JPH10228896A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH10228896A
JPH10228896A JP9029028A JP2902897A JPH10228896A JP H10228896 A JPH10228896 A JP H10228896A JP 9029028 A JP9029028 A JP 9029028A JP 2902897 A JP2902897 A JP 2902897A JP H10228896 A JPH10228896 A JP H10228896A
Authority
JP
Japan
Prior art keywords
carbon material
negative electrode
carbon
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029028A
Other languages
Japanese (ja)
Inventor
Jiro Iriyama
次郎 入山
Satoyuki Ota
智行 太田
Junji Tabuchi
順次 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9029028A priority Critical patent/JPH10228896A/en
Publication of JPH10228896A publication Critical patent/JPH10228896A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To accomplish increase in energy density and improvement of charging-discharging efficiency by using a composite carbon material consisting of a graphite material, which is prepared by heat treating and graphitizing a meso-carbon micro bead made of a mesophase micro sphere, and a slightly graphitizable carbon material, which is prepared by carbonizing a resin selected from a group consisting of phenol resin, furan resin and the like, as a negative electrode. SOLUTION: As a graphite material, a graphitized carbon material, which is prepared by heat treating a meso-carbon micro bead made of petroleum pitch, is used. As a slightly graphitizable carbon material, a carbon material, which is prepared by heat treating and carbonizing phenol resin, is used. A composite carbon material consisting of these carbon materials is used as a negative electrode. In this case, a mixing ratio of the slightly graphitizable carbon material in the composite carbon material ranges from 10% to 50% on a weight base. In this way, in which the slightly graphitizable carbon is mixed with the graphite material consisting of mesophase group carbon material, fracture of the carbon granule due to pressurization can be prevented, while high capacity and excellent charging-discharging efficiency can be accomplished.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にその負極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a negative electrode thereof.

【0002】[0002]

【従来の技術】近年携帯電話、PHS、カメラ一体型V
TRなどのポータブル電子機器の市場は急速な成長を遂
げている。これに伴い駆動電源である電池への種々の要
望がとみに強まっており、高エネルギー密度、長寿命、
高安全性などを兼ね備えた電池が期待されている。
2. Description of the Related Art In recent years, mobile phones, PHSs, and camera-integrated Vs
The market for portable electronic devices such as TRs is growing rapidly. Along with this, various demands for batteries as drive power supplies are intensifying, and high energy density, long life,
A battery having high safety and the like is expected.

【0003】このような観点から、非水系二次電池、と
りわけリチウム二次電池は高電圧・高エネルギー密度を
有する電池として期待が大きい。特に最近、リチウム含
有遷移金属酸化物を正極活物質とし、負極に炭素質材料
を用いた電池系が高エネルギー密度を有するリチウムニ
次電池として注目を集めている。
[0003] From such a viewpoint, non-aqueous secondary batteries, especially lithium secondary batteries, are highly expected as batteries having high voltage and high energy density. In particular, recently, a battery system using a lithium-containing transition metal oxide as a positive electrode active material and a carbonaceous material for a negative electrode has attracted attention as a lithium secondary battery having a high energy density.

【0004】この電池は正負極ともに活物質のインター
カレーション、デインターカレーション反応を利用して
いるため、デンドライト状Liの析出による短絡等が生
じることがなく、安全性に優れている。
[0004] Since both the positive and negative electrodes of the battery utilize the intercalation and deintercalation reactions of the active material, short-circuiting due to precipitation of dendritic Li does not occur, and the battery is excellent in safety.

【0005】負極材に炭素材料を用いる提案としては、
例えばグラファイトを負極材料とするものが特開昭57
−208079、同58−102464号各公報に開示
されている。しかしながら、グラファイトは結晶子が発
達しているため、リチウムの吸蔵・放出に際し、結晶構
造の破壊を生じ、このため保存特性、サイクル特性が劣
り、さらには高い反応性を有するので電解液の分解を引
き起こし、初期充放電効率が低下するいう欠点を有して
いる。
[0005] Proposals for using a carbon material for the negative electrode material include:
For example, Japanese Patent Application Laid-Open No.
-208079 and 58-102464. However, graphite has crystallites that develop, which causes the destruction of the crystal structure during the insertion and extraction of lithium, resulting in poor storage and cycling characteristics and high reactivity. This causes a drawback that the initial charge / discharge efficiency is reduced.

【0006】このような欠点を解消するため、黒鉛化度
が低く結晶子があまり発達していない炭素材料を用いる
ことが提案されている。具体的には焼成温度によって黒
鉛化度を規定することが提案されており、1500℃以
下の焼成温度で得られた有機焼成体を負極材料として用
いる方法が、特開昭58−93176および同60−2
35372号各公報に開示されている。
[0006] In order to solve such disadvantages, it has been proposed to use a carbon material having a low degree of graphitization and a crystallite that has not developed much. Specifically, it has been proposed to define the degree of graphitization by the sintering temperature. A method of using an organic sinter obtained at a sintering temperature of 1500 ° C. or less as a negative electrode material is disclosed in JP-A-58-93176 and JP-A-58-93176. -2
No. 35372 is disclosed in each publication.

【0007】しかし、黒鉛化度が低い炭素材料は黒鉛化
度が高い炭素材料に比べて不可逆容量が大きく、また密
度が小さいため、得られた電池のエネルギー密度が小さ
くなり電池容量として不十分なものであった。
However, a carbon material having a low degree of graphitization has a large irreversible capacity and a small density as compared with a carbon material having a high degree of graphitization, so that the energy density of the obtained battery is low and the battery capacity is insufficient. Was something.

【0008】一方、炭素材料の比表面積を規定すること
によって、炭素−電解液界面で起こる電解液の分解等の
副反応を抑制し、初期充放電効率を改善しようとする試
みが提案されている。
On the other hand, there has been proposed an attempt to improve the initial charge / discharge efficiency by regulating the specific surface area of the carbon material to suppress side reactions such as decomposition of the electrolytic solution occurring at the carbon-electrolyte interface, and to improve the initial charge / discharge efficiency. .

【0009】例えば、特開平5−242890号公報に
は炭素質材料の比表面積の0.5m 2 /g以上、10m
2 /g以下のものを使用することが開示されている。
For example, Japanese Patent Application Laid-Open No. 5-242890 discloses
Is 0.5 m of the specific surface area of the carbonaceous material Two/ G or more, 10m
Two/ G or less are disclosed.

【0010】また、特開平6−295725号公報に
は、比表面積が1〜10m2 /gであって、平均粒径が
10〜30μmであり、且つ、粒径10μm以下の粉末
の含有率および粒径30μm以上の粉末の含有率の少な
くとも一方が、10%以下である黒鉛粉末を負極材料と
して使用することが提案されている。
JP-A-6-295725 discloses a powder having a specific surface area of 1 to 10 m 2 / g, an average particle size of 10 to 30 μm and a particle size of 10 μm or less. It has been proposed to use graphite powder having at least one of a content of powder having a particle size of 30 μm or more of 10% or less as a negative electrode material.

【0011】特に黒鉛系材料においては、初回不可逆容
量の主な原因は炭素−電解液界面で起こる電解液の分解
反応であるため、炭素材料の表面積を小さくすることが
初期充放電効率を改善するために重要となる。
Particularly, in the case of a graphite-based material, the primary cause of the initial irreversible capacity is a decomposition reaction of the electrolytic solution occurring at the carbon-electrolyte interface, so that reducing the surface area of the carbon material improves the initial charge / discharge efficiency. Important for.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、炭素材
料を実際に負極電極として電池に用いる場合、粉体であ
る炭素材料をスラリーにして集電体に塗布した後、充填
密度を高めるために、加圧形成してから用いるのが一般
的である。一見したところ、負極電極を加圧形成すると
その空隙率が低下するため表面積は減少するように思わ
れるが、意外なことに、負極電極を加圧圧縮すると負極
電極の比表面積は著しく増大することが本発明者らに見
出された。
However, when a carbon material is actually used as a negative electrode in a battery, the carbon material as a powder is slurried and applied to a current collector, and then the carbon material is added to increase the packing density. It is common to use after pressure forming. At first glance, it seems that the surface area decreases because the porosity decreases when the negative electrode is formed under pressure, but surprisingly, the specific surface area of the negative electrode significantly increases when the negative electrode is compressed under pressure. Was found by the present inventors.

【0013】実際の電池特性に影響を及ぼすのは負極電
極の表面積であるため、いかに負極活物質粉体の比表面
積を規定しても、この加圧工程における負極電極の表面
積の増大を制御しない限り、実際の電池の初期充放電効
率は改善されない。
Since the surface area of the negative electrode affects the actual battery characteristics, no matter how the specific surface area of the negative electrode active material powder is specified, the increase in the surface area of the negative electrode in this pressing step is not controlled. As long as the initial charge / discharge efficiency of the actual battery is not improved.

【0014】本発明者らは上記の課題を解決すべく鋭意
研究を重ねた結果、負極電極の加圧に伴う比表面積の増
率は炭素材料により大きく異なることを見いだした。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the rate of increase of the specific surface area due to the pressurization of the negative electrode greatly differs depending on the carbon material.

【0015】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、従来電池に比し
エネルギー密度が高く、且つ充放電効率に優れる非水電
解液二次電池を提供することにある。
The present invention has been made based on such findings, and it is an object of the present invention to provide a non-aqueous electrolyte secondary battery having higher energy density and superior charge / discharge efficiency as compared with conventional batteries. Is to do.

【0016】[0016]

【課題を解決するための手段および作用】上記の目的
は、以下に示す本発明によって達成される。
The above objects can be attained by the present invention described below.

【0017】すなわち本発明は、リチウム含有複合酸化
物を活物質とする正極と、非水電解液と、リチウムを吸
蔵・放出できる炭素材を活物質とする負極とを備えた非
水系電解液二次電池において、前記負極が黒鉛材料Aと
難黒鉛化性炭素材料Bとで構成されてなる複合炭素材料
であることを特徴とする非水電解液二次電池を開示する
ものである。
That is, the present invention provides a non-aqueous electrolyte comprising a positive electrode using a lithium-containing composite oxide as an active material, a non-aqueous electrolyte, and a negative electrode using a carbon material capable of occluding and releasing lithium as an active material. In a secondary battery, a nonaqueous electrolyte secondary battery is disclosed in which the negative electrode is a composite carbon material composed of a graphite material A and a non-graphitizable carbon material B.

【0018】上記の目的を達成するため本発明は、負極
に黒鉛材料Aと難黒鉛化性炭素Bとの複合炭素材料を用
いて、加圧による電極表面積の変化を制御することによ
り、非水電解液二次電池の充放電効率を高めるものであ
る。
In order to achieve the above object, the present invention provides a non-aqueous liquid by controlling a change in electrode surface area due to pressure by using a composite carbon material of graphite material A and non-graphitizable carbon B for the negative electrode. The purpose is to increase the charge / discharge efficiency of the electrolyte secondary battery.

【0019】一般に、負極炭素材料をスラリー化して集
電体に塗布して作製した負極電極は、加圧すると炭素粒
子が破砕され表面積は増大する。この表面積の増大の割
合は、ガラス状炭素、例えばフェノール樹脂やフラン樹
脂のような熱硬化性樹脂を焼成炭化した炭素材料では比
較的小さい。
Generally, in a negative electrode produced by slurrying a negative electrode carbon material and applying the slurry to a current collector, when pressure is applied, carbon particles are crushed and the surface area increases. The rate of the increase in the surface area is relatively small in a carbon material obtained by calcining and carbonizing glassy carbon, for example, a thermosetting resin such as a phenol resin or a furan resin.

【0020】しかし石油ピッチやコールタールを加熱処
理して得られるメソフェーズを原料としたメソカーボン
マイクロビーズ、バルクメソフェーズ、およびメソフェ
ーズ系炭素繊維などを黒鉛化したものは、加圧により表
面積が増大する割合が非常に大きい。
However, graphitized mesocarbon microbeads, bulk mesophases, and mesophase-based carbon fibers made from mesophase obtained by heat-treating petroleum pitch or coal tar have an increased surface area due to pressure. Is very large.

【0021】すなわち、これらのメソフェーズ系炭素材
料がガラス状炭素材料などに比較して機械的強度が弱い
こと、およびメソフェーズ系炭素材料の表面が難黒鉛化
性炭素で被覆されており、加圧により炭素粒子が破砕さ
れることによってこの難黒鉛化性炭素被膜が破壊され、
より多くの炭素網面が露出するためである。
That is, these mesophase-based carbon materials have lower mechanical strength than glassy carbon materials and the like, and the surface of the mesophase-based carbon material is coated with non-graphitizable carbon. The crushing of the carbon particles destroys the non-graphitizable carbon coating,
This is because more carbon net surfaces are exposed.

【0022】そこで本発明者らは黒鉛材料Aと難黒鉛化
性炭素材料Bとで構成された複合炭素材料を負極活物質
に用いることにより、加圧に伴う電極シートの比表面積
の増大を緩和させることにより、上記の問題を解決し
た。
Therefore, the present inventors use a composite carbon material composed of a graphite material A and a non-graphitizable carbon material B as a negative electrode active material, thereby alleviating an increase in the specific surface area of the electrode sheet due to pressurization. By doing so, the above problem was solved.

【0023】また本発明においては、黒鉛材料Aと難黒
鉛化性炭素材料Bとの配合比が重要であり、上記複合炭
素材料中の難黒鉛化性炭素材料Bの量は、重量基準で1
0〜50%であることが好ましく、さらには15〜35
%がより好ましい。
In the present invention, the compounding ratio of the graphite material A and the non-graphitizable carbon material B is important, and the amount of the non-graphitizable carbon material B in the composite carbon material is 1 by weight.
It is preferably from 0 to 50%, more preferably from 15 to 35%.
% Is more preferred.

【0024】10%未満では難黒鉛化性炭素材料Bの効
果を充分生かすことができず、加圧に伴う比表面積の増
加率が大きくなり、その結果、初回充放電効率が低下す
る。また50%を超えた場合は負極材料の充填密度が減
少して電池としての容量が減少する。
If it is less than 10%, the effect of the non-graphitizable carbon material B cannot be sufficiently utilized, and the rate of increase in the specific surface area due to the pressurization increases, and as a result, the initial charge / discharge efficiency decreases. On the other hand, if it exceeds 50%, the packing density of the negative electrode material decreases, and the capacity as a battery decreases.

【0025】一方、正極材料としては例えば、LiCo
2 ,LiNiO2 ,LiMnO2などが好適なものと
して挙げられる。さらに上記の化合物のCo、Ni、M
nの一部を他の元素、例えばCo、Ni、Mn、Fe等
で置換した複合酸化物を使用することができる。該複合
酸化物は、例えばリチウムやコバルトの炭酸塩あるいは
酸化物を原料として、目的組成に応じてこれらを配合、
焼成することによって容易に得ることができる。
On the other hand, as a cathode material, for example, LiCo
O 2 , LiNiO 2 , LiMnO 2 and the like are mentioned as preferable ones. Further, Co, Ni, M of the above compounds
A composite oxide in which a part of n is substituted with another element, for example, Co, Ni, Mn, Fe, or the like can be used. The composite oxide is, for example, a carbonate or oxide of lithium or cobalt as a raw material, and blending them according to a desired composition.
It can be easily obtained by firing.

【0026】また上記のように、本発明の電池は黒鉛材
料Aと難黒鉛化性炭素材料Bとで構成された複合炭素材
料を負極活物質に用いることに最大の特徴を有するもの
であり、非水電解液、セパレーターなどの電池を構成す
る他の部材については、従来非水電解液二次電池として
実用され、あるいは提案されている種々の材料を使用す
ることが可能である。
As described above, the battery of the present invention has the greatest feature in using a composite carbon material composed of a graphite material A and a non-graphitizable carbon material B as a negative electrode active material. As other members constituting the battery such as a non-aqueous electrolyte and a separator, it is possible to use various materials conventionally used or proposed as non-aqueous electrolyte secondary batteries.

【0027】本発明に関わるメソフェーズ系炭素材料
は、その表面が難黒鉛化性炭素被膜により覆われている
ため、他の黒鉛材料に比べて電解液の分解等の副反応が
比較的起こりにくい。しかしながら負極シートの加圧形
成によりこの被膜が破砕され活性な炭素網面が露出する
ことにより負極の表面積が増大し、そのため初回充放電
効率の低下やサイクルに伴う容量の劣化を引き起こす。
Since the surface of the mesophase-based carbon material according to the present invention is covered with the non-graphitizable carbon film, side reactions such as decomposition of the electrolytic solution are relatively unlikely to occur as compared with other graphite materials. However, this coating is crushed by pressurization of the negative electrode sheet to expose the active carbon netting surface, thereby increasing the surface area of the negative electrode, thereby lowering the initial charge / discharge efficiency and deteriorating the capacity accompanying the cycle.

【0028】そこで上記のメソフェーズ系炭素材料から
なる黒鉛材料に難黒鉛化性炭素を配合することによっ
て、加圧による炭素粒子の破壊を防ぎ、初回充放電効率
の低下を防ぐことが可能となる。したがって、この負極
をリチウム含有複合酸化物からなる正極と組み合わせる
ことにより、高容量を有し、且つ充放電効率にも優れた
二次電池を得ることができる。
Therefore, by blending the non-graphitizable carbon with the graphite material composed of the above-mentioned mesophase-based carbon material, it is possible to prevent the carbon particles from being broken by pressurization and to prevent a decrease in the initial charge / discharge efficiency. Therefore, by combining this negative electrode with a positive electrode made of a lithium-containing composite oxide, a secondary battery having high capacity and excellent charge / discharge efficiency can be obtained.

【0029】[0029]

【発明の実施の形態】以下、図面に基づき実施例により
本発明の実施態様を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0030】[0030]

【実施例】図1に、本実施例および比較例において用い
た円筒形電池の縦断面図を示す。同図において、1はス
テンレス製の電池ケースであり、2,3,4はそれぞれ
正負極シートおよびセパレータであって、正極および負
極がセパレータを介して渦巻き状に巻かれてケース1内
に収納されている。また5はPTCを、6は安全弁を、
7は絶縁キャップをそれぞれ示す。
FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this example and a comparative example. In FIG. 1, reference numeral 1 denotes a stainless steel battery case, and reference numerals 2, 3, and 4 denote positive and negative electrode sheets and separators, respectively. The positive and negative electrodes are spirally wound through the separator and housed in the case 1. ing. 5 is PTC, 6 is safety valve,
Reference numeral 7 denotes an insulating cap.

【0031】[実施例1〜5] (負極シートの作製)黒鉛材料Aとして、石抽ピッチを
原料として生成したメソカーボンマイクロビーズを28
00℃で熱処理を施し黒鉛化した炭素材料を用い、難黒
鉛化性炭素材料Bとして、フェノール樹脂を1500℃
で熱処理を施し炭素化した炭素材料を用い、これらの炭
素材料を表1に示すような配合比で配合し負極活物質と
した。この炭素材に、ポリフッ化ビニリデン(PVD
F)重量10%とアセチレンブラックを重量2%配合し
負極合剤とし、これをN−メチル−2−ピロリドンに分
散させてスラリーとし、このスラリーを銅箔の両面に塗
布し、乾燥後ロールプレス機で圧縮成形して、負極充填
密度を1.4〜1.6g/ccの範囲に調整し負極シー
トとした。
[Examples 1 to 5] (Preparation of negative electrode sheet) As graphite material A, 28 mesocarbon microbeads produced using stone extraction pitch as a raw material were used.
A carbon material heat-treated at 00 ° C. and graphitized is used. As a non-graphitizable carbon material B, a phenol resin is used at 1500 ° C.
A carbon material carbonized by heat treatment in the above was used, and these carbon materials were blended at a blending ratio as shown in Table 1 to obtain a negative electrode active material. Polyvinylidene fluoride (PVD)
F) 10% by weight and 2% by weight of acetylene black are mixed to prepare a negative electrode mixture, which is dispersed in N-methyl-2-pyrrolidone to form a slurry. The slurry is applied to both surfaces of a copper foil, dried, and then roll-pressed. By compression molding with a machine, the negative electrode packing density was adjusted to a range of 1.4 to 1.6 g / cc to obtain a negative electrode sheet.

【0032】各負極電極の加圧形成後の負極充填密度
(g/cc)を表1に示す。実施例1〜4の負極は、加
圧形成後の密度を約1.5(g/cc)にすることがで
きたが、実施例5の負極活物質中にフェノール樹脂焼成
体を重量75%含む負極の充填密度は、1.4(g/c
c)までしか上がらなかった。
Table 1 shows the packing density (g / cc) of the negative electrodes after the formation of each negative electrode under pressure. The densities of the negative electrodes of Examples 1 to 4 after forming under pressure could be about 1.5 (g / cc). However, the phenol resin fired body in the negative electrode active material of Example 5 was 75% by weight. The negative electrode has a packing density of 1.4 (g / c
c).

【0033】(負極シートの比表面積測定)上記の負極
シートを20cm2 に切り、吸着ガスに窒素を用いて
B.E.T.1点法により比表面積を測定した。測定結
果を表1に示す。フェノール樹脂焼成体の重量%が増え
るにつれて比表面積は減少している。
(Measurement of Specific Surface Area of Negative Electrode Sheet) The above negative electrode sheet was cut into 20 cm 2 , and nitrogen was used as an adsorbed gas. E. FIG. T. The specific surface area was measured by the one-point method. Table 1 shows the measurement results. The specific surface area decreases as the weight percentage of the phenol resin fired body increases.

【0034】[0034]

【表1】 [Table 1]

【0035】(正極シートの作製)正極は、炭酸リチウ
ムと二酸化マンガンを配合し、750℃で12時間焼成
して合成したマンガンスピネルに、導電付与剤としてグ
ラファイト重量5%、アセチレンブラック重量2%、ポ
リフッ化ビニリデン(PVDF)重量3.5%を配合し
て正極合剤とし、これをN−メチル−2−ピロリドンに
分散させてスラリーとし、このスラリーを正極集電体で
ある厚さ10μmの帯状のアルミ箔の両面に塗布し、乾
燥後、ロールプレス機で圧縮成形し正極シートとした。
(Preparation of Positive Electrode Sheet) The positive electrode was prepared by mixing lithium carbonate and manganese dioxide, and baking at 750 ° C. for 12 hours. 3.5% by weight of polyvinylidene fluoride (PVDF) was blended to prepare a positive electrode mixture, which was dispersed in N-methyl-2-pyrrolidone to form a slurry, and this slurry was used as a positive electrode current collector in a 10 μm-thick strip. Was coated on both sides of an aluminum foil, dried, and then compression-molded with a roll press to obtain a positive electrode sheet.

【0036】(電池の組み立て)正負極おのおのにタブ
を取り付け、ポリプロピレン製のセパレーターを介して
渦巻き状に捲回して電池缶に収納した。この電池缶に、
エチレンカーボネイトとジエチルカーボネイトを、3:
7の容量比で配合した溶媒に六フッ化リン酸リチウムを
1モル/リットルの割合で溶解した電解液を注入した。
そして、タールを塗布した絶緑封口ガスケットを介して
電池缶をかしめて電池蓋を固定し、円筒型非水電解液電
池を作製した。
(Assembly of Battery) A tab was attached to each of the positive and negative electrodes, spirally wound through a polypropylene separator, and housed in a battery can. In this battery can,
Ethylene carbonate and diethyl carbonate:
An electrolyte obtained by dissolving lithium hexafluorophosphate at a ratio of 1 mol / liter in a solvent mixed at a volume ratio of 7 was injected.
Then, the battery can was caulked via a green sealed gasket coated with tar, and the battery lid was fixed to produce a cylindrical nonaqueous electrolyte battery.

【0037】[実施例6〜10]実施例1〜5における
負極活物質の黒鉛材料Aに、石油ピッチを原料として生
成した炭素織維を2800℃で熱処理を施し黒鉛化した
炭素材料用いた以外は、実施例1〜5と同様に電池を作
製した。実施例6〜10の負極活物質の配合比、加圧形
成後の負極充填密度(g/cc)、加圧形成後の負極比
表面積(m2 /g)を表2に示す。
[Examples 6 to 10] Except that the graphite material A as the negative electrode active material in Examples 1 to 5 was subjected to a heat treatment at 2800 ° C. with a carbon fiber produced from petroleum pitch as a graphitized carbon material. Produced batteries in the same manner as in Examples 1 to 5. Table 2 shows the compounding ratio of the negative electrode active materials of Examples 6 to 10, the negative electrode packing density (g / cc) after pressure formation, and the negative electrode specific surface area (m 2 / g) after pressure formation.

【0038】[0038]

【表2】 [Table 2]

【0039】(充放電試験)上記のようにして得られた
各電池を、充電電流0.6A、充電終止電圧4.2Vと
して定電流充電した後、4.2Vで4時間定電圧充電
し、その後、放電電流1.0A、放電終止電圧3.0V
とする条件下で定電流放電を行った。それら結果の初回
充放電効率を図2に示す。
(Charge / Discharge Test) Each of the batteries obtained as described above was charged at a constant current at a charge current of 0.6 A and a charge end voltage of 4.2 V, and then was charged at 4.2 V for 4 hours at a constant voltage. Thereafter, a discharge current of 1.0 A and a discharge end voltage of 3.0 V
Under the following conditions. FIG. 2 shows the initial charge / discharge efficiency as a result.

【0040】[比較例1]実施例における負極活物質を
メソフェーズカーボンマイクロビーズのみとした以外
は、実施例と同様に電池を作製し、比較例1の電池とし
た。
Comparative Example 1 A battery was manufactured in the same manner as in the example except that the mesophase carbon microbeads were used as the negative electrode active material in the example.

【0041】[比較例2]実施例における負極活物質を
メソフェーズ系炭素繊維のみとした以外は、実施例と同
様に電池を作製し、比較例2の電池とした。
Comparative Example 2 A battery was manufactured in the same manner as in Example except that only the mesophase-based carbon fiber was used as the negative electrode active material in Example.

【0042】[比較例3]実施例における負極活物質を
フェノール樹脂焼成体のみとした以外は、実施例と同様
に電池を作製し、比較例3の電池とした。
Comparative Example 3 A battery was fabricated in the same manner as in the example except that only the phenol resin fired body was used as the negative electrode active material in the example.

【0043】比較例l〜3の負極電極の加圧形成後の負
極充填密度(g/cc)、加圧形成後の負極比表面積
(m2 /g)を表3に示す。
Table 3 shows the negative electrode packing density (g / cc) of the negative electrodes of Comparative Examples 1 to 3 after pressure formation, and the negative electrode specific surface area (m 2 / g) after pressure formation.

【0044】[0044]

【表3】 [Table 3]

【0045】比較例1〜3の電池を実施例と同一条件で
充放電試験を行った結果の初回充放電効率を図2に示
す。
FIG. 2 shows the initial charge / discharge efficiency as a result of conducting a charge / discharge test on the batteries of Comparative Examples 1 to 3 under the same conditions as in the example.

【0046】(各電池の特性)実施例1〜10および比
較例1〜3において、充放電効率は負極活物質中のメソ
フェーズ系黒鉛材料に対するフェノール樹脂焼成体の配
合比が25重量%近傍で、約90%とほぼ極大となって
いる。
(Characteristics of each battery) In Examples 1 to 10 and Comparative Examples 1 to 3, the charge / discharge efficiency was determined when the blending ratio of the phenol resin fired body to the mesophase graphite material in the negative electrode active material was about 25% by weight. It is almost maximal at about 90%.

【0047】これは、フェノール樹脂焼成体の配合比
が、0〜25重量%の範囲では、フェノール樹脂焼成体
を添加することにより、加圧による負極の比表面積の増
大が小さくなり、負極―電解液界面で起こる電解液の分
解反応が抑制されたためと考えられる。一方フェノール
樹脂焼成体の配合比が50重量%を超える範囲で、充放
電効率がフェノール樹脂焼成体の添加に伴い減少してい
るのは、負極合材中のフェノール樹脂焼成体の吸蔵・放
出不可逆なサイトに吸蔵されたリチウムイオンが増大し
たためと考えられる。
When the blending ratio of the phenol resin fired body is in the range of 0 to 25% by weight, the increase in the specific surface area of the negative electrode due to the pressurization is reduced by adding the phenol resin fired body. It is considered that the decomposition reaction of the electrolyte solution occurring at the liquid interface was suppressed. On the other hand, when the blending ratio of the phenol resin fired body exceeds 50% by weight, the charge / discharge efficiency decreases with the addition of the phenol resin fired body. This is probably because the amount of lithium ions occluded at such sites increased.

【0048】本実施例では、フェノール樹脂焼成体の配
合比が10〜50重量%の範囲内において、負極充填密
度を1.5(g/cc)以上に保持したまま、なお且つ
初回充放電効率を向上させることにより電池の容量を向
上させることができた。
In this example, when the blending ratio of the phenol resin fired body was within the range of 10 to 50% by weight, the initial charge / discharge efficiency was maintained while maintaining the negative electrode packing density at 1.5 (g / cc) or more. The capacity of the battery was able to be improved by improving the capacity.

【0049】[0049]

【発明の効果】以上の説明で明らかなように、本発明に
よる負極に黒鉛材料Aと難黒鉛化炭素材料Bとで構成さ
れた複合炭素材料を用いることによって、高容量を有し
充放電効率にも優れる非水電解液二次電池を提供するこ
とができる。
As is apparent from the above description, by using the composite carbon material composed of the graphite material A and the non-graphitizable carbon material B for the negative electrode according to the present invention, a high capacity and a high charge-discharge efficiency can be obtained. It is possible to provide a non-aqueous electrolyte secondary battery that is also excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における円筒電池を示す縦断面
図。
FIG. 1 is a longitudinal sectional view showing a cylindrical battery according to an embodiment of the present invention.

【図2】各実施例と各比較例のそれぞれ初回充放電効率
の比較を示すグラフ図。
FIG. 2 is a graph showing a comparison of initial charge / discharge efficiencies of each example and each comparative example.

【符号の説明】[Explanation of symbols]

1 電池(缶)ケース 2 正極(シート) 3 負極(シート) 4 セパレータ 5 PTC 6 安全弁(ラプチャーディスク) 7 (絶縁)キャップ DESCRIPTION OF SYMBOLS 1 Battery (can) case 2 Positive electrode (sheet) 3 Negative electrode (sheet) 4 Separator 5 PTC 6 Safety valve (rupture disk) 7 (Insulation) cap

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物を活物質とする
正極と、非水電解液と、リチウムを吸蔵・放出できる炭
素材を活物質とする負極とを備えた非水系電解液二次電
池において、前記負極が黒鉛材料Aと難黒鉛化性炭素材
料Bとで構成されてなる複合炭素材料であることを特徴
とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery including a positive electrode using a lithium-containing composite oxide as an active material, a non-aqueous electrolyte, and a negative electrode using a carbon material capable of occluding and releasing lithium as an active material. A non-aqueous electrolyte secondary battery, wherein the negative electrode is a composite carbon material composed of a graphite material A and a non-graphitizable carbon material B.
【請求項2】 前記複合炭素材料における黒鉛材料A
が、ピッチの炭素化により得られるメソフェーズ小球体
からなるメソカーボンマイクロビーズを熱処理すること
により黒鉛化したもの、もしくは前記メソフェーズ小球
体からなる炭素繊維を熱処理することにより黒鉛化した
ものである請求項1記載の非水電解液二次電池。
2. A graphite material A in the composite carbon material
Is a graphitized by heat-treating mesocarbon microbeads composed of mesophase spherules obtained by carbonization of pitch, or graphitized by heat-treating carbon fibers composed of the mesophase spherules. 2. The non-aqueous electrolyte secondary battery according to 1.
【請求項3】 前記複合炭素材料における難黒鉛化性炭
素材料Bが、フエノール樹脂、フラン樹脂およびセルロ
ース樹脂からなる群より選ばれる樹脂を炭化して得られ
る炭素材料である請求項1または2に記載の非水電解液
二次電池。
3. The non-graphitizable carbon material B in the composite carbon material is a carbon material obtained by carbonizing a resin selected from the group consisting of a phenol resin, a furan resin and a cellulose resin. The non-aqueous electrolyte secondary battery according to the above.
【請求項4】 前記複合炭素材料における難黒鉛化性炭
素材料Bの配合比が、重量基準で10〜50%の範囲内
にある請求項1ないし3のいずれかに記載の非水電解液
二次電池。
4. The non-aqueous electrolyte solution according to claim 1, wherein the compounding ratio of the non-graphitizable carbon material B in the composite carbon material is within a range of 10 to 50% by weight. Next battery.
【請求項5】 前記複合炭素材料、および結着剤からな
る負極合材を集電体上に層状に形成してなる負極電極に
おいて、前記負極合材層の充填密度が1.3g/cc以
上であり、且つ、該負極合材層のB.E.T.1点法に
よる表面積が1.5m2 /g以下である請求項1ないし
4のいずれかに記載の非水電解液二次電池。
5. A negative electrode obtained by forming a negative electrode mixture comprising the composite carbon material and a binder in a layer on a current collector, wherein the packing density of the negative electrode mixture layer is 1.3 g / cc or more. And B.I. of the negative electrode mixture layer. E. FIG. T. Non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 which is the surface area by one-point method is 1.5 m 2 / g or less.
JP9029028A 1997-02-13 1997-02-13 Non-aqueous electrolyte secondary battery Pending JPH10228896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029028A JPH10228896A (en) 1997-02-13 1997-02-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029028A JPH10228896A (en) 1997-02-13 1997-02-13 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10228896A true JPH10228896A (en) 1998-08-25

Family

ID=12264969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029028A Pending JPH10228896A (en) 1997-02-13 1997-02-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10228896A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2003142075A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2004303674A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Non-aqueous electrolyte secondary battery and negative electrode material
JP2005209591A (en) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd Negative electrode and non-aqueous type electrolyte secondary battery
JP2005222773A (en) * 2004-02-04 2005-08-18 Toshiba Corp Nonaqueous electrolyte secondary battery and anode for the same
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
WO2007099877A1 (en) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007335360A (en) * 2006-06-19 2007-12-27 Hitachi Ltd Lithium secondary cell
JP2009206000A (en) * 2008-02-29 2009-09-10 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
WO2011007805A1 (en) * 2009-07-17 2011-01-20 本田技研工業株式会社 Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2013520805A (en) * 2010-02-26 2013-06-06 上海奥威科技開発有限公司 Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
JP2017076525A (en) * 2015-10-15 2017-04-20 株式会社クレハ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JPWO2017130918A1 (en) * 2016-01-29 2018-11-22 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2003142075A (en) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2004303674A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Non-aqueous electrolyte secondary battery and negative electrode material
JP2005209591A (en) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd Negative electrode and non-aqueous type electrolyte secondary battery
JP2005222773A (en) * 2004-02-04 2005-08-18 Toshiba Corp Nonaqueous electrolyte secondary battery and anode for the same
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
US8367252B2 (en) 2006-02-28 2013-02-05 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2007099877A1 (en) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007234355A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007335360A (en) * 2006-06-19 2007-12-27 Hitachi Ltd Lithium secondary cell
JP2009206000A (en) * 2008-02-29 2009-09-10 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
WO2011007805A1 (en) * 2009-07-17 2011-01-20 本田技研工業株式会社 Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2013520805A (en) * 2010-02-26 2013-06-06 上海奥威科技開発有限公司 Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery
JP2017076525A (en) * 2015-10-15 2017-04-20 株式会社クレハ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JPWO2017130918A1 (en) * 2016-01-29 2018-11-22 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH10228896A (en) Non-aqueous electrolyte secondary battery
JPH10158005A (en) Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP2000340231A (en) Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP2001076727A (en) Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP4798741B2 (en) Non-aqueous secondary battery
KR100578869B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP4689391B2 (en) Method for producing graphite material for negative electrode material of lithium ion secondary battery
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JPH117958A (en) Manufacture of positive electrode active material, and non-aqueous electrolyte secondary battery
JP2003017051A (en) Negative electrode active material, manufacturing method of the same, and non-aqueous electrolyte secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JPH06302315A (en) Electrode for nonaqueous electrolytic secondary battery and its manufacture
JPH07134988A (en) Nonaqueous electrolyte secondary battery
CN112424118A (en) Method for producing monolithic mesophase graphitized article
JP2000123835A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery using the same as negative electrode active material
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP2000268878A (en) Lithium ion secondary battery
JP2001085009A (en) Positive electrode active material and its manufacture
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP4080110B2 (en) Non-aqueous electrolyte battery