JPH0674507B2 - Management method of surface conditioning liquid for phosphate coating chemical conversion treatment - Google Patents

Management method of surface conditioning liquid for phosphate coating chemical conversion treatment

Info

Publication number
JPH0674507B2
JPH0674507B2 JP21984186A JP21984186A JPH0674507B2 JP H0674507 B2 JPH0674507 B2 JP H0674507B2 JP 21984186 A JP21984186 A JP 21984186A JP 21984186 A JP21984186 A JP 21984186A JP H0674507 B2 JPH0674507 B2 JP H0674507B2
Authority
JP
Japan
Prior art keywords
surface conditioning
average particle
chemical conversion
particle size
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21984186A
Other languages
Japanese (ja)
Other versions
JPS6376883A (en
Inventor
敦紀 吉田
貴延 斉藤
憲 宮脇
Original Assignee
日本パ−カライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パ−カライジング株式会社 filed Critical 日本パ−カライジング株式会社
Priority to JP21984186A priority Critical patent/JPH0674507B2/en
Publication of JPS6376883A publication Critical patent/JPS6376883A/en
Publication of JPH0674507B2 publication Critical patent/JPH0674507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • C23C22/80Pretreatment of the material to be coated with solutions containing titanium or zirconium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄鋼、亜鉛等の金属表面のリン酸塩被膜化成
処理(以下、「リン酸塩化成処理」という)に際し、そ
の前処理に使用され、かつ、チタンコロイドを主成分と
して含む表面調整液の管理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a phosphate film chemical conversion treatment (hereinafter referred to as “phosphate chemical conversion treatment”) on a metal surface of steel, zinc, etc. The present invention relates to a method for controlling a surface conditioning liquid that is used and contains titanium colloid as a main component.

〔従来の技術〕[Conventional technology]

鉄鋼、亜鉛等の金属表面のリン酸塩化成処理において、
鉄鋼を水洗し、チタンコロイドを主成分として含む表面
調整液により表面調整して、その御に微細結晶のリン酸
塩処理被膜を形成する方法が、一般に行われている。
In phosphate chemical conversion treatment of metal surfaces such as steel and zinc,
A method in which steel is washed with water and the surface is adjusted with a surface adjusting solution containing titanium colloid as a main component to form a phosphate-treated film of fine crystals is generally used.

例えば、特公昭39−7125号公報に開示された表面調整液
は、酸化チタンに過剰の硫酸を加えて溶解し、これをpH
1以下でリン酸、重合リン酸、リン酸アルカリ、または
重合リン酸アルカリの1種以上を加えてスラリーを調整
し、次にこれをpH6.5〜8.5において熟成、乾燥して製造
されている。
For example, the surface conditioning solution disclosed in JP-B-39-7125 is dissolved by adding an excess of sulfuric acid to titanium oxide,
It is manufactured by adding one or more kinds of phosphoric acid, polymerized phosphoric acid, alkali phosphate, or polymerized alkali phosphate at 1 or less to prepare a slurry, and then aging and drying the slurry at pH 6.5 to 8.5. .

また、特公昭58-55229号公報に開示された表面調整液
は、チタンイオン、リン酸根イオン、ピロリン酸根イオ
ン、および炭酸根イオンを必須成分として含有し、pH8.
5〜9.5に調整されたものである。この表面調整液は、従
来の表面調整液では使用経時とともにpHの低下をきたし
易く、安定した表面調整を実施し難いという欠点を解消
するために、炭酸根イオンを表面調整液の一成分として
用いることを特徴とするものである。
Further, the surface conditioning solution disclosed in Japanese Examined Patent Publication No. 58-55229 contains titanium ions, phosphate root ions, pyrophosphate root ions, and carbonate root ions as essential components, pH 8.
It is adjusted to 5 to 9.5. This surface conditioning solution uses a carbonate ion as one component of the surface conditioning solution in order to eliminate the drawback that it is difficult to carry out stable surface conditioning with a conventional surface conditioning solution, which tends to cause a decrease in pH over time. It is characterized by that.

この種の表面調整液の経時性能劣化を防止するために、
例えば特公昭58-55229号公報に開示されたように、表面
調整液の成分を改質する提案はあらものの、成分改質だ
けでは経時性能劣化を実際に完全に防止することはでき
ず、表面調整液を常に更新しなければならない。その方
法としては、容器からの連続的部分廃棄更新が通常行わ
れている。
In order to prevent deterioration of performance of this type of surface conditioning liquid over time,
For example, as disclosed in Japanese Examined Patent Publication No. 58-55229, there is a proposal to modify the components of the surface conditioning liquid, but the component modification alone cannot actually completely prevent the deterioration of performance over time. Conditioning solution must be constantly updated. As the method, continuous partial waste renewal from the container is usually performed.

従来、この種の表面調整液の管理方法としては、当該表
面調整液のpHの測定、およびチタンイオン含有量にほぼ
比例する全アルカリ度の測定が適時行われている。これ
らの測定結果に基づいて、pH調整剤およびチタン化合物
を主成分として含有する新しい表面調整剤を添加すると
同時に、オートドレーンにより表面調整液の連続的部分
廃棄更新が行われ、廃棄更新量に相当する水が補給され
ていた。
Heretofore, as a method for controlling this type of surface conditioning solution, the measurement of pH of the surface conditioning solution and the measurement of total alkalinity which is almost proportional to the titanium ion content have been performed in a timely manner. Based on these measurement results, a new surface conditioner containing a pH adjuster and a titanium compound as the main component was added, and at the same time, the auto-drain was used to continuously and partially update the surface adjuster solution, which is equivalent to the amount of waste update. It was replenished with water.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

表面調整液のpHおよび全アルカリ度の測定値に基づいて
連続的部分廃棄更新量を調整するリン酸塩化成処理用表
面調整液の従来の管理方法には、表面調整液の性能を安
定して維持するという点で正確さに欠ける欠点があっ
た。即ち最終的に形成されるリン酸塩被膜量を所定被膜
重量範囲内のばらつきが小さいものとするには、上記測
定値を参照しても、結局連続的部分廃棄更新量の決定を
熟練者の経験に頼らざるを得ないとう問題があった。
The conventional method of managing the surface conditioning solution for phosphate chemical conversion treatment, which adjusts the amount of continuous partial waste renewal based on the measured values of pH and total alkalinity of the surface conditioning solution, is to stabilize the performance of the surface conditioning solution There was a flaw in lack of accuracy in terms of maintenance. That is, in order to make the amount of the finally formed phosphate coating within the predetermined coating weight range small, even if the above-mentioned measured value is referred to, the determination of the continuous partial waste renewal amount will be made by an expert. There was a problem that I had to rely on my experience.

被膜重量のばらつきを小さくするリン酸塩化成処理液の
組成研究も進んでおり、かなり改善されてきていること
は確かである。しかしながら、このような特定組成のリ
ン酸塩化成処理液を使用するということは、それだけリ
ン酸塩化成処理液の選択の幅が狭まるという欠点を招い
ていた。
The composition research of the phosphate chemical conversion treatment solution, which reduces the variation in coating weight, has been advanced, and it is certain that it has been improved considerably. However, the use of the phosphate chemical conversion treatment liquid having such a specific composition has a drawback that the range of selection of the phosphate chemical conversion treatment liquid is narrowed accordingly.

上記の何れの表面調整液を用いるにせよ、その連続的部
分廃棄更新量の調整は、pHおよび全アルカリ度の測定値
のみに依存することはできず、さらに熟練者の経験に全
面的に頼らざるを得なかった。
Regardless of which of the above-mentioned surface preparation solutions is used, the adjustment of the continuous partial waste renewal amount cannot depend only on the measured values of pH and total alkalinity, and further depends entirely on the experience of a skilled person. I had no choice.

本発明は、熟練者の経験に頼ることなく、リン酸塩被膜
化成処理用表面調整液を、適確にコントロールし得る管
理方法を提供しようとするものである。
The present invention is intended to provide a management method capable of appropriately controlling a surface conditioning solution for a phosphate coating chemical conversion treatment without depending on the experience of a skilled person.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明はこれらの欠点を解決するために、当該表面調整
液中のチタン化合物からチタンコロイドが生成している
点に着目し、チタンコロイドの平均粒径と表面調整性能
との相関性を調査し、これを表面調整液の管理方法に応
用することを目的として種々検討を行った。その結果、
本発明者らは、リン酸塩化成処理の前処理に使用され、
チタン化合物を主成分として含有する表面調整液の性能
管理において、表面調整液中のチタンコロイドの平均粒
径を測定し、この測定値に基づいて、その平均粒径を60
0nm以下に保存するように表面調整液の廃棄更新量をコ
ントロールすることによって、十分かつ安定した調整機
能が発揮されることを見出し本発明を完成した。
In order to solve these drawbacks, the present invention focuses on the fact that titanium colloid is produced from the titanium compound in the surface conditioning liquid, and investigates the correlation between the average particle size of titanium colloid and the surface conditioning performance. , And various studies were carried out for the purpose of applying this to the control method of the surface conditioning liquid. as a result,
The present inventors have used for pretreatment of phosphate chemical conversion treatment,
In the performance control of the surface conditioning solution containing a titanium compound as the main component, the average particle size of the titanium colloid in the surface conditioning solution was measured, and based on this measurement value, the average particle size was adjusted to 60
The present invention has been completed by finding that a sufficient and stable adjusting function can be exerted by controlling the amount of the surface conditioning solution to be discarded and updated so that the surface conditioning solution is stored at 0 nm or less.

本発明のリン酸塩被膜化成処理用表面調整液の管理方法
は、金属材料に対するリン酸塩被膜化成処理の前処理と
して、リン酸化合物およびチタン化合物を含有する表面
調整液により前記金属材料に施される表面調整処理にお
いて、 前記表面調整液の一部を、実質的に連続的に廃棄し、か
つ更新して前記表面調整液の表面調整性能を制御するに
際し、 前記表面調整液中に生成しているチタンコロイドの平均
粒径を測定し、この測定値に対応して、前記表面調整液
の廃棄更新量を調節し、それによって前記チタンコロイ
ドの平均粒径を600nm以下に制御することを特徴とする
ものである。
The management method of the surface conditioning solution for phosphate film chemical conversion treatment of the present invention is a pretreatment for the phosphate film chemical conversion treatment of a metal material, which is performed on the metal material with a surface conditioning solution containing a phosphoric acid compound and a titanium compound. In the surface conditioning treatment performed, a part of the surface conditioning solution is substantially continuously discarded, and when it is renewed to control the surface conditioning performance of the surface conditioning solution, it is generated in the surface conditioning solution. The average particle size of the titanium colloid is measured, and the amount of renewal of waste of the surface conditioning solution is adjusted according to the measured value, thereby controlling the average particle size of the titanium colloid to 600 nm or less. It is what

また、上記本発明方法において、前記表面調整液中のチ
タンコロイドの平均粒径を200〜600nmの範囲内に制御す
ることが好ましい。
In the above method of the present invention, it is preferable to control the average particle size of the titanium colloid in the surface conditioning liquid within the range of 200 to 600 nm.

〔作 用〕[Work]

以下、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.

本発明では、従来法と同様に建浴時にチタン化合物含有
量およびpHを所定値に管理する。
In the present invention, as in the conventional method, the titanium compound content and pH are controlled to predetermined values during the construction bath.

本発明方法において、表面調整工程間に表面調整液中に
生成するチタンコロイドの平均粒径を測定して、その平
均粒径値に基づいて表面調整液の廃棄更新量を調節し、
それによってチタンコロイドの平面粒径を600nm以下、
好ましくは200〜600nmの範囲内に制御管理する。詳しく
は後述するように、表面調整液の一部分をその収容容器
から実質的に連続的に廃棄更新するに際し、チタンコロ
イドの平均粒径を測定し、その測定値が前記範囲内にな
るように、表面調整液の廃棄更新量を制御管理し、それ
によって適正な表面調整液の性能維持を行う。
In the method of the present invention, the average particle size of the titanium colloid generated in the surface conditioning solution during the surface conditioning step is measured, and the amount of renewed waste of the surface conditioning solution is adjusted based on the average particle size value.
As a result, the plane particle size of titanium colloid is 600 nm or less,
It is preferably controlled and controlled within the range of 200 to 600 nm. As will be described later in detail, when a part of the surface conditioning liquid is substantially continuously discarded and renewed from the storage container, the average particle diameter of the titanium colloid is measured so that the measured value falls within the above range. Control and manage the amount of renewal of the surface conditioning solution that is discarded and maintain the proper performance of the surface conditioning solution.

なお、表面調整液のpHは、所定化成処理前の表面調整剤
の組成決定により所定範囲内となりかつ使用経時による
変化が少ないところから、pHの測定頻度は、チタン化合
物コロイドの平均粒径測定頻度より少なくてもよい。ま
た、チタン含有量は液中チタンの定量分析により測定し
てもよいが、それが全アルカリ度にほぼ比例しているた
め、チタン含有量の測定の代わりに全アルカリ度の測定
を用いてもよい。チタン含有量の測定頻度はpH測定頻度
よりさらにはるかに少なくともよい。
Incidentally, the pH of the surface conditioning solution is within a predetermined range due to the composition determination of the surface conditioning agent before the prescribed chemical conversion treatment, and since there is little change over time, the pH measurement frequency is the average particle size measurement frequency of the titanium compound colloid. May be less. The titanium content may be measured by quantitative analysis of titanium in liquid, but since it is almost proportional to the total alkalinity, the measurement of total alkalinity may be used instead of the measurement of titanium content. Good. The frequency of measuring titanium content is at least much better than the frequency of measuring pH.

チタンコロイドの平均粒径測定は、サブミクロン粒子ア
ナライザーを用いて行うことができる。
The average particle size of titanium colloid can be measured by using a submicron particle analyzer.

〔実施例〕〔Example〕

下記の実験例では、チタンコロイドの平均粒径を600nm
以下、好ましくは200〜600nmに制御するように表面調整
液の一部廃棄更新を連続的に行った。
In the following experimental example, the average particle size of titanium colloid is 600 nm.
After that, the partial conditioning of the surface conditioning solution was renewed continuously so as to preferably control to 200 to 600 nm.

第1図〜第4図は、次の供試材、処理法および測定法に
より得られた実験データを示す。
1 to 4 show experimental data obtained by the following test materials, treatment methods and measurement methods.

1.供試鋼板 SPCC JIS-G-3141 2.各処理液の準備 (1)アルカリ脱脂液 ファイクリーナー4326TA(日本パーカライジング(株)
製)を使用1.8kg/100 全アルカリ度 15±1ポイント (10mlサンプル、ブロムフェノールブルー指示薬、滴定
液0.1規定H2SO4での滴定値) (2)表面調整液A 表面調整剤A:硫酸チタニル、リン酸ソーダ、ピロリン酸
ソーダおよび水を混合しながら加熱し、アルカリでpH調
整して得た表面調整剤 濃度:100g/100(溶媒は電導度196μs/cmの東京都水道
水を使用) 全アルカリ度:6.2±0.5ポイント (100mlサンプル、ブロムフェノールブルー指示薬滴定
液0.1規定H2SO4での滴定値) pH:8.2±0.2 (3)リン酸塩化成処理液 パルボンド3030(日本パーカライジング(株)製−主成
分:第1リン酸塩、酸化剤(塩素酸根、硫酸根、亜硫酸
根)) 濃度:5kg/100 全酸度:18±1ポイント (10mlサンプル、フェノールフタレイン指示薬、滴定薬
0.1規定NaOHでの滴定値) 遊離酸度:0.9±0.1ポイト (100mlサンプル、ブロムフェノールブルー指示薬滴定
液0.1規定NaOHでの滴定値) 促進剤濃度:1.2±0.1ポイント (サッカロメーター法による) 3.処理方法 (1)アルカリ脱脂:50±2℃、180秒浸漬 (2)水洗:水道水、室温、20秒スプレー (3)表面調整:室温、30秒浸漬 (4)リン酸塩化成処理:53±2℃、120秒浸漬 (5)水洗:水道水、室温、20秒スプレー (6)脱イオン水洗:脱イオン水 (電導度0.2μs/cm)、20秒スプレー (7)水切乾燥:110℃、180秒 4.被膜重量測定法 リン酸塩化成処理された試験片を、75℃の5%無水クロ
ム酸水溶液に15分間浸漬し、化成被膜を剥離した。剥離
前後の重量差より化成被膜の重量を算出した。単位g/m2 5.コロイド平均粒径測定法 サブミクロン粒子アナライザーとして、米国コールター
社製コールターN4型を使用。
1. Specimen steel plate SPCC JIS-G-3141 2. Preparation of each treatment liquid (1) Alkaline degreasing liquid Phicleaner 4326TA (Nihon Parkerizing Co., Ltd.)
1.8kg / 100 Total alkalinity 15 ± 1 point (10ml sample, bromphenol blue indicator, titration value with titration solution 0.1N H 2 SO 4 ) (2) Surface preparation solution A Surface preparation agent A: Sulfuric acid Surface conditioning agent obtained by heating while mixing titanyl, sodium phosphate, sodium pyrophosphate and water and adjusting the pH with an alkali Concentration: 100g / 100 (solvent uses tap water of Tokyo with conductivity 196μs / cm) Total alkalinity: 6.2 ± 0.5 points (100 ml sample, titration value of bromphenol blue indicator titration solution 0.1 normal H 2 SO 4 ) pH: 8.2 ± 0.2 (3) Phosphate chemical treatment liquid Palbond 3030 (Nippon Parkerizing ) -Main component: primary phosphate, oxidizer (chlorate, sulfate, sulfite)) Concentration: 5kg / 100 Total acidity: 18 ± 1 point (10ml sample, phenolphthalein indicator, titrant)
Free acidity: 0.9 ± 0.1 point (100 ml sample, bromphenol blue indicator titration solution 0.1 N NaOH titration value) Accelerator concentration: 1.2 ± 0.1 points (according to saccharometer method) 3. Treatment method (1) Alkaline degreasing: 50 ± 2 ℃, 180 seconds immersion (2) Rinse: tap water, room temperature, 20 seconds spray (3) Surface preparation: room temperature, 30 seconds immersion (4) Phosphate conversion treatment: 53 ± 2 ℃, 120 seconds immersion (5) Rinse: tap water, room temperature, 20 seconds spray (6) Deionized water: Deionized water (conductivity 0.2μs / cm), 20 seconds spray (7) Drain dry: 110 ℃ 180 seconds 4. Coating weight measurement method The phosphate chemical conversion treated test piece was immersed in a 5% chromic anhydride aqueous solution at 75 ° C for 15 minutes to peel off the chemical conversion coating. The weight of the chemical conversion coating was calculated from the weight difference before and after peeling. Unit: g / m 2 5. Colloid average particle size measuring method Coulter N4 type manufactured by US Coulter Co. is used as a submicron particle analyzer.

測定条件:20℃、散乱角90゜、サンプルタイム、プレス
ケール、ランタイムは自動モード 測定単位:nm 上記の供試材、表面処理法、および測定法により得られ
た実験結果が第1図〜第4図に示されている。
Measurement conditions: 20 ° C, scattering angle 90 °, sample time, prescale, run time in automatic mode Measurement unit: nm The experimental results obtained by the above test materials, surface treatment methods, and measurement methods are shown in Figs. It is shown in FIG.

表面調整液Aを100g含有する100溶液を新建浴時より
2日置きに被膜重量の測定およびチタンコロイドの平均
粒径の測定を行いながら、同一表面調整液で10日間処理
を行った。その使用経時劣化を調査した際の化成被膜重
量をプロットしたのが第1図のグラフであり、チタンコ
ロイドの平均粒径をプロットしたのが第2図のグラフで
ある。なお、10日間のpHは8.2±0.2の範囲内にあり、ま
た全アルカリ度は6.2±0.5ポイントの範囲内に維持され
た。
A 100 solution containing 100 g of the surface conditioning solution A was treated with the same surface conditioning solution for 10 days while measuring the coating weight and the average particle size of the titanium colloid every two days from the time of new construction. The graph of FIG. 1 is a graph in which the weight of the chemical conversion coating when the deterioration over time in use is investigated is plotted, and the graph of FIG. 2 is a graph in which the average particle diameter of titanium colloid is plotted. The pH for 10 days was within the range of 8.2 ± 0.2, and the total alkalinity was maintained within the range of 6.2 ± 0.5 points.

第1図に示される様に、表面調整液は経時と共にその効
果が劣化し、その結果、被膜重量が増大する。本実験例
に用いたパルボンド3030化成処理被膜の場合、被膜重量
は通常2.0〜2.5g/m2が標準である。よって、第1図より
5日が表面調整液の使用経時の限度であると認められ
る。第2図のチタンコロイドの平均粒径の変動は、第1
図の被膜重量の変動の相似した挙動を示している。
As shown in FIG. 1, the effect of the surface conditioning liquid deteriorates over time, and as a result, the coating weight increases. In the case of the Palbond 3030 chemical conversion coating used in this experimental example, the standard coating weight is usually 2.0 to 2.5 g / m 2 . Therefore, it is recognized from FIG. 1 that 5 days is the limit of the elapsed time of use of the surface conditioning solution. The fluctuation of the average particle size of titanium colloid in Fig. 2 is
The figure shows similar behavior of the coating weight variation.

上記以外の表面調整液および化成処理液についても同様
の挙動が認められ、この結果、本発明者らは表面調整液
の経時劣化を、コロイド平均粒径の増大により捕捉でき
ることを見出した。即ち、表面調整液中に生成している
コロイド平均粒径が、600nmを超えると、表面調整液の
経時劣化が限度を超えることが認められた。
The same behavior was observed for the surface conditioning liquid and the chemical conversion treatment liquid other than the above. As a result, the present inventors have found that the deterioration of the surface conditioning liquid over time can be captured by increasing the average particle size of the colloid. That is, it was confirmed that when the average particle diameter of the colloid generated in the surface conditioning liquid exceeds 600 nm, deterioration of the surface conditioning liquid over time exceeds the limit.

第1図及び第2図で、4日経時から6日経時にかけての
被膜重量並びに平均粒径の増大が大きい点を考慮する
と、安全性を考えて平均粒径を400nm以下に制御すれ
ば、被膜重量が約2.4g/m2以下となり、被膜重量の安定
化を計ることができる。新建浴時のコロイド平均粒径は
特に管理する必要はない。これは、新建浴時の表面調整
液は所定被膜重量が得られるように定められているから
である。第1,2図に結果が示されている実験例では、新
建浴時のコロイド平均粒径は約200nmであり、この表面
調整により、2.0g/m2の化成被膜重量が得られている。
したがって、コロイド平均粒径の下限値は新建浴時に最
適値に調整すればよい。
Considering the significant increase in coating weight and average particle size from 4 days to 6 days in Fig. 1 and Fig. 2, if the average particle size is controlled to 400 nm or less in consideration of safety, the film Since the weight is about 2.4 g / m 2 or less, the coating weight can be stabilized. There is no particular need to control the average particle size of the colloid during the new bath. This is because the surface conditioning liquid at the time of new building bath is determined so as to obtain a predetermined coating weight. In the experimental examples whose results are shown in FIGS. 1 and 2, the average particle diameter of the colloid in the newly constructed bath is about 200 nm, and by this surface adjustment, the conversion coating weight of 2.0 g / m 2 is obtained.
Therefore, the lower limit of the average particle diameter of colloid may be adjusted to the optimum value when a new bath is built.

第3図は、第2図同様、チタンコロイドの平均粒径の経
時変化を測定したグラフである。但し、第3図は表面調
整液の全量100に対して連続的部分廃棄更新量を、960
ml/hr(−○−)、480ml/hr(−△−)、240ml/hr(−
×−)と、3通りに変えながら、10日間連続して表面調
整液による処理および化成処理を行った。なお部分廃棄
更新量と同量の水道水を補給した。この実験例では、連
続的部分廃棄更新による表面調整処理の間に1日数回全
アルカリ止を測定し、全アルカリ度が6.2±0.5ポイント
の範囲を逸脱しないように表面調整液Aの補給を行っ
た。またこの時の表面調整液のpHは8.2±0.2の範囲にあ
ることを確認した。
Similar to FIG. 2, FIG. 3 is a graph showing changes over time in the average particle size of titanium colloid. However, in Fig. 3, the continuous partial waste renewal amount is 960
ml / hr (-○-), 480 ml / hr (-△-), 240 ml / hr (-
×-), the treatment with the surface conditioning solution and the chemical conversion treatment were continuously performed for 10 days while changing in three ways. The same amount of tap water as the amount of partial waste renewal was supplied. In this experimental example, total alkali stopping was measured several times a day during the surface conditioning treatment by continuous partial waste renewal, and surface conditioning solution A was replenished so that the total alkalinity did not deviate from the range of 6.2 ± 0.5 points. It was It was also confirmed that the pH of the surface conditioning solution at this time was in the range of 8.2 ± 0.2.

第3図に示された様に、全体量100に対し、部分廃棄
更新量をコントロールすることによりコロイドの平均粒
径の変化をコントロールし得ることがわかる。従来は、
経験により表面調整液の部分廃棄更新量を定めていたの
であるが、その定められた部分廃棄更新量が480ml/hr、
又は240ml/hrに相当した場合は、約4〜6日後にこの表
面調整表面における化成被膜重量が基準値を越え、ま
た、部分廃棄更新量が960ml/hrより多いと、表面調整剤
が無駄に廃棄されたことになる。960ml/hrの部分廃棄更
新量において、チタンコロイドの平均粒径をほぼ適正値
に維持されるが、従来の経験法ではかかる部分廃棄更新
量を見出すことは専ら偶然に左右され、再現性はなかっ
た。本発明によると、表面調整液中のコロイドの平均粒
径を継続的に監視し、その測定値から、当該表面調整液
が安定しているかあるいは経時劣化しているかを検知で
きる。
As shown in FIG. 3, it can be seen that the change in the average particle size of the colloid can be controlled by controlling the partial waste renewal amount with respect to the total amount of 100. conventionally,
Based on experience, the amount of renewal of partial disposal of surface conditioning solution was set, but the amount of renewal of partial disposal is 480 ml / hr.
Or when it corresponds to 240 ml / hr, after about 4 to 6 days, the weight of the chemical conversion coating on this surface-conditioned surface exceeds the standard value, and if the amount of partial waste renewal is more than 960 ml / hr, the surface conditioning agent becomes useless. It has been discarded. The average particle size of titanium colloid is maintained at an almost appropriate value at the partial waste renewal amount of 960 ml / hr, but in the conventional empirical method, finding such a partial waste renewal amount is entirely coincidental and has no reproducibility. It was According to the present invention, it is possible to continuously monitor the average particle size of the colloid in the surface conditioning liquid and detect from the measured value whether the surface conditioning liquid is stable or deteriorated with time.

第4図には、第3図で平均粒径測定した時の経時日数
と、リン酸塩化成処理した際の被膜重量の関係をプロッ
トした。第4図に示された経時日数−化成被膜重量関係
曲線は、第3図の経時日数−チタンコロイド平均粒径関
係曲線と同一傾向を示している。すなわち表面調整中の
チタンコロイドの平均粒径を測定し、それが600nm以下
の設定値に保持されるように表面調整液の廃棄更新量を
コントロールすれば、化成被膜重量の変動を抑制できる
ことがわかる。
FIG. 4 plots the relationship between the number of days elapsed when the average particle size was measured in FIG. 3 and the coating weight after the phosphate chemical conversion treatment. The aging days-chemical conversion film weight relationship curve shown in FIG. 4 shows the same tendency as the aging days-titanium colloid average particle size relationship curve in FIG. That is, it can be seen that the fluctuation of the weight of the chemical conversion coating can be suppressed by measuring the average particle size of the titanium colloid during surface preparation and controlling the amount of renewal of the surface preparation solution discarded so that it is maintained at the set value of 600 nm or less. .

また、表面調整液中のチタンコロイドの平均粒径が、設
定値から外れた場合には、部分廃棄更新量をコントロー
ルすればよい。このようにすれば、第3,4図において、
6〜8日間の使用により所定の化成被膜が得られなくな
る場合(部分廃棄更新量=480ml/hr、240ml/hr)でも、
その部分廃棄更新量を適宜に変更することによりさらに
調整液使用可能日数を延長することが可能になる。
Further, when the average particle size of the titanium colloid in the surface conditioning liquid deviates from the set value, the partial waste renewal amount may be controlled. In this way, in FIGS. 3 and 4,
Even if the specified conversion coating cannot be obtained after 6 to 8 days of use (partial waste renewal amount = 480 ml / hr, 240 ml / hr),
By appropriately changing the partial disposal renewal amount, it becomes possible to further extend the usable days of the adjustment liquid.

本発明法を実施する際のコロイド平均粒径測定頻度は特
に制限されないが、1時間あたり1回以上であることが
好ましい。
The frequency of measuring the average particle size of the colloid when carrying out the method of the present invention is not particularly limited, but is preferably once or more per hour.

第5図〜第8図は、下記の供試材および測定法により得
られた実験データを示す。なお前述の実験と異なるとこ
ろのみを示す。
5 to 8 show experimental data obtained by the following test materials and measuring methods. Only the points different from the above experiment are shown.

1.供試鋼板 両面電気亜鉛めっき鋼板 2.皮膜重量測定法 重クロム酸アンモニウム20g、濃アンモニア水480gを蒸
留水を加えて1とした水溶液にて剥離し、剥離前後の
重量差より算出。単位g/m2 3.処理液 表面調整液B:前記表面調整液と同一の組成のもの 濃度:200g/100 全アルカリ度:13.5±1.0ポイント pH:8.2±0.2 リン酸塩化成処理液: パルボンド3004(日本パーカライジング(株)製) 主成分:第1リン酸亜鉛、フッ化物酸化剤(硝酸根、亜
硝酸根) 濃度:5kg/100(同じ) 全酸度:23±1ポイント 遊離強度:1.0±0.1ポイント 促進剤濃度:1.5±0.1ポイント 第5図〜第8図は、それぞれ第1図〜第4図に対応する
グラフである。なお、第7図、第8図の−○−は、表面
調整液の部分廃棄更新量が1400ml/hr、−△−は700ml/h
r、−×−は350ml/hrの場合を示す。これらのグラフか
ら、表面調整液の部分廃棄更新量を、チタンコロイドの
平均粒径が600nm以下になるようにコントロールするこ
とにより、経時3日以後も、化成被膜の重量をほぼ3.25
g/m2に保持できることがわかる。
1. Test steel plate Double-sided electrogalvanized steel plate 2. Coating weight measurement method 20 g of ammonium dichromate and 480 g of concentrated ammonia water were added to distilled water to remove the solution as 1 and then calculated from the weight difference before and after the removal. Unit: g / m 2 3. Treatment liquid Surface preparation liquid B: Same composition as the surface preparation liquid Concentration: 200g / 100 Total alkalinity: 13.5 ± 1.0 points pH: 8.2 ± 0.2 Phosphate conversion treatment liquid: Palbond 3004 (manufactured by Nippon Parkerizing Co., Ltd.) Main components: primary zinc phosphate, fluoride oxidizer (nitrate, nitrite) Concentration: 5kg / 100 (same) Total acidity: 23 ± 1 points Release strength: 1.0 ± 0.1 point Accelerator concentration: 1.5 ± 0.1 points FIGS. 5 to 8 are graphs corresponding to FIGS. 1 to 4, respectively. In addition,-○-in Fig. 7 and Fig. 8 indicates that the partial disposal renewal amount of the surface conditioning solution is 1400 ml / hr, and-△-is 700 ml / h.
r and -x- indicate the case of 350 ml / hr. From these graphs, by controlling the partial disposal renewal amount of the surface conditioning solution so that the average particle size of the titanium colloid is 600 nm or less, the weight of the chemical conversion coating is almost 3.25 even after 3 days.
It can be seen that it can be maintained at g / m 2 .

また、上記管理方法が表面調整剤、およびリン酸塩処理
液の種類、組成を変えた場合にも有効であることが分か
る。
Further, it can be seen that the above management method is also effective when the types and compositions of the surface conditioner and the phosphate treatment liquid are changed.

〔発明の効果〕〔The invention's effect〕

以上説明した様に、本発明の管理法により、今迄経験に
頼っていた連続的部分廃棄更新量を適確に設定すること
ができるため、この部分廃棄更新量を設定するための試
行の数を著しく減少させることができ、リン酸塩化成処
理ラインにおける表面調整液の管理精度を向上させるこ
とができる。
As described above, since the management method of the present invention can accurately set the continuous partial discard update amount, which has relied on experience so far, the number of trials for setting this partial discard update amount. Can be significantly reduced, and the control accuracy of the surface conditioning solution in the phosphate chemical conversion treatment line can be improved.

実際のリン酸塩化成処理ラインの場合、表面調整液の連
続的部分廃棄更新量は給水側の水圧の変動等により必ず
しも一定になりがたいケースもあるが、コロイドの平均
粒径を適宜測定することにより、表面調整液の異常を未
然に防ぐと共に、より精度の高い水量調節が可能とな
り、経時的にも無駄がなくなる。
In the case of an actual phosphate chemical conversion treatment line, the amount of continuous partial disposal and renewal of the surface conditioning solution may not always be constant due to fluctuations in water pressure on the water supply side, but the average particle size of the colloid is measured appropriately. As a result, it is possible to prevent abnormalities in the surface conditioning liquid, and to adjust the water amount with higher accuracy, thus eliminating waste over time.

また、表面調整液のチタンコロイドは全体として負に帯
電しているので、水中のMg2+,Ca2+イオン等が過剰に存
在する様な水を使用した場合、コロイドの帯電が放電す
るためコロイドの凝集、即ちコロイド粒径の増大化を招
き、表面調整性能の劣化が起る。しかし、本発明による
コロイド平均粒径の測定による管理法を用いれば、上記
のような水質の変動に対して適確に対応することが可能
になる。
In addition, since the titanium colloid of the surface conditioning liquid is negatively charged as a whole, the charge of the colloid is discharged when water containing excess Mg 2+ , Ca 2+ ions in water is used. The colloid is agglomerated, that is, the colloid particle size is increased, and the surface conditioning performance is deteriorated. However, by using the control method by measuring the colloid average particle diameter according to the present invention, it becomes possible to appropriately deal with the above-mentioned fluctuations in water quality.

【図面の簡単な説明】[Brief description of drawings]

第1図は、表面調整液の経時日数と化成被膜重量との関
係を示すグラフであり、第2図は第1図に示された表面
調整液の経時日数と、チタンコロイドの平均粒径との関
係を示すグラフであり、第3図は、種々の連続的部分廃
棄更新量における経時日数とチタンコロイドの平均粒径
との関係を示すグラフであり、第4図は第3図に示され
た連続的部分廃棄更新量における経時日数と化成被膜重
量の関係を示すグラフである。 第5図〜第8図は、それぞれ、第1図〜第4図において
表面調整液および化成処理液の組成を変更した場合のグ
ラフである。 〔符号の説明〕 −○−○−:表面調整液の部分廃棄更新量=1400ml/hr −△−△−:表面調整液の部分廃棄更新量=700ml/hr −×−×−:表面調整液の部分廃棄更新量=350ml/hr
FIG. 1 is a graph showing the relationship between the number of days of the surface conditioning solution and the weight of the chemical conversion coating, and FIG. 2 is the number of days of the surface conditioning solution shown in FIG. 1 and the average particle size of the titanium colloid. FIG. 3 is a graph showing the relationship between the number of days elapsed and the average particle size of titanium colloid in various continuous partial waste renewal amounts, and FIG. It is a graph which shows the relationship between the number of days elapsed and the conversion coating weight in the continuous partial waste renewal amount. FIGS. 5 to 8 are graphs when the compositions of the surface conditioning liquid and the chemical conversion treatment liquid are changed in FIGS. 1 to 4, respectively. [Explanation of Codes]-○-○-: Partial waste renewal amount of surface conditioning solution = 1400 ml / hr- △-△-: Partial waste renewal amount of surface conditioning solution = 700 ml / hr- ×-×-: Surface conditioning liquid Partial disposal renewal amount = 350ml / hr

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属材料に対するリン酸塩被膜化成処理の
前処理として、リン酸化合物およびチタン化合物を含有
する表面調整液により前記金属材料に施される表面調整
処理において、 前記表面調整液の一部を、実質的に連続的に廃棄し、か
つ更新して前記表面調整液の表面調整性能を制御するに
際し、 前記表面調整液中に生成しているチタンコロイドの平均
粒径を測定し、この測定値に対応して、前記表面調整液
の廃棄更新量を調節し、それによって前記チタンコロイ
ドの平均粒径を600nm以下に制御することを特徴とす
る、リン酸塩被膜化成処理用表面調整液の管理方法。
1. A surface conditioning treatment performed on a metal material with a surface conditioning solution containing a phosphoric acid compound and a titanium compound as a pretreatment for a phosphate coating chemical conversion treatment on a metal material, comprising: Part to be substantially continuously discarded, and when renewed to control the surface conditioning performance of the surface conditioning solution, the average particle size of the titanium colloid generated in the surface conditioning solution is measured. According to the measured value, the amount of renewal of waste of the surface conditioning solution is adjusted, thereby controlling the average particle size of the titanium colloid to 600 nm or less, a surface conditioning solution for phosphate coating chemical conversion treatment. Management method.
【請求項2】前記表面調整液中のチタンコロイドの平均
粒径を200〜600nmの範囲内に制御する、特許請求の範囲
第1項に記載の方法。
2. The method according to claim 1, wherein the average particle size of the titanium colloid in the surface conditioning liquid is controlled within the range of 200 to 600 nm.
JP21984186A 1986-09-19 1986-09-19 Management method of surface conditioning liquid for phosphate coating chemical conversion treatment Expired - Lifetime JPH0674507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21984186A JPH0674507B2 (en) 1986-09-19 1986-09-19 Management method of surface conditioning liquid for phosphate coating chemical conversion treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21984186A JPH0674507B2 (en) 1986-09-19 1986-09-19 Management method of surface conditioning liquid for phosphate coating chemical conversion treatment

Publications (2)

Publication Number Publication Date
JPS6376883A JPS6376883A (en) 1988-04-07
JPH0674507B2 true JPH0674507B2 (en) 1994-09-21

Family

ID=16741895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21984186A Expired - Lifetime JPH0674507B2 (en) 1986-09-19 1986-09-19 Management method of surface conditioning liquid for phosphate coating chemical conversion treatment

Country Status (1)

Country Link
JP (1) JPH0674507B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426671A (en) * 1987-04-16 1989-01-27 Toray Industries Resin composition
JP3451334B2 (en) 1997-03-07 2003-09-29 日本パーカライジング株式会社 Pretreatment liquid for surface conditioning before phosphate conversion treatment of metal and surface conditioning method
JP6927146B2 (en) * 2018-05-25 2021-08-25 Jfeスチール株式会社 Manufacturing method of chemical conversion plated steel sheet

Also Published As

Publication number Publication date
JPS6376883A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
EP2343399B1 (en) Treatment solution for chemical conversion of metal material and method for treatment
US5399208A (en) Method for phosphating metal surface with zinc phosphate
JP3349851B2 (en) Surface treatment composition for aluminum-containing metal material excellent in sludge suppression property and surface treatment method
JPH0359989B2 (en)
JP2695963B2 (en) Phosphating of metal surfaces
US4622078A (en) Process for the zinc/calcium phosphatizing of metal surfaces at low treatment temperatures
US4517030A (en) Process for activating steel surface prior to phosphating treatment aqueous activating solution therefor
EP0564287A2 (en) Method for zinc-phosphating metal surface to be treated by the cationic electrodeposition coating
EP1029111B1 (en) Corrosion protection for galvanised and alloy galvanised steel strips
JPH0674507B2 (en) Management method of surface conditioning liquid for phosphate coating chemical conversion treatment
JPH041073B2 (en)
US3660172A (en) Prepaint treatment for zinciferous surfaces
US4089710A (en) Phosphating method with control in response to conductivity change
JPH07173643A (en) Method for phosphating metal surface and phosphating solution
JP2571632B2 (en) Zinc phosphate treatment method for metal surface
US5454882A (en) Process for controlling a fluoride containing conversion coating forming composition during its use for conversion coating aluminum containing metal
JPH0442472B2 (en)
JPH05331658A (en) Zinc phosphate treating method for metallic surface
Rumyantseva et al. Modified phosphate coatings applied to steel by cold method
WO1993014241A1 (en) A method for the acidic conversion treatment of aluminum containing metal
CA1090236A (en) Phosphating method
EP4036274A1 (en) Aluminum alloy material and method for manufacturing same
US4774145A (en) Zinc phosphate chemical conversion film and method for forming the same
JP2915233B2 (en) Method for measuring activity of zinc phosphate treatment liquid and method for controlling activity of zinc phosphate treatment liquid
JPH08134662A (en) Treatment of magnesium or magnesium alloy before coating