
  • the pH of the treatment agent becomes high, and the reaction may be hindered and the desired performance may not be obtained.
  • the reason why the zinc ion is contained in a molar ratio of 0.7 or less with respect to the phosphate group is that a homogeneous crystalline film can be formed by containing the zinc ion. This is also because sludge is generated, and the surface quality may be impaired. Preferably it is 0.5 or less.
  • sludge means that Zn (PO 4) solidifies in an aqueous solution.
  • the formation reaction of crystalline zinc phosphate is a reaction represented by the following formula (A) or (B), in which a zinc atom is present relative to the phosphate radical in the treating agent. 1. 5 times required.
  • the treatment agent in the treatment agent supply step (S3) must further contain excess zinc.However, if zinc is contained excessively, the pH increases and the treatment agent solidifies. Pine.
  • the treatment agent preferably has a pH of 4 or less.
  • the pH is higher than 4, the stability of the treatment agent decreases, and there is a high possibility that sludge is generated and the surface quality is impaired, and the reaction does not proceed smoothly and a zinc phosphate film is not formed. Because there is a fear. More preferably, it is not more than pH3.
  • nitrate radical (NO 3 —) is 0.2 or less
  • nitrite radical (NO 2 —) is 0.2 or less
  • hydrofluoric acid radical F_ Is 0.1 or less
  • sulfate radical SO 2
  • the reason for adding one or more strong electrolytes with a) of 0.05 or less is to react with the treating agent stably in order to improve the uniformity of the film. Specifically, an etching action and an oxidation action can be obtained by the reaction.
  • an ammonium salt or an aqueous ammonia solution may be added to the aqueous zinc phosphate solution for pH adjustment.
  • the concentration of ammonium ions is preferably 0.02 or less in molar ratio to the phosphate radical.
  • other metal ions other than zinc may be mixed as long as the configuration of the zinc phosphate aqueous solution is satisfied. At this time, it is preferable that the total molar ratio of the metal ions to phosphate groups is 0.2 or less.
  • the amount of zinc phosphate aqueous solution attached depends on the amount of the film formed in the final step, and the amount of supply in the surface conditioning agent supply step (S1) and the treatment agent supply step (S3) described above. It is preferably 30 to 500 mgZm 2 in terms of P in total. This lubricating effect of the film is less than 30MgZm 2 is not reflected in the formability of the steel sheet, exceeds 500MgZm 2, the effect is to saturation. More preferably from 30 ⁇ 400mgZm 2.
  • the pre-drying step (S2) which is a pre-step of the treatment agent supply step (S3)
  • a treatment that prevents the surface conditioner from being brought into the treatment agent supply step (S3) as a liquid agent By providing the pre-drying step (S2), which is a pre-step of the treatment agent supply step (S3), a treatment that prevents the surface conditioner from being brought into the treatment agent supply step (S3) as a liquid agent.
  • the balance of the agent can be properly maintained over a long period of time. As a result, treatment agent management and drainage facilities can be simplified.
  • the post-drying step (S4) is a step in which the treatment agent supplied to the substrate surface is dried without being washed with water.
  • the drying temperature is not particularly limited! /, But from the viewpoint of manufacturing cost, it is preferable that the maximum temperature of the steel sheet is less than 250 ° C. More preferably, it is less than 180 ° C.
  • the drying time is not particularly limited! / Is preferably less than 100 seconds after coating from the viewpoint of surface appearance and productivity. More preferably, it is less than 50 seconds.
  • the method for drying is not particularly limited and can be appropriately selected. Examples thereof include an air knife, a dryer, and an oven. A homogeneous zinc phosphate crystal film is formed by the post-drying step (S4).
  • a zinc-based steel sheet having a zinc phosphate coating has a base material, a zinc-based plating coated on the surface of the base material, and a zinc phosphate coating formed on the outside of the zinc-based coating. ing. Each will be described below.
  • Base material The kind of steel plate used as a base material is not particularly limited, and any kind of cold-rolled steel plate or hot-rolled steel plate can be applied.
  • the chemical composition of the base material is not particularly limited. Extremely low carbon steel, low carbon steel, or Sarakuko containing Si, Nb, etc., as required, Si, Mn, P, Cr, Ni, Cu High-strength steel or high-strength steel containing V, V, etc. as appropriate can be applied.
  • molten zinc-based plating or electrozinc plating can be applied.
  • a zinc-based steel plate is obtained by applying the zinc-based plating to the base material.
  • Examples of the hot-dip galvanized steel sheet include a GI steel sheet not subjected to alloying treatment by heating and a GA steel sheet subjected to alloying treatment by heating.
  • a GI steel sheet is a steel sheet that has not been alloyed after hot-dip galvanizing and has an Fe content of 2% by mass or less. This is because if it exceeds 2% by mass, a part of the Fe—Zn alloy layer appears on the surface, which is not preferable in appearance.
  • GA steel sheet is a steel sheet that has been alloyed after hot-dip galvanizing, and the Fe content is 7 to 15 mass% with respect to the galvanized layer.
  • the Fe content is less than 7% by mass, the 7-phase remains in the vicinity of the surface of the alloyed hot-dip zinc plating layer, which is not preferable in appearance.
  • it is 8 mass% or more.
  • powdering tends to occur during press forming.
  • it is 13 mass% or less.
  • the molten zinc-based adhesion layer of the GI steel sheet and GA steel sheet may contain 0.05% by mass of A1. As a result, the adhesion between the molten zinc-based plating and the base material can be improved.
  • Cu, Ni, Cr, Si, Mn, Pb, Sb, Sn, misch metal, and the like may be contained or added in a small amount in the molten zinc-based plating layer.
  • the alloy phase is not particularly limited.
  • the GI steel sheet contains ⁇ , ⁇ , and ⁇ phases
  • the GA steel sheet contains ⁇ , ⁇ 1, ⁇ 1 and ⁇ phases. Also good.
  • the amount of adhesion of the molten zinc-based metal is not particularly limited. However, from the viewpoint of cacheability, weldability, and productivity, the adhesion amount of the molten zinc-based metal is preferably 150 gZm2 or less. [0086]
  • the forces described for GI steel sheet and GA steel sheet are 5 mass 0 / oAl—Zn plated steel sheet (GF steel sheet), 55 mass% A1-Zn plated steel sheet (GL), and 3 mass% Mg. —Al—Z n-plated steel sheet (MZ steel sheet) etc.
  • Examples of electrogalvanized steel sheet include EG steel sheet, 10 mass% Fe-Zn electrogalvanized steel sheet (FZ steel sheet), 13 mass% Ni-Zn (ZnNi steel sheet), etc. be able to. Among these, it is preferable to apply the zinc phosphate coating of the present invention to the EG steel sheet.
  • Any zinc-based plating method can be applied to the production of the zinc-based steel sheet used in the present invention.
  • a GI steel plate it is immersed in a fitting bath and cooled as it is.
  • the GA steel sheet is immersed in a mating bath and then alloyed.
  • various temper rolling (skin pass), flat wrinkle treatment (leveler) and the like may be applied as necessary.
  • the surface condition and surface roughness of the GI steel sheet and GA steel sheet are variously changed by temper rolling, but these may be changed. This change does not affect the adhesion or the like.
  • the zinc phosphate coating is a crystalline zinc phosphate coating formed on the outer layer of the zinc-based metal.
  • the zinc phosphate coating of a zinc-based plated steel sheet having a zinc phosphate coating according to the present invention has one of the following configurations.
  • Pa P-polarized light absorbance
  • Sa s-polarized light absorbance
  • the sub-phase having the zinc phosphate coating of the present invention is used.
  • the zinc phosphate coating on the lead-based plated steel sheet is an absorption that measures the surface reflected light of infrared light incident from a direction inclined by 60 ° with respect to the normal direction of the zinc-based plated steel sheet having the zinc phosphate coating. It is a spectrum obtained by the spectrum measurement method and has multiple absorption bands in the wavelength range of 8 to 12 m. This is due to the P—O bond of zinc phosphate forming the zinc phosphate film, and usually has about 5 absorption bands.
  • the reason why the infrared light is incident in the direction of 60 ° is to prevent the reflected light of the zinc-based steel plate force from affecting the absorption spectrum. As a result, a spectrum with a good SN ratio can be obtained.
  • the reflected light is detected from the 60 ° direction corresponding to the incident light. Since the reflected light is irregularly reflected by the roughness of the surface of the steel sheet and the reflected light entering the detector is small, there is a case where the light collecting device may be provided in front of the detector.
  • the zinc phosphate coating described in (i) above has a configuration in which the integrated intensity ratio (PZS) of the absorption spectrum of p-polarized light (P) and s-polarized light (S) is 1.2 or more.
  • PZS integrated intensity ratio
  • the zinc phosphate coating of the zinc-based plated steel plate having the zinc phosphate coating of the present invention has a configuration in which it is close to perpendicular to the steel plate and strongly oriented. More preferably, PZS is 2 or more.
  • a more preferable orientation of the P—O bond is a zinc phosphate coating having a configuration in the range described in (ii).
  • the orientation described in (ii) focuses on two wavelength ranges of wavelengths 8.4 to 9. and wavelengths 10.2 to LI.
  • the structure of the absorbance of the zinc phosphate coating used in the zinc-based plated steel sheet having the zinc phosphate coating of the present invention is shown. The two wavelength ranges are due to the characteristic absorption of the spectrum.
  • the ratio (PaZSa) of (absorption A) p-polarized light absorbance (Pa) to s-polarized light absorbance (Sa) in the absorption spectrum of wavelength 8.4 to 9.2 m is 2 or more.
  • ⁇ ⁇ m is 2 or more. It has been. More preferably, the deviation is 3 or more.
  • the orientation of the P—O bond is a steel plate.
  • the surface is highly oriented in the direction perpendicular to the surface of the steel sheet, and by using a zinc phosphate coating (with strong P-polarized light!), Excellent lubricity and excellent adhesion are maintained.
  • a zinc-based steel sheet having a zinc phosphate coating can be provided. This is due to the orientation
  • a zinc-based steel sheet having a zinc phosphate coating excellent in compatibility with auxiliary materials for automobiles, in particular, a vinyl chloride-based adhesive used for structural bonding, and a mastic-based adhesive having a sealing function. can be provided.
  • the adhesion amount of the zinc phosphate film may be 30 mgZm 2 or more. More preferably, it is 50 mgZ m 2 or more. This is because the lubricity is affected, and if it is less than 30 mgZm 2 , good lubricity may not be obtained. Further, the adhesion amount of the zinc phosphate coating is most preferably more preferably tool 150MgZm 2 below it 250MgZm 2 or less is preferred instrument 200MgZm 2 below. This is due to the fact that the adhesiveness may decrease when the amount of zinc phosphate coating is large.
  • Ultra low carbon steel sheet GI steel sheet is a switching plate of 200 mm X 250 mm in thickness 0. 8 mm as in Example 1 (coating weight 90gZm 2, film A1 concentration: 0.4 wt%, Fe concentration:. 1 5 wt%) And galvanized steel sheets (plating weight 60gZm 2 , coating A1 concentration: 0.30% by mass, Fe concentration: 9.5% by mass), operability evaluation and lubricity evaluation were performed. Natsuta. In this example, evaluation is performed based on the presence or absence of the pre-drying step when the component of the surface conditioner and the component of the treatment agent are changed. Table 1 shows the components of the surface conditioner, and Table 2 shows the components of the treatment agent.
  • Drying equipment hair dryer
  • the case where the conventional cleaning with alkali and acid is performed is also shown. Specifically, in this case, the substrate that has been washed with water after washing is introduced into the treatment agent supplying step. In this example, the presence / absence of a drying step before being introduced into the treatment agent supplying step after washing with water was also shown. The conditions are shown below.
  • Pre-cleaning conditions 7 wt% NaOH and 2 wt% H 2 SO (No. 13, 14 in Table 1)
  • Runnability is bringing components from the surface control agent in the treatment agent when the 10 m 2 (total area of the cutting plate is 10 m 2) was fed treatment agent to the substrate with respect to 10L of treatment agent (surface adjustment Seizai Measure the concentration of mainly zinc contained in the processing agent and supply the processing agent. The concentration change from before was evaluated.
  • the evaluation criteria for operability are as follows.
  • the need for concentration adjustment in the following evaluation criteria means that no water washing facilities, replenishers, or waste liquid treatment facilities are required.
  • the coefficient of friction was measured under the following conditions using a pin-on-disk friction wear tester for the obtained hot-dip galvanized steel sheet having a zinc phosphate coating. Lubricity was evaluated by the coefficient of friction.
  • the evaluation criteria for the friction coefficient are as follows. Test conditions
  • Treatment agent ⁇ No sludge generation
  • Example 1 evaluated based on the above conditions.
  • the operability of the surface treatment agent is not good, while the operability of the treatment agent is not affected. This is thought to be due to the fact that the surface treatment agent shown in No. 11 in Table 1 used for the symbol R24, 25 has a pH of 4.5, which is lower than the others. Therefore, the operability of the surface conditioner can be improved by increasing the pH to at least 4.5.
  • Table 4 shows the stability evaluation results of the surface conditioner
  • Table 5 shows the stability evaluation results of the treatment agent.
  • the surface conditioning agents shown in Table 4 had poor stability in No. 7, No. 10, and No. 12. This is considered to be because the total of alkali metals and alkaline earth metals reached 0.401 molZL for No. 7 as shown in Table 1. In addition, for No. 10 and No. 12, the reason is that the particle size is large and the zinc phosphate content is large. These do not necessarily affect the operability of the treatment agent, but stability is preferred.
  • Example 2 in a continuous molten zinc-based steel plate production line, a 0.8 mm thick GA steel plate (very low carbon steel plate, 45 gZm 2 coating weight, coating A1 concentration: 0.25 mass%, Fe concentration: 9.0 mass%) is subjected to a skin pass (rolling ratio 1.0%), and in the surface conditioning agent supply process, the surface conditioning agents No. 1, 4, and 6 shown in Table 1 are supplied, and the processing agent is supplied. Processes are a, d, e in Table 2. And the zinc-phosphate film
  • Supply method spray or roll coater
  • Drying equipment hair dryer
  • the coefficient of friction was measured under the following conditions using a pin-on-disk friction wear tester for the obtained hot-dip galvanized steel sheet having a zinc phosphate coating.
  • the validity as a lubrication treatment was evaluated by the friction coefficient.
  • the evaluation criteria for the friction coefficient are shown below.
  • Number of measurement points The average value is calculated from 12 measurement values per rotation, and the maximum average value is obtained for 20 times.
  • Electrode tip diameter 40R dome shape
  • Electrode material 1% by mass Cr—Cu
  • the corrosion resistance was evaluated by a method generally used as a performance evaluation method for automobile steel sheets. Specifically, after chemical conversion treatment, electrodeposition was applied, and then a single cut was applied, and the maximum swell width after 500 hours of 5 mass% salt spray test was evaluated.
  • the chemical conversion treatment and electrodeposition treatment conditions are shown below.
  • the chemical conversion treatment is carried out in the order of chemical conversion treatment (zinc phosphate treatment) after alkali degreasing, water washing and surface conditioning. The conditions in each order will be described next.
  • Fine cleaner E2001 manufactured by Nihon Parkerizing Co., Ltd.
  • 200 g / L solution 50 ° C
  • GT-10 cationic electrodeposition coating: 20
  • GT-10 cationic electrodeposition coating: 20
  • the evaluation criteria are as follows.
  • the surface conditioning agent supply step (S1) and the pre-drying step (S2) only, and the treatment agent supply step (S 3) and the post-drying step (S4) only were produced, respectively.
  • a sample in which an electroplating layer having a composition of 80 mass% Fe-20 mass% Zn ( 2 gZm 2 on one side) was formed on the zinc plating upper layer was also prepared.
  • Table 7 shows the various zinc-based plated steel plates used in this example.
  • Table 8 shows the surface conditioner used in this example
  • Table 9 shows the treatment agent.
  • Concentration values represent the TI concentration for the alternative 1 A and the zinc phosphate concentration for the others.
  • the surface conditioner shown in the table was supplied to the zinc-based steel plate.
  • Supply method is spray (in the table, squeeze roll squeeze after spray (in the table, air nozzle after spraying)
  • the offset force of IFF (AK in Table 10) and roll coat (RC in Table 10) was taken as the displacement force.
  • the amount of adhesion was obtained by fluorescent X-ray.
  • a hot air dryer was used for drying in the pre-drying step (S2).
  • the drying temperature was set based on the steel plate temperature, and was carried out in the range of no drying to 150 ° C.
  • the drying time was standardized for 10 seconds for those that performed the pre-drying process.
  • the treatment agents shown in Table 9 were supplied to the zinc-based plated steel sheet.
  • the supply method was either squeeze roll squeezing after spraying or roll coating.
  • a hot air oven was used for drying in the post-drying step (S4).
  • the drying temperature was set based on the steel plate temperature, and was standardized at 80 ° C for post-drying.
  • the drying time was standardized for 10 seconds for the post drying.
  • the obtained zinc-based steel sheet having a coating was cut into 25 ⁇ 100 mm and measured by the following method.
  • QS-300 manufactured by BiO-Rad was used for measurement.
  • infrared light is incident from a direction of 60 ° from the normal direction of the surface of the steel plate to be measured, and reflected infrared light reflected in the corresponding 60 ° direction is detected.
  • incident infrared light was polarized in a direction perpendicular to the surface (p-polarized light) and parallel (s-polarized light) by a KRS-5 polarizer, and all reflected infrared light was detected. Specifically, the following procedure was used.
  • infrared reflectance spectra of p-polarized light and s-polarized light are measured using an Au evaporated film as a standard sample.
  • the p-polarized relative reflectance spectrum of the steel sheet surface with respect to the p-polarized reflectance of the Au deposited film is measured.
  • the relative reflectance spectrum of the steel sheet surface with respect to the s-polarized reflectance of the Au deposited film is measured.
  • s-polarized absorbance -log (s-polarized relative reflectance) (D)
  • infrared absorption (absorbance) spectra of P-polarized light and s-polarized light spectra of P-polarized light and s-polarized light.
  • Figure 2 shows an example of a graph showing the relationship between the obtained wavelength and absorbance.
  • Figure 2 (a) is a graph for p-polarized light
  • Fig. 2 (b) is a graph for s-polarized light.
  • Pa and Sa are ⁇ -polarized light and s-polarized light absorbance at wavelengths of 8.4 to 9.2 ⁇ m
  • Pb and Sb are p-polarized light and s-polarized light absorbance at wavelengths 10.2 and LI. .
  • the integrated intensities P and S indicate the absorbance power at each wavelength in the wavelength range of 8 ⁇ m to 12 m and the absorbance at the wavelength 12 m for the obtained p-polarized and s-polarized infrared absorption spectra.
  • the background was corrected by subtraction, and the absorbance at each wavelength was calculated by calorie calculation. Specifically, the following formulas (E) and (F) are used.
  • PZS can be calculated.
  • the adhesion amount of the zinc phosphate film was obtained by obtaining the adhesion amount of P by the fluorescent X-ray measurement method on the obtained steel sheet.
  • the crystallinity of zinc phosphate was evaluated by the following method using a RINT2500 measuring device manufactured by Rigaku Corporation.
  • FIG. 3 shows a schematic diagram of the test method for soot peeling.
  • each end portion to which the adhesive 2 is not applied is gripped, and each end portion is perpendicular to the bonding surface. This is done by pulling in the directions indicated by arrows ⁇ and ⁇ , which are opposite to each other.
  • the evaluation was as follows based on the baking time at which the cohesive failure area ratio was 90% or more.
  • FIG. 4 shows an overview of the shear tensile test method. As shown in Fig. 4, the test was performed by grasping each end of the bonded steel plates 3, 3 where the adhesive 4 was not applied, and making each end parallel to the bonding surface and opposite each other. This is done by pulling in the direction indicated by the arrows S and S. The evaluation was as follows based on the baking time at which the cohesive failure area ratio was 90% or more.
  • the lubricity of the obtained zinc-based steel sheet having the coating was measured by measuring the coefficient of friction. Specifically, using a pin-on-disk friction tester, the coefficient of friction was measured in a state where 2 gZm 2 per side of Pengchu Kosan fossil oil Nox Last 550S was applied to the steel sheet. The test conditions and evaluation criteria are shown below.
  • One of the operability evaluations was the retention of the components of the treatment agent, which was measured by measuring the concentration of zinc and the concentration of alkali metals in the treatment agent. Specifically, the concentration of zinc and alkali metal in the treatment agent when a total of 10 m 2 of cut steel sheet with zinc base was applied to 10 L of treatment agent in the treatment agent supply process was measured. The concentration change was compared.
  • the evaluation criteria are as follows.
  • Table 10 shows the conditions of each example, comparative example, and reference example.
  • the different processes are represented by S1, S2, S3 and S4.
  • Step S1 means a surface conditioning agent supply step
  • step S2 means a pre-drying step
  • step S3 means a treatment agent supply step
  • step S4 means a post-drying step.
  • the types of plating are abbreviations shown in Table 7
  • the types of surface conditioning agents are the symbols shown in Table 8
  • the types of treatment agents are indicated by the numbers shown in Table 9.
  • the supply method of the surface conditioner and treatment agent is indicated by S for spray, SR for squeeze roll aperture after spray, AK for air knife after spray, and RC for roll coater.
  • Tables 11 and 12 show the results for each of the conditions shown in Table 10.
  • trial numbers 1 to 4 show the results of examples when any of the steps S1 to S4, which is a step of producing a zinc-based steel sheet having a zinc phosphate coating, is omitted. It is a thing. According to this, if one of the steps is omitted, an appropriate value of PZS cannot be obtained, and adhesion is not preferable. Therefore, a zinc-based plated steel sheet having a zinc phosphate coating excellent in reproducibility, adhesiveness and lubricity can be produced by providing the production steps S1 to S4.
  • the trial number 12 where the process is not omitted has only PZS of 0.1. This is because the pH of the surface conditioner is 5 or less, so in order to obtain a more appropriate PZ S, it is preferable not to omit the process and to control the pH of the surface conditioner.
  • Table 12 shows the results related to operability. From this, it can be seen that the operability differs depending on the surface conditioner, the type of treatment agent applied in each process, and the drying conditions before and after. Therefore, by providing a manufacturing process under appropriate conditions, a zinc-based steel sheet having a zinc phosphate coating that is further superior in terms of cost and environment can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A process for producing a hot-dip galvanized steel sheet with zinc phosphate coat, which realizes stabilizing of the composition balance of treating agent and realizes reducing of production cost and lessening of influences on environment. A galvanized steel sheet with zinc phosphate coat excelling in lubricity and adherence is provided through the process. There is provided a process for continuously producing a hot-dip galvanized steel sheet with zinc phosphate coat, comprising the surface regulating agent supply step of feeding a surface regulating agent onto a hot-dip galvanized surface; the predrying step of drying the surface regulating agent as a post-step of the surface regulating agent supply step; and the treating agent supply step of feeding a treating agent containing an aqueous solution of zinc phosphate onto the hot-dip galvanized surface as a post-step of the predrying step.

Description

明 細 書  Specification
リン酸亜鉛被膜を有する溶融亜鉛めつき鋼板の製造方法  Method for producing hot dip galvanized steel sheet having zinc phosphate coating
技術分野  Technical field
[oooi] 本発明は、自動車分野等でプレス成形性向上の為に使用される、潤滑性及び Z又 は接着性に優れた溶融亜鉛系めつき鋼板の製造方法に関する。詳しくは、連続溶融 亜鉛系めつき鋼板製造ラインにおいて、上記性能を有する溶融亜鉛めつき鋼板製造 の操業性に代表される生産性向上を図ることも可能なリン酸亜鉛皮膜を有する溶融 亜鉛系めつき鋼板の製造方法に関する。  [oooi] The present invention relates to a method for producing a hot-dip galvanized steel sheet having excellent lubricity and Z or adhesion, which is used for improving press formability in the automotive field and the like. Specifically, in a continuous hot-dip galvanized steel sheet production line, a hot-dip galvanized steel sheet with a zinc phosphate coating that can also improve productivity represented by the operability of hot-dip galvanized steel sheet production with the above performance. The present invention relates to a method for manufacturing a steel sheet with a shell.
背景技術  Background art
[0002] 近年、自動車等に用いられる鋼板の防鲭対策として、亜鉛系めつき鋼板が用いら れている。自動車に用いられる場合のほとんどにおいて、該亜鉛系めつき鋼板には プレス成形が施される。ところが、亜鉛系めつき鋼板は冷延鋼板と比較して、プレス成 形性が劣ることが知られている。これは、電気亜鉛めつき (EG)鋼板又は溶融亜鉛め つき(GI)鋼板にっ 、ては表面の亜鉛が軟質であるため摺動時に金型と焼付現象を 生じたり、溶融亜鉛めつき鋼板の場合には軟質な r?相が残存したりして摺動性を低 下させるからである。また、合金化溶融亜鉛めつき (GA)鋼板については、合金化時 にめつき表面に ζ相などの軟質な合金層が形成されることで、上記と同様に摺動性 を低下させている。  [0002] In recent years, zinc-based plated steel sheets have been used as an anti-corrosion measure for steel sheets used in automobiles and the like. In most cases of use in automobiles, the zinc-based steel sheet is press-formed. However, it is known that zinc-plated steel sheets are inferior in press formability compared to cold-rolled steel sheets. This is because electrogalvanized (EG) steel sheet or hot dip galvanized (GI) steel sheet, because the surface zinc is soft, it causes mold and seizure phenomenon when sliding, or hot dip galvanized steel sheet. In this case, the soft r? Phase remains and the sliding property is lowered. In addition, for alloyed hot-dip galvanized (GA) steel sheets, a soft alloy layer such as ζ phase is formed on the surface of the galvanized steel during alloying. .
[0003] これらの問題の解決手段として、亜鉛めつき皮膜の上層に、さらに鉄一亜鉛合金電 気めつき皮膜を設けて、潤滑性を向上させる技術が特許文献 1に開示されており、広 く実用化されている。ところが該技術では、電気めつき設備が必要となるため、製造コ ストが大幅に増加する。  [0003] As a means for solving these problems, Patent Document 1 discloses a technique for improving lubricity by further providing an iron-zinc alloy electroplating film on the zinc plating film. It has been put into practical use. However, this technology requires an electrical plating facility, which greatly increases manufacturing costs.
[0004] また、製造コスト削減の観点力 特許文献 1に記載されて 、るようなめつき皮膜を廃 止して上層をリン酸亜鉛皮膜とすることにより潤滑性に優れた溶融亜鉛系めつき鋼板 とする技術が特許文献 2に開示されている。これはリン酸亜鉛皮膜を備えることにより 例えば自動車車体製造時にお!ヽて高速プレス成形性に優れた亜鉛含有金属めつき 鋼板複合体を構成するものである。 [0005] ところがこれらのリン酸亜鉛皮膜を有する鋼板の製造にぉ 、ては前処理を行わな!/ヽ と所望の性能が得られないため、各種前処理工程を要する。例えば上記特許文献 2 や特許文献 3では、連続溶融亜鉛系めつき鋼板製造ラインで鋼板の製造を行う際に 、前処理剤カ^ン酸亜鉛水溶液中に持ち込まれるのを防止する為、水洗の工程を有 している。 [0004] Further, the viewpoint power for reducing the manufacturing cost As described in Patent Document 1, the hot dip galvanized steel sheet having excellent lubricity is obtained by eliminating the galling film and forming the upper layer as a zinc phosphate film. This technique is disclosed in Patent Document 2. This can be achieved by providing a zinc phosphate coating, for example when manufacturing automobile bodies! It constitutes a zinc-containing metal-plated steel plate composite with excellent high-speed press formability. [0005] However, in the production of a steel sheet having these zinc phosphate coatings, since the desired performance cannot be obtained without pretreatment, various pretreatment steps are required. For example, in Patent Document 2 and Patent Document 3 described above, in order to prevent the steel sheet from being produced in the pretreatment agent zinc carbonate aqueous solution when the steel sheet is produced on the continuous molten zinc-based plated steel sheet production line, Has a process.
[0006] また、特許文献 4及び 5にはリン酸亜鉛水溶液と接触させる前に、基材を洗浄後、 表面調整のためにチタンコロイド水性液等の表面調整剤に浸漬することが開示され ている。一方、ワックスや油脂等の有機物固形潤滑皮膜を亜鉛系めつき表面に施す 技術も古くから開示 (特許公報 3006455号公報等)されている力 プレス成形時の 金型へのプレスカスの凝着やそれに起因する、プレス品欠陥の発生、さらには溶接 接合時の臭気問題 (有機物が溶接の熱で分解し作業環境に悪影響を及ぼす)があ る。  [0006] In addition, Patent Documents 4 and 5 disclose that a substrate is washed and then immersed in a surface conditioner such as an aqueous titanium colloid solution for surface conditioning before contacting with a zinc phosphate aqueous solution. Yes. On the other hand, a technique for applying an organic solid lubricating film such as wax or fat to a zinc-based surface has been disclosed for a long time (Patent Publication No. 3006455 etc.). Due to the occurrence of pressed product defects, there are also odor problems during welding and joining (organic matter is decomposed by the heat of welding and adversely affects the work environment).
[0007] このようなことからも、製造コスト削減の要求に応えて上記鉄 亜鉛電気めつき皮膜 の代替として、亜鉛めつき上層にリン酸系皮膜 (材料とプロセス, l l (1998) p. 546) 、 Mn— P酸ィ匕物皮膜 (材料とプロセス, 6 (1993) p. 1545)や Ni系皮膜 (材料とプロ セス, l l (1998) p. 384)等を施したいわゆる無機潤滑皮膜の適用拡大が進められ ている。  [0007] For these reasons, in response to the demand for manufacturing cost reduction, as an alternative to the above-mentioned iron-zinc electroplating film, a phosphate-based film (materials and processes, ll (1998) p. 546 ), Mn—P oxide coating (Materials and Processes, 6 (1993) p. 1545) and Ni-based coatings (Materials and Processes, ll (1998) p. 384), etc. The application is being expanded.
[0008] 無機潤滑皮膜は溶接接合時にも異臭等の問題がなぐ安定した成形性が得られる ことが特徴である。その中でもリン酸系皮膜は従来力も使用されており、種々の技術 が提案されている。例えば、特許文献 6には、 Mgを含むリン酸亜鉛皮膜を亜鉛めつ き表面に設け、自動車車体用として好適に用いられることが開示されている。  [0008] The inorganic lubricating film is characterized in that stable formability can be obtained without problems such as offensive odor even during welding joining. Among them, phosphoric acid-based coatings have been used in the past, and various techniques have been proposed. For example, Patent Document 6 discloses that a zinc phosphate coating containing Mg is provided on the surface of zinc plating and is suitably used for automobile bodies.
[0009] ところが当該無機潤滑皮膜は、他の部材との接着性に問題が生じる場合があった。  [0009] However, the inorganic lubricating film sometimes has a problem in adhesion to other members.
無機潤滑皮膜を有する亜鉛めつき鋼板は他の部材と接着されることにより製品を組 み上げていくことが多ぐこの接着性は非常に重要な課題であった。過去よりこの無 機潤滑皮膜を有する鋼板の接着性について検討が進められている。例えば特許文 献 7及び特許文献 8ではめつき層表面に ZnO酸化物を形成し、その表面に Mn— Zn OH— P系結晶性酸化物を形成することで潤滑性、化成処理性及び接着剤適合 性に優れた亜鉛系めつき鋼板が得られることを開示している。 [0010] また、特許文献 9にはマスチックタイプも含む多様な接着剤においても十分に接着 強度を示す無機潤滑皮膜を有する鋼板にっ ヽて開示されて!ヽる。 This adhesiveness is a very important issue because zinc-plated steel sheets with an inorganic lubricating film often assemble products by being bonded to other members. Since the past, studies have been conducted on the adhesiveness of steel plates with this in-organic lubrication film. For example, in Patent Document 7 and Patent Document 8, a ZnO oxide is formed on the surface of the adhesive layer, and an Mn—Zn OH—P crystalline oxide is formed on the surface, thereby providing lubricity, chemical conversion treatment, and adhesive. It discloses that a zinc-based steel sheet with excellent compatibility can be obtained. [0010] Further, Patent Document 9 discloses a steel sheet having an inorganic lubricating film that exhibits sufficient adhesive strength even in various adhesives including mastic type.
[0011] さらに、このような無機潤滑皮膜、その中でもリン酸亜鉛皮膜を有する亜鉛系めつき 鋼板においては、均一な成膜状態を確保するとともに、自動車用防鲭鋼板として各 種性能を確保することが必要である。また摺動性や潤滑性の向上だけでなぐ溶接 性や接着性等の他の特性についても従来と同等以上の性能が要求される。かかる観 点から、リン酸亜鉛皮膜を有する亜鉛系めつき鋼板の製造方法は、煩雑で精度の高[0011] Further, in such a zinc-based plated steel sheet having a zinc phosphate film, in particular, a uniform film-forming state is ensured and various performances are secured as a fender for automobiles. It is necessary. In addition, other properties such as weldability and adhesiveness, which are achieved only by improving slidability and lubricity, are required to have the same or higher performance as before. From this point of view, the method for producing a zinc-based plated steel sheet having a zinc phosphate film is complicated and highly accurate.
V、製造工程を必要として 、た。 V, required a manufacturing process.
[0012] 具体的には、これらリン酸系皮膜を形成する技術は、いわゆる反応型の表面化成 処理と称され、第一リン酸、亜鉛、 Ni、 Mn、 Mg、硝酸、亜硝酸、フッ素化合物などを 含有する処理剤を亜鉛めつき鋼板表面に接触、反応させることで成膜する技術であ る。さらに詳しくは、該処理剤を亜鉛めつき表面にスプレー等により供給し、亜鉛めつ きのエッチングを伴 、ながら成膜反応が進行する。このとき該エッチングで溶出した 亜鉛は処理剤中に亜鉛イオンとして存在する力 亜鉛イオン濃度が上昇することで 処理剤の pHが上昇し、エッチング反応が行われにくくなることから、処理剤全体にリ ン酸などを補給し pHや Zn濃度等をある一定の値に保つことが均一な成膜状態を保 つために必要である。 [0012] Specifically, the technology for forming these phosphoric acid-based films is referred to as so-called reactive surface chemical conversion treatment, and includes primary phosphoric acid, zinc, Ni, Mn, Mg, nitric acid, nitrous acid, and fluorine compounds. This is a technique for forming a film by contacting and reacting a treatment agent containing the above with the surface of a zinc-plated steel plate. More specifically, the treatment agent is supplied to the surface of the zinc plating by spraying or the like, and the film forming reaction proceeds while etching the zinc plating. At this time, the zinc eluted in the etching is a force that exists as zinc ions in the treatment agent. As the zinc ion concentration increases, the pH of the treatment agent rises and the etching reaction becomes difficult to occur. Keeping pH and Zn concentration at a certain value by replenishing with acid is necessary to maintain a uniform film formation state.
[0013] 通常、処理剤を保管するタンク等の容量は限られており、上昇した亜鉛濃度や pH を一定に保っためには処理剤の一部をドレインとして排出しながら、補給液を添加す るといった手法がとられることが多力つた。  [0013] Usually, the capacity of a tank or the like for storing the treatment agent is limited, and in order to keep the increased zinc concentration and pH constant, a replenisher is added while discharging a part of the treatment agent as a drain. It was a lot of work to be done.
特許文献 1 :特開平 1 -319661号公報  Patent Document 1: JP-A-1-319661
特許文献 2:特開平 7- 138764号公報  Patent Document 2: Japanese Patent Laid-Open No. 7-138764
特許文献 3:特開 2001 - 98383号公報  Patent Document 3: JP 2001-98383 A
特許文献 4:特開 2005 - 54202号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-54202
特許文献 5 :特開 2005 -54203号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2005-54203
特許文献 6 :特開平 11 -315386号公報  Patent Document 6: Japanese Patent Laid-Open No. 11-315386
特許文献 7:特許第 3153097号公報  Patent Document 7: Japanese Patent No. 3153097
特許文献 8:特許第 3199980号公報 特許文献 9:特開 2002- 53974号公報 Patent Document 8: Japanese Patent No. 3199980 Patent Document 9: Japanese Patent Laid-Open No. 2002-53974
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] し力 特許文献 1〜4に記載の製造方法では、水洗いをする場合には水力 水洗い をしない場合には表面調整剤等の液剤がリン酸亜鉛水溶液を供給する工程に持ち 込まれ、処理剤であるリン酸亜鉛水溶液の組成バランスを変動させる。また、水洗い をしない場合には鋼板が表面調整剤等で活性化されていることにより、後工程にお ける処理液等と反応が促進され、鋼板からの亜鉛めつき皮膜の、特に亜鉛成分の溶 出が大きぐ処理液の組成バランスの変動を大きくしていた。通常処理剤を保管する タンクなどの容量は限られており、変動した処理剤の組成バランスを一定に保っため には処理剤の一部をドレインとして排出しながら、補給液を添加すると 、つた手法が とられること力多い。そのため、リン酸亜鉛水溶液の補給コスト及び排出設備が必要と なるとともに、 Pの廃液が増加するので、排水設備等も備えることを要した。  [0014] In the manufacturing methods described in Patent Documents 1 to 4, when water washing is performed, a liquid agent such as a surface conditioner is brought into the step of supplying the zinc phosphate aqueous solution when water washing is not performed. The composition balance of the aqueous zinc phosphate solution as the treatment agent is varied. In addition, when not washed with water, the steel sheet is activated with a surface conditioner, etc., so that the reaction with the treatment liquid in the subsequent process is promoted, and the zinc plating film from the steel sheet, especially the zinc component The variation in the composition balance of the treatment liquid with large elution was increased. Normally, the capacity of tanks for storing treatment agents is limited, and in order to keep the composition balance of the changed treatment agents constant, it is possible to add a replenishing solution while discharging a part of the treatment agent as a drain. There is much power to be taken. Therefore, the replenishment cost of zinc phosphate aqueous solution and the drainage facilities were required, and the waste liquid of P increased, so it was necessary to provide drainage facilities.
[0015] また、近年における環境に対する配慮を鑑みると、 Pの廃液をできる限り抑えること が社会的にも要請されている。さらに従来、水系処理では通常、表面を乾かさないこ とが常識であった。これは、乾燥させると表面が酸ィ匕して反応性が悪くなり、性能が劣 化すると考えられていたことによる。  [0015] In view of environmental considerations in recent years, there is a social demand to suppress the waste liquid of P as much as possible. Furthermore, conventionally, it has been common knowledge that the surface of a water-based treatment is usually not dried. This is because it was thought that when dried, the surface became acidic and the reactivity deteriorated, and the performance deteriorated.
[0016] さらに、無機潤滑皮膜を有する亜鉛系めつき鋼板の接着性については、特許文献 7及び 8に記載のものは、確認されている接着剤の種類が 1つであり、多種多様の副 資材が使用される現在の自動車車体製造工程では必ずしも適合するものではない。  [0016] Further, regarding the adhesiveness of zinc-based plated steel sheets having an inorganic lubricating film, the ones described in Patent Documents 7 and 8 have only one type of adhesive that has been confirmed, and there are a wide variety of sub-types. The current automobile body manufacturing process in which materials are used is not necessarily compatible.
[0017] そして、特許文献 9に記載の無機潤滑皮膜を有する鋼板では、特に非晶質のリン 酸塩系皮膜の場合、加工時に特に高面圧が力かるような成形あるいは摺動試験に おいて性能が不足する虞があった。従って、これまで多種の接着剤に対して十分な 接着性を確保できかつ十分な摺動性、成形性を有する無機潤滑皮膜を有する亜鉛 めっき鋼板は存在しな力つた。  [0017] And, in the case of a steel sheet having an inorganic lubricating film described in Patent Document 9, particularly in the case of an amorphous phosphate-based film, the steel sheet is subjected to a forming or sliding test in which a high surface pressure is applied particularly during processing. And there was a risk that the performance would be insufficient. Therefore, there has been no galvanized steel sheet having an inorganic lubricating film that can secure sufficient adhesion to various adhesives and has sufficient slidability and formability.
[0018] そこで本発明は、処理剤の組成バランスを一定に保ち、かつ、製造コストを削減す るとともに環境への影響を少なくできるリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼 板の製造方法を提供することを課題とする。そして、これにより潤滑性及び接着性に 優れたリン酸亜鉛皮膜を有する亜鉛系めつき鋼板を提供することを課題とする。 課題を解決するための手段 [0018] Therefore, the present invention provides a method for producing a hot-dip zinc-based steel sheet having a zinc phosphate coating that can keep the composition balance of the treatment agent constant, reduce the production cost, and reduce the influence on the environment. It is an issue to provide. And this improves lubricity and adhesion It is an object to provide a zinc-based steel sheet having an excellent zinc phosphate coating. Means for solving the problem
[0019] 本発明者らは鋭意検討の結果、上記課題を解決するために以下のような知見を得 て本発明のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法を開発した。 [0019] As a result of intensive studies, the present inventors have obtained the following knowledge and developed a method for producing a hot-dip zinc-based steel sheet having a zinc phosphate coating according to the present invention in order to solve the above problems.
(a)リン酸亜鉛水溶液を供給する工程の前に表面調整剤を乾燥させることにより、リン 酸亜鉛水溶液中へ表面調整剤の持ち込みを抑制することができる。これは、表面調 整剤を乾燥させることによって、亜鉛めつき表面の活性ィ匕を抑制することが可能であ ること〖こよる。ここで、表面調整剤とは、リン酸亜鉛の結晶核形成剤を含む水性液のこ とであり、例えば、ピロリン酸 Na水溶液に Tiコロイドが分散した水性液や、リン酸亜鉛 の粒子が分散した水性液等である。 (a) By bringing the surface conditioner into a dry state before the step of supplying the zinc phosphate solution, it is possible to suppress the surface conditioner from being brought into the zinc phosphate solution. This is because it is possible to suppress the activity of the zinc plating surface by drying the surface conditioner. Here, the surface conditioner is an aqueous liquid containing a crystal nucleating agent of zinc phosphate. For example, an aqueous liquid in which Ti colloid is dispersed in an aqueous solution of sodium pyrophosphate, or particles of zinc phosphate are dispersed. Aqueous solution.
(b)前記表面調整剤の中でもリン酸亜鉛粒子が分散した水性液を使用して、該水性 液を乾燥させることにより、処理剤であるリン酸亜鉛水溶液の組成バランスの変動を 抑制することができる。これはリン酸亜鉛粒子を含有する水性液を乾燥させることによ つて、リン酸亜鉛粒子が粒径を維持したまま凝集することなく溶融亜鉛系めつき表面 に吸着し、粒子形態を維持することができ、かつ保護皮膜の様な作用により処理剤 工程までの鋼板表面の酸ィヒ反応を抑制しつつ、次の乾燥工程でめっき表面を反応 させることが可能となることによる。一方、ピロリン酸 Na水溶液に Tiコロイドが分散した 水性液の場合は、結晶核形成剤が乾燥凝集する虞がある。  (b) By using an aqueous liquid in which zinc phosphate particles are dispersed among the surface conditioning agents, and drying the aqueous liquid, it is possible to suppress fluctuations in the composition balance of the aqueous zinc phosphate solution that is the treatment agent. it can. This is because by drying an aqueous liquid containing zinc phosphate particles, the zinc phosphate particles are adsorbed on the surface of the molten zinc base without agglomerating while maintaining the particle size, and the particle morphology is maintained. This is because the plating surface can be reacted in the next drying step while suppressing the oxidization reaction on the surface of the steel sheet until the treatment agent step by the action of the protective film. On the other hand, in the case of an aqueous liquid in which Ti colloid is dispersed in an aqueous solution of sodium pyrophosphate, the crystal nucleating agent may dry and aggregate.
[0020] また、得られる亜鉛系めつき鋼板に関しては、以下のような知見を得て本発明を完 成した。  [0020] Further, regarding the obtained zinc-based plated steel sheet, the following knowledge was obtained and the present invention was completed.
(c)亜鉛めつき鋼板表面に形成されたリン酸亜鉛の P— O結合の配向が鋼板表面に おいて、該鋼板表面に対して垂直方向の配向が多いと優れた潤滑性を維持したまま 接着性を改善することができる。これは、 P— O結合と接着剤 (主に榭脂)の C— O結 合との相互作用が増すためであると考えられる。なおリン酸亜鉛の P— o結合の配向 につ ヽてはその鋼板の表面法線に対して 60°方向から赤外光を入射し表面から吸 収する赤外光を測定する吸収スペクトル測定法で得られるスペクトルで、 P— O結合 伸縮振動での吸収にぉ 、て P偏光 (鋼板表面に垂直な成分の偏光)及び s偏光 (鋼 板表面に水平な成分の偏光)の積分吸収強度比で判断することができる。 (d)さらに詳細に P— O結合の配向を知るためには、特定の P— O結合に関する吸収 に着目し、その P偏光及び s偏光に対する吸光度の比率を得ると精度良く判断できる 。本発明の亜鉛めつき鋼板表面の結晶質のリン酸亜鉛のスペクトル吸収においては 波長 8. 4〜9. の範囲と波長 10. 2〜: L 1. 0 mの範囲に特徴的な吸収帯を有 する。従って、この範囲の吸収帯について p偏光の吸光度と s偏光の吸光度との比率 を測定することで接着性についてさらに詳しく判断することができる。つまり該吸収帯 の P偏光と s偏光との吸光度の比率を高めることでより潤滑性、接着性に優れたリン酸 亜鉛皮膜を有する亜鉛系めつき鋼板を得ることが可能となる。 (c) If the orientation of P—O bond of zinc phosphate formed on the surface of the zinc-plated steel sheet is on the steel sheet surface, and the orientation in the direction perpendicular to the steel sheet surface is large, excellent lubricity is maintained. Adhesion can be improved. This is thought to be due to an increase in the interaction between the P—O bond and the C—O bond of the adhesive (mainly resin). In addition, the orientation of the P—o bond of zinc phosphate is an absorption spectrum measurement method in which infrared light is incident on the surface normal of the steel plate from the direction of 60 ° and absorbed from the surface. In the spectrum obtained by the following, the absorption ratio of P—O bond stretching vibration, the integral absorption intensity ratio of P-polarized light (polarized light component perpendicular to the steel plate surface) and s-polarized light (polarized light component horizontal to the steel plate surface) Can be judged. (d) In order to know the orientation of the P—O bond in more detail, it is possible to accurately determine the ratio of the absorbance with respect to the P-polarized light and s-polarized light by paying attention to the absorption related to the specific P—O bond. In the spectral absorption of crystalline zinc phosphate on the surface of the zinc-plated steel sheet of the present invention, there is a characteristic absorption band in the wavelength range from 8.4 to 9. and in the wavelength range from 10.2 to L 1.0 m. Yes. Therefore, by measuring the ratio of the absorbance of p-polarized light and the absorbance of s-polarized light in this range of absorption band, the adhesiveness can be judged in more detail. In other words, by increasing the absorbance ratio between the P-polarized light and the s-polarized light in the absorption band, it is possible to obtain a zinc-based steel sheet having a zinc phosphate film with better lubricity and adhesion.
[0021] 本発明は、上記知見に基づいてなされたものである。以下本発明について説明す る。 [0021] The present invention has been made based on the above findings. The present invention will be described below.
請求の範囲第 1項に記載の発明は、リン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼 板を連続的に製造する方法であって、溶融亜鉛めつきの表面に表面調整剤を供給 する表面調整剤供給工程と、表面調整剤供給工程の後工程で、表面調整剤を乾燥 させる前乾燥工程と、前乾燥工程の後工程で、溶融亜鉛めつきの表面にリン酸亜鉛 水溶液を含む処理剤を供給する処理剤供給工程とを含むリン酸亜鉛皮膜を有する 溶融亜鉛系めつき鋼板の製造方法により前記課題を解決する。  The invention described in claim 1 is a method for continuously producing a hot dip zinc-based steel plate having a zinc phosphate coating, and supplying a surface conditioner to the surface of the hot dip zinc surface. Supply agent containing zinc phosphate aqueous solution on the surface of molten zinc plating in the pre-drying step for drying the surface conditioner in the pre-drying step and the post-drying step in the pre-drying step. The said subject is solved by the manufacturing method of the hot dip zinc-based steel plate which has a zinc-phosphate film | membrane including the processing agent supply process to perform.
[0022] ここで、「溶融亜鉛系めつき鋼板」とは、「溶融亜鉛めつき鋼板」の他に「合金化溶融 亜鉛めつき鋼板を含む概念である。また、「亜鉛系めつき鋼板」は、「電気亜鉛めつき 鋼板」、「溶融亜鉛めつき鋼板」及び「合金化溶融亜鉛めつき鋼板」を含んだ総称であ る。 Here, the “hot galvanized steel sheet” is a concept including “alloyed molten galvanized steel sheet” in addition to “hot galvanized steel sheet”. Is a generic term including “electrogalvanized steel sheet”, “hot dip galvanized steel sheet” and “alloyed hot dip galvanized steel sheet”.
[0023] また、「リン酸亜鉛皮膜」の「リン酸亜鉛」とは、通常の X線回折分析において Hopei teの回折が生じる結晶質のリン酸亜鉛 (Zn (PO ) ·4Η Ο)を意味する。  [0023] The term "zinc phosphate" in "zinc phosphate coating" means crystalline zinc phosphate (Zn (PO) · 4Η 生 じ る) that produces Hopete diffraction in normal X-ray diffraction analysis. To do.
3 4 2 2  3 4 2 2
[0024] 請求の範囲第 2項に記載の発明は、請求の範囲第 1項に記載のリン酸亜鉛皮膜を 有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供給工程の表面調整剤がリ ン酸亜鉛粒子を含有する水性液であることを特徴とする。  [0024] The invention described in claim 2 is the surface adjuster in the surface adjuster supply step of the method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to claim 1. It is an aqueous liquid containing zinc phosphate particles.
[0025] 請求の範囲第 3項に記載の発明は、請求の範囲第 2項に記載のリン酸亜鉛皮膜を 有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供給工程の表面調整剤に 含まれるリン酸亜鉛粒子の平均粒子径が 10 μ m以下であることを特徴とする。 [0026] 請求の範囲第 4項に記載の発明は、請求の範囲第 2項に記載のリン酸亜鉛皮膜を 有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供給工程の表面調整剤に 含まれるリン酸亜鉛粒子の平均粒子径が 10 m以下であり、かつ、表面調整剤の p Hが 5以上であることを特徴とする。 [0025] The invention described in claim 3 is used as a surface conditioner in the surface conditioner supply step of the method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2. The zinc phosphate particles contained have an average particle size of 10 μm or less. [0026] The invention described in claim 4 is a surface conditioner in the surface conditioner supply step of the method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2. The zinc phosphate particles contained have an average particle size of 10 m or less, and the pH of the surface conditioner is 5 or more.
[0027] 請求の範囲第 5項に記載の発明は、請求の範囲第 1項〜第 4項のいずれか一項に 記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供 給工程の表面調整剤はリン酸亜鉛粒子を Omol/Lより多ぐ 0. 5mol/L以下含有 し、かつ、 Li、 Na、 K、 Be、 Mg及び Caからなる群から選ばれる 1種以上を合計で 0. 3molZL以下含有することを特徴とする。  [0027] The invention according to claim 5 is the surface of the method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 1 to 4. The surface conditioner in the conditioner supply process contains zinc phosphate particles greater than Omol / L and 0.5 mol / L or less, and is selected from the group consisting of Li, Na, K, Be, Mg and Ca 1 It is characterized by containing not less than 0.3 molZL of seeds or more in total.
[0028] 請求の範囲第 6項に記載の発明は、請求の範囲第 1項〜第 5項のいずれか一項に 記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の処理剤供給ェ 程の処理剤がリン酸根を 0. 001〜0. 7molZL含有し、かつリン酸根に対してモル 比で 0. 7以下の亜鉛イオンを含有することを特徴とする。  [0028] The invention according to claim 6 is a treatment of a method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 5. The treatment agent in the agent supply step contains 0.001 to 0.7 molZL of phosphate radicals and contains zinc ions in a molar ratio of 0.7 or less with respect to the phosphate radicals.
[0029] 請求の範囲第 7項に記載の発明は、請求の範囲第 1項〜第 6項のいずれか一項に 記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の処理剤供給ェ 程の処理剤のリン酸亜鉛水溶液が亜鉛イオン及びリン酸根を含有し、 pH4以下であ り、かつ前記亜鉛イオン及びリン酸根以外にリン酸根に対してモル比で 0. 2以下の 硝酸根、 0. 2以下の亜硝酸根、 0. 1以下の弗酸根及び 0. 05以下の硫酸根の強電 解質ァ-オン力 なる群力 選ばれる 1種類以上を含有することを特徴とする。  [0029] The invention according to claim 7 is a process for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 6. The zinc phosphate aqueous solution of the treatment agent in the agent supply process contains zinc ions and phosphate radicals, has a pH of 4 or less, and has a molar ratio of 0.2 or less with respect to the phosphate radicals other than the zinc ions and phosphate radicals. It is characterized by containing one or more kinds selected from the group power of strong electrolysis-ion power of nitrate group, nitrite group of 0.2 or less, hydrofluoric acid group of 0.1 or less, and sulfate group of 0.05 or less. To do.
[0030] 請求の範囲第 8項に記載の発明は、請求の範囲第 1項〜第 7項のいずれか一項に 記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供 給工程及び処理剤供給工程により溶融亜鉛系めつき表面に付着した Pが P換算で 3 0〜500mg/m2に調整されることを特徴とする。 [0030] The invention according to claim 8 is the surface of the method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 1 to 7. It is characterized in that P adhering to the surface of the molten zinc-based plating is adjusted to 30 to 500 mg / m 2 in terms of P by the adjusting agent supplying process and the treating agent supplying process.
[0031] ここで「P換算」における P付着量は、化学溶解による測定又は蛍光 X線による測定 力 算出することができる。化学溶解による方法は、所定面積の亜鉛めつき鋼板のめ つき層を、所定量の強酸 (例えば塩酸)で溶解し、該溶解液を ICP (誘導結合プラズ マ発光分析)にて溶解液中の P濃度を測定し換算するものである。一方、蛍光 X線に よる方法は、種々の P付着量の試料を作製し、蛍光 X線法にて ΡΚ αに起因する蛍光 X線強度を測定し、上記化学溶解による方法で P付着量を求め、検量線を作成する ことで、以後の試料について同様の方法で蛍光 X線強度を得るものである。これによ れば非破壊にて P付着量を求めることができる。 [0031] Here, the P adhesion amount in "P conversion" can be measured by chemical dissolution or by measuring force by fluorescent X-rays. In the chemical dissolution method, a plating layer of a zinc-plated steel sheet having a predetermined area is dissolved with a predetermined amount of strong acid (for example, hydrochloric acid), and the solution is dissolved in the solution by ICP (inductively coupled plasma emission analysis). P concentration is measured and converted. On the other hand, the method using fluorescent X-rays produces samples with various P adhesion amounts, and the fluorescence caused by ΡΚα by the fluorescent X-ray method. By measuring the X-ray intensity, obtaining the amount of P adhesion by the above chemical dissolution method, and creating a calibration curve, the fluorescent X-ray intensity is obtained for the subsequent samples by the same method. According to this, it is possible to obtain the P adhesion amount without destruction.
[0032] 請求の範囲第 9項に記載の発明は、請求の範囲第 2項に記載のリン酸亜鉛皮膜を 有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供給工程の表面調整剤の P Hが 5以上であり、かつ前記リン酸亜鉛粒子の平均粒径が 0. 1〜3 /ζ πιであることを 特徴とする。 [0032] The invention described in claim 9 is the surface adjuster in the surface adjuster supply step of the method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2. The pH is 5 or more, and the average particle size of the zinc phosphate particles is 0.1 to 3 / ζ πι.
[0033] 請求の範囲第 10項に記載の発明は、請求の範囲第 2項又は第 9項に記載のリン酸 亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の表面調整剤供給工程力 前 乾燥工程を経た亜鉛系めつき鋼板表面に、前記リン酸亜鉛粒子が Ρ換算で 0. 01〜 5mgZm2付着して 、ることを特徴とする。 [0033] The invention described in claim 10 is a process for supplying a surface conditioner in the method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to claim 2 or 9. The zinc phosphate particles adhere to 0.01 to 5 mgZm 2 in terms of soot on the surface of a zinc-based steel plate that has been subjected to a pre-drying step.
[0034] 請求の範囲第 11項に記載の発明は、請求の範囲第 2項、第 9項、又は第 10項の いずれか一項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法 の処理剤供給工程の処理剤が亜鉛及びリン酸根を含有し、 pHが 4以下であり、かつ 、亜鉛及びリン酸根以外にリン酸根 1に対してモル比で硝酸根が 0. 2以下、亜硝酸 根が 0. 2以下、弗酸根が 0. 1以下、硫酸根が 0. 05以下の強電解質ァ-オン力も選 択される少なくとも 1種以上を含有することを特徴とする。  [0034] The invention according to claim 11 is a hot dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 2, 9, or 10. The treating agent in the treating agent supply step of the production method of the present invention contains zinc and phosphate radicals, has a pH of 4 or less, and, other than zinc and phosphate radicals, nitrate radicals in a molar ratio with respect to phosphate radical 1 are 0.2. In the following, it is characterized in that it contains at least one or more selected strong electrolytes of which nitrous acid group is 0.2 or less, hydrofluoric acid group is 0.1 or less, and sulfate group is 0.05 or less.
[0035] 請求の範囲第 12項に記載の発明は、請求の範囲第 2項、第 9項〜第 11項のいず れか一項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の処 理剤供給工程の後工程で、処理剤を乾燥させる後乾燥工程を有し、後乾燥工程後 に P換算で 30〜250mg/m2の前記リン酸亜鉛皮膜が付着されていることを特徴と する。 [0035] The invention according to claim 12 is a molten zinc-based metal plate having the zinc phosphate coating according to any one of claims 2, 9 to 11. It has a post-drying step to dry the treatment agent in the post-treatment step of the processing agent supply step of the steel sheet manufacturing method, and after the post-drying step, 30 to 250 mg / m 2 of the zinc phosphate coating in terms of P is adhered. It is characterized by
[0036] 請求の範囲第 13項に記載の発明は、請求の範囲第 1項〜第 12項のいずれか一 項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法の表面調整 剤供給工程の前記表面調整剤の供給方法、及び処理剤供給工程の処理剤の供給 方法のうちいずれか一方、又はいずれもがロールコート法であることを特徴とする。  [0036] The invention described in claim 13 is the surface of the method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 1 to 12. Any one or both of the method for supplying the surface adjusting agent in the adjusting agent supplying step and the method for supplying the treating agent in the treating agent supplying step is a roll coating method.
[0037] 請求の範囲第 14項に記載の発明は、請求の範囲第 9項〜第 13項のいずれか一 項に記載の製造方法により製造される表面に結晶質のリン酸亜鉛皮膜が形成された リン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板であって、リン酸亜鉛皮膜の表面の 法線に対して 60°方向から該表面に入射された赤外光の反射光力 得られる吸収ス ベクトルが波長 8〜12 mの範囲で複数の吸収帯を有するとともに、さらに該波長範 囲における p偏光に対する s偏光の積分吸収強度比が 1. 2以上であることを特徴とす るリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板を提供することにより前記課題を解 決する。 [0037] In the invention described in claim 14, the crystalline zinc phosphate film is formed on the surface manufactured by the manufacturing method described in any one of claims 9 to 13. Was A hot-dip zinc-based steel sheet with a zinc phosphate coating, which reflects the reflected light power of infrared light incident on the surface from the direction normal to the surface of the zinc phosphate coating at 60 °. Has a plurality of absorption bands in the wavelength range of 8 to 12 m, and further has an integrated absorption intensity ratio of s-polarized light to p-polarized light in the wavelength range of 1.2 or more. The above-mentioned problem is solved by providing a hot-dip galvanized steel sheet having the following.
[0038] ここで、 「p偏光」とは表面に垂直な成分の偏光をいい、「s偏光」とは表面に水平な 成分の偏光をいう。また、「積分吸収強度比」とは P偏光及び s偏光の吸収スペクトル の積分強度比を意味する。  Here, “p-polarized light” refers to polarized light with a component perpendicular to the surface, and “s-polarized light” refers to polarized light with a component parallel to the surface. “Integral absorption intensity ratio” means the integral intensity ratio of the absorption spectrum of P-polarized light and s-polarized light.
[0039] 請求の範囲第 15項に記載の発明は、請求の範囲第 9項〜第 13項のいずれか一 項に記載の製造方法により製造される表面に結晶質のリン酸亜鉛皮膜が形成された リン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板であって、リン酸亜鉛皮膜の表面の 法線に対して 60°方向から該表面に入射された赤外光の反射光力 得られる吸収ス ベクトルが波長 8〜12 mの範囲で複数の吸収帯を有するとともに、該吸収スぺタト ルの波長 8. 4〜9. 2 mの範囲の p偏光の吸光度力 偏光の吸光度の 2倍以上であ り、かつ、波長 10. 2〜: L 1. 0 mの範囲の p偏光の吸光度力 ^偏光の吸光度の 2倍 以上であることを特徴とするリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板を提供 することにより前記課題を解決する。  [0039] In the invention described in claim 15, a crystalline zinc phosphate film is formed on the surface manufactured by the manufacturing method described in any one of claims 9 to 13. A hot-dip zinc-based steel sheet having a zinc phosphate coating that is absorbed by the reflected light force of infrared light incident on the surface from the direction normal to the surface of the zinc phosphate coating from 60 °. The light vector has a plurality of absorption bands in the wavelength range of 8 to 12 m, and the absorbance power of p-polarized light in the wavelength range of 8.4 to 9.2 m is more than twice the absorbance of polarized light. In addition, the absorbance power of p-polarized light in the wavelength range of 10.2 to L 1.0 m is greater than or equal to twice the absorbance of polarized light. The above-mentioned problems are solved by providing a steel plate with a glue.
発明の効果  The invention's effect
[0040] 請求の範囲第 1項に記載の発明によれば、表面調整剤が液剤のまま処理剤供給 工程にもちこまれず、処理剤中に表面調整剤が混入しないので、処理剤の組成バラ ンスが長期に亘り維持される。これにより、製造コストの低減、処理剤補給量の低減、 廃液排出量の低減及び生産性の向上といった効果を得ることができる。さらに、環境 を考慮したリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造をすることができる 。従って、処理剤の減少は板に付着した分のみであるため、該減少した処理剤を補 給するのみでよ 、製造工程を確立することができ、閉じられた系でリン酸亜鉛皮膜を 連続溶融亜鉛めつきラインで形成できる。  [0040] According to the invention described in claim 1, the composition of the treatment agent is not balanced because the surface adjustment agent is not brought into the treatment agent supply step as a liquid agent, and the treatment agent is not mixed in the treatment agent. Is maintained for a long time. As a result, it is possible to obtain effects such as a reduction in manufacturing cost, a reduction in the amount of treatment agent supplied, a reduction in waste liquid discharge, and an improvement in productivity. Furthermore, it is possible to manufacture a hot-dip zinc-based steel sheet having a zinc phosphate coating in consideration of the environment. Therefore, since the reduction of the treatment agent is only the amount adhering to the plate, the manufacturing process can be established only by supplying the reduced treatment agent, and the zinc phosphate film is continuously formed in a closed system. It can be formed with a hot dip galvanizing line.
[0041] 請求の範囲第 2項に記載の発明によれば、表面調整剤に含まれる結晶核形成剤 が乾燥凝集しないため、被覆されるリン酸亜鉛皮膜をさらに安定して形成させること ができる。 [0041] According to the invention described in claim 2, the crystal nucleation agent contained in the surface conditioner Therefore, the zinc phosphate film to be coated can be formed more stably.
[0042] 請求の範囲第 3項に記載の発明によれば、表面調整剤の操業性及び安定性を向 上させることが可會となる。  [0042] According to the invention described in claim 3, it is possible to improve the operability and stability of the surface conditioner.
[0043] 請求の範囲第 4項に記載の発明によれば、表面調整剤の操業性及び安定性をさら に向上させることが可能となる。 [0043] According to the invention of claim 4, it is possible to further improve the operability and stability of the surface conditioner.
[0044] 請求の範囲第 5項に記載の発明によれば、表面調整剤の安定性を向上させること[0044] According to the invention described in claim 5, the stability of the surface conditioner is improved.
、及び前乾燥工程における基板表面の反応をより均一化させることが可能となる。 It is possible to make the reaction of the substrate surface more uniform in the pre-drying step.
[0045] 請求の範囲第 6項に記載の発明によれば、処理剤の操業性及び安定性を向上さ せることができる。 [0045] According to the invention described in claim 6, the operability and stability of the treatment agent can be improved.
[0046] 請求の範囲第 7項に記載の発明によれば、処理剤の安定性をさらに向上させること 及び皮膜の均質性を向上させることができる。  [0046] According to the invention described in claim 7, it is possible to further improve the stability of the treatment agent and the homogeneity of the film.
[0047] 請求の範囲第 8項に記載の発明によれば、 2つの供給源力 Pが供給されるのでそ の調整を容易に行うことができ、適切な量を精度良く調整することができる。 According to the invention described in claim 8, since two supply source forces P are supplied, the adjustment can be easily performed, and an appropriate amount can be adjusted with high accuracy. .
[0048] 請求の範囲第 9項に記載の発明によれば、表面調整剤の安定性をさらに向上させ ることができ、コスト、環境の観点からさらに利得のあるリン酸亜鉛皮膜を有する溶融 亜鉛系めつき鋼板の製造方法を提供することができる。また、供給されたリン酸亜鉛 粒子がより均一に亜鉛めつき表面に供給される。 [0048] According to the invention described in claim 9, the stability of the surface conditioner can be further improved, and the molten zinc having a zinc phosphate coating with further gain from the viewpoint of cost and environment The manufacturing method of a steel plate can be provided. Further, the supplied zinc phosphate particles are more uniformly supplied to the zinc plating surface.
[0049] 請求の範囲第 10項に記載の発明によれば、表面調整剤の安定性が向上するとと もに、処理剤供給時における P付着量の総量の調整を容易に行うことができ、ひいて は潤滑性を向上させることができる。 [0049] According to the invention of claim 10, the stability of the surface conditioner is improved, and the total amount of the P adhesion amount at the time of supplying the treatment agent can be easily adjusted. As a result, lubricity can be improved.
[0050] 請求の範囲第 11項に記載の発明によれば、処理剤の安定性を向上させることがで き、コスト、環境の観点からさらに利得のあるリン酸亜鉛皮膜を有する溶融亜鉛系め つき鋼板の製造方法を提供することができる。 [0050] According to the invention of claim 11, the stability of the treating agent can be improved, and the molten zinc-based material having a zinc phosphate coating with further gain from the viewpoint of cost and environment. A method for manufacturing a steel sheet with a shell can be provided.
[0051] 請求の範囲第 12項に記載の発明によれば、潤滑性を向上させることができる。 [0051] According to the invention of claim 12, lubricity can be improved.
[0052] 請求の範囲第 13項に記載の発明によれば、表面調整剤の供給及び Z又は処理 剤の供給がロールコータで行われるので、必要以上に濃度の高いこれら薬剤を補充 する必要がなぐこの補充そのものも少なくて済むので、コスト、環境の観点からさら に利得のあるリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法を提供する ことができる。 [0052] According to the invention described in claim 13, since the surface conditioner and Z or the treatment agent are supplied by the roll coater, it is necessary to replenish these agents with a concentration higher than necessary. Since this replenishment itself is also less, it is further from the viewpoint of cost and environment. It is possible to provide a method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating having a high gain.
[0053] 請求の範囲第 14項に記載の発明によれば、接着性に優れるとともに潤滑性にも優 れるリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板を提供することができる。  [0053] According to the invention described in claim 14, it is possible to provide a hot-dip zinc-based steel sheet having a zinc phosphate coating that has excellent adhesion and excellent lubricity.
[0054] 請求の範囲第 15項に記載の発明によれば、摺動性を維持しつつ、さらに接着性に 優れたリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板を提供することが可能である。 図面の簡単な説明  [0054] According to the invention described in claim 15, it is possible to provide a hot-dip zinc-based steel sheet having a zinc phosphate coating that is further excellent in adhesion while maintaining slidability. is there. Brief Description of Drawings
[0055] [図 1]本発明のリン酸亜鉛被膜を有する亜鉛系めつき鋼板の製造方法の流れを模式 的に示した図である。  FIG. 1 is a diagram schematically showing a flow of a method for producing a zinc-based plated steel sheet having a zinc phosphate coating according to the present invention.
[図 2]赤外吸収スペクトルにより得られた波長と吸光度との関係の一例を示すグラフで ある。  FIG. 2 is a graph showing an example of the relationship between wavelength and absorbance obtained from an infrared absorption spectrum.
[図 3]T剥離の試験方法の概要図である。  FIG. 3 is a schematic diagram of a T peel test method.
[図 4]せん断引張試験の方法の概要図である。  FIG. 4 is a schematic diagram of a shear tensile test method.
符号の説明  Explanation of symbols
[0056] 1 亜鉛系めつき鋼板 [0056] 1 Zinc-based steel plate
2 接着剤  2 Adhesive
3 亜鉛系めつき鋼板  3 Zinc-based steel plate
4 接着剤  4 Adhesive
S1 表面調整剤供給工程  S1 Surface conditioner supply process
S2 前乾燥工程  S2 Pre-drying process
S3 処理剤供給工程  S3 Treatment agent supply process
S4 後乾燥工程  S4 Post-drying process
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0057] 以下に本発明のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板の製造方法について 説明する。図 1に 1つの実施形態に力かる本発明のリン酸亜鉛皮膜を有する亜鉛系 めっき鋼板の製造方法の流れを示した。本製造方法は、表面調整剤を基材に供給 する表面調整剤供給工程 (S1)と、供給された表面調整剤を乾燥させる前乾燥工程 (S2)と、処理剤を供給する処理剤供給工程 (S3)と、該処理剤供給工程 (S3)後に 乾燥させる後乾燥工程 (S4)とを含んでいる。以下に各工程について説明する。「基 材」とは、鋼板である母材と、該母材表面に被覆された亜鉛系めつきである層とを有 する亜鉛系めつき鋼板である。 [0057] Hereinafter, a method for producing a zinc-based steel sheet having a zinc phosphate coating according to the present invention will be described. FIG. 1 shows a flow of a method for producing a zinc-based plated steel sheet having a zinc phosphate coating according to the present invention, which is effective in one embodiment. This manufacturing method includes a surface conditioning agent supply step (S1) for supplying a surface conditioning agent to a substrate, a pre-drying step (S2) for drying the supplied surface conditioning agent, and a processing agent supply step for supplying a processing agent. (S3) and after the treatment agent supply step (S3) And a post-drying step (S4). Each step will be described below. The “base material” is a zinc-based plated steel sheet having a base material that is a steel sheet and a zinc-based plated layer coated on the surface of the base material.
[0058] 表面調整剤供給工程 (S1)は、結晶核形成剤を含有する表面調整剤を亜鉛系めつ き鋼板に供給する工程である。当該表面調整剤供給工程 (S1)の表面調整剤の供 給方法は、特に限定されるものではない。これには例えばロールコータやスプレー塗 布さらにはスプレー後エアナイフ、スプレー後リンガーロール、スクイズロール絞りなど が挙げられるが、操業性の観点から、ロールコータ、スプレー後のスクイズロール絞り が好ましい。さらに、この中でも、ロールコータ法が亜鉛系めつきと表面調整剤との接 触時間を他の方法に比べより短くすることができることから好ましい。これによつて、表 面調整剤の煩雑な成分調整及び煩雑な pH管理が不要となり、表面調整剤の減少 分に対して全く同じ組成の表面調整剤を加えるだけで良 、ので、 1成分の表面調整 剤成分、濃度、 pHを管理するだけで済む。また表面調整剤成分の変動が抑えられる ため、該表面調整剤の排出も不要となりコスト、環境負荷低減の観点力も好ましい。  [0058] The surface conditioning agent supplying step (S1) is a step of supplying a surface conditioning agent containing a crystal nucleating agent to the zinc-based plated steel sheet. The method for supplying the surface conditioning agent in the surface conditioning agent supply step (S1) is not particularly limited. Examples of this include a roll coater, spray coating, and post-spray air knife, post-spray ringer roll, squeeze roll squeeze, etc. From the viewpoint of operability, a roll coater and squeeze roll squeeze after spray are preferred. Furthermore, among these, the roll coater method is preferable because the contact time between the zinc-based plating and the surface conditioner can be made shorter than other methods. This eliminates the need for complicated component adjustment and complicated pH control of the surface conditioner, and it is sufficient to add a surface conditioner with exactly the same composition to the reduced amount of the surface conditioner. It is only necessary to control the surface conditioner component, concentration and pH. Further, since the fluctuation of the surface modifier component is suppressed, it is not necessary to discharge the surface modifier, which is preferable from the viewpoint of cost and environmental load reduction.
[0059] 表面調整剤に含有される結晶核形成剤は、特に限定されるものではなぐ通常の 自動車車体の塗装下地処理工程で使用されているものを使用することができる。これ には例えばピロリン酸 Na水溶液に Tiコロイドが分散した水性液、又はリン酸亜鉛の 粒子が分散した水性液等を挙げることができる。この中でも、リン酸亜鉛粒子が分散 した水性液が特に好ましい。該水性液とすると供給した後、後述する前乾燥工程 (S2 )で乾燥しても粒径を維持したまま凝集することなぐ亜鉛系めつき表面に吸着し、粒 子形態を維持することができるからである。一方、 Tiコロイド等は前乾燥工程 (S2)で 結晶核生成剤が乾燥凝集する虞がある。  [0059] The crystal nucleating agent contained in the surface conditioner is not particularly limited, and those used in the usual paint substrate treatment process for automobile bodies can be used. Examples thereof include an aqueous liquid in which Ti colloid is dispersed in an aqueous solution of sodium pyrophosphate, or an aqueous liquid in which particles of zinc phosphate are dispersed. Among these, an aqueous liquid in which zinc phosphate particles are dispersed is particularly preferable. When the aqueous liquid is supplied, it can be adsorbed on the zinc-based surface without agglomeration while maintaining the particle size even when dried in the pre-drying step (S2) described later, and the particle form can be maintained. Because. On the other hand, for Ti colloids and the like, the crystal nucleating agent may dry and aggregate in the pre-drying step (S2).
[0060] 表面調整剤の付着量は、 30mgZm2未満が好ましい。これは、 30mgZm2以上で は下地処理斑が発生して外観が損なわれる場合があること〖こよる。好ましくは 15mg Zm2以下であり、さらに好ましくは lOmgZm2以下である。また、それ以上付着させ ても下地処理としての効果は飽和し、逆に後工程の処理剤にも影響を及ぼす可能性 があることからも上記上限が好ま 、。 [0060] adhesion amount of the surface modifier is less than 30MgZm 2 is preferred. This is because when 30 mgZm 2 or more, surface treatment spots occur and the appearance may be impaired. Preferably it is 15 mg Zm 2 or less, more preferably 10 mgZm 2 or less. In addition, the upper limit is preferred because the effect as a base treatment is saturated even if it adheres more than that, and conversely it may affect the treatment agent in the subsequent process.
[0061] また、後述する接着性に優れた亜鉛系めつき鋼板の場合には、リン酸亜鉛粒子が 分散した水性液の供給量は乾燥時のリン酸亜鉛中の P換算で 0. 01〜 5mgZm2と することが好ましい。 0. 01mg/m2未満では接着性が得られ難くなり、 5mgZm2を 超えるとその効果が飽和するためである。好ましくは 0. l〜2mgZm2である。また、リ ン酸亜鉛の濃度は 0. 05〜5molZLであれば良い。その理由は、 0. 05molZL未 満では所定の付着量を得るためには wet膜厚が大きくなり過ぎ、塗布ムラが生じやす くなる。一方 5molZLを超えると表面調整剤の粘度が大きくなり過ぎ同じく塗布ムラ が生じやすくなるためである。 [0061] In addition, in the case of a zinc-based plated steel sheet having excellent adhesiveness described later, zinc phosphate particles are The supply amount of the dispersed aqueous liquid is preferably 0.01 to 5 mgZm 2 in terms of P in the zinc phosphate at the time of drying. If it is less than 0.01 mg / m 2, it is difficult to obtain adhesiveness, and if it exceeds 5 mg Zm 2 , the effect is saturated. Preferably is 0. l~2mgZm 2. The concentration of zinc phosphate may be 0.05 to 5 molZL. The reason for this is that if it is less than 0.05 molZL, the wet film thickness becomes too large in order to obtain a predetermined amount of adhesion, and uneven coating tends to occur. On the other hand, if it exceeds 5 molZL, the viscosity of the surface conditioner becomes too high and uneven coating tends to occur.
[0062] また、結晶核形成のために用いるリン酸亜鉛粒子は結晶質であっても非晶質であ つても、又はその混合物であっても良い。結晶質であるかどうかは一般的な X線回折 分析によって判断することができる。  [0062] The zinc phosphate particles used for crystal nucleus formation may be crystalline, amorphous, or a mixture thereof. Whether it is crystalline or not can be judged by general X-ray diffraction analysis.
[0063] 表面調整剤の pHは 5以上であることが好ましい。 pHが 5未満であると亜鉛系めつき に表面調整剤を供給した際に亜鉛系めつきからの亜鉛の溶出が生じるためである。 さらにリン酸亜鉛粒子が分散した水性液自体でリン酸亜鉛粒子の溶解反応も微少な 力 生じる虞があるため、粒子自体の安定性も損なわれる可能性がある。 pH7〜: LO であることがさらに好ましい。 pHが 10より大きくなるとリン酸亜鉛自体の溶解反応が生 じるためである。また、表面調整剤には pHを調整するための緩衝溶液が添加されて も良い。緩衝溶液としては、例えば K HPOと NaOHとからなる緩衝溶液を挙げるこ  [0063] The pH of the surface conditioner is preferably 5 or more. This is because, when the pH is less than 5, elution of zinc from the zinc-based metal occurs when the surface conditioner is supplied to the zinc-based metal. Furthermore, since the aqueous solution itself in which the zinc phosphate particles are dispersed may cause a slight reaction in the dissolution reaction of the zinc phosphate particles, the stability of the particles themselves may be impaired. More preferably, the pH is 7 to LO. This is because when the pH is higher than 10, a dissolution reaction of zinc phosphate itself occurs. Further, a buffer solution for adjusting the pH may be added to the surface conditioner. Examples of buffer solutions include buffer solutions consisting of K HPO and NaOH.
2 4  twenty four
とができる。該緩衝溶液の表面調整剤中での濃度は 0. l〜2gZLであることが好ま しい。 0. lgZL未満では所望の供給量が得られ難ぐ 2gZLを超えると均一な供給 に影響を与える虞があるからである。  You can. The concentration of the buffer solution in the surface conditioner is preferably from 0.1 to 2 gZL. This is because it is difficult to obtain a desired supply amount if less than 0.lgZL, and there is a possibility that uniform supply may be affected if it exceeds 2gZL.
[0064] また、分散したリン酸亜鉛粒子の粒子径は 10 μ m以下であることが好まし 、。これ は、 10 mを超えて大きくなると分散体が不安定となり、水性液の寿命が低下する虡 力 Sあることによる。好ましくは、 5 μ m以下であり、さらに好ましくは 3 μ m以下である。 粒子径の下限は特に限定されるものではないが、水性液の粘性の観点から 0. l ^ m 以上が好ましい。後述する接着性にも優れる亜鉛系めつき鋼板に関しては、 以 下が好ましい。さらに好ましくは 1 μ m以下である。粒子径は分散した水性液の状態 でレーザー回折計にて調査することができる。  [0064] The dispersed zinc phosphate particles preferably have a particle size of 10 µm or less. This is because the dispersion becomes unstable when it exceeds 10 m and the life of the aqueous liquid is reduced. Preferably, it is 5 μm or less, more preferably 3 μm or less. The lower limit of the particle diameter is not particularly limited, but is preferably 0.1 l ^ m or more from the viewpoint of the viscosity of the aqueous liquid. The following is preferable for the zinc-based steel plate having excellent adhesiveness described later. More preferably, it is 1 μm or less. The particle size can be investigated with a laser diffractometer in the state of a dispersed aqueous liquid.
[0065] リン酸亜鉛粒子の含有量は 0. 5molZL以下である。これはリン酸亜鉛粒子の濃度 が 0. 5molZLより大きくなると分散体の含有量が高くなりすぎるため、水性液の寿命 が低下する虞があることによる。水性液の安定性の観点力も 0. 3molZL以下である ことが好ましい。なお、リン酸亜鉛粒子の含有量は、亜鉛濃度を測定することにより、 Zn (PO )として原子量力 換算することができる。 [0065] The content of zinc phosphate particles is 0.5 molZL or less. This is the concentration of zinc phosphate particles This is because the content of the dispersion becomes too high when the content exceeds 0.5 molZL, and the life of the aqueous liquid may be reduced. The viewpoint power of the stability of the aqueous liquid is also preferably 0.3 molZL or less. The content of zinc phosphate particles can be converted to atomic force as Zn (PO 4) by measuring the zinc concentration.
3 4 2  3 4 2
[0066] 水性液中に Li、 Na、 Kのアルカリ金属及び Be、 Mg、 Caのアルカリ土類金属から選 ばれた少なくとも 1種又は 2種以上を添加してもよい。これは、後述する前乾燥工程に おける基板表面の反応がより均一となり、安定した溶融亜鉛系めつき鋼板を製造する ことができるからである。これらアルカリ金属及びアルカリ土類金属の濃度は、上記ァ ルカリ金属及びアルカリ土類金属の合計で 0. 3molZL以下とする。これは、 0. 3mo 1ZLを超えて多く添加すると基板表面にこれら添加物が後工程に付着して持ち越さ れ、後工程の処理剤等の安定性が低下する虞があるためである。このアルカリ金属 及びアルカリ土類金属は、オルソリン酸塩、メタリン酸塩、ピロリン酸塩、オルソ珪酸塩 、メタ珪酸塩、炭酸塩、重炭酸塩、硼酸塩等により添加することができる。また、 pH調 整の為に、アンモニゥム塩、又はアンモ-ゥム水溶液等を使用しても良い。さらに、合 計で 0. 05molZL以下程度であれば、 Fe、 Co、 Ni、 Cu、 Mn、 Cr等の金属又は金 属塩粒子が含有されていても良い。カロえて、水性液中には pH緩衝剤等が混入する と好適である。例えば K HPOと NaOH力 なる緩衝溶液を挙げることができる。これ  [0066] At least one or two or more selected from alkali metals of Li, Na and K and alkaline earth metals of Be, Mg and Ca may be added to the aqueous liquid. This is because the reaction of the substrate surface in the pre-drying step described later becomes more uniform, and a stable hot-dip galvanized steel sheet can be produced. The concentration of these alkali metals and alkaline earth metals shall be 0.3 molZL or less in total for the above alkali metals and alkaline earth metals. This is because, if added in excess of 0.3mo 1ZL, these additives adhere to the substrate surface and carry over, and the stability of the processing agent and the like in the subsequent process may be reduced. The alkali metal and alkaline earth metal can be added as orthophosphate, metaphosphate, pyrophosphate, orthosilicate, metasilicate, carbonate, bicarbonate, borate and the like. In addition, an ammonium salt or an aqueous ammonium solution may be used for pH adjustment. Furthermore, if the total is about 0.05 molZL or less, metal or metal salt particles such as Fe, Co, Ni, Cu, Mn, and Cr may be contained. It is preferable to mix a pH buffer or the like in the aqueous liquid. An example is a buffer solution consisting of K HPO and NaOH. this
2 4  twenty four
により pH変化が少なくなり、安定製造できる場合もある。水性液は、上記組成を満足 すれば塗装の下地処理等に使用される市販の表面調整剤を利用することもできる。  In some cases, the pH change is reduced and stable production is possible. As the aqueous liquid, if the above composition is satisfied, a commercially available surface conditioner used for coating surface treatment or the like can be used.
[0067] 次に前乾燥工程 (S2)について説明する。前乾燥工程 (S2)は、基材表面に供給さ れた表面調整剤を水洗 、することなく乾燥させる工程である。乾燥温度は特に限定 されるものではな 、が、製造コスト等の観点力 鋼板最高到達温度で 200°C未満で あることが好ましい。さらに好ましくは 150°C未満である。最も好ましくは 50〜120°C である。乾燥時間についても特に限定されるものではないが、表面外観及び生産性 の観点から 30秒未満であることが好ましい。さらに好ましくは 10秒未満である。乾燥 させるための方法は特に限定されるものではなぐ適宜選択可能である。これには例 えばエアナイフ、ドライヤーやオーブン等を挙げることができる。  [0067] Next, the pre-drying step (S2) will be described. The pre-drying step (S2) is a step in which the surface conditioner supplied to the substrate surface is dried without being washed with water. The drying temperature is not particularly limited, but from the viewpoint of manufacturing cost and the like, it is preferable that the maximum temperature reached by the steel sheet is less than 200 ° C. More preferably, it is less than 150 ° C. Most preferably, it is 50 to 120 ° C. The drying time is not particularly limited, but is preferably less than 30 seconds from the viewpoint of surface appearance and productivity. More preferably, it is less than 10 seconds. The method for drying is not particularly limited and can be appropriately selected. Examples thereof include an air knife, a dryer, and an oven.
[0068] 当該前乾燥工程 (S2)により表面調整剤が後述する処理剤供給工程 (S3)に液剤 として持ち込まれる虞がなく、該処理剤供給工程 (S3)で循環使用される処理剤への 表面調整剤の混入を抑えて処理剤の組成バランスの変動を小さくすることができる。 これにより処理剤の組成バランスを維持するために従来必要であった処理剤の補給 及び排出を抑えることが可能となった。 [0068] In the pre-drying step (S2), the surface conditioning agent is added to the treatment agent supply step (S3) described later. As a result, it is possible to reduce the variation in the composition balance of the processing agent by suppressing the mixing of the surface conditioning agent into the processing agent circulated and used in the processing agent supply step (S3). This makes it possible to suppress the supply and discharge of processing agents, which was conventionally necessary to maintain the composition balance of the processing agents.
[0069] これは、表面調整剤の供給後に乾燥を行うことにより、亜鉛系めつき鋼板の活性ィ匕 を一度制止することができるからである。また、該乾燥によりリン酸亜鉛粒子が粒径を 維持したまま凝集することなく亜鉛系めつき表面に吸着し、粒子形態を維持すること ができ、かつ保護皮膜の様な作用により処理剤工程までの鋼板表面の酸化反応を 抑制しつつ、次の乾燥工程でめっき表面を反応させることができるようになったことも 挙げられる。一方、ピロリン酸 Na水溶液に Tiコロイドが分散した水性液の場合には、 結晶核形成剤が乾燥凝集する虞がある。  [0069] This is because the activity of the zinc-based steel sheet can be temporarily stopped by drying after supplying the surface conditioner. In addition, the zinc phosphate particles can be adsorbed on the zinc-based surface without agglomeration while maintaining the particle size by the drying, and the particle form can be maintained, and the action of the protective film can be applied to the treatment agent process. It is also possible to react the plating surface in the next drying process while suppressing the oxidation reaction on the steel sheet surface. On the other hand, in the case of an aqueous solution in which Ti colloid is dispersed in an aqueous solution of sodium pyrophosphate, the crystal nucleating agent may be dried and aggregated.
[0070] 次に処理剤供給工程 (S3)について説明する。処理剤供給工程 (S3)は上述の前 乾燥工程 (S2)をおこなった基材上にリン酸亜鉛皮膜を形成するための処理剤を供 給する工程である。基材への処理剤の供給方法は、特に限定されるものではないが 、例えばスプレーリンガー法やロールコート法等を挙げることができる。この中でも上 述の前乾燥工程 (S2)との組み合わせにより効果的に設備を簡易とすることができ、 より安価に溶融亜鉛系めつき鋼板を製造できるとの観点からロールコート法による処 理を好ましく適用することが可能である。処理剤の操業性の観点からはロールコート 法による処理が最も好ましい。さら〖こ、前乾燥工程 (S2)を経た鋼板を、処理材供給 工程(S3)に進入させる際の進入材温は、 80°C未満が好適である。これは、鋼板温 度が高いと表面調整剤の保護皮膜的な作用より、鋼板の活性ィ匕が上回り、処理材中 への亜鉛めつき皮膜の溶出が生じる虞があるためである。好ましくは 60°C未満である 。下限についても 30°C以上が好適である。これは、 30°C未満では、処理工程後の乾 燥工程での加温による反応が十分に起こらず、成膜が不均一になったりする虞があ るためである。前記進入材温度の調整は、鋼板の放冷区間を設ける事によっても達 成可能である力 水冷ロール等のロール冷却による温度制御も可能である。  Next, the treatment agent supply step (S3) will be described. The treatment agent supply step (S3) is a step of supplying a treatment agent for forming a zinc phosphate film on the substrate subjected to the above-mentioned pre-drying step (S2). Although the supply method of the processing agent to a base material is not specifically limited, For example, a spray ringer method, a roll coat method, etc. can be mentioned. Among these, the combination with the pre-drying step (S2) described above can effectively simplify the equipment, and the roll coating method can be used from the viewpoint that hot-dip galvanized steel sheets can be produced at a lower cost. It can be preferably applied. From the viewpoint of the operability of the treatment agent, treatment by a roll coating method is most preferable. Further, the temperature of the intruding material when the steel plate that has undergone the pre-drying step (S2) is allowed to enter the treatment material supplying step (S3) is preferably less than 80 ° C. This is because, when the steel sheet temperature is high, the activity of the steel sheet exceeds the protective film action of the surface conditioner, and the zinc plating film may be eluted into the treated material. Preferably it is less than 60 ° C. The lower limit is preferably 30 ° C or higher. This is because if it is less than 30 ° C., the reaction due to heating in the drying step after the treatment step does not sufficiently occur, and the film formation may be non-uniform. Adjustment of the temperature of the ingress material can also be achieved by providing a cooling section of the steel plate. Temperature control by roll cooling such as a water-cooled roll is also possible.
[0071] 処理剤供給工程 (S3)で供給される処理剤は、リン酸亜鉛水溶液である。該リン酸 亜鉛水溶液は、リン酸根と亜鉛イオンを含有する水溶液である。ここで、リン酸根とは H PO _、 HPO 、 PO の総称とし、 [PO つで表す。 [0071] The treatment agent supplied in the treatment agent supply step (S3) is an aqueous zinc phosphate solution. The zinc phosphate aqueous solution is an aqueous solution containing phosphate groups and zinc ions. Here, phosphate group H PO _, HPO, PO is a generic term for [PO].
2 4 4 4 4  2 4 4 4 4
[0072] ここで、リン酸亜鉛水溶液は、 0. 001〜0. 7molZLのリン酸根 [PO 3つを含有し、 [0072] Here, the zinc phosphate aqueous solution contains 0.001 to 0.7 molZL of phosphate radicals [containing three POs,
4  Four
かつ該リン酸根に対してモル比で 0. 7以下の亜鉛イオンを含有する。リン酸根の濃 度範囲を 0. 001〜0. 7molZLとしたのは、リン酸根を 0. 7molZLを超えて多くす ると処理剤の安定性が低下する虞があることによる。一方、 0. OOlmolZL未満では 処理剤の pHが高くなり、反応が阻害されて所望の性能が得られない可能性があるか らである。また、リン酸根に対してモル比で 0. 7以下の亜鉛イオンを含有するのは、 該亜鉛イオンを含有させることにより均質な結晶質の皮膜を形成させることができるた めである。また、これはスラッジが発生し、表面品質を損ねる虞があるためでもある。 好ましくは 0. 5以下である。ここで「スラッジ」とは水溶液中で Zn (PO )が固化したも  Further, it contains zinc ions having a molar ratio of 0.7 or less with respect to the phosphate group. The reason why the concentration range of phosphate radicals was set to 0.001 to 0.7 molZL is that the stability of the treatment agent may be lowered if the phosphate radicals are increased beyond 0.7 molZL. On the other hand, if it is less than 0. OOlmol ZL, the pH of the treatment agent becomes high, and the reaction may be hindered and the desired performance may not be obtained. The reason why the zinc ion is contained in a molar ratio of 0.7 or less with respect to the phosphate group is that a homogeneous crystalline film can be formed by containing the zinc ion. This is also because sludge is generated, and the surface quality may be impaired. Preferably it is 0.5 or less. Here, “sludge” means that Zn (PO 4) solidifies in an aqueous solution.
3 4 2  3 4 2
のである。  It is.
[0073] さらに詳しくは、結晶質のリン酸亜鉛の生成反応は、下に示す式 (A)、又は式 (B) のような反応であり、処理剤中のリン酸根に対して亜鉛原子が 1. 5倍必要となる。  [0073] More specifically, the formation reaction of crystalline zinc phosphate is a reaction represented by the following formula (A) or (B), in which a zinc atom is present relative to the phosphate radical in the treating agent. 1. 5 times required.
2H PO +Zn Zn (H PO ) +H (A)  2H PO + Zn Zn (H PO) + H (A)
3 4 2 4 2 2  3 4 2 4 2 2
3Zn(H PO ) Zn (PO ) -4H O (B)  3Zn (H PO) Zn (PO) -4H O (B)
2 4 2 3 4 2 2  2 4 2 3 4 2 2
このため、本来は処理剤供給工程 (S3)の処理剤にはさらに過剰な亜鉛が含まれて いなければならないが、亜鉛が過剰に含まれると pHが増大し、処理剤が固化してし まつ。  For this reason, originally, the treatment agent in the treatment agent supply step (S3) must further contain excess zinc.However, if zinc is contained excessively, the pH increases and the treatment agent solidifies. Pine.
[0074] また、処理剤は pH4以下であることが好ましい。 pHが 4より大きくなると処理剤の安 定性が低下し、スラッジが発生して表面品質を損ねる可能性が高くなること、及び反 応がスムーズに進行せずにリン酸亜鉛の皮膜が生成されな 、虞があるからである。 p H3以下であることがさらに好ましい。  [0074] The treatment agent preferably has a pH of 4 or less. When the pH is higher than 4, the stability of the treatment agent decreases, and there is a high possibility that sludge is generated and the surface quality is impaired, and the reaction does not proceed smoothly and a zinc phosphate film is not formed. Because there is a fear. More preferably, it is not more than pH3.
[0075] 亜鉛イオン及びリン酸根以外に、リン酸根に対してモル比で硝酸根 (NO3—)が 0. 2 以下、亜硝酸根 (NO2—)が 0. 2以下、弗酸根 (F_)が 0. 1以下、及び硫酸根 (SO 2" [0075] In addition to zinc ion and phosphate radical, nitrate radical (NO 3 —) is 0.2 or less, nitrite radical (NO 2 —) is 0.2 or less, and hydrofluoric acid radical (F_ ) Is 0.1 or less, and sulfate radical (SO 2 "
4 Four
)が 0. 05以下の強電解質ァ-オンを 1種類以上添加するのは、安定して、皮膜の均 質性の向上を目的として、処理剤と反応させる為である。具体的には該反応によりェ ツチング作用及び酸化作用を得ることができる。強電解質ァ-オンは上記上限より多 く添加した場合には、処理剤の安定性が低下し、処理剤の寿命が短くなる虞がある。 [0076] また、リン酸亜鉛水溶液には、 pH調整のために、アンモ-ゥム塩、又はアンモ-ゥ ム水溶液等を添加してもよ ヽ。アンモ-ゥムイオンの濃度はリン酸根に対してモル比 で 0. 02以下であることが好ましい。また、上記リン酸亜鉛水溶液の構成を満足すれ ば、その他亜鉛以外の金属イオンが混入されていても良い。このときリン酸根に対す る該金属イオンのモル比の合計が 0. 2以下であることが好まし 、。 The reason for adding one or more strong electrolytes with a) of 0.05 or less is to react with the treating agent stably in order to improve the uniformity of the film. Specifically, an etching action and an oxidation action can be obtained by the reaction. When the strong electrolyte ion is added more than the above upper limit, the stability of the treatment agent is lowered and the life of the treatment agent may be shortened. [0076] In addition, an ammonium salt or an aqueous ammonia solution may be added to the aqueous zinc phosphate solution for pH adjustment. The concentration of ammonium ions is preferably 0.02 or less in molar ratio to the phosphate radical. In addition, other metal ions other than zinc may be mixed as long as the configuration of the zinc phosphate aqueous solution is satisfied. At this time, it is preferable that the total molar ratio of the metal ions to phosphate groups is 0.2 or less.
[0077] リン酸亜鉛水溶液の付着量は、最終的に形成される皮膜付着量にお!ヽて、上述の 表面調整剤供給工程 (S1)と、処理剤供給工程 (S3)とによる供給の合計で P換算し 、 30〜500mgZm2であることが好ましい。これは、 30mgZm2未満であると皮膜の 潤滑性の効果が鋼板の成形性に反映されず、 500mgZm2を超えるとその効果が飽 和するためである。さらに好ましくは 30〜400mgZm2である。 [0077] The amount of zinc phosphate aqueous solution attached depends on the amount of the film formed in the final step, and the amount of supply in the surface conditioning agent supply step (S1) and the treatment agent supply step (S3) described above. It is preferably 30 to 500 mgZm 2 in terms of P in total. This lubricating effect of the film is less than 30MgZm 2 is not reflected in the formability of the steel sheet, exceeds 500MgZm 2, the effect is to saturation. More preferably from 30~400mgZm 2.
[0078] 処理剤供給工程 (S3)の前工程である前乾燥工程 (S2)が設けられて ヽることにより 、処理剤供給工程 (S3)に表面調整剤が液剤として持ち込まれることがなぐ処理剤 のバランスを長い期間に亘つて適切に維持することができる。これにより、処理剤管 理及び排水設備を簡易なものとすることができる。  [0078] By providing the pre-drying step (S2), which is a pre-step of the treatment agent supply step (S3), a treatment that prevents the surface conditioner from being brought into the treatment agent supply step (S3) as a liquid agent. The balance of the agent can be properly maintained over a long period of time. As a result, treatment agent management and drainage facilities can be simplified.
[0079] 次に後乾燥工程 (S4)について説明する。後乾燥工程 (S4)は、基材表面に供給さ れた処理剤を水洗 、することなく乾燥させる工程である。乾燥温度は特に限定される ものではな!/、が、製造コストの観点から鋼板最高到達温度が 250°C未満であることが 好ましい。さらに好ましくは 180°C未満である。乾燥時間についても特に限定されるも のではな!/、が、表面外観及び生産性の観点から塗布後 100秒未満であることが好ま しい。さらに好ましくは 50秒未満である。乾燥させるための方法は特に限定されるも のではなぐ適宜選択可能である。これには例えばエアナイフ、ドライヤーやオーブン 等を挙げることができる。後乾燥工程 (S4)により均質なリン酸亜鉛の結晶皮膜が形 成される。  [0079] Next, the post-drying step (S4) will be described. The post-drying step (S4) is a step in which the treatment agent supplied to the substrate surface is dried without being washed with water. The drying temperature is not particularly limited! /, But from the viewpoint of manufacturing cost, it is preferable that the maximum temperature of the steel sheet is less than 250 ° C. More preferably, it is less than 180 ° C. The drying time is not particularly limited! / Is preferably less than 100 seconds after coating from the viewpoint of surface appearance and productivity. More preferably, it is less than 50 seconds. The method for drying is not particularly limited and can be appropriately selected. Examples thereof include an air knife, a dryer, and an oven. A homogeneous zinc phosphate crystal film is formed by the post-drying step (S4).
[0080] 次に 1つの実施形態にかかる本発明のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板 について説明する。リン酸亜鉛皮膜を有する亜鉛系めつき鋼板は、母材と、該母材の 表面に被覆された亜鉛系めつきと、該亜鉛系めつきの外側に形成されたリン酸亜鉛 皮膜とを有している。以下それぞれについて説明する。  Next, a zinc-based steel sheet having a zinc phosphate coating according to one embodiment of the present invention will be described. A zinc-based plated steel sheet having a zinc phosphate coating has a base material, a zinc-based plating coated on the surface of the base material, and a zinc phosphate coating formed on the outside of the zinc-based coating. ing. Each will be described below.
[0081] (1)母材 母材となる鋼板の種類は特に限定されるものではなぐあらゆる種類の冷間圧延鋼 板や熱間圧延鋼板を適用することができる。母材の化学組成も特に限定されるもの ではなぐ Ti、 Nb等を必要に応じて含有させた極低炭素鋼、低炭素鋼、又はさら〖こ、 Si、 Mn、 P、 Cr、 Ni、 Cu、 V等を適宜含有させた高強度鋼又は高張力鋼等を適用 することができる。 [0081] (1) Base material The kind of steel plate used as a base material is not particularly limited, and any kind of cold-rolled steel plate or hot-rolled steel plate can be applied. The chemical composition of the base material is not particularly limited. Extremely low carbon steel, low carbon steel, or Sarakuko containing Si, Nb, etc., as required, Si, Mn, P, Cr, Ni, Cu High-strength steel or high-strength steel containing V, V, etc. as appropriate can be applied.
[0082] (2)亜鉛系めつき  [0082] (2) Zinc-based metal
本発明のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板の亜鉛系めつきには、溶融亜 鉛系めつき又は電気亜鉛めつきを適用することができる。上記母材に対して該亜鉛 系めつきを施すことにより亜鉛系めつき鋼板とされる。  For the zinc-based plating of the zinc-based plated steel sheet having the zinc phosphate coating of the present invention, molten zinc-based plating or electrozinc plating can be applied. A zinc-based steel plate is obtained by applying the zinc-based plating to the base material.
[0083] 溶融亜鉛系めつき鋼板としては、例えば加熱による合金化処理を行わない GI鋼板 及び加熱による合金化処理を施した GA鋼板を挙げることができる。 GI鋼板とは溶融 亜鉛めつき後に合金化処理を行っていない鋼板であって Fe含有量を 2質量%以下と したものである。これは 2質量%より多くすると表面に一部、 Fe— Zn合金層が出現し 、外観上好ましくないためである。一方、 GA鋼板は、溶融亜鉛めつき後に合金化処 理を行った鋼板であって、 Fe含有量をめつき層に対して 7〜15質量%としたものであ る。 Fe含有量が 7質量%に満たない場合には、合金化された溶融亜鉛めつき層の表 面近傍に 7?相が残存するので外観上好ましくない。好ましくは 8質量%以上である。 Fe含有量が 15質量%を超えるとプレス成形時にパウダリングが発生しやすくなる。 好ましくは 13質量%以下である。  [0083] Examples of the hot-dip galvanized steel sheet include a GI steel sheet not subjected to alloying treatment by heating and a GA steel sheet subjected to alloying treatment by heating. A GI steel sheet is a steel sheet that has not been alloyed after hot-dip galvanizing and has an Fe content of 2% by mass or less. This is because if it exceeds 2% by mass, a part of the Fe—Zn alloy layer appears on the surface, which is not preferable in appearance. On the other hand, GA steel sheet is a steel sheet that has been alloyed after hot-dip galvanizing, and the Fe content is 7 to 15 mass% with respect to the galvanized layer. When the Fe content is less than 7% by mass, the 7-phase remains in the vicinity of the surface of the alloyed hot-dip zinc plating layer, which is not preferable in appearance. Preferably it is 8 mass% or more. When the Fe content exceeds 15% by mass, powdering tends to occur during press forming. Preferably it is 13 mass% or less.
[0084] 上記 GI鋼板及び GA鋼板の溶融亜鉛系めつき層には A1を 0. 05-0. 5質量%含 有させても良い。これにより、溶融亜鉛系めつきと母材との密着性を向上させることが できる。また、溶融亜鉛系めつき層中には他に、 Cu、 Ni、 Cr、 Si、 Mn、 Pb、 Sb、 Sn 及びミッシュメタル等が微量含有又は添加されていてもよい。また、合金相も特に限 定されるものではなぐ GI鋼板中には η相、 ζ相、 δ相、 GA鋼板中には ζ相、 δ 1 相、 Γ 1相、 Γ相が混在していても良い。  [0084] The molten zinc-based adhesion layer of the GI steel sheet and GA steel sheet may contain 0.05% by mass of A1. As a result, the adhesion between the molten zinc-based plating and the base material can be improved. In addition, Cu, Ni, Cr, Si, Mn, Pb, Sb, Sn, misch metal, and the like may be contained or added in a small amount in the molten zinc-based plating layer. Also, the alloy phase is not particularly limited. The GI steel sheet contains η, ζ, and δ phases, and the GA steel sheet contains ζ, δ 1, Γ 1 and Γ phases. Also good.
[0085] また、溶融亜鉛系めつきの付着量も特に限定されるものではない。ただしカ卩ェ性、 溶接性及び生産性の観点から、溶融亜鉛系めつきの付着量は 150gZm2以下であ るのが好ましい。 [0086] ここでは、 GI鋼板及び G A鋼板について説明した力 この他にも 5質量0 /oAl— Znめ つき鋼板 (GF鋼板)、 55質量%A1—Znめっき鋼板 (GL)及び 3質量%Mg—Al—Z nめっき鋼板 (MZ鋼板)等でも良!、。 [0085] Further, the amount of adhesion of the molten zinc-based metal is not particularly limited. However, from the viewpoint of cacheability, weldability, and productivity, the adhesion amount of the molten zinc-based metal is preferably 150 gZm2 or less. [0086] Here, the forces described for GI steel sheet and GA steel sheet are 5 mass 0 / oAl—Zn plated steel sheet (GF steel sheet), 55 mass% A1-Zn plated steel sheet (GL), and 3 mass% Mg. —Al—Z n-plated steel sheet (MZ steel sheet) etc.
[0087] 電気亜鉛めつき鋼板としては、例えば 7?相力 なら EG鋼板、 10質量%Fe— Zn電 気亜鉛めつき鋼板 (FZ鋼板)、 13質量%Ni— Zn (ZnNi鋼板)等を挙げることができ る。その中でも EG鋼板に本発明のリン酸亜鉛皮膜を適用することが好ましい。  [0087] Examples of electrogalvanized steel sheet include EG steel sheet, 10 mass% Fe-Zn electrogalvanized steel sheet (FZ steel sheet), 13 mass% Ni-Zn (ZnNi steel sheet), etc. be able to. Among these, it is preferable to apply the zinc phosphate coating of the present invention to the EG steel sheet.
[0088] 本発明で使用する亜鉛系めつき鋼板の製造は、あらゆる亜鉛系めつきの方法を適 用することができる。例えば GI鋼板ではめつき浴に浸漬してそのまま冷却を行う。一 方 GA鋼板ではめつき浴に浸漬してその後に合金化処理を施す。また、必要に応じ て調質圧延 (スキンパス)、平坦ィ匕処理 (レベラ一)等を種々付与しても良い。また、調 質圧延により GI鋼板及び GA鋼板の表面状態、表面粗度は種々変化するがこれらを 変化させても良い。この変化によって接着性等には影響を及ぼさない。  [0088] Any zinc-based plating method can be applied to the production of the zinc-based steel sheet used in the present invention. For example, with a GI steel plate, it is immersed in a fitting bath and cooled as it is. On the other hand, the GA steel sheet is immersed in a mating bath and then alloyed. Moreover, various temper rolling (skin pass), flat wrinkle treatment (leveler) and the like may be applied as necessary. In addition, the surface condition and surface roughness of the GI steel sheet and GA steel sheet are variously changed by temper rolling, but these may be changed. This change does not affect the adhesion or the like.
[0089] (3)リン酸亜鉛皮膜  [0089] (3) Zinc phosphate coating
リン酸亜鉛皮膜は、上記亜鉛系めつきの外層に形成された結晶質のリン酸亜鉛の 皮膜である。本発明のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板のリン酸亜鉛皮膜 は、次のうちいずれかの構成を有する。  The zinc phosphate coating is a crystalline zinc phosphate coating formed on the outer layer of the zinc-based metal. The zinc phosphate coating of a zinc-based plated steel sheet having a zinc phosphate coating according to the present invention has one of the following configurations.
(i)当該リン酸亜鉛皮膜を有する亜鉛系めつき鋼板の法線方向に対する 60° 傾いた 方向から入射された赤外光の表面反射光を測定する吸収スペクトル測定法により得 られるスペクトルで、波長 8〜12 mの範囲で複数の吸収帯を有し、さらに該波長の 範囲における p偏光 (P)と s偏光(S)との吸収スペクトルの積分強度比(PZS)が 1. 2 以上である。  (i) A spectrum obtained by an absorption spectrum measurement method for measuring the surface reflected light of infrared light incident from a direction inclined by 60 ° with respect to the normal direction of the zinc-based steel sheet having the zinc phosphate coating, and having a wavelength It has multiple absorption bands in the range of 8 to 12 m, and the integral intensity ratio (PZS) of the absorption spectrum of p-polarized light (P) and s-polarized light (S) in the wavelength range is 1.2 or more. .
(ii)当該リン酸亜鉛皮膜を有する亜鉛系めつき鋼板の法線方向に対する 60° 傾い た方向から入射された赤外光の表面反射光を測定する吸収スペクトル測定法により 得られるスペクトルで、波長 8〜12 mの範囲で複数の吸収帯を有し、かつ、波長 8 . 4〜9. 2 mの吸収(吸収 A)での p偏光の吸光度 (Pa)と s偏光の吸光度(Sa)と、 及び波長 10. 2〜: LI. O /z mの吸収(吸収 B)での p偏光の吸光度(Pb)と s偏光の吸 光度(Sb)との間でその比(PaZSa、及び PbZSb)がいずれも 2以上である。  (ii) A spectrum obtained by an absorption spectrum measurement method that measures the surface reflected light of infrared light incident from a direction inclined by 60 ° with respect to the normal direction of the zinc-based steel sheet having the zinc phosphate coating, and has a wavelength P-polarized light absorbance (Pa) and s-polarized light absorbance (Sa) at absorptions (absorption A) at wavelengths of 8.4 to 9.2 m, with multiple absorption bands in the range of 8 to 12 m. , And wavelength 10.2: The ratio (PaZSa and PbZSb) between the absorbance of p-polarized light (Pb) and the absorbance of s-polarized light (Sb) at the absorption (absorption B) of LI.O / zm is Both are 2 or more.
[0090] 上記 (i)及び (ii)の 、ずれの場合にぉ 、ても、本発明のリン酸亜鉛皮膜を有する亜 鉛系めつき鋼板のリン酸亜鉛皮膜は、該リン酸亜鉛皮膜を有する亜鉛系めつき鋼板 の法線方向に対する 60° 傾いた方向から入射された赤外光の表面反射光を測定す る吸収スペクトル測定法により得られるスペクトルで、波長 8〜 12 mの範囲で複数 の吸収帯を有する。これは、当該リン酸亜鉛皮膜を形成するリン酸亜鉛の P— O結合 に起因するもので、通常は 5本程度の吸収帯を有する。 [0090] In the above cases (i) and (ii), in the case of misalignment, the sub-phase having the zinc phosphate coating of the present invention is used. The zinc phosphate coating on the lead-based plated steel sheet is an absorption that measures the surface reflected light of infrared light incident from a direction inclined by 60 ° with respect to the normal direction of the zinc-based plated steel sheet having the zinc phosphate coating. It is a spectrum obtained by the spectrum measurement method and has multiple absorption bands in the wavelength range of 8 to 12 m. This is due to the P—O bond of zinc phosphate forming the zinc phosphate film, and usually has about 5 absorption bands.
[0091] ここで、赤外光を 60°方向力 入射するのは、亜鉛系めつき鋼板力 の反射光が吸 収スペクトルに影響を与えないようにするためである。これにより SN比の良好なスぺ タトルを得ることができる。反射光は入射光に対応する 60°方向から検出する。鋼板 表面の粗さによって反射光が乱反射し、検知器に入る反射光が少な!、場合があるの で、その場合は検出機の手前に集光装置を設けても良い。  Here, the reason why the infrared light is incident in the direction of 60 ° is to prevent the reflected light of the zinc-based steel plate force from affecting the absorption spectrum. As a result, a spectrum with a good SN ratio can be obtained. The reflected light is detected from the 60 ° direction corresponding to the incident light. Since the reflected light is irregularly reflected by the roughness of the surface of the steel sheet and the reflected light entering the detector is small, there is a case where the light collecting device may be provided in front of the detector.
[0092] 上記 (i)に説明したリン酸亜鉛皮膜は、 p偏光 (P)と s偏光(S)との吸収スペクトルの 積分強度比 (PZS)が 1. 2以上である構成を有する。これは、リン酸亜鉛皮膜を構成 する P— O結合の配向度を表している。すなわち、 PZSが 1. 2以上であるとは、 p偏 光力 偏光よりも強いことを意味する。従って、本発明のリン酸亜鉛皮膜を有する亜鉛 系めつき鋼板のリン酸亜鉛皮膜は、鋼板に対して垂直に近 、配向が強 、と 、う構成 を有するものである。 PZSが 2以上であることがさらに好ましい。  [0092] The zinc phosphate coating described in (i) above has a configuration in which the integrated intensity ratio (PZS) of the absorption spectrum of p-polarized light (P) and s-polarized light (S) is 1.2 or more. This represents the degree of orientation of P—O bonds constituting the zinc phosphate coating. That is, PZS of 1.2 or more means p-polarization power stronger than polarization. Accordingly, the zinc phosphate coating of the zinc-based plated steel plate having the zinc phosphate coating of the present invention has a configuration in which it is close to perpendicular to the steel plate and strongly oriented. More preferably, PZS is 2 or more.
さらに好ましい P— O結合の配向は (ii)で説明した範囲における構成を有するリン 酸亜鉛皮膜である。 (ii)で説明した配向は上述した P— O結合における波長 8〜12 /z mの範囲のうち、波長 8. 4〜9. 及び波長 10. 2〜: L I . の 2つの波長 範囲について注目して、本発明のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板に用い られるリン酸亜鉛皮膜の吸光度の構成を示したものである。該 2つの波長範囲とした のは特徴的なスペクトルの吸収が生じることによる。  A more preferable orientation of the P—O bond is a zinc phosphate coating having a configuration in the range described in (ii). The orientation described in (ii) focuses on two wavelength ranges of wavelengths 8.4 to 9. and wavelengths 10.2 to LI. The structure of the absorbance of the zinc phosphate coating used in the zinc-based plated steel sheet having the zinc phosphate coating of the present invention is shown. The two wavelength ranges are due to the characteristic absorption of the spectrum.
[0093] 具体的には、波長 8. 4〜9. 2 mの吸収スペクトルにおける(吸収 A) p偏光の吸 光度 (Pa)と s偏光の吸光度(Sa)との比(PaZSa)が 2以上であり、かつ波長 10. 2〜 11. Ο μ mの吸収スペクトルにおける(吸収 B) p偏光の吸光度 (Pb)と s偏光の吸光度 (Sb)との比(PbZSb)が 2以上である構成とされて 、る。 、ずれも 3以上であることが さらに好ましい。  [0093] Specifically, the ratio (PaZSa) of (absorption A) p-polarized light absorbance (Pa) to s-polarized light absorbance (Sa) in the absorption spectrum of wavelength 8.4 to 9.2 m is 2 or more. And the ratio (PbZSb) of (absorption B) p-polarized light absorbance (Pb) to s-polarized light absorbance (Sb) in the absorption spectrum of wavelengths 10.2 to 11. Ο μm is 2 or more. It has been. More preferably, the deviation is 3 or more.
[0094] 以上のように、(i)及び (ii)の構成のいずれにおいても、 P— O結合の配向が鋼板 表面にお 、て鋼板表面に対して垂直方向の配向が多 、 (P偏光が強!、)構成のリン 酸亜鉛皮膜とすることにより、優れた潤滑性を維持しつつ接着性にも優れたリン酸亜 鉛皮膜を有する亜鉛系めつき鋼板を提供することができる。これは、当該配向により、[0094] As described above, in either of the configurations (i) and (ii), the orientation of the P—O bond is a steel plate. The surface is highly oriented in the direction perpendicular to the surface of the steel sheet, and by using a zinc phosphate coating (with strong P-polarized light!), Excellent lubricity and excellent adhesion are maintained. A zinc-based steel sheet having a zinc phosphate coating can be provided. This is due to the orientation
P— O結合と副資材 (主に榭脂)の C O結合との相互作用が増すためと考えられる 。そして、これによつて自動車用の副資材、特に構造接着に用いられる塩ビ系接着 剤、シール機能を有するマスチック系接着剤との適合性に優れたリン酸亜鉛皮膜を 有する亜鉛系めつき鋼板を提供することができる。 This is thought to be due to an increase in the interaction between the P—O bond and the C 2 O bond of the secondary material (mainly resin). As a result, a zinc-based steel sheet having a zinc phosphate coating excellent in compatibility with auxiliary materials for automobiles, in particular, a vinyl chloride-based adhesive used for structural bonding, and a mastic-based adhesive having a sealing function. Can be provided.
[0095] リン酸亜鉛皮膜の付着量は 30mgZm2以上であればよい。より好ましくは 50mgZ m2以上である。これは、潤滑性に影響を与え、 30mgZm2より少ないと良好な潤滑 性を得られない虞があるからである。また、リン酸亜鉛皮膜の付着量は 250mgZm2 以下が好ましぐ 200mgZm2以下であることがさらに好ましぐ 150mgZm2以下で あることが最も好ましい。これは、リン酸亜鉛皮膜の付着量が多いと接着性が低下す ることがあることによるものである。 [0095] The adhesion amount of the zinc phosphate film may be 30 mgZm 2 or more. More preferably, it is 50 mgZ m 2 or more. This is because the lubricity is affected, and if it is less than 30 mgZm 2 , good lubricity may not be obtained. Further, the adhesion amount of the zinc phosphate coating is most preferably more preferably tool 150MgZm 2 below it 250MgZm 2 or less is preferred instrument 200MgZm 2 below. This is due to the fact that the adhesiveness may decrease when the amount of zinc phosphate coating is large.
[0096] 以上のような構成のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板により、潤滑性及び 接着性に優れた鋼板を提供することが可能となる。  [0096] With the zinc-based plated steel plate having the zinc phosphate film having the above-described configuration, it is possible to provide a steel plate excellent in lubricity and adhesiveness.
[0097] 以下、実施例によりさらに詳しく説明する。  [0097] Hereinafter, the embodiment will be described in more detail.
実施例  Example
[0098] (実施例 1) [Example 1]
実施例 1として板厚 0. 8mmで 200mm X 250mmの切板である極低炭素鋼板 GI 鋼板 (めっき付着量 90gZm2、皮膜 A1濃度 : 0. 4質量%、Fe濃度:1. 5質量%)及 び GA鋼板 (めっき付着量 60gZm2、皮膜 A1濃度 : 0. 30質量%、 Fe濃度: 9. 5質量 %)の 2つの溶融亜鉛系めつき鋼板について、操業性評価及び潤滑性評価をおこな つた。本実施例では、表面調整剤の成分及び処理剤の成分を変更した場合につい ての上記前乾燥工程の有無による評価を行っている。表 1には表面調整剤の成分、 表 2には処理剤の成分をそれぞれ示した。 Ultra low carbon steel sheet GI steel sheet is a switching plate of 200 mm X 250 mm in thickness 0. 8 mm as in Example 1 (coating weight 90gZm 2, film A1 concentration: 0.4 wt%, Fe concentration:. 1 5 wt%) And galvanized steel sheets (plating weight 60gZm 2 , coating A1 concentration: 0.30% by mass, Fe concentration: 9.5% by mass), operability evaluation and lubricity evaluation were performed. Natsuta. In this example, evaluation is performed based on the presence or absence of the pre-drying step when the component of the surface conditioner and the component of the treatment agent are changed. Table 1 shows the components of the surface conditioner, and Table 2 shows the components of the treatment agent.
[0099] [表 1] ^ 表面調整剤に含まれる成分[0099] [Table 1] ^ Ingredients in surface conditioner
〔〕0100 [] 0100
Figure imgf000024_0001
Figure imgf000024_0001
処理剤に含まれる成分 Ingredients in treatment agent
Figure imgf000025_0001
Figure imgf000025_0001
[0101] また、各工程の条件は次の通りである。 [0101] The conditions of each step are as follows.
表面調整剤供給工程  Surface conditioner supply process
表面調整剤供給方法:スプレー又はロールコータ  Surface conditioner supply method: spray or roll coater
付着量: P換算で 3mgZm2 Amount of deposit: 3mgZm 2 in terms of P
前乾燥工程  Pre-drying process
乾燥設備:ドライヤー  Drying equipment: hair dryer
乾燥温度:鋼板最高到達温度 60°C  Drying temperature: Maximum steel sheet temperature 60 ° C
乾燥時間:10秒  Drying time: 10 seconds
処理剤供給工程  Treatment agent supply process
供給方法:ロールコータ (侵入材温度 50°C)  Supply method: Roll coater (Intruder temperature 50 ° C)
合計付着量: P換算で 80mg/m2 Total adhesion amount: 80mg / m 2 in terms of P
後乾燥工程  Post-drying process
乾燥設備:オーブン  Drying equipment: oven
乾燥温度:鋼板最高到達温度 70°C  Drying temperature: Maximum steel sheet temperature 70 ° C
乾燥時間: 30秒  Drying time: 30 seconds
[0102] また、従来例として従来のアルカリ及び酸による洗浄をおこなった場合も示した。こ の場合に具体的には、洗浄後に水洗いをされた基材が処理剤供給工程に導入され る。本実施例では、水洗い後に処理剤供給工程に導入される前の乾燥工程の有無 についても示した。下に条件を示す。  [0102] Further, as a conventional example, the case where the conventional cleaning with alkali and acid is performed is also shown. Specifically, in this case, the substrate that has been washed with water after washing is introduced into the treatment agent supplying step. In this example, the presence / absence of a drying step before being introduced into the treatment agent supplying step after washing with water was also shown. The conditions are shown below.
前洗浄条件: 7質量%NaOH及び 2質量%H SO (表 1の No. 13、 14)  Pre-cleaning conditions: 7 wt% NaOH and 2 wt% H 2 SO (No. 13, 14 in Table 1)
2 4  twenty four
浸漬条件: 7%NaOH水溶液 (70°C)に 5秒間浸漬  Immersion conditions: Immerse in 7% NaOH aqueous solution (70 ° C) for 5 seconds
2%H SO水溶液 (50°C)に 5秒間浸漬  Immerse in 2% aqueous solution of SO (50 ° C) for 5 seconds
2 4  twenty four
[0103] (1)評価項目  [0103] (1) Evaluation items
以上の条件に基づき次に説明する評価をおこなった。  Based on the above conditions, the following evaluation was performed.
(1 1)操業性評価  (1 1) Operability evaluation
操業性は 10Lの処理剤に対して 10m2 (前記切り板の合計面積が 10m2)の基材に 処理剤を供給したときの該処理剤における表面調整剤からの持ち込み成分 (表面調 整剤のアルカリ金属)及び処理剤に含まれる主に亜鉛の濃度を測定し、処理剤供給 前との濃度変化を評価した。操業性の評価基準は、次の通りである。以下の評価基 準における濃度調整不要とは、水洗設備や補給剤、廃液処理設備が不要なことを意 味している。 Runnability is bringing components from the surface control agent in the treatment agent when the 10 m 2 (total area of the cutting plate is 10 m 2) was fed treatment agent to the substrate with respect to 10L of treatment agent (surface adjustment Seizai Measure the concentration of mainly zinc contained in the processing agent and supply the processing agent. The concentration change from before was evaluated. The evaluation criteria for operability are as follows. The need for concentration adjustment in the following evaluation criteria means that no water washing facilities, replenishers, or waste liquid treatment facilities are required.
〇:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 2質量%以下 (濃 度調整不要)  ○: Concentration increase of alkali metals and zinc in the treatment agent is 2% by mass or less of the initial concentration (concentration adjustment is not required)
△:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 2質量%超え、 4質 量%以下 (濃度調整はほぼ不要)  Δ: Concentration increase of alkali metal and zinc in the treatment agent exceeds 2% by mass of the initial concentration, and 4% by mass or less (concentration adjustment is almost unnecessary)
X:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 4質量%超え (濃度 調整必要)  X: Concentration increase of alkali metals and zinc in the treatment agent exceeds 4% by mass of the initial concentration (concentration adjustment required)
[0104] (1 2)潤滑性評価法 [0104] (1 2) Lubricity evaluation method
得られたリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板に対してピンオンディスク 型摩擦磨耗試験機を用いて、防鲭油を塗布した状態で、以下の条件で摩擦係数測 定を行い、摩擦係数により潤滑性を評価した。摩擦係数の評価基準を次に示す。 試験条件  Using a pin-on-disk friction wear tester, the coefficient of friction was measured under the following conditions using a pin-on-disk friction wear tester for the obtained hot-dip galvanized steel sheet having a zinc phosphate coating. Lubricity was evaluated by the coefficient of friction. The evaluation criteria for the friction coefficient are as follows. Test conditions
荷重: 30kN  Load: 30kN
スライダ材質: SKD鋼  Slider material: SKD steel
スライダ形状:直径 5mmの鋼球面  Slider shape: 5mm diameter steel spherical surface
試験温度: 60°C  Test temperature: 60 ° C
回転半径: 10mm  Turning radius: 10mm
摺動速度: lrpm  Sliding speed: lrpm
試験回転数: 20回  Test speed: 20 times
測定点数: 1回転毎に 12個の測定値力も平均値を算出し, 20回の平均値とする 評価基準  Number of measurement points: Twelve measured force values per rotation are also averaged and averaged 20 times Evaluation criteria
◎:摩擦係数 0. 12未満 (潤滑処理として極めて良好)  A: Coefficient of friction less than 0.12 (very good lubrication)
〇:摩擦係数 0. 12以上 0. 15未満 (潤滑処理として良好)  ○: Friction coefficient 0.12 or more and less than 0.15 (good lubrication)
X:摩擦係数 0. 15以上 (潤滑処理として不適)  X: Friction coefficient 0.15 or more (unsuitable for lubrication)
[0105] (1 3)表面調整剤及び処理剤の安定性 各表面調整剤及び処理剤の安定性は、 40°C X 7日試験により得た。これは各調整 剤及び処理剤を 40°Cに保ち、 7日間保持するというものである。表面調整剤及び処 理剤の安定性の評価は、次の通りである。 [0105] (1 3) Stability of surface conditioner and treatment agent The stability of each surface conditioner and treatment was obtained by a 40 ° C. X 7 day test. This is to maintain each adjuster and treatment at 40 ° C for 7 days. The stability of the surface conditioner and the treatment agent is evaluated as follows.
表面調整剤 〇:分散状態を維持  Surface conditioner 〇: Maintain dispersion state
X:沈殿が発生  X: Precipitation occurs
処理剤 〇:スラッジの発生なし  Treatment agent 〇 : No sludge generation
X:スラッジの発生あり  X: Sludge is generated
[0106] (2)評価結果  [0106] (2) Evaluation results
以上の条件に基づき評価をおこなった実施例 1についての結果を以下に説明する  The results of Example 1 evaluated based on the above conditions will be described below.
(2—1)操業性及び潤滑性 (2-1) Operability and lubricity
表 3に結果を一覧で示した。  Table 3 lists the results.
[0107] [表 3] [0107] [Table 3]
工程 操業性 钃板の 表面調整剤供給工程 処理剤供給工程 Process Operability Platen surface conditioner supply process Treatment agent supply process
代符 備 種類 前乾燥 表面調  Typhoon Preparation Type Pre-drying Surface tone
処理剤 潤滑性 工程 整剤  Treatment agent Lubricity Process Preparation
表面調整  Surface adjustment
供給方法 ffi理剤  Supply method ffi agent
供給方法  Supply method
剤 No. No.  Agent No.
R1 Gl 1 スプレー 有り a ロールコータ O o © 本発明例 R1 Gl 1 Spray Yes a Roll coater O o © Example of the present invention
R2 GA 1 Π—ル: 3—タ 有り 0 d—ル: 3—タ o o 本発明俩R2 GA 1 Π—3: Yes Yes 0 d—3: 0 o o This invention 俩
R3 GI 1 スプレー 有り d ロールコ一タ o o ◎ 本発明例R3 GI 1 With spray d Roll coater o o ◎ Example of the present invention
R4 OA 1 スプレー 無し d C3—ルコ一タ 0 X 比較辆 5 GA 1 スプレ一 有り e 口一ルコータ 〇 〇 ◎ 本発明例R4 OA 1 No spray d C3—Lukotor 0 X Comparison 5 GA 1 Spray present e Mouth coater ○ ○ ◎ Example of the present invention
R6 GA 1 ロールコータ 有り f 口一ルコータ 0 〇 ◎ 本発明例R6 GA 1 With roll coater f Single-piece coater 0 ○ ◎ Example of the present invention
R7 GA 2 ロールコ一タ 有 y a ルコ一タ o 〇 本発明例R7 GA 2 Roll coater Yes y a Rucoator o 〇 Example of the present invention
R8 GA 2 ロールコータ 有り b ロールコ一タ 0 o ◎ 本発明例R8 GA 2 With roll coater b Roll coater 0 o ◎ Example of the present invention
R9 OA 2 口一ルコ一タ 無し b 口一ルコ一タ o X © 比較飼R9 OA 2 Mouth rucota None b Mouth rucota o X © Comparison animal
RIO GA 2 スプレー 有り e 口一ルコータ o o ◎ 本発明例RIO GA 2 With spray e Mouth coater o o ◎ Example of the present invention
R11 GI 2 口一ルコ一タ 有 y f α—ルコータ o o ◎ 本発明例 t 2 GA 3 スプレー し a □—ルコ一タ o X 比較倒R11 GI 2 mouthpiece Yes Y f α—Luc coater o o ◎ Example of the present invention t 2 GA 3 Spray a □ —Lucometer o X
R13 GA 3 ロールコータ 有り b ロールコータ o o ◎ 本発明例R13 GA 3 With roll coater b Roll coater o o ◎ Example of the present invention
R14 GI 4 スプレー 有り b ル: 3—タ o o ◎ 本発明例R14 GI 4 With spray b: 3-t o o ◎ Example of the present invention
R15 GA 4 口一ルコ一タ 無し c ロールコータ o X 比較例R15 GA 4 Mouth coater None c Roll coater o X Comparative example
R16 GA 4 スプレー 有り d 口一ルコ一タ o O ◎ 本発明例 17 GI 4 α—ルコ一タ リ e ロールコ一タ 0 0 本発明例R16 GA 4 With spray d Mouth coater o O ◎ Example of the present invention 17 GI 4 α-Luco class e Roll coater 0 0 Example of the present invention
R18 GA 4 スプレー 無し f d—ル ]—タ o X ◎ 比較例R18 GA 4 No spray f d-L] -T o X ◎ Comparative example
R19 GA 4 口一ルコ一タ 有 y f 口一ルコ一タ o O ◎ 本発明例R19 GA 4 Mouth converter Yes y f Mouth converter o O ◎ Example of the present invention
R16 GA 5 スプレー 有り a 口一ルコ一タ o O 本発明例 17 GA 5 口一ルコ一タ 有り d ロールコ一タ o o ◎ 本発明例R16 GA 5 Spray Yes a Mouth Locator o O Example of the Invention 17 GA 5 Mouth Locator Available d Roll Coat o o ◎ Example of the Invention
R18 GI 6 スプレー ^し f 口—ルコ—タ o X © 比較例R18 GI 6 spray ^ f mouth-couter o X © Comparative example
R19 GI 6 スプレー 有り d ロールコ一タ o O ◎ 本発明例R19 GI 6 With spray d Roll coater o O ◎ Example of the present invention
R20 GA 8 口一ルコ一タ 有り b 口一ルコ一タ o O 本発明剁R20 GA 8 Mouth Locator Yes b Mouth Locator o O
R21 GA S スプレー 有り d Π—ルコ一タ o o 本発明倒R21 GA S Spray Yes d
R22 GA 9 スプレー 有り d 口一ルコ一タ o o © 本発明 «R22 GA 9 With spray d Mouth converter o o © The present invention «
R23 GA 9 ロールコ一タ 有り f 口一ルコ一タ o o 本発明倒R23 GA 9 Roll coater f
R24 GA 11 スプレー 有り a 口一ルコ一タ X o ◎ 本発明 ΛR24 GA 11 with spray a mouth counter X o ◎ present invention Λ
R25 GI 11 ロールコ一タ 有り f ロールコ一タ X o @ 本発明例R25 GI 11 Roll coater provided f Roll coater X o @ Example of the present invention
R26 QI 13 スプレー 有り b 口—ルコ—タ X o X 従来 ftR26 QI 13 With spray b Mouth-colator X o X Conventional ft
R27 GA 13 スプレー 無し b ロールコ一タ X X X 従来侧 8 GI 14 ロールコ―タ 有リ d 口—ルコ—タ X o X 従来例R27 GA 13 No spray b Roll coater X X X Conventional 侧 8 GI 14 Roll coater Available d Mouth-col coater X o X Conventional example
R29 GA 14 ロールコータ 無し d ロールコータ X X X 従来洌R29 GA 14 Roll coater None d Roll coater X X X Conventional 洌
R30 GA 15 ロールコータ 有り a ロールコータ 0 Δ 〇 本発明例R30 GA 15 With roll coater a Roll coater 0 Δ ○ Example of the present invention
R31 GA 1 口—ルコ—タ 有り a スプレー 0 X Ο 比較例 R31 GA 1 mouth-coater available a Spray 0 X Ο Comparative example
[0108] これを見ると表面調整剤が供給されるとともに前乾燥工程で乾燥された場合には、 いずれも処理剤の操業性が高ぐ得られた溶融亜鉛系めつき鋼板の潤滑性も良好で あり、本発明の効果が顕著に現れている。さらに、表面調整剤の供給方法に依存し ないこともわかる。 [0108] Looking at this, when the surface conditioning agent is supplied and dried in the pre-drying step, the lubricity of the hot dip galvanized steel sheet, which is high in operability of the treatment agent, is also good. Thus, the effects of the present invention are remarkably exhibited. It can also be seen that it does not depend on the surface conditioning agent supply method.
[0109] 一方、従来例として代符 R26〜R29に示した従来の洗浄を用いた場合についても 前乾燥工程があることにより処理剤の操業性のみは良好である。これは、前乾燥ェ 程が処理剤の操業性向上に大きな効果を有していることを意味する。ただし代符 R2 6〜R29の条件では、溶融亜鉛系めつき鋼板に所望の潤滑性は得られて ヽな 、ので 、表面調整剤の供給が必要であることもわ力る。 [0109] On the other hand, as a conventional example, the case of using the conventional cleaning shown in the symbols R26 to R29 is also used. Due to the pre-drying step, only the operability of the treatment agent is good. This means that the pre-drying process has a great effect on improving the operability of the treatment agent. However, under the conditions of R2 6 to R29, the desired lubricity should be obtained for the hot dip galvanized steel sheet, so it is also necessary to supply a surface conditioner.
[0110] また、参考例として代符 R24及び代符 R25に示した条件では、処理剤の操業性に は影響を与えていない一方で、表面調整剤の操業性は良くない。これは代符 R24、 25に用いられた表 1に No. 11に示す表面処理剤は pHが 4. 5であり、他に比べ低い ことが原因であると考える。よって pHを少なくとも 4. 5より大きくすることにより表面調 整剤の操業性を向上させることができる。  [0110] Further, under the conditions indicated by reference marks R24 and R25 as reference examples, the operability of the surface treatment agent is not good, while the operability of the treatment agent is not affected. This is thought to be due to the fact that the surface treatment agent shown in No. 11 in Table 1 used for the symbol R24, 25 has a pH of 4.5, which is lower than the others. Therefore, the operability of the surface conditioner can be improved by increasing the pH to at least 4.5.
[0111] (2— 2)表面調整剤及び処理剤の安定性  [0111] (2-2) Stability of surface conditioners and treatment agents
次に表 1及び表 2に示した各表面調整剤及び処理剤の安定性の結果について説 明する。表 4に表面調整剤の安定性評価結果、表 5に処理剤の安定性評価結果をそ れぞれ示す。  Next, the stability results of the surface conditioners and treatment agents shown in Table 1 and Table 2 will be explained. Table 4 shows the stability evaluation results of the surface conditioner, and Table 5 shows the stability evaluation results of the treatment agent.
[0112] [表 4]  [0112] [Table 4]
Figure imgf000030_0001
Figure imgf000030_0001
[0113] [表 5] 処理 の [0113] [Table 5] Processing
Figure imgf000031_0001
Figure imgf000031_0001
[0114] 表 4に示した表面調整剤は、 No. 7、 No. 10、及び No. 12にっき安定性が良くな かった。これは No. 7については表 1からわ力るようにアルカリ金属及びアルカリ土類 金属の合計が 0. 401molZLに達しているからであると考える。また、 No. 10及び N o. 12についてはそれぞれ粒子径が大きい、リン酸亜鉛含有量が大きいことが理由 であると考える。これらは必ずしも処理剤の操業性に影響を与えるとは限らないが、 安定性は高 ヽほうが好まし 、。  [0114] The surface conditioning agents shown in Table 4 had poor stability in No. 7, No. 10, and No. 12. This is considered to be because the total of alkali metals and alkaline earth metals reached 0.401 molZL for No. 7 as shown in Table 1. In addition, for No. 10 and No. 12, the reason is that the particle size is large and the zinc phosphate content is large. These do not necessarily affect the operability of the treatment agent, but stability is preferred.
[0115] 表 5に示した処理剤のうち g〜mについての安定性は良くな力つた。これは、 g〜iに 関してはリン酸根に対する亜鉛イオンの比が大きいことが原因であると考える。また、 i については pHが 4. 1であり、高い値を示している。 j〜mについては添加された強電 解質ァ-オン比が大き!/、ことが原因であると考えられる。これらは必ずしも処理剤の 操業性に影響を与えるとは限らないが、安定性は高いほうが好ましい。  [0115] Among the treatment agents shown in Table 5, the stability for g to m was good. This is thought to be due to the large ratio of zinc ions to phosphate radicals for g to i. Moreover, the pH of i is 4.1, indicating a high value. For j to m, it is considered that the added strong electrolyte-on ratio is large! /. These do not necessarily affect the operability of the treatment agent, but higher stability is preferred.
[0116] (実施例 2)  [0116] (Example 2)
実施例 2として、連続溶融亜鉛系めつき鋼板製造ラインにて、板厚 0. 8mmの GA 鋼板 (極低炭素鋼板、めっき付着量 45gZm2、皮膜 A1濃度 : 0. 25質量%、 Fe濃度 : 9. 0質量%)に、スキンパス (圧延率 1. 0%)を施し、表面調整剤供給工程では、表 1に示した No. 1、 4、 6の表面調整剤を供給し、処理剤供給工程は、表 2中の a、 d、 e 及び iの処理剤を用いてリン酸亜鉛皮膜処理を行った。各工程の条件は下記に示す 通りである。 As Example 2, in a continuous molten zinc-based steel plate production line, a 0.8 mm thick GA steel plate (very low carbon steel plate, 45 gZm 2 coating weight, coating A1 concentration: 0.25 mass%, Fe concentration: 9.0 mass%) is subjected to a skin pass (rolling ratio 1.0%), and in the surface conditioning agent supply process, the surface conditioning agents No. 1, 4, and 6 shown in Table 1 are supplied, and the processing agent is supplied. Processes are a, d, e in Table 2. And the zinc-phosphate film | membrane process was performed using the processing agent of i. The conditions for each process are as shown below.
表面調整剤供給工程  Surface conditioner supply process
供給方法:スプレー又はロールコータ  Supply method: spray or roll coater
乾燥設備:ドライヤー  Drying equipment: hair dryer
付着量: P換算で 3mgZm2 Amount of deposit: 3mgZm 2 in terms of P
前乾燥工程  Pre-drying process
乾燥温度:鋼板最高到達温度 70°C  Drying temperature: Maximum steel sheet temperature 70 ° C
乾燥時間: 5秒  Drying time: 5 seconds
処理剤供給工程  Treatment agent supply process
供給方法:ロールコータ (侵入材温度 50°C)  Supply method: Roll coater (Intruder temperature 50 ° C)
後乾燥工程  Post-drying process
乾燥設備:オーブン  Drying equipment: oven
乾燥温度:鋼板最高到達温度 80°C  Drying temperature: Maximum steel sheet temperature 80 ° C
乾燥時間: 30秒  Drying time: 30 seconds
また、比較例として、前乾燥工程をなしとしたものもおこなった。  In addition, as a comparative example, a pre-drying step was performed.
(3)評価項目 (3) Evaluation items
以上の条件に基づき次に説明する評価をおこなった。  Based on the above conditions, the following evaluation was performed.
(3— 1)操業性評価 (3-1) Evaluation of operability
各処理を 100Lの処理剤に対して板厚 0. 8mmで幅 lmの鋼板を 100m通板したと きの処理剤における表面調整剤からの持ち込み成分 (表面調整剤のアルカリ金属) と処理剤に含まれる主に亜鉛の濃度を測定し、処理剤供給前との濃度変化を評価し た。操業性の評価基準は、次の通りである。以下の評価基準における濃度調整不要 とは、水洗設備や補給剤、廃液処理設備が不要なことを意味している。  In each treatment, when a steel plate with a thickness of 0.8 mm and a width of lm is passed 100 m for a treatment agent of 100 liters, the components brought in from the surface conditioner (alkali metal of the surface conditioner) and the treatment agent The concentration of mainly contained zinc was measured, and the change in concentration before treatment agent supply was evaluated. The evaluation criteria for operability are as follows. In the following evaluation criteria, no concentration adjustment means that no water washing facilities, replenishers, or waste liquid treatment facilities are required.
〇:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 2質量%以下 (濃 度調整不要)  ○: Concentration increase of alkali metals and zinc in the treatment agent is 2% by mass or less of the initial concentration (concentration adjustment is not required)
△:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 2質量%超え、 4質 量%以下 (濃度調整はほぼ不要) X :処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 4質量%超え (濃度 調整必要) Δ: Concentration increase of alkali metal and zinc in the treatment agent exceeds 2% by mass of the initial concentration, and 4% by mass or less (concentration adjustment is almost unnecessary) X: Concentration increase of alkali metals and zinc in the treatment agent exceeds 4% by mass of the initial concentration (concentration adjustment required)
[0118] (3— 2)潤滑性評価 [0118] (3-2) Lubricity evaluation
得られたリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板に対してピンオンディスク 型摩擦磨耗試験機を用いて、防鲭油を塗布した状態で、以下の条件で摩擦係数測 定を行い、摩擦係数により潤滑処理としての妥当性を評価した。摩擦係数の評価基 準を下記に示す。  Using a pin-on-disk friction wear tester, the coefficient of friction was measured under the following conditions using a pin-on-disk friction wear tester for the obtained hot-dip galvanized steel sheet having a zinc phosphate coating. The validity as a lubrication treatment was evaluated by the friction coefficient. The evaluation criteria for the friction coefficient are shown below.
試験条件  Test conditions
荷重: 30kN  Load: 30kN
スライダ材質 SKD鋼  Slider material SKD steel
スライダ形状:直径 5mmの鋼球面  Slider shape: 5mm diameter steel spherical surface
試験温度: 60°C  Test temperature: 60 ° C
回転半径: 10mm  Turning radius: 10mm
摺動速度: lrpm  Sliding speed: lrpm
試験回転数: 20回  Test speed: 20 times
測定点数: 1回転毎に 12個の測定値から平均値を算出し、 20回の最大の平均 値とする。  Number of measurement points: The average value is calculated from 12 measurement values per rotation, and the maximum average value is obtained for 20 times.
評価基準  Evaluation criteria
◎:摩擦係数 0. 12未満 (潤滑処理として極めて良好)  A: Coefficient of friction less than 0.12 (very good lubrication)
〇:摩擦係数 0. 12以上 0. 15未満 (潤滑処理として良好)  ○: Friction coefficient 0.12 or more and less than 0.15 (good lubrication)
X:摩擦係数 0. 15以上 (潤滑処理として不適)  X: Friction coefficient 0.15 or more (unsuitable for lubrication)
[0119] (3— 3)スポット溶接性評価 [0119] (3-3) Spot weldability evaluation
得られたリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板に対してスポット溶接機を 用いて、以下の条件でスポット溶接を行い、ナゲット径 (mm)が 4tlZ2 (t :鋼板厚み (mm) )以下までの打点数を評価した。  Spot welding was performed on the hot-dip galvanized steel sheet having the zinc phosphate coating obtained using a spot welder under the following conditions, and the nugget diameter (mm) was 4 tlZ2 (t: steel sheet thickness (mm)) The number of hits to the following was evaluated.
評価条件  Evaluation conditions
電極径: 6mm  Electrode diameter: 6mm
電極先端径: 40Rドーム型 電極材質: 1質量%Cr— Cu Electrode tip diameter: 40R dome shape Electrode material: 1% by mass Cr—Cu
加圧力: 2kN  Applied pressure: 2kN
アップスロープ: 3サイクル  Up slope: 3 cycles
通電時間: 10サイクル (周波数: 50Hz)  Energizing time: 10 cycles (frequency: 50Hz)
冷却流量 : 3LZ分  Cooling flow rate: 3LZ
溶接電流: 10. 5kA  Welding current: 10.5kA
評価基準  Evaluation criteria
〇: 2000打点以上 (適切)  ○: More than 2000 RBI (appropriate)
X: 2000打点未満 (不適)  X: Less than 2000 RBI (unsuitable)
[0120] (3— 4)耐食性評価 [0120] (3-4) Corrosion resistance evaluation
耐食性評価は、自動車用鋼板等の性能評価法として一般的に用いられる手法によ り行った。具体的には、化成処理後に電着塗装してその後シングルカットを施し、 5質 量%塩水噴霧試験 500時間後の最大膨れ幅で評価した。化成処理及び電着処理 条件を以下に示す。  The corrosion resistance was evaluated by a method generally used as a performance evaluation method for automobile steel sheets. Specifically, after chemical conversion treatment, electrodeposition was applied, and then a single cut was applied, and the maximum swell width after 500 hours of 5 mass% salt spray test was evaluated. The chemical conversion treatment and electrodeposition treatment conditions are shown below.
[0121] 化成処理は、アルカリ脱脂、水洗い及び表面調整後に化成処理 (リン酸亜鉛処理) の順による。各順における条件等を次に説明する。  [0121] The chemical conversion treatment is carried out in the order of chemical conversion treatment (zinc phosphate treatment) after alkali degreasing, water washing and surface conditioning. The conditions in each order will be described next.
アルカリ脱脂:ファインクリーナー E2001 (日本パーカライジング社製) 200g/L 液 (50°C)に、 2分間浸漬  Alkaline degreasing: Fine cleaner E2001 (manufactured by Nihon Parkerizing Co., Ltd.) 200 g / L solution (50 ° C) for 2 minutes
水洗い: 30秒間  Washing with water: 30 seconds
表面調整:バーコレン Z (日本パーカライジング製) lgZL液 (常温)に 10秒間浸 漬  Surface adjustment: Barcolen Z (manufactured by Nihon Parkerizing) Immersion in lgZL solution (room temperature) for 10 seconds
化成処理: PB— L3080 (日本パーカライジング社製、液温 43°C)を 2分間スプレ  Chemical conversion: PB—L3080 (manufactured by Nihon Parkerizing, liquid temperature 43 ° C) sprayed for 2 minutes
[0122] 上記化成処理に引き続き GT— 10 (カチオン電着塗装: 20 )電着塗装を行った。 [0122] Following the chemical conversion treatment, GT-10 (cationic electrodeposition coating: 20) was electrodeposition coated.
評価基準は次の通りである。  The evaluation criteria are as follows.
評価基準:片側最大塗膜膨れ巾  Evaluation criteria: One side maximum paint film swelling width
リ: 3mm未満 (適)  Re: Less than 3mm (suitable)
X : 3mm以上(不適) [0123] (4)評価結果 X: 3mm or more (unsuitable) [0123] (4) Evaluation results
以上の条件及び評価項目に対する結果について説明する。表 6に結果を示す。  The results for the above conditions and evaluation items will be described. Table 6 shows the results.
[0124] [表 6] [0124] [Table 6]
Figure imgf000035_0001
Figure imgf000035_0001
表 6からわ力るように、備考に本発明例と示した前乾燥工程を有するものについて は、いずれも処理剤の操業性は良好である。一方、前乾燥を有しないもの (備考に比 較例と記載した)についてはいずれも処理剤の操業性が良くない。従って本発明の 効果が顕著に現れて 、ると 、うことができる。 As can be seen from Table 6, the operability of the treatment agent is good for those having the pre-drying step shown in the remarks as examples of the present invention. On the other hand, those without pre-drying (compared to remarks) In all cases, the operability of the treatment agent is not good. Therefore, if the effect of the present invention appears remarkably, it can be achieved.
[0126] また、前乾燥工程有りにおける各種性能は、概ね良好であるということができる。代 符 Zl 1及び代符 Z16につ 、ては、潤滑性が良くな 、理由として Pの付着量が少な!/ヽ ことが挙げられる。これは、本発明に含まれる前乾燥工程の有無が影響したものでは ない。  [0126] Further, it can be said that various performances with the pre-drying step are generally good. With regard to the syllable Zl 1 and the syllable Z16, the lubricity is good, and the reason is that the adhesion amount of P is small! / ヽ. This is not affected by the presence or absence of the pre-drying step included in the present invention.
[0127] (実施例 3)  [0127] (Example 3)
板厚 0. 8mmの極低炭素鋼板の両面に各種の亜鉛系めつきを施した鋼板に日本 パーカライジング株式会社製 FCL4480 (20gZL、 45°C)にて 30秒間スプレー脱脂 を行った後、水洗乾燥をして供試材とした。その後、表面調整剤供給工程 (S1)〜後 乾燥工程 (S4)を施し、リン酸亜鉛皮膜を有する亜鉛系めつき鋼板を製造した。そし て該リン酸亜鉛皮膜を有する亜鉛系めつき鋼板にっ ヽて各種評価を行った。以下に 、条件、評価項目及び評価結果等について説明する。また、比較として表面調整剤 供給工程 (S1)及び前乾燥工程 (S2)のみを行ったもの、並びに処理剤供給工程 (S 3)及び後乾燥工程 (S4)のみを行ったものをそれぞれ作製した。さら〖こ、従来の例と して亜鉛めつき上層に 80質量%Fe— 20質量%Znの組成の電気めつき層(付着量 片面につき 2gZm2)を成膜した試料も作製した。本実施例に用いた各種亜鉛系めつ き鋼板を表 7に示す。さらに、本実施例で使用した表面調整剤を表 8に、処理剤を表 9にそれぞれ示す。 Spray degrease for 30 seconds with FCL4480 (20gZL, 45 ° C) made by Nihon Parkerizing Co., Ltd. on a steel plate with various zinc-based plating on both sides of an ultra-low carbon steel plate with a thickness of 0.8mm, followed by washing and drying And used as a test material. Thereafter, a surface conditioning agent supply step (S1) to a post-drying step (S4) were performed to produce a zinc-based steel sheet having a zinc phosphate coating. Various evaluations were performed on the zinc-based plated steel sheet having the zinc phosphate coating. The conditions, evaluation items, evaluation results, etc. will be described below. In addition, as a comparison, the surface conditioning agent supply step (S1) and the pre-drying step (S2) only, and the treatment agent supply step (S 3) and the post-drying step (S4) only were produced, respectively. . Furthermore, as a conventional example, a sample in which an electroplating layer having a composition of 80 mass% Fe-20 mass% Zn ( 2 gZm 2 on one side) was formed on the zinc plating upper layer was also prepared. Table 7 shows the various zinc-based plated steel plates used in this example. Furthermore, Table 8 shows the surface conditioner used in this example, and Table 9 shows the treatment agent.
[0128] [表 7] めつさ付着至 めっき成分 (Z nを除 (片面当り) く、 質量%) 略称 亜鉛めつき製法 [0128] [Table 7] Messa adhesion to plating components (excluding Zn (per side), mass%) Abbreviation: Zinc plating method
(m m > F e A 1 Mg  (m m> F e A 1 Mg
G A 溶融亜鉛めつき G A
50 9. 5 0. 3 0 50 9. 5 0. 3 0
→加熱炉で合金化 → Alloying in a heating furnace
G I 溶融亜鉛めつき 70 0. 2 0. 4 0 G I Hot dip zinc 70 0. 2 0. 4 0
E G 電気亜鉛めつき 50 0 0 0E G Electro zinc plating 50 0 0 0
M Z 溶融亜鉛めつき 60 0 3. 4 3 [0129] [表 8] MZ hot dip zinc 60 0 3. 4 3 [0129] [Table 8]
Figure imgf000037_0001
Figure imgf000037_0001
濃度の値は、代符 1 Aについては TI濃度、他はリン酸亜鉛濃度を表す。  Concentration values represent the TI concentration for the alternative 1 A and the zinc phosphate concentration for the others.
[0130] [表 9]  [0130] [Table 9]
Figure imgf000037_0002
Figure imgf000037_0002
製造条件  Manufacturing conditions
製造条件について説明する。  Manufacturing conditions will be described.
表面調整剤供給工程  Surface conditioner supply process
表 に示した表面調整剤を亜鉛系めつき鋼板に供給した。供給方法は、スプレー( 表 中の 、スプレー後のスクイズロール絞り(表 中の 、スプレー後のエアナ ィフ(表 10中の AK)及びロールコート(表 10中の RC)の!、ずれ力とした。付着量は 蛍光 X線により得た。 The surface conditioner shown in the table was supplied to the zinc-based steel plate. Supply method is spray (in the table, squeeze roll squeeze after spray (in the table, air nozzle after spraying) The offset force of IFF (AK in Table 10) and roll coat (RC in Table 10) was taken as the displacement force. The amount of adhesion was obtained by fluorescent X-ray.
[0132] (1 2)前乾燥工程 (S2) [0132] (1 2) Pre-drying step (S2)
前乾燥工程 (S2)における乾燥は熱風ドライャを用いた。乾燥温度は鋼板温度を基 準に設定し、乾燥なし〜 150°Cの範囲で実施した。乾燥時間は、前乾燥工程を行う ものについては 10秒間で統一した。  A hot air dryer was used for drying in the pre-drying step (S2). The drying temperature was set based on the steel plate temperature, and was carried out in the range of no drying to 150 ° C. The drying time was standardized for 10 seconds for those that performed the pre-drying process.
[0133] (1 3)処理剤供給工程 (S3) [0133] (1 3) Treatment agent supply process (S3)
表 9に示した処理剤を亜鉛系めつき鋼板に供給した。供給方法はスプレー後のスク ィズロール絞り、又はロールコートのいずれ力とした。  The treatment agents shown in Table 9 were supplied to the zinc-based plated steel sheet. The supply method was either squeeze roll squeezing after spraying or roll coating.
[0134] (1 4)後乾燥工程 (S4) [0134] (1 4) Post-drying step (S4)
後乾燥工程 (S4)における乾燥は熱風オーブンを用いた。乾燥温度は鋼板温度を 基準に設定し、後乾燥をする場合には 80°Cで統一した。乾燥時間は、後乾燥を行う ものについては 10秒間で統一した。  A hot air oven was used for drying in the post-drying step (S4). The drying temperature was set based on the steel plate temperature, and was standardized at 80 ° C for post-drying. The drying time was standardized for 10 seconds for the post drying.
[0135] (2)評価項目及びその評価方法 [0135] (2) Evaluation items and evaluation methods
(2— 1)赤外吸収分光による PZSの算出  (2-1) PZS calculation by infrared absorption spectroscopy
得られた皮膜を有する亜鉛系めつき鋼板を 25 X 100mmに切断し、以下の方法で 測定した。測定には、 BiO— Rad社製の QS— 300を用いた。  The obtained zinc-based steel sheet having a coating was cut into 25 × 100 mm and measured by the following method. For measurement, QS-300 manufactured by BiO-Rad was used.
[0136] 測定は、被測定物である鋼板の表面の法線方向から 60° の方向から赤外光を入 射させて、対応する 60° の方向に反射される反射赤外光を検出することにより行う。 この時、入射する赤外光を KRS— 5偏光子によって表面に対して垂直方向(p偏光) と平行方向(s偏光)とに偏光させ、反射された赤外光を全て検出した。具体的には次 の手順で行った。 [0136] In the measurement, infrared light is incident from a direction of 60 ° from the normal direction of the surface of the steel plate to be measured, and reflected infrared light reflected in the corresponding 60 ° direction is detected. By doing. At this time, incident infrared light was polarized in a direction perpendicular to the surface (p-polarized light) and parallel (s-polarized light) by a KRS-5 polarizer, and all reflected infrared light was detected. Specifically, the following procedure was used.
[0137] はじめに Au蒸着膜を標準試料として p偏光、 s偏光それぞれの赤外反射率スぺタト ルを測定する。次に、 p偏光では Au蒸着膜の p偏光反射率に対する鋼板表面の p偏 光相対反射率スペクトル、 s偏光では Au蒸着膜の s偏光反射率に対する鋼板表面の 相対反射率スペクトルを測定する。そして、次式 (C)、 (D)  [0137] First, infrared reflectance spectra of p-polarized light and s-polarized light are measured using an Au evaporated film as a standard sample. Next, for p-polarized light, the p-polarized relative reflectance spectrum of the steel sheet surface with respect to the p-polarized reflectance of the Au deposited film is measured. For s-polarized light, the relative reflectance spectrum of the steel sheet surface with respect to the s-polarized reflectance of the Au deposited film is measured. And the following formula (C), (D)
P偏光吸光度 = -log (p偏光相対反射率) (C)  P-polarized absorbance = -log (p-polarized relative reflectance) (C)
s偏光吸光度 = -log (s偏光相対反射率) (D) を用いて、 P偏光、 s偏光それぞれの赤外吸収(吸光度)スペクトルを得る。図 2に得ら れた波長と吸光度との関係をグラフで表した一例を示す。図 2 (a)は p偏光に関する グラフ、図 2(b)が s偏光に関するグラフである。ここで Pa、 Saは、波長 8.4〜9. 2μ mにおける ρ偏光、 s偏光の吸光度、 Pb、 Sbは、波長 10. 2〜: LI. における p偏 光、 s偏光の吸光度をそれぞれ表している。 s-polarized absorbance = -log (s-polarized relative reflectance) (D) To obtain infrared absorption (absorbance) spectra of P-polarized light and s-polarized light. Figure 2 shows an example of a graph showing the relationship between the obtained wavelength and absorbance. Figure 2 (a) is a graph for p-polarized light, and Fig. 2 (b) is a graph for s-polarized light. Where Pa and Sa are ρ-polarized light and s-polarized light absorbance at wavelengths of 8.4 to 9.2 μm, and Pb and Sb are p-polarized light and s-polarized light absorbance at wavelengths 10.2 and LI. .
[0138] また、積分強度 P、 Sは、得られた p偏光、 s偏光の赤外吸収スペクトルについて、波 長 8 μ m〜 12 mの範囲における各波長の吸光度力も波長 12 mにおける吸光度 をそれぞれ差し引くことによってバックグランド補正を行い、該各波長の吸光度をカロ 算して算出した。具体的には次式 (E)、 (F)による。 [0138] In addition, the integrated intensities P and S indicate the absorbance power at each wavelength in the wavelength range of 8 μm to 12 m and the absorbance at the wavelength 12 m for the obtained p-polarized and s-polarized infrared absorption spectra. The background was corrected by subtraction, and the absorbance at each wavelength was calculated by calorie calculation. Specifically, the following formulas (E) and (F) are used.
Figure imgf000039_0001
Figure imgf000039_0001
S=(S8 m— S12 m)H h(S12 m— S12 m) (F)  S = (S8 m— S12 m) H h (S12 m— S12 m) (F)
そして得られた P及び Sより、 PZSを算出することができる。  From the obtained P and S, PZS can be calculated.
[0139] (2— 2)リン酸亜鉛皮膜の付着量および結晶性の評価  [0139] (2-2) Evaluation of adhesion and crystallinity of zinc phosphate coating
リン酸亜鉛皮膜の付着量は、得られた鋼板にっ ヽて蛍光 X線測定法で P付着量を 得ることにより得た。  The adhesion amount of the zinc phosphate film was obtained by obtaining the adhesion amount of P by the fluorescent X-ray measurement method on the obtained steel sheet.
リン酸亜鉛の結晶性については、理学電機製 RINT2500測定装置を用いて、以 下の方法により評価した。  The crystallinity of zinc phosphate was evaluated by the following method using a RINT2500 measuring device manufactured by Rigaku Corporation.
2 Θ (COKQ;) 5〜60° にて X線回折測定を行い、リン酸亜鉛 · 4水和物に起因する 回折線 2種 A、 Bを確認し、 A、 B共に回折線があるものを結晶質と判断した。ここで、 A、 Bはそれぞれ  2 Θ (COKQ;) X-ray diffraction measurement at 5-60 ° to confirm two diffraction lines A and B caused by zinc phosphate tetrahydrate. Both A and B have diffraction lines Was judged to be crystalline. Where A and B are
A リン酸亜鉛 ·4水和物の(020)面 20 =10. 8°  A (020) face of zinc phosphate tetrahydrate 20 = 10.8 °
Β リン酸亜鉛 ·4水和物の(311 + 241 + 151)面 20 =36. 7°  亜 鉛 Zinc phosphate tetrahydrate (311 + 241 + 151) face 20 = 36.7 °
である。  It is.
[0140] (2— 3)接着性 [0140] (2-3) Adhesiveness
(2-3-1)塩ビ系接着剤を用いた評価  (2-3-1) Evaluation using PVC adhesive
得られた鋼板を 25 X 200mmに切断し、防鲭油を片面当り 2gZm2塗布した後、セ メダインヘンケル製 PV5308の接着剤を、塗布面積 25X 150mm、塗布厚 0. 15m mで塗布し、その後焼き付けた。焼き付けは 170°Cで、 20分、 30分、 40分、 50分と して、焼き付け後に T剥離試験を行った。図 3に Τ剥離の試験方法の概要図を示す。 試験は、図 3に示したように、接着された鋼板 1、 1のうち、接着剤 2が塗布されていな いそれぞれの端部を掴み、該端部のそれぞれを接着面とは垂直で、互いに反対であ る矢印 Τ、 Τで示した方向に引っ張ることにより行われる。評価は、凝集破壊面積率が 90%以上となる焼き付け時間を基準とし、次のようなものとした。 After cutting the obtained steel plate to 25 X 200 mm and applying 2 gZm 2 of anti-rust oil per side, apply the adhesive of Cemedine Henkel PV5308 at an application area of 25 X 150 mm and an application thickness of 0.15 mm, Then baked. Baking is at 170 ° C, 20 minutes, 30 minutes, 40 minutes, 50 minutes Then, a T peel test was performed after baking. Figure 3 shows a schematic diagram of the test method for soot peeling. In the test, as shown in FIG. 3, among the bonded steel plates 1 and 1, each end portion to which the adhesive 2 is not applied is gripped, and each end portion is perpendicular to the bonding surface. This is done by pulling in the directions indicated by arrows Τ and Τ, which are opposite to each other. The evaluation was as follows based on the baking time at which the cohesive failure area ratio was 90% or more.
◎ : 20分以下  : 20 minutes or less
〇: 20分超え 30分以下  ○: More than 20 minutes and less than 30 minutes
△ : 30分超え 40分以下  △: Over 30 minutes and under 40 minutes
X :40分超え  X: Over 40 minutes
[0141] (2— 3— 2)マスチック系接着剤を用いた評価  [0141] (2-3-2) Evaluation using mastic adhesive
得られた鋼板を 25 X 100mmに切断し、防鲭油を片面当り 2gZm2塗布した後、ィ イダ産業製 OROTEX580の接着剤を、塗布面積を 25 X 25mm、塗布厚 0. 1mmで 塗布し、その後焼き付けた。焼き付けは 170°Cで、 20分、 30分、 40分として、焼き付 け後にせん断引張試験を行った。図 4にせん断引張試験の方法の概要を示した。試 験は、図 4に示したように、接着された鋼板 3、 3のうち、接着剤 4が塗布されていない それぞれの端部を掴み、該端部のそれぞれを接着面と平行で互いに反対である矢 印 S、 Sで示した方向に引っ張ることにより行われる。評価は、凝集破壊面積率が 90 %以上となる焼き付け時間を基準とし、次のようなものとした。 After cutting the obtained steel plate to 25 x 100 mm and applying 2 gZm 2 of anti-rust oil per side, apply Iida Sangyo OROTEX 580 adhesive with a coating area of 25 x 25 mm and a coating thickness of 0.1 mm. Then baked. Baking was performed at 170 ° C for 20 minutes, 30 minutes, and 40 minutes, and a shear tensile test was performed after baking. Figure 4 shows an overview of the shear tensile test method. As shown in Fig. 4, the test was performed by grasping each end of the bonded steel plates 3, 3 where the adhesive 4 was not applied, and making each end parallel to the bonding surface and opposite each other. This is done by pulling in the direction indicated by the arrows S and S. The evaluation was as follows based on the baking time at which the cohesive failure area ratio was 90% or more.
◎ : 20分以下  : 20 minutes or less
〇: 20分超え 30分以下  ○: More than 20 minutes and less than 30 minutes
△ : 30分超え 40分以下  △: Over 30 minutes and under 40 minutes
X :40分超え  X: Over 40 minutes
[0142] (2— 4)潤滑性  [0142] (2-4) Lubricity
得られた皮膜を有する亜鉛系めつき鋼板の潤滑性は、摩擦係数の測定により行つ た。具体的には、ピンオンディスク型摩擦試験機を用いて、鋼板にパー力興産製防 鲭油ノックスラスト 550Sを片面当り 2gZm2塗布した状態で摩擦係数測定を行った。 以下に試験条件と、評価基準を示す。 The lubricity of the obtained zinc-based steel sheet having the coating was measured by measuring the coefficient of friction. Specifically, using a pin-on-disk friction tester, the coefficient of friction was measured in a state where 2 gZm 2 per side of Pengchu Kosan fossil oil Nox Last 550S was applied to the steel sheet. The test conditions and evaluation criteria are shown below.
試験条件 荷重: 30kN Test conditions Load: 30kN
スライダ材質: SUJ2 (軸受け鋼)  Slider material: SUJ2 (bearing steel)
スライダ形状: φ 5πιπι  Slider shape: φ 5πιπι
試験温度: 60°C  Test temperature: 60 ° C
回転半径: 10mm  Turning radius: 10mm
摺動速度: lrpm  Sliding speed: lrpm
試験回転数: 20回転  Test rotation speed: 20 rotations
測定回数等: 1回転毎に 12個の測定値力も平均値を算出し、 20回のうちの最大 のもの  Number of measurements, etc .: The average value of twelve measured value forces per rotation is calculated and the maximum of the 20 times
評価基準  Evaluation criteria
◎:摩擦係数 0. 12以下 (潤滑処理として極めて良好 (Fe— Zn上層めつきと同等 ◎: Coefficient of friction 0.12 or less (Excellent as lubrication treatment (equivalent to Fe—Zn upper plating)
) ) ))
〇:摩擦係数 0. 12超え 0. 15以下 (潤滑処理として良好)  ○: Friction coefficient 0.12 to 0.15 or less (good lubrication)
X:摩擦係数 0. 15超え (潤滑処理として不適 (通常めつき鋼板と同等))  X: Coefficient of friction exceeding 0.15 (unsuitable for lubrication (usually equivalent to steel plate))
[0143] (2— 5)操業性 [0143] (2-5) Operability
(2- 5 - 1)処理剤中の亜鉛及びアルカリ金属の濃度変化  (2- 5-1) Concentration change of zinc and alkali metal in treatment agent
操業性の評価の 1つとして、処理剤の成分保持があり、これを処理剤中の亜鉛の濃 度測定及びアルカリ金属の濃度測定により行った。具体的には、処理剤供給工程に おける処理剤 10Lに対して亜鉛系めつき鋼板の切り板を合計 10m2施したときの処理 剤中の亜鉛及びアルカリ金属の濃度を測定し、処理前との濃度変化を比較した。評 価基準は次の通りである。 One of the operability evaluations was the retention of the components of the treatment agent, which was measured by measuring the concentration of zinc and the concentration of alkali metals in the treatment agent. Specifically, the concentration of zinc and alkali metal in the treatment agent when a total of 10 m 2 of cut steel sheet with zinc base was applied to 10 L of treatment agent in the treatment agent supply process was measured. The concentration change was compared. The evaluation criteria are as follows.
〇:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 2質量%以下 (濃 度調整不要)  ○: Concentration increase of alkali metals and zinc in the treatment agent is 2% by mass or less of the initial concentration (concentration adjustment is not required)
X:処理剤中のアルカリ金属及び亜鉛の濃度増が初期濃度の 2質量%超え (濃 度調整必要)  X: Concentration increase of alkali metals and zinc in the treatment agent exceeds 2% by mass of the initial concentration (concentration adjustment required)
[0144] (2— 5— 2)塗装性 [0144] (2— 5— 2) Paintability
表面調整剤供給工程、及び前乾燥工程にお!、て表面調整剤の状態が不安定であ つたり、乾燥不足などが生じると、後乾燥工程後の亜鉛系めつき鋼板の表面状態に 悪影響を与える If the condition of the surface conditioner is unstable or insufficiently dried during the surface conditioner supply process and pre-drying process, the surface condition of the zinc-based steel sheet after the post-drying process will be reduced. Adversely affect
場合がある。これをムラとして目視にて評価した。評価基準は次の通りである。  There is a case. This was visually evaluated as unevenness. The evaluation criteria are as follows.
〇:目視でムラ有り  ◯: Visually uneven
X:目視でムラ無し  X: Visually uniform
[0145] (3)結果 [0145] (3) Results
以上の条件、評価項目に基づき実施した結果を表 10〜12に示す。表 10は各実施 例、比較例及び参考例の条件を示した表である。表 10において、工程の別を S1ェ 程、 S2工程、 S3工程、 S4工程で表している。 S1工程は表面調整剤供給工程、 S2 工程は前乾燥工程、 S3工程は処理剤供給工程、 S4工程は後乾燥工程をそれぞれ 意味する。また、めっき種は表 7に示した略称で、表面調整剤の種類は表 8に示した 代符で、処理剤の種類は表 9に示した No.でそれぞれ示している。さらに表面調整 剤及び処理剤の供給方法は、スプレーを Sで、スプレー後のスクイズロール絞りを SR で、スプレー後のエアナイフを AKで、ロールコータを RCでそれぞれ表示している。 表 11、 12は表 10に示したそれぞれの条件の例に対する結果を示したものである。  The results of the implementation based on the above conditions and evaluation items are shown in Tables 10-12. Table 10 shows the conditions of each example, comparative example, and reference example. In Table 10, the different processes are represented by S1, S2, S3 and S4. Step S1 means a surface conditioning agent supply step, step S2 means a pre-drying step, step S3 means a treatment agent supply step, and step S4 means a post-drying step. In addition, the types of plating are abbreviations shown in Table 7, the types of surface conditioning agents are the symbols shown in Table 8, and the types of treatment agents are indicated by the numbers shown in Table 9. Furthermore, the supply method of the surface conditioner and treatment agent is indicated by S for spray, SR for squeeze roll aperture after spray, AK for air knife after spray, and RC for roll coater. Tables 11 and 12 show the results for each of the conditions shown in Table 10.
[0146] [表 10] [0146] [Table 10]
SI工程 S2工程 S3工程 S4工程 めっき SI process S2 process S3 process S4 process Plating
試番 表面調整 供給 鋼板温度 処理剤 供給 乾燥有 備考 種 Test number Surface adjustment Supply Steel plate temperature Treatment agent Supply Dry Yes Remarks
剤の種類 方法 量 (。c) 種類 方法  Agent Type Method Amount (.c) Type Method
1 GA 1A S 0.1 60 - 比較例 1 GA 1A S 0.1 60-Comparative example
2 GA - 2D RC 有 比較例2 GA-2D RC Yes Comparative example
3 GA - 2D SR 有 比較例3 GA-2D SR Yes Comparative example
4 GA 1A s 0.1 - 2D SR 有 比較例4 GA 1A s 0.1-2D SR Yes Comparative example
5 GA 1A RC 0.1 60 2D RC 有 実施例5 GA 1A RC 0.1 60 2D RC Yes Example
6 GA 1B RC 1 60 2D RC 有 実施例6 GA 1B RC 1 60 2D RC Yes Example
7 GA 1C RC 1 80 2D RC 有 実施例7 GA 1C RC 1 80 2D RC Yes Example
8 GA ID RC 1 60 2D C 有 実施例8 GA ID RC 1 60 2D C Yes Example
9 GA IE RC 1 60 2D RC 有 実施例9 GA IE RC 1 60 2D RC Yes Example
10 GA 1F RC 1 60 2D RC 有 実施例10 GA 1F RC 1 60 2D RC Yes Example
11 GA 1G RC 1 60 2D RC 有 実施例11 GA 1G RC 1 60 2D RC Yes Example
12 GA 1H RC 1 60 2D RC 有 参考例12 GA 1H RC 1 60 2D RC Yes Reference example
13 GA 1 J RC 1 60 2D RC 有 実施例13 GA 1 J RC 1 60 2D RC Yes Example
14 GA IK RC 1 60 2D RC 有 参考例14 GA IK RC 1 60 2D RC Yes Reference Example
15 GA 1し RC 0,05 60 2D RC 有 実施例15 GA 1 RC 0,05 60 2D RC Existence Example
16 GA 1M RC 0.3 60 2D RC 有 実施例16 GA 1M RC 0.3 60 2D RC Yes Example
17 GA 1P RC 2.4 60 2D RC 有 実施例17 GA 1P RC 2.4 60 2D RC Yes Example
18 GA 1Q RC 4.7 60 2D RC 有 実施例18 GA 1Q RC 4.7 60 2D RC Yes Example
19 GA 1R RC 19,3 60 2D RC 有 実施例19 GA 1R RC 19,3 60 2D RC Yes Example
20 GA 1C RC 1 60 2D C 有 実施例20 GA 1C RC 1 60 2D C Yes Example
21 GA 1C RC 1 60 2D RC 有 実施例21 GA 1C RC 1 60 2D RC Yes Example
22 GA 1C RC 1 60 2D RC 有 実施例22 GA 1C RC 1 60 2D RC Yes Example
23 GA 1C RC 1 60 2D RC 有 実施例23 GA 1C RC 1 60 2D RC Yes Example
24 GA 1C RC 1 60 2D RC 有 実施例24 GA 1C RC 1 60 2D RC Yes Example
25 GA 1C RC 1 60 2D RC 有 実施例25 GA 1C RC 1 60 2D RC Yes Example
26 GA 1C RC 1 60 2D C 有 実施例26 GA 1C RC 1 60 2D C Yes Example
27 GA 1C S 1 80 2D RC 有 実施例27 GA 1C S 1 80 2D RC Yes Example
28 GA 1C S 1 60 2D RC 有 実施例28 GA 1C S 1 60 2D RC Yes Example
29 GA 1C AK 1 60 2D RC 有 実施例29 GA 1C AK 1 60 2D RC Yes Example
30 GA 1C RC 1 60 2Α C 有 実施例30 GA 1C RC 1 60 2 Α C Yes Example
31 GA 1C F?C 1 60 2Β C 有 実施例31 GA 1C F? C 1 60 2Β C Yes Example
32 GA 1C RC 1 60 2C RC 有 実施 1列32 GA 1C RC 1 60 2C RC Yes Yes 1 row
33 GA 1C RC 1 80 2Ε RC 有 実施 1列33 GA 1C RC 1 80 2Ε RC Yes Yes 1 row
34 GA 1C RC 1 60 2F RC 有 実施列34 GA 1C RC 1 60 2F RC Yes Implementation column
35 GA 1C RC 1 60 2G RC 有 実施 1列35 GA 1C RC 1 60 2G RC Yes Implemented 1 row
36 GA 1C RC 1 80 2Η RC 有 実施 1列36 GA 1C RC 1 80 2Η RC Yes Implemented 1 row
37 GA 1C RC 1 60 2J RC 有 実施 1列37 GA 1C RC 1 60 2J RC Yes Implemented 1 row
38 GA 1C RC 1 30 2D RC 有 実施例38 GA 1C RC 1 30 2D RC Yes Example
39 GA 1C RC 1 50 2D RC 有 実施例39 GA 1C RC 1 50 2D RC Yes Example
40 GA 1C RC 1 110 2D RC 有 実施例40 GA 1C RC 1 110 2D RC Yes Example
41 GA 1C RC 1 150 2D RC 有 実施例41 GA 1C RC 1 150 2D RC Yes Example
42 GA 1C RC 1 80 2Κ RC 有 参考例42 GA 1C RC 1 80 2Κ RC Yes Reference example
43 GA 1C RC 1 60 2し RC 有 参考例43 GA 1C RC 1 60 2 and RC Yes Reference Example
44 GA 80質量%Fe— 20質量%Zn電気めつき層を片面当 y2K/m2 比較例44 GA 80% by mass Fe— 20% by mass Zn electroplating layer on one side y2 K / m 2 comparative example
45 GA GA鋼板のまま 比較例Comparative example of 45 GA GA steel plate
46 冷延鋼板のまま 比較例46 Comparative example of cold-rolled steel sheet
47 GI ID J RC 1 60 2D RC 有 実施例47 GI ID J RC 1 60 2D RC Existence Example
48 EG 1D RC 1 80 2D RC 有 参考例48 EG 1D RC 1 80 2D RC Yes Reference example
49 MZ 1D I RC 1 60 2D RC 有 実施例 赤外吸収 副資材適合性49 MZ 1D I RC 1 60 2D RC Existence Example Infrared absorption Compatibility with secondary materials
P付着 結 B曰 潤滑 P adhesion B 曰 Lubrication
試番 P/S Pa/Sa Pb/Sb 性 性 マス 備考 塩ビ Test number P / S Pa / Sa Pb / Sb Sex Mass Remarks PVC
積分強度 チック Integral intensity tic
1 ― ― ― 0 X X Δ X 比較例1 ― ― ― 0 X X Δ X Comparative example
2 0.3 0.5 0.5 80 X o X X 比較例2 0.3 0.5 0.5 80 X o X X Comparative example
3 0.2 0.3 0.3 80 X 〇 X X 比較例3 0.2 0.3 0.3 80 X ○ X X Comparative example
4 0.7 1 .3 1.2 80 o 〇 Δ Δ 比較例4 0.7 1.3 1.3 80 o ○ Δ Δ Comparative example
5 1.2 2.2 2.0 80 O 〇 〇 〇 実施例5 1.2 2.2 2.0 80 O ○ ○ ○ Example
6 2.1 3.8 3.2 80 〇 〇 〇 実施例6 2.1 3.8 3.2 80 ○ ○ ○ Example
7 2.1 4.9 4.1 80 O ◎ ◎ ◎ 実施例7 2.1 4.9 4.1 80 O ◎ ◎ ◎ Examples
8 3.0 5.4 4.5 80 O ◎ ◎ ◎ 実施例8 3.0 5.4 4.5 80 O ◎ ◎ ◎ Examples
9 1.7 3.0 2.5 80 O ◎ ◎ ◎ 実施例9 1.7 3.0 2.5 80 O ◎ ◎ ◎ Examples
10 1.3 2.4 2.0 80 O 〇 〇 〇 実施例10 1.3 2.4 2.0 80 O ○ ○ ○ Example
1 1 1.7 3.0 2.5 80 o 〇 〇 〇 実施例1 1 1.7 3.0 2.5 80 o ○ ○ ○ Example
12 0.1 0.2 0.2 80 o o X X 参考例12 0.1 0.2 0.2 80 o o X X Reference example
13 1.3 2.3 1.9 80 o o o 〇 実施例13 1.3 2.3 1.9 80 o o o 〇 Example
14 0.3 0.5 0.5 80 o o X X 参考例14 0.3 0.5 0.5 80 o o X X Reference example
15 1.2 1 .9 1.6 80 o o o Δ 実施例15 1.2 1.9 1.6 80 o o o Δ Example
16 2.0 3.6 3.0 80 〇 ◎ ◎ ◎ 実施例16 2.0 3.6 3.0 80 ○ ◎ ◎ ◎ Examples
1 7 3.1 5.6 4.7 80 〇 ◎ ◎ ◎ 実施例1 7 3.1 5.6 4.7 80 ○ ◎ ◎ ◎ Examples
18 2,6 4.6 3.9 100 〇 ◎ ◎ ◎ 実施例18 2,6 4.6 3.9 100 ○ ◎ ◎ ◎ Examples
1 9 1.4 2.5 2.1 120 〇 〇 〇 O 実施例1 9 1.4 2.5 2.1 120 ○ ○ ○ O Example
20 1.3 2.4 2.0 20 〇 Δ ◎ ◎ 実施例20 1.3 2.4 2.0 20 ○ Δ ◎ ◎ Examples
21 1 .3 2.4 2.0 40 〇 〇 ◎ ◎ 実施例21 1.3 2.4 2.0 40 〇 ◎ ◎ Examples
22 1 .9 3.5 2.9 50 〇 o ◎ ◎ 実施例22 1 .9 3.5 2.9 50 〇 o ◎ ◎ Examples
23 3.9 7.0 5.9 1 10 o ◎ ◎ ◎ 実施例23 3.9 7.0 5.9 1 10 o ◎ ◎ ◎ Examples
24 4.5 8.1 6.8 150 o ◎ ◎ o 実施例24 4.5 8.1 6.8 150 o ◎ ◎ o Example
25 5.1 9.2 7.7 200 〇 ◎ 〇 〇 実施例25 5.1 9.2 7.7 200 ○ ○ ○ ○ Example
26 3.7 6.7 5.6 250 〇 o 〇 〇 実施例26 3.7 6.7 5.6 250 ○ o ○ ○ Example
27 1.3 2.4 2.0 80 〇 ◎ ◎ 〇 実施例27 1.3 2.4 2.0 80 ○ ◎ ◎ 〇 Example
28 3.1 5.6 4.7 80 〇 ◎ ◎ 〇 実施例28 3.1 5.6 4.7 80 ○ ◎ ◎ 〇 Example
29 2.3 4.1 3.4 80 〇 ◎ ◎ 〇 実施例29 2.3 4.1 3.4 80 ○ ◎ ◎ ○ Example
30 1.5 2.7 2.3 60 〇 o o 〇 実施例30 1.5 2.7 2.3 60 ○ o o ○ Examples
31 1.7 3.0 2.5 60 〇 ◎ ◎ 〇 実施例31 1.7 3.0 2.5 60 ○ ◎ ◎ 〇 Example
32 1.9 3.5 2.9 60 〇 ◎ 〇 実施例32 1.9 3.5 2.9 60 ○ ◎ ○ Example
33 1.6 2.8 2.3 60 〇 ◎ ◎ 〇 実施例33 1.6 2.8 2.3 60 ○ ◎ ◎ 〇 Example
34 2.3 4.1 3.4 70 〇 ◎ ◎ ◎ 実施例34 2.3 4.1 3.4 70 ○ ◎ ◎ ◎ Examples
35 1.7 3.0 2.5 70 o ◎ 〇 実施例35 1.7 3.0 2.5 70 o ◎ ○ Examples
36 1.4 2.5 2.1 70 〇 ◎ 〇 実施例36 1.4 2.5 2.1 70 ○ ◎ ○ Example
37 1.3 2.3 2.0 70 0 o 〇 実施例37 1.3 2.3 2.0 70 0 o 〇 Example
38 2.7 4.9 4.1 80 〇 ◎ ◎ 〇 実施例38 2.7 4.9 4.1 80 ○ ◎ ◎ ○ Example
39 2.5 4.5 3.8 80 〇 ◎ ◎ ◎ 実施例39 2.5 4.5 3.8 80 ○ ◎ ◎ ◎ Examples
40 2.9 5.2 4.3 80 o ◎ ◎ ◎ 実施例40 2.9 5.2 4.3 80 o ◎ ◎ ◎ Examples
41 2.5 4.5 3.8 80 o ◎ ◎ ◎ 実施例41 2.5 4.5 3.8 80 o ◎ ◎ ◎ Examples
42 0.7 1 .3 1.1 80 o 厶 Δ X 参考例42 0.7 1 .3 1.1 80 o 厶 Δ X Reference example
43 0.8 1 .4 1.2 80 o △ △ X 参考例43 0.8 1.4 1.2 80 o △ △ X Reference example
44 ― ― ― ― ― ◎ ◎ ◎ 比較例44 ― ― ― ― ― ◎ ◎ ◎ Comparative example
45 ― ― 一 ― ― X ◎ © 比較例45 ― ― One ― ― X ◎ © Comparison example
46 ― ― ― ― ― 〇 ◎ ◎ 比較例46 ― ― ― ― ― ○ ◎ ◎ Comparative example
47 2.8 4.2 4.5 80 o ◎ ◎ ◎ 実施例47 2.8 4.2 4.5 80 o ◎ ◎ ◎ Examples
48 2.6 5.5 3.6 80 〇 ◎ ◎ 参考例48 2.6 5.5 3.6 80 ○ ◎ ◎ Reference example
49 2.4 4.8 4.2 80 o ◎ 実施例
Figure imgf000045_0001
49 2.4 4.8 4.2 80 o ◎ Example
Figure imgf000045_0001
[0149] 表 10及び表 11からわ力るように、備考の欄に実施例と記載された例においては、 いずれも PZSが 1. 2以上であり、このときの接着性は塩ビ及びマスチックともに良好 である。試番 15においてマスチックにおける適合性が である力 S2工程で乾燥を 行ったもののうち、 PZSが 1. 2より小さい他の比較例、参考例が X評価であることか ら良好であるといえる。また、従来からリン酸亜鉛皮膜より接着性が良いとされる試番 45〜47の比較例と比べても、本発明のリン酸亜鉛皮膜を有する亜鉛系めつき鋼板 は、該比較例と同等の接着性を示すものが多ぐ従来より安いコストで従来と同等の 接着性'潤滑性を得ることができるという本発明の効果が顕著に現れている。 [0149] As shown in Table 10 and Table 11, in the examples described as examples in the remarks column, PZS is 1.2 or more, and the adhesiveness at this time is both PVC and mastic. Good. In test No. 15, the strength of the mastic is good. Of those dried in the S2 process, the other comparative examples with a PZS smaller than 1.2 and the reference example are X evaluations, so it is good. In addition, the zinc-based steel sheet having the zinc phosphate coating according to the present invention is equivalent to the comparative example as compared with the comparative examples of trial numbers 45 to 47, which are conventionally considered to have better adhesion than the zinc phosphate coating. The effect of the present invention that the adhesiveness and lubricity equivalent to the conventional one can be obtained at a lower cost than the conventional ones is remarkable.
[0150] また、 PZSが 1. 2以上の実施例間における接着性を見ると、該 PZS、 Pa/Sa, P bZSbの値が大きい方が接着性が高い傾向にある。従って、 P— O結合において表 面に垂直である配向が強い方が接着性に優れると考えられるものである。  [0150] Further, looking at the adhesion between the examples having PZS of 1.2 or more, the larger the values of the PZS, Pa / Sa, and PbZSb, the higher the adhesion. Therefore, the stronger the orientation perpendicular to the surface in the P—O bond, the better the adhesion.
[0151] さらに試番 1〜4は、リン酸亜鉛皮膜を有する亜鉛系めつき鋼板を製造する工程で ある S1工程〜 S4工程のうちいずれかの工程が省略された場合の例の結果を示した ものである。これによるといずれかの工程を省略すると適切な値の PZSを得ることが できず、接着性も好ましくない。従って、上記 S1工程〜 S4工程の製造工程を備える ことにより再現性高ぐ接着性及び潤滑性に優れたリン酸亜鉛皮膜を有する亜鉛系 めっき鋼板を製造することができる。ここで、工程を省略していない試番 12は PZSが 0. 1しかない。これは表面調整剤の pHが 5以下のものであることから、より適切な PZ Sを得るためには、工程を省略しないことと表面調整剤の pH管理を行うことが好まし い。  [0151] Further, trial numbers 1 to 4 show the results of examples when any of the steps S1 to S4, which is a step of producing a zinc-based steel sheet having a zinc phosphate coating, is omitted. It is a thing. According to this, if one of the steps is omitted, an appropriate value of PZS cannot be obtained, and adhesion is not preferable. Therefore, a zinc-based plated steel sheet having a zinc phosphate coating excellent in reproducibility, adhesiveness and lubricity can be produced by providing the production steps S1 to S4. Here, the trial number 12 where the process is not omitted has only PZS of 0.1. This is because the pH of the surface conditioner is 5 or less, so in order to obtain a more appropriate PZ S, it is preferable not to omit the process and to control the pH of the surface conditioner.
[0152] 表 12は、操業性に関する結果を示す表である。これを見ると、各工程に適用される 表面調整剤、処理剤の種類、及び前、後の乾燥条件によって操業性が異なることが わかる。従って、適切な条件の製造工程を備えることにより、さらにコスト及び環境の 観点から優れたリン酸亜鉛皮膜を有する亜鉛系めつき鋼板を製造することができる。  [0152] Table 12 shows the results related to operability. From this, it can be seen that the operability differs depending on the surface conditioner, the type of treatment agent applied in each process, and the drying conditions before and after. Therefore, by providing a manufacturing process under appropriate conditions, a zinc-based steel sheet having a zinc phosphate coating that is further superior in terms of cost and environment can be manufactured.
[0153] 以上、現時点において、最も実践的であり、かつ、好ましいと思われる実施形態に 関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に 限定されるものではなぐ請求の範囲および明細書全体力 読み取れる発明の要旨 或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う、溶融亜鉛 系めつき鋼板の製造方法、及び鋼板も本発明の技術的範囲に包含されるものとして 理解されなければならな ヽ。 [0153] While the present invention has been described in connection with the most practical and preferred embodiments at present, the present invention is not limited to the embodiments disclosed herein. The scope of the claims and the overall specification of the invention, which can be appropriately changed without departing from the gist or philosophy of the invention which can be read, and the molten zinc accompanying such changes It should be understood that the production method of the steel plate and the steel plate are also included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] リン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板を連続的に製造する方法であって 溶融亜鉛めつきの表面に表面調整剤を供給する表面調整剤供給工程と、 前記表面調整剤供給工程の後工程で、前記表面調整剤を乾燥させる前乾燥工程と 前記前乾燥工程の後工程で、前記溶融亜鉛めつきの表面にリン酸亜鉛水溶液を含 む処理剤を供給する処理剤供給工程と、を含むリン酸亜鉛皮膜を有する溶融亜鉛 系めつき鋼板の製造方法。  [1] A method for continuously producing a molten zinc-based plated steel sheet having a zinc phosphate coating, a surface conditioner supplying step for supplying a surface conditioner to the surface of the molten zinc plated, and the surface conditioner supplying step A pre-drying step of drying the surface conditioning agent in a subsequent step, and a treatment agent supplying step of supplying a treatment agent containing a zinc phosphate aqueous solution to the surface of the molten zinc plating in a post-step of the pre-drying step; A method for producing a hot-dip zinc-based steel sheet having a zinc phosphate coating containing
[2] 前記表面調整剤供給工程の表面調整剤がリン酸亜鉛粒子を含有する水性液であ ることを特徴とする請求の範囲第 1項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系 めっき鋼板の製造方法。  [2] The hot dip galvanized plating having a zinc phosphate coating according to claim 1, wherein the surface conditioner in the surface conditioner supply step is an aqueous liquid containing zinc phosphate particles. A method of manufacturing a steel sheet.
[3] 前記表面調整剤供給工程の表面調整剤に含まれるリン酸亜鉛粒子の平均粒子径 が 10 μ m以下であることを特徴とする請求の範囲第 2項に記載のリン酸亜鉛皮膜を 有する溶融亜鉛系めつき鋼板の製造方法。 [3] The zinc phosphate coating according to claim 2, wherein the zinc phosphate particles contained in the surface conditioner in the surface conditioner supply step have an average particle size of 10 μm or less. A method for producing a hot-dip galvanized steel sheet.
[4] 前記表面調整剤供給工程の表面調整剤に含まれるリン酸亜鉛粒子の平均粒子径 力 SlO /z m以下であり、かつ、前記表面調整剤の PHが 5以上であることを特徴とする 請求の範囲第 2項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造 方法。 [4] or less average particle size force SLO / zm zinc phosphate particles contained in the surface conditioning agent of the surface conditioning agent supply process, and said the P H of the surface control agent is 5 or more A method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to claim 2.
[5] 前記表面調整剤供給工程の表面調整剤はリン酸亜鉛粒子を OmolZLより多ぐ 0 . 5molZL以下含有し、かつ、 Li、 Na、 K、 Be、 Mg及び Caからなる群から選ばれる 1種以上を合計で 0. 3molZL以下含有することを特徴とする請求の範囲第 1項〜第 4項のいずれか一項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製 造方法。  [5] The surface conditioner in the surface conditioner supply step contains zinc phosphate particles in an amount of 0.5 molZL or less than OmolZL, and is selected from the group consisting of Li, Na, K, Be, Mg and Ca 1 The method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 4, characterized in that it contains 0.3 molZL or less in total of at least seeds. .
[6] 前記処理剤供給工程の処理剤がリン酸根を 0. 001-0. 7mol/L含有し、かつ前 記リン酸根に対してモル比で 0. 7以下の亜鉛イオンを含有することを特徴とする請求 の範囲第 1項〜第 5項のいずれか一項に記載のリン酸亜鉛皮膜を有する溶融亜鉛 系めつき鋼板の製造方法。 [6] The treatment agent in the treatment agent supply step contains 0.001-0. 7 mol / L of phosphate radicals and contains zinc ions having a molar ratio of 0.7 or less with respect to the phosphate radicals. A method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 5.
[7] 前記処理剤供給工程の処理剤のリン酸亜鉛水溶液が亜鉛イオン及びリン酸根を含 有し、 pH4以下であり、かつ前記亜鉛イオン及びリン酸根以外にリン酸根に対してモ ル比で 0. 2以下の硝酸根、 0. 2以下の亜硝酸根、 0. 1以下の弗酸根及び 0. 05以 下の硫酸根の強電解質ァ-オンからなる群から選ばれる 1種類以上を含有すること を特徴とする請求の範囲第 1項〜第 6項のいずれか一項に記載のリン酸亜鉛皮膜を 有する溶融亜鉛系めつき鋼板の製造方法。 [7] The zinc phosphate aqueous solution of the treatment agent in the treatment agent supply step contains zinc ions and phosphate radicals, has a pH of 4 or less, and has a molar ratio to the phosphate radicals other than the zinc ions and phosphate radicals. Contains one or more selected from the group consisting of strong electrolytes of less than 0.2 nitrate groups, less than 0.2 nitrite groups, less than 0.1 hydrofluoric acid groups, and less than 0.05 sulfate groups A method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating according to any one of claims 1 to 6.
[8] 前記表面調整剤供給工程及び前記処理剤供給工程により溶融亜鉛系めつき表面 に付着した Pが P換算で 30〜500mgZm2に調整されることを特徴とする請求の範囲 第 1項〜第 7項のいずれか一項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき 鋼板の製造方法。 [8] The P attached to the surface of the molten zinc-based plating is adjusted to 30 to 500 mgZm 2 in terms of P by the surface conditioning agent supply step and the treatment agent supply step. A method for producing a hot-dip galvanized steel sheet having the zinc phosphate coating according to any one of claims 7 to 10.
[9] 前記表面調整剤供給工程の前記表面調整剤の pHが 5以上であり、かつ前記リン 酸亜鉛粒子の平均粒径が 0. 1〜3 μ mであることを特徴とする請求の範囲第 2項に 記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法。  [9] The pH of the surface conditioner in the surface conditioner supply step is 5 or more, and the average particle diameter of the zinc phosphate particles is 0.1 to 3 μm. A method for producing a hot dip galvanized steel sheet having the zinc phosphate coating according to Item 2.
[10] 前記表面調整剤供給工程から前乾燥工程を経た亜鉛系めつき鋼板表面に、前記リ ン酸亜鉛粒子が P換算で 0. 01〜5mgZm2付着して ヽることを特徴とする請求の範 囲第 2項又は第 9項に記載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造 方法。 [10] The zinc phosphate particles adhere to 0.01 to 5 mgZm 2 in terms of P on the surface of the zinc-based plated steel sheet that has undergone the pre-drying step from the surface conditioning agent supply step. A method for producing a hot dip galvanized steel sheet having a zinc phosphate coating according to claim 2 or 9.
[11] 前記処理剤供給工程の前記処理剤が亜鉛及びリン酸根を含有し、 pH力 以下で あり、かつ、前記亜鉛及びリン酸根以外にリン酸根 1に対してモル比で硝酸根が 0. 2 以下、亜硝酸根が 0. 2以下、弗酸根が 0. 1以下、硫酸根が 0. 05以下の強電解質 ァ-オン力 選択される少なくとも 1種以上を含有することを特徴とする請求の範囲第 2項、第 9項、又は第 10項のいずれか一項に記載のリン酸亜鉛皮膜を有する溶融亜 鉛系めつき鋼板の製造方法。  [11] The treatment agent in the treatment agent supply step contains zinc and phosphate radicals and has a pH value or lower, and other than the zinc and phosphate radicals, the nitrate radical is 0. 2 or less, a strong electrolyte with a nitrite group of 0.2 or less, a hydrofluoric acid group of 0.1 or less, and a sulfate group of 0.05 or less. A method for producing a molten zinc-based steel sheet having a zinc phosphate coating according to any one of items 2 to 9, or 10 of the range.
[12] 前記処理剤供給工程の後工程で、前記処理剤を乾燥させる後乾燥工程を有し、 前記後乾燥工程後に P換算で 30〜250mgZm2の前記リン酸亜鉛皮膜が付着さ れて 、ることを特徴とする請求の範囲第 2項、第 9項〜第 11項の 、ずれか一項に記 載のリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法。 [12] A post-drying step of drying the treatment agent in a post-step of the treatment agent supplying step, and 30 to 250 mgZm 2 of the zinc phosphate coating in terms of P is attached after the post-drying step, The method for producing a hot-dip galvanized steel sheet having a zinc phosphate coating as set forth in any one of claims 2 to 9 and 11.
[13] 前記表面調整剤供給工程の前記表面調整剤の供給方法、及び前記処理剤供給 工程の前記処理剤の供給方法のうちいずれか一方、又はいずれもがロールコート法 であることを特徴とする請求の範囲第 1項〜第 12項のいずれか一項に記載のリン酸 亜鉛皮膜を有する溶融亜鉛系めつき鋼板の製造方法。 [13] The method for supplying the surface conditioning agent in the surface conditioning agent supply step, and the processing agent supply The zinc phosphate coating according to any one of claims 1 to 12, wherein any one or all of the methods for supplying the treating agent in the step is a roll coating method. The manufacturing method of the hot dip galvanized steel plate which has this.
[14] 請求の範囲第 9項〜第 13項のいずれか一項に記載の製造方法により製造される 表面に結晶質のリン酸亜鉛皮膜が形成されたリン酸亜鉛皮膜を有する溶融亜鉛系 めっきま岡板であって、 [14] Hot-dip galvanized plating having a zinc phosphate coating on which a crystalline zinc phosphate coating is formed on the surface, which is manufactured by the manufacturing method according to any one of claims 9 to 13 Maoka plate,
前記リン酸亜鉛皮膜の表面の法線に対して 60°方向から該表面に入射された赤外 光の反射光力も得られる吸収スペクトルが波長 8〜 12 mの範囲で複数の吸収帯を 有するとともに、さらに該波長範囲における P偏光に対する s偏光の積分吸収強度比 が 1. 2以上であることを特徴とするリン酸亜鉛皮膜を有する溶融亜鉛系めつき鋼板。  The absorption spectrum for obtaining reflected light power of infrared light incident on the surface from the direction normal to the surface of the zinc phosphate coating from 60 ° has a plurality of absorption bands in the wavelength range of 8 to 12 m. Further, a hot-dip zinc-based steel sheet having a zinc phosphate coating, wherein the integrated absorption intensity ratio of s-polarized light to P-polarized light in the wavelength range is 1.2 or more.
[15] 請求の範囲第 9項〜第 13項のいずれか一項に記載の製造方法により製造される 表面に結晶質のリン酸亜鉛皮膜が形成されたリン酸亜鉛皮膜を有する溶融亜鉛系 めっきま岡板であって、 [15] Hot-dip galvanized plating having a zinc phosphate coating on which a crystalline zinc phosphate coating is formed on the surface, which is manufactured by the manufacturing method according to any one of claims 9 to 13 Maoka plate,
前記リン酸亜鉛皮膜の表面の法線に対して 60°方向から該表面に入射された赤外 光の反射光力も得られる吸収スペクトルが波長 8〜 12 mの範囲で複数の吸収帯を 有するとともに、該吸収スペクトルの波長 8. 4〜9. 2 mの範囲の p偏光の吸光度が s偏光の吸光度の 2倍以上であり、かつ、波長 10. 2〜: L I. の範囲の p偏光の 吸光度が s偏光の吸光度の 2倍以上であることを特徴とするリン酸亜鉛皮膜を有する 溶融亜鉛系めつき鋼板。  The absorption spectrum for obtaining reflected light power of infrared light incident on the surface from the direction normal to the surface of the zinc phosphate coating from 60 ° has a plurality of absorption bands in the wavelength range of 8 to 12 m. The absorbance of p-polarized light in the wavelength range of 8.4 to 9.2 m of the absorption spectrum is more than twice the absorbance of s-polarized light, and the wavelength of p-polarized light in the range of 10.2 to: L I. A molten zinc-based steel sheet having a zinc phosphate coating characterized in that the absorbance is at least twice that of s-polarized light.
PCT/JP2007/050650 2006-02-20 2007-01-18 Process for producing hot-dip galvanized steel sheet with zinc phosphate coat WO2007097139A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800052042A CN101384750B (en) 2006-02-20 2007-01-18 Process for producing hot-dip galvanized steel sheet with zinc phosphate coat
EP07713636.4A EP1988189B1 (en) 2006-02-20 2007-01-18 Process for producing hot-dip galvanized steel sheet with zinc phosphate coat

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-043105 2006-02-20
JP2006043099A JP4645470B2 (en) 2006-02-20 2006-02-20 Zinc-based plated steel sheet with excellent lubricity and adhesion and method for producing the same
JP2006-043099 2006-02-20
JP2006043105A JP4654346B2 (en) 2006-02-20 2006-02-20 Method for producing hot dip galvanized steel sheet having zinc phosphate coating

Publications (1)

Publication Number Publication Date
WO2007097139A1 true WO2007097139A1 (en) 2007-08-30

Family

ID=38437183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050650 WO2007097139A1 (en) 2006-02-20 2007-01-18 Process for producing hot-dip galvanized steel sheet with zinc phosphate coat

Country Status (4)

Country Link
EP (1) EP1988189B1 (en)
KR (1) KR101068708B1 (en)
TW (1) TWI348500B (en)
WO (1) WO2007097139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115485A1 (en) * 2008-03-20 2009-09-24 Henkel Ag & Co. Kgaa Optimized electrocoating of assembled and partly prephosphated components
US11518960B2 (en) 2016-08-24 2022-12-06 Ppg Industries Ohio, Inc. Alkaline molybdenum cation and phosphonate-containing cleaning composition
TWI812437B (en) * 2022-08-30 2023-08-11 中國鋼鐵股份有限公司 Method for rapidly evaluating surface discoloration of hot-dip galvanized steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014119472A1 (en) * 2014-12-22 2016-06-23 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Process for the preparation of anisotropic zinc phosphate particles and zinc metal mixed phosphate particles and their use
KR101523546B1 (en) 2015-02-16 2015-05-28 한영선재(주) Method for manufacturing non phosphate coated metal material for cold heading plastic working
CN110546303A (en) 2017-03-30 2019-12-06 塔塔钢铁艾默伊登有限责任公司 aqueous acidic composition for treating metal surfaces, treatment method using such a composition and use of the treated metal surfaces
PL3392375T3 (en) * 2017-04-21 2020-05-18 Henkel Ag & Co. Kgaa Sludge-free zinc phosphate coating forming method for metallic components in series
EP3392376A1 (en) * 2017-04-21 2018-10-24 Henkel AG & Co. KGaA Method for forming zinc phosphate coatings on metallic components in series
WO2019194229A1 (en) * 2018-04-03 2019-10-10 日本製鉄株式会社 Electrogalvanized steel sheet

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196084A (en) 1984-10-17 1986-05-14 Kawasaki Steel Corp Pretreatment of steel sheet before chemical conversion treatment
WO1995008007A1 (en) 1993-09-17 1995-03-23 Brent International Plc Pre-rinse for phosphating metal surfaces
JPH10245685A (en) * 1997-03-07 1998-09-14 Nippon Parkerizing Co Ltd Pretreating liquid for surface conditioning before phosphate film chemical conversion treatment of metal and surface conditioning method
JPH11315386A (en) 1998-05-07 1999-11-16 Nippon Steel Corp Surface treated steel sheet excellent in corrosion resistance and workability, and its production
JP2001049451A (en) * 1999-08-16 2001-02-20 Nippon Parkerizing Co Ltd Phosphate chemical conversion treating method for metallic material
JP2001064781A (en) * 1999-08-30 2001-03-13 Kansai Paint Co Ltd Surface treating method for galvanized steel sheet
JP3153097B2 (en) 1995-04-28 2001-04-03 新日本製鐵株式会社 Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability
JP2001098383A (en) 1999-09-27 2001-04-10 Sumitomo Metal Ind Ltd Method of producing inorganic coated galvanized steel sheet excllent in press formability
JP3199980B2 (en) 1995-04-28 2001-08-20 新日本製鐵株式会社 Galvanized steel sheet with excellent lubricity, chemical conversion properties and adhesive compatibility
JP2002053974A (en) 2000-06-02 2002-02-19 Sumitomo Metal Ind Ltd Galvanized steel sheet excellent in adhesive property, workability and weldability, and its production method
JP2003171779A (en) * 2001-12-10 2003-06-20 Nisshin Steel Co Ltd Coating original sheet, surface control method for coating original sheet, and method of producing coated steel sheet having excellent corrosion resistance in worked part
JP2004068149A (en) * 2002-06-13 2004-03-04 Nippon Paint Co Ltd Surface setting agent containing zinc phosphate, zinc phosphate treated steel plate, zinc phosphate coated steel plate, and zinc phosphate dispersant
JP2005054202A (en) 2003-08-05 2005-03-03 Sumitomo Metal Ind Ltd Method and apparatus for manufacturing pre-phosphated steel sheet
JP2005054203A (en) 2003-08-05 2005-03-03 Sumitomo Metal Ind Ltd Prephosphate steel plate, and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE353987T1 (en) * 2002-06-13 2007-03-15 Nippon Paint Co Ltd ZINC PHOSPHATE CONDITIONING AGENT FOR PHOSPHATE CONVERSION COATING OF STEEL PLATE AND CORRESPONDING PRODUCT

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196084A (en) 1984-10-17 1986-05-14 Kawasaki Steel Corp Pretreatment of steel sheet before chemical conversion treatment
WO1995008007A1 (en) 1993-09-17 1995-03-23 Brent International Plc Pre-rinse for phosphating metal surfaces
JP3153097B2 (en) 1995-04-28 2001-04-03 新日本製鐵株式会社 Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability
JP3199980B2 (en) 1995-04-28 2001-08-20 新日本製鐵株式会社 Galvanized steel sheet with excellent lubricity, chemical conversion properties and adhesive compatibility
JPH10245685A (en) * 1997-03-07 1998-09-14 Nippon Parkerizing Co Ltd Pretreating liquid for surface conditioning before phosphate film chemical conversion treatment of metal and surface conditioning method
JPH11315386A (en) 1998-05-07 1999-11-16 Nippon Steel Corp Surface treated steel sheet excellent in corrosion resistance and workability, and its production
JP2001049451A (en) * 1999-08-16 2001-02-20 Nippon Parkerizing Co Ltd Phosphate chemical conversion treating method for metallic material
JP2001064781A (en) * 1999-08-30 2001-03-13 Kansai Paint Co Ltd Surface treating method for galvanized steel sheet
JP2001098383A (en) 1999-09-27 2001-04-10 Sumitomo Metal Ind Ltd Method of producing inorganic coated galvanized steel sheet excllent in press formability
JP2002053974A (en) 2000-06-02 2002-02-19 Sumitomo Metal Ind Ltd Galvanized steel sheet excellent in adhesive property, workability and weldability, and its production method
JP2003171779A (en) * 2001-12-10 2003-06-20 Nisshin Steel Co Ltd Coating original sheet, surface control method for coating original sheet, and method of producing coated steel sheet having excellent corrosion resistance in worked part
JP2004068149A (en) * 2002-06-13 2004-03-04 Nippon Paint Co Ltd Surface setting agent containing zinc phosphate, zinc phosphate treated steel plate, zinc phosphate coated steel plate, and zinc phosphate dispersant
JP2005054202A (en) 2003-08-05 2005-03-03 Sumitomo Metal Ind Ltd Method and apparatus for manufacturing pre-phosphated steel sheet
JP2005054203A (en) 2003-08-05 2005-03-03 Sumitomo Metal Ind Ltd Prephosphate steel plate, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009115485A1 (en) * 2008-03-20 2009-09-24 Henkel Ag & Co. Kgaa Optimized electrocoating of assembled and partly prephosphated components
US8329013B2 (en) 2008-03-20 2012-12-11 Henkel Ag & Co. Kgaa Optimized electrocoating of assembled and partly prephosphated components
US11518960B2 (en) 2016-08-24 2022-12-06 Ppg Industries Ohio, Inc. Alkaline molybdenum cation and phosphonate-containing cleaning composition
TWI812437B (en) * 2022-08-30 2023-08-11 中國鋼鐵股份有限公司 Method for rapidly evaluating surface discoloration of hot-dip galvanized steel

Also Published As

Publication number Publication date
KR20080094039A (en) 2008-10-22
TW200732510A (en) 2007-09-01
EP1988189B1 (en) 2014-03-12
KR101068708B1 (en) 2011-09-28
EP1988189A4 (en) 2012-01-25
TWI348500B (en) 2011-09-11
EP1988189A1 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
WO2007097139A1 (en) Process for producing hot-dip galvanized steel sheet with zinc phosphate coat
RU2417276C2 (en) Water solution for treatment of steel sheet coated on base of tin with excellent resistance to corrosion and to adhesion with paint and procedure for production of steel sheet with treated surface
JP4645470B2 (en) Zinc-based plated steel sheet with excellent lubricity and adhesion and method for producing the same
US5904786A (en) Method of applying phosphate coatings to metal surfaces
JP2009179848A (en) Steel sheet for container and method of manufacturing the same
CN102753730A (en) Hot-dip zinc-coated steel sheet
JP4579714B2 (en) Chemically treated steel sheet with excellent film adhesion after forming
KR20100113174A (en) Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
JP3372954B2 (en) Method of phosphate treatment of steel strip or steel sheet with one side galvanized or zinc alloy-plated
WO2015083326A1 (en) Hot-dip zn-alloy-plated steel sheet and method for producing same
WO2002046494A1 (en) Zinc-based metal plated steel sheet and method for production thereof
KR100234452B1 (en) Zinciferous plated steel sheet and method for manufacturing same
JPH0452284A (en) High corrosion-resistant two-layer plated steel sheet and its production
JP4654346B2 (en) Method for producing hot dip galvanized steel sheet having zinc phosphate coating
JP4795646B2 (en) Galvanized steel sheet with excellent corrosion resistance, paintability and adhesion
SK112598A3 (en) Zinc phosphatizing with low quantity of copper and manganese
JP3153098B2 (en) Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability
JPH05263264A (en) Production of galvanized steel plate excellent in blackening resistance
JP3936656B2 (en) Method for producing non-chromium treated zinc-coated steel sheet
JP3425270B2 (en) Method for producing galvanized steel sheet with excellent pressability, chemical conversion property, and degreasing solution contamination resistance
JP3153097B2 (en) Galvanized steel sheet with excellent lubricity, chemical conversion properties, adhesive compatibility, and weldability
JP2713002B2 (en) Manufacturing method of galvanized steel sheet
JP3449283B2 (en) Galvanized steel sheet excellent in press formability and its manufacturing method
JPH01263280A (en) Phosphating solution for steel and zinc or zinc alloy plated steel plate
JPH08296057A (en) Galvanized steel sheet excellent in pressability, chemical convertibility and degreasing liquid contamination resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007713636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4199/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087019659

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780005204.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE