JP2005222773A - Nonaqueous electrolyte secondary battery and anode for the same - Google Patents

Nonaqueous electrolyte secondary battery and anode for the same Download PDF

Info

Publication number
JP2005222773A
JP2005222773A JP2004028097A JP2004028097A JP2005222773A JP 2005222773 A JP2005222773 A JP 2005222773A JP 2004028097 A JP2004028097 A JP 2004028097A JP 2004028097 A JP2004028097 A JP 2004028097A JP 2005222773 A JP2005222773 A JP 2005222773A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
secondary battery
current collector
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028097A
Other languages
Japanese (ja)
Other versions
JP4746272B2 (en
Inventor
Meiko Fukui
明香 福井
Shusuke Inada
周介 稲田
Toru Yajima
亨 矢嶋
Asako Sato
麻子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004028097A priority Critical patent/JP4746272B2/en
Publication of JP2005222773A publication Critical patent/JP2005222773A/en
Application granted granted Critical
Publication of JP4746272B2 publication Critical patent/JP4746272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with a long charge/discharge cycle life. <P>SOLUTION: The nonaqueous electrolyte secondary battery comprises a cathode 3, a current collector and an activator-containing layer carried by the current collector, a nonaqueous electrolyte, and the anode, fulfilling an equation: 5≤Cs/Cs<SB>Cu</SB>≤15 (1), wherein, Cs denotes a static capacity (nF) of the anode, and Cs<SB>Cu</SB>denotes a static capacity (nF) of the current collector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解質二次電池及び非水電解質二次電池用負極に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and a negative electrode for a non-aqueous electrolyte secondary battery.

近年、移動体通信機、ノートブック型パソコン、パームトップ型パソコン、一体型ビデオカメラ、ポータブルCD(MD)プレーヤー、コードレス電話等の電子機器の小形化、軽量化を図る上で、これらの電子機器の電源として、特に小型で大容量の電池が求められている。   In recent years, electronic devices such as mobile communication devices, notebook computers, palmtop computers, integrated video cameras, portable CD (MD) players, cordless telephones, etc. have been reduced in size and weight. As a power source, a battery having a small size and a large capacity is particularly demanded.

これら電子機器の電源として普及している電池としては、アルカリマンガン電池のような一次電池や、ニッケルカドミウム電池、ニッケル水素電池等の二次電池が挙げられる。その中でも、正極にリチウム複合酸化物を用い、かつ負極にリチウムイオンを吸蔵・放出できる炭素質材料などを用いた非水電解質二次電池が、小型軽量で単電池電圧が高く、高エネルギー密度を得られることから注目されている。   Examples of batteries that are widely used as power sources for these electronic devices include primary batteries such as alkaline manganese batteries, and secondary batteries such as nickel cadmium batteries and nickel metal hydride batteries. Among them, non-aqueous electrolyte secondary batteries that use lithium composite oxide for the positive electrode and carbonaceous materials that can occlude and release lithium ions for the negative electrode are small and light, have a high unit cell voltage, and a high energy density. It is attracting attention because it is obtained.

この非水電解質二次電池においては、高容量化に伴って負極密度が高くなっていることから、負極での非水電解液の含浸性の低下が問題になっている。   In this non-aqueous electrolyte secondary battery, since the negative electrode density increases as the capacity increases, the impregnation of the non-aqueous electrolyte in the negative electrode is problematic.

電極の非水電解液の含浸速度を向上させる方法として、特許文献1には、外装部材内に正極、負極、セパレータ及び非水電解液を有する発電要素を密封した後、圧力容器内で加圧処理することが提案されている。また、この特許文献1では、圧力容器内での加圧処理後に、正負極間の静電容量を測定して非水電解液の含浸状態を判定することが行われている。   As a method for improving the impregnation rate of the nonaqueous electrolyte solution of the electrode, Patent Document 1 discloses that a power generation element having a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte solution is sealed in an exterior member and then pressurized in a pressure vessel. It has been proposed to process. Moreover, in this patent document 1, after the pressurization process in a pressure vessel, the electrostatic capacitance between positive and negative electrodes is measured and the impregnation state of a non-aqueous electrolyte is determined.

しかしながら、特許文献1の方法では、満含浸状態と判定された二次電池でも、充放電サイクル寿命が短いことがある。すなわち、特許文献1のように加圧処理で電解液を均一に拡散させようとしても、電解液の分布は最も濡れ性の高いセパレータに偏るために正極と負極の電解液の含浸状態が不十分になって含浸斑が生じる。この電解液の含浸状態を正負極間の静電容量で判定すると、正負極間の静電容量は、平行平板型コンデンサーとしての静電容量で、総合評価であり、電極個々の含浸状態を評価しているわけではないため、電極の含浸状態にやや問題があったとしても、良好との評価が得られる。その結果、加圧処理後に行われる初期充電がまだらになされ、さらに充放電サイクルを重ねると、負極においてLiが析出する電析を生じるため、充放電サイクル寿命が短くなる。
特開2002−110252号公報
However, according to the method of Patent Document 1, even a secondary battery determined to be fully impregnated may have a short charge / discharge cycle life. That is, even if the electrolytic solution is to be uniformly diffused by pressure treatment as in Patent Document 1, the distribution of the electrolytic solution is biased toward the separator having the highest wettability, so the impregnation state of the positive electrode and the negative electrode is insufficient. And impregnation spots occur. When the impregnation state of the electrolyte is determined by the capacitance between the positive and negative electrodes, the capacitance between the positive and negative electrodes is a comprehensive evaluation as a parallel plate capacitor, and the impregnation state of each electrode is evaluated. Therefore, even if there is a slight problem in the impregnation state of the electrode, it is possible to obtain a favorable evaluation. As a result, the initial charge performed after the pressurization process is mottled, and further repeated charge / discharge cycles cause electrodeposition of Li deposition in the negative electrode, thus shortening the charge / discharge cycle life.
JP 2002-110252 A

本発明は、充放電サイクル寿命の長い非水電解質二次電池を提供することを目的とする。   An object of the present invention is to provide a nonaqueous electrolyte secondary battery having a long charge / discharge cycle life.

また、本発明は、非水電解質二次電池の充放電サイクル寿命を向上することが可能な非水電解質二次電池用負極を提供することを目的とする。   Moreover, an object of this invention is to provide the negative electrode for nonaqueous electrolyte secondary batteries which can improve the charging / discharging cycle life of a nonaqueous electrolyte secondary battery.

本発明に係る非水電解質二次電池は、正極と、
集電体及び前記集電体に担持される活物質含有層を含み、かつ下記(1)式を満足する負極と、
非水電解質と
を具備することを特徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode,
A negative electrode comprising a current collector and an active material-containing layer carried by the current collector, and satisfying the following formula (1):
And a non-aqueous electrolyte.

5≦Cs/CsCu≦15 (1)
但し、Csは前記負極の静電容量(nF)で、CsCuは前記集電体の静電容量(nF)である。
5 ≦ Cs / Cs Cu ≦ 15 (1)
Where Cs is the capacitance (nF) of the negative electrode, and Cs Cu is the capacitance (nF) of the current collector.

本発明に係る非水電解質二次電池用負極は、集電体及び前記集電体に担持される活物質含有層を含み、かつ前記(1)式を満足することを特徴とするものである。   A negative electrode for a non-aqueous electrolyte secondary battery according to the present invention includes a current collector and an active material-containing layer carried on the current collector, and satisfies the above formula (1). .

本発明によれば、充放電サイクル寿命が向上された非水電解質二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having an improved charge / discharge cycle life.

また、本発明によれば、非水電解質二次電池の充放電サイクル寿命を向上することが可能な非水電解質二次電池用負極を提供することができる。   Moreover, according to this invention, the negative electrode for nonaqueous electrolyte secondary batteries which can improve the charging / discharging cycle life of a nonaqueous electrolyte secondary battery can be provided.

まず、本発明に係る非水電解質二次電池の正極、負極及び非水電解質について説明する。   First, the positive electrode, negative electrode, and nonaqueous electrolyte of the nonaqueous electrolyte secondary battery according to the present invention will be described.

1)正極
この正極は、集電体と、集電体の片面もしくは両面に担持される活物質含有層とを含む。
1) Positive electrode The positive electrode includes a current collector and an active material-containing layer supported on one or both surfaces of the current collector.

前記活物質含有層には、正極活物質と併せて結着剤や導電剤を含有させても良い。   The active material-containing layer may contain a binder or a conductive agent together with the positive electrode active material.

前記正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウム含有複合酸化物、二硫化チタンや二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。リチウム含有複合酸化物としては、例えば、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物などを挙げることができる。中でも、リチウム含有コバルト酸化物(例えば、LiCoO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)を用いると、高電圧が得られるために好ましい。なお、正極活物質としては、1種類の酸化物を単独で使用しても、あるいは2種類以上の酸化物を混合して使用しても良い。 Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium-containing composite oxides, chalcogen compounds such as titanium disulfide and molybdenum disulfide. Examples of the lithium-containing composite oxide include lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and vanadium oxide containing lithium. be able to. Among them, when a lithium-containing cobalt oxide (for example, LiCoO 2 ), a lithium-containing nickel cobalt oxide (for example, LiNi 0.8 Co 0.2 O 2 ), or a lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ) is used. This is preferable because a high voltage can be obtained. As the positive electrode active material, one kind of oxide may be used alone, or two or more kinds of oxides may be mixed and used.

前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。   Examples of the conductive agent include acetylene black, carbon black, and graphite.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリエーテルサルフォン、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyether sulfone, ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). Can be used.

前記集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates can be formed from, for example, aluminum, stainless steel, or nickel.

前記正極は、例えば、正極活物質に導電剤および結着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、乾燥して薄板状にすることにより作製される。   The positive electrode is produced, for example, by suspending a conductive agent and a binder in an appropriate solvent in a positive electrode active material, applying the suspension to a current collector, and drying to form a thin plate.

2)負極
前記負極は、集電体と、集電体の片面もしくは両面に担持される活物質含有層とを含むもので、かつ下記(1)式を満足する。
2) Negative electrode The negative electrode includes a current collector and an active material-containing layer supported on one or both surfaces of the current collector, and satisfies the following formula (1).

5≦Cs/CsCu≦15 (1)
但し、Csは前記負極の静電容量(nF)で、CsCuは前記集電体の静電容量(nF)である。
5 ≦ Cs / Cs Cu ≦ 15 (1)
Where Cs is the capacitance (nF) of the negative electrode, and Cs Cu is the capacitance (nF) of the current collector.

前記活物質含有層は、リチウムを吸蔵・放出する負極活物質と併せて結着剤を含んでいても良い。   The active material-containing layer may contain a binder together with a negative electrode active material that occludes / releases lithium.

前記負極活物質としては、例えば、リチウムを吸蔵・放出する炭素材料などを挙げることができる。この炭素材料としては、例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料; 熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体など(特に、メソフェーズピッチ系炭素繊維が容量や充放電サイクル特性が高くなり好ましい)に500〜3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料;等から、形状の異なる2種類以上の材料を使用することが好ましい。   Examples of the negative electrode active material include carbon materials that occlude and release lithium. Examples of the carbon material include graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor-phase carbonaceous material, resin fired body, and other graphite materials or carbonaceous materials; thermosetting resin, isotropic pitch, mesophase pitch. Graphite material obtained by heat-treating carbon-based carbon, mesophase pitch-based carbon fiber, mesophase spherules, etc. (especially, mesophase pitch-based carbon fiber is preferable because capacity and charge / discharge cycle characteristics are high) at 500 to 3000 ° C. It is preferable to use two or more kinds of materials having different shapes from carbonaceous materials.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. Can be used.

前記集電体としては、銅箔のような銅板を用いることが望ましいが、多孔質構造を有するものでも良い。   As the current collector, it is desirable to use a copper plate such as a copper foil, but it may have a porous structure.

静電容量比(Cs/CsCu)を前述した範囲に規定する理由を説明する。集電体には非水電解液がほとんど含浸されず、集電体の静電容量(CsCu)はほぼ一定の値を取ることから、静電容量比(Cs/CsCu)の値により活物質含有層の非水電解液含浸性を示すことができる。静電容量比(Cs/CsCu)を5未満にすると、負極の非水電解液分布のむらが大きくなるため、初期充電がまだらになされ、充放電サイクルを重ねると、Liが析出する電析が起こり、充放電サイクル寿命が短くなる。一方、静電容量比(Cs/CsCu)が15を超えると、負極が非水電解液を吸いすぎて、負極側に非水電解液が偏在する、換言すれば正極の非水電解液が枯渇するため、正極の周縁並びにセパレータの非水電解液保持量が不足し、充放電がうまくいかなくなり、充放電サイクル特性が低下する。静電容量比(Cs/CsCu)のより好ましい範囲は、8〜12である。 The reason for defining the capacitance ratio (Cs / Cs Cu ) within the above-described range will be described. The current collector is hardly impregnated with a non-aqueous electrolyte, and the current collector has a substantially constant capacitance (Cs Cu ). Therefore, the current collector is activated depending on the value of the capacitance ratio (Cs / Cs Cu ). The non-aqueous electrolyte impregnation property of the substance-containing layer can be shown. If the capacitance ratio (Cs / Cs Cu ) is less than 5, the non-uniform distribution of the non-aqueous electrolyte in the negative electrode increases, so that the initial charge is mottled. Occurs and the charge / discharge cycle life is shortened. On the other hand, when the capacitance ratio (Cs / Cs Cu ) exceeds 15, the negative electrode absorbs too much non-aqueous electrolyte, and the non-aqueous electrolyte is unevenly distributed on the negative electrode side. Due to depletion, the amount of the nonaqueous electrolyte held by the peripheral edge of the positive electrode and the separator is insufficient, charging / discharging is not successful, and charging / discharging cycle characteristics deteriorate. A more preferable range of the capacitance ratio (Cs / Cs Cu ) is 8-12.

前記負極は、例えば、負極活物質と結着剤とを溶媒の存在下で混練し、得られた懸濁物を集電体に塗布し、乾燥した後、所望の圧力で1回プレスもしくは2〜5回多段階プレスすることにより作製されるが、この際、活物質及び結着剤の種類とこれらの添加量、ローラ径、プレス圧及びプレス回数を調節することにより静電容量比(Cs/CsCu)を前述した(1)式の範囲内に設定することができる。これら製造条件を調整することにより静電容量比(Cs/CsCu)を前述した(1)式の範囲内に設定できる理由は明らかではないが、負極の均質性を高められることが関係しているものと推測される。 The negative electrode is prepared by, for example, kneading a negative electrode active material and a binder in the presence of a solvent, applying the obtained suspension to a current collector, drying it, and then pressing it once at a desired pressure or 2 It is produced by performing multi-stage pressing up to 5 times. At this time, the capacitance ratio (Cs) is adjusted by adjusting the types of the active material and the binder and the addition amount thereof, the roller diameter, the pressing pressure and the number of times of pressing. / Cs Cu ) can be set within the range of equation (1) described above. The reason why the capacitance ratio (Cs / Cs Cu ) can be set within the range of the above-described formula (1) by adjusting these manufacturing conditions is not clear, but is related to the fact that the homogeneity of the negative electrode can be improved. Presumed to be.

正極と負極の間には、セパレータを介在させることができる。   A separator can be interposed between the positive electrode and the negative electrode.

セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。中でも、微多孔性の膜は、過充電等による発熱で電極群の温度が異常に上昇すると、セパレータを構成する樹脂が塑性変形し微細な孔が塞がる、いわゆるシャットダウン現象を生じ、リチウムイオンの流れが遮断され、それ以上の発熱を防止し、過充電状態を安全に終了させることができるので好ましい。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。セパレータの形成材料としては、前述した種類の中から選ばれる1種類または2種類以上を用いることができる。   As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. In particular, the microporous membrane causes a so-called shutdown phenomenon in which the resin constituting the separator plastically deforms and closes the fine pores when the temperature of the electrode group rises abnormally due to heat generated by overcharging, etc., and the flow of lithium ions Is prevented, and further overheating is prevented, and the overcharge state can be safely terminated, which is preferable. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. As a material for forming the separator, one type or two or more types selected from the types described above can be used.

上記正極、負極、セパレータを組合せて電極群を形成する。この電極群は、例えば、(i)正極及び負極をその間にセパレータを介在させて偏平形状または渦巻き状に捲回するか、(ii)正極及び負極をその間にセパレータを介在させて渦巻き状に捲回した後、径方向に圧縮するか、(iii)正極及び負極をその間にセパレータを介在させて1回以上折り曲げるか、あるいは(iv)正極と負極とをその間にセパレータを介在させながら積層する方法により作製される。   An electrode group is formed by combining the positive electrode, the negative electrode, and the separator. For example, (i) the positive electrode and the negative electrode are wound in a flat shape or a spiral shape with a separator interposed therebetween, or (ii) the positive electrode and the negative electrode are wound in a spiral shape with a separator interposed therebetween. Rotating and then compressing in the radial direction, (iii) bending the positive electrode and the negative electrode one or more times with a separator interposed therebetween, or (iv) laminating the positive electrode and the negative electrode with a separator interposed therebetween It is produced by.

電極群には、プレスを施さなくても良いが、正極、負極及びセパレータの一体化強度を高めるためにプレスを施しても良い。また、プレス時に加熱を施すことも可能である。   The electrode group need not be pressed, but may be pressed to increase the integrated strength of the positive electrode, the negative electrode, and the separator. It is also possible to heat at the time of pressing.

なお、本発明においては、正極及び負極に非水電解液を含浸させる限り、セパレータの代わりに固体状もしくはゲル状の電解質層を用いることができる。   In the present invention, as long as the positive electrode and the negative electrode are impregnated with the nonaqueous electrolytic solution, a solid or gel electrolyte layer can be used instead of the separator.

4)非水電解質
非水電解質には、液体状のものを使用することができる。液状の非水電解質としては、非水溶媒と、この非水溶媒に溶解される電解質(例えば、リチウム塩)とを含む所謂非水電解液を挙げることができる。
4) Non-aqueous electrolyte As the non-aqueous electrolyte, a liquid one can be used. Examples of the liquid non-aqueous electrolyte include a so-called non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte (for example, lithium salt) dissolved in the non-aqueous solvent.

非水溶媒としては、例えば、γ−ブチロラクトン(GBL)、環状カーボネート(例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)など)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、フェニルエチレンカーボネート(phEC)、鎖状カーボネート(例えば、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)など)、γ−バレロラクトン(VL)、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)、2―メチルフラン(2Me−F)、フラン(F)、チオフェン(TIOP)、カテコールカーボネート(CATC)、エチレンサルファイト(ES)、12−クラウン−4(Crown)、テトラエチレングリコールジメチルエーテル(Ether)、トリオクチルフォスフェート(TOP)等を挙げることができる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることができる。   Examples of the non-aqueous solvent include γ-butyrolactone (GBL), cyclic carbonate (for example, ethylene carbonate (EC), propylene carbonate (PC), etc.), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), phenylethylene carbonate. (PhEC), chain carbonate (eg, diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), etc.), γ-valerolactone (VL), methyl propionate (MP), ethyl propionate ( EP), 2-methylfuran (2Me-F), furan (F), thiophene (TIOP), catechol carbonate (CATC), ethylene sulfite (ES), 12-crown-4 (Crown), tetraethyleneglycol Examples include rudimethyl ether (Ether) and trioctyl phosphate (TOP). The kind of the non-aqueous solvent to be used can be one kind or two or more kinds.

中でも、環状カーボネートとGBLを含むもの、環状カーボネートと鎖状カーボネートを含むもの、ECとPCを含むものなどが好ましい。特に好適なものは、環状カーボネートとGBLを含む非水溶媒である。この非水溶媒について詳しく説明する。   Among them, preferred are those containing cyclic carbonate and GBL, those containing cyclic carbonate and chain carbonate, and those containing EC and PC. Particularly suitable is a non-aqueous solvent containing cyclic carbonate and GBL. This non-aqueous solvent will be described in detail.

a.γ−ブチロラクトン(GBL)
GBLは、充電状態、すなわち、正極の電位が高い状態での正極との反応性が低いため、充電状態における非水溶媒の分解反応と発熱反応を抑えることができる。GBLの比率は、40〜80重量%の範囲内にすることが望ましい。
a. γ-butyrolactone (GBL)
Since GBL has low reactivity with the positive electrode in a charged state, that is, in a state where the potential of the positive electrode is high, the decomposition reaction and exothermic reaction of the nonaqueous solvent in the charged state can be suppressed. The GBL ratio is desirably in the range of 40 to 80% by weight.

b.環状カーボネート
環状カーボネートは、GBLの利点、すなわち、凝固点が低くてリチウムイオン伝導性が高く、かつ安全性に優れるという利点を損なうことなく、負極活物質中に吸蔵されたリチウムイオンとGBLとの反応を抑えることができる。環状カーボネートの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)が好ましい。特にECは、リチウムイオンとGBLとの反応を抑える効果が大きいので好ましい。なお、環状カーボネートの種類は、1種類でも良いし、2種類以上にすることも可能である。
b. Cyclic carbonate Cyclic carbonate is a reaction between lithium ions occluded in the negative electrode active material and GBL without impairing the advantages of GBL, ie, the low freezing point, high lithium ion conductivity, and excellent safety. Can be suppressed. Among the cyclic carbonates, ethylene carbonate (EC) and propylene carbonate (PC) are preferable. In particular, EC is preferable because it has a large effect of suppressing the reaction between lithium ions and GBL. In addition, the kind of cyclic carbonate may be one, or two or more kinds.

環状カーボネートの非水溶媒全重量に対する比率は、20〜50重量%の範囲内にすることが好ましい。   The ratio of the cyclic carbonate to the total weight of the non-aqueous solvent is preferably in the range of 20 to 50% by weight.

c.副成分
非水溶媒中には、GBL、環状カーボネート以外の他の溶媒を含有させることができる。副成分として好ましいのは、ビニレンカーボネート(VC)を含むものである。VCを含む副成分は、負極表面の保護皮膜の緻密性を高めることができるため、充電状態での長期高温保存特性を改善することが可能になる。非水溶媒中の副成分の重量比率は、10重量%以下の範囲内にすることが望ましい。
c. Subcomponent Other solvents other than GBL and cyclic carbonate can be contained in the non-aqueous solvent. Preferred as an auxiliary component is one containing vinylene carbonate (VC). Subcomponents containing VC can improve the denseness of the protective film on the negative electrode surface, and thus can improve long-term high-temperature storage characteristics in a charged state. It is desirable that the weight ratio of the minor component in the non-aqueous solvent is within the range of 10% by weight or less.

次いで、電解質について説明する。   Next, the electrolyte will be described.

電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム(LiN(CF3SO22)、ビスペンタフルオロエチルスルホニルイミドリチウム(LiN(C25SO22)などのリチウム塩を挙げることができる。使用する電解質の種類は、1種類または2種類以上にすることができる。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluorometa. Lithium salts such as lithium sulfonate (LiCF 3 SO 3 ), bistrifluoromethylsulfonylimide lithium (LiN (CF 3 SO 2 ) 2 ), bispentafluoroethylsulfonylimide lithium (LiN (C 2 F 5 SO 2 ) 2 ) Can be mentioned. The type of electrolyte used can be one type or two or more types.

中でも、LiBF4は、二次電池の温度が上昇したときの正極との反応性が低いことから、電流遮断後、非水電解質の分解反応を速やかに終結させることができるため、好ましい。また、(LiN(CF3SO22およびLiN(C25SO22のうち少なくとも一方からなるリチウム塩と、LiBF4からなるリチウム塩とを含有する混合塩か、あるいはLiBF4及びLiPF6を含有する混合塩を用いると、高温でのサイクル寿命をより向上することができる。 Among them, LiBF 4 is preferable because it has a low reactivity with the positive electrode when the temperature of the secondary battery rises, and thus can quickly terminate the decomposition reaction of the nonaqueous electrolyte after the current interruption. Further, (a lithium salt of at least one of LiN (CF 3 SO 2) 2 and LiN (C 2 F 5 SO 2 ) 2, or a mixed salt containing a lithium salt comprising LiBF 4, or LiBF 4 and When a mixed salt containing LiPF 6 is used, the cycle life at a high temperature can be further improved.

前記電解質の前記非水溶媒に対する溶解量は、0.5〜2.5モル/Lとすることが望ましい。   The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2.5 mol / L.

非水電解液の量は、電池単位容量100mAh当たり0.2〜0.6gにすることが好ましい。   The amount of the non-aqueous electrolyte is preferably 0.2 to 0.6 g per 100 mAh of battery unit capacity.

非水電解液の粘度(20℃)を3〜50(cP)の範囲にすると共に、非水電解液の電導度(20℃)は、2〜10(mS/cm)の範囲にすることが好ましい。これは以下に説明する理由によるものである。静電容量比(Cs/CsCu)は、非水電解液の粘度あるいは誘電率により変動し得るため、負極の含浸性が劣るものであっても、非水電解液の粘度あるいは誘電率を変化させることにより静電容量比(Cs/CsCu)を前述した(1)式の範囲内に収めることが可能である。しかしながら、このような場合、負極の含浸性が低いばかりか、粘度あるいは誘電率が充放電に適切な範囲から外れていることがある。非水電解液の粘度及び誘電率を前述した範囲内にすることによって、非水電解液に必要とされる特性を確保しつつ、含浸性に優れた負極を得ることができる。 The viscosity (20 ° C.) of the non-aqueous electrolyte is in the range of 3 to 50 (cP), and the conductivity (20 ° C.) of the non-aqueous electrolyte is in the range of 2 to 10 (mS / cm). preferable. This is due to the reason explained below. The capacitance ratio (Cs / Cs Cu ) can vary depending on the viscosity or dielectric constant of the non-aqueous electrolyte, so even if the impregnation of the negative electrode is poor, the viscosity or dielectric constant of the non-aqueous electrolyte is changed. As a result, the capacitance ratio (Cs / Cs Cu ) can be kept within the range of the above-described equation (1). However, in such a case, not only the impregnation property of the negative electrode is low, but also the viscosity or the dielectric constant may be out of the appropriate range for charging and discharging. By setting the viscosity and dielectric constant of the nonaqueous electrolytic solution within the above-described ranges, it is possible to obtain a negative electrode having excellent impregnation properties while ensuring the characteristics required for the nonaqueous electrolytic solution.

上述した正極、負極及び非水電解質が収容される容器には、特に制限がなく、例えば、金属板、金属箔、樹脂フィルム、ラミネートフィルム等から形成することができる。   There is no restriction | limiting in particular in the container in which the positive electrode mentioned above, a negative electrode, and a nonaqueous electrolyte are accommodated, For example, it can form from a metal plate, metal foil, a resin film, a laminate film, etc.

本発明に係る非水電解質二次電池は、角形、円筒形、薄型等の様々な形態に適用することが可能である。この一例である薄型非水電解質二次電池を図1〜図2を参照して詳細に説明する。   The nonaqueous electrolyte secondary battery according to the present invention can be applied to various forms such as a rectangular shape, a cylindrical shape, and a thin shape. A thin nonaqueous electrolyte secondary battery as an example will be described in detail with reference to FIGS.

図1及び図2に示すように、矩形のカップ状をなす容器本体1内には、電極群2が収納されている。電極群2は、正極3と、負極4と、正極3と負極4の間に配置されるセパレータ5を含む積層物が偏平形状に捲回された構造を有する。非水電解質は、電極群2に保持されている。容器本体1の縁の一部は幅広になっており、蓋板6として機能する。容器本体1と蓋板6は、それぞれ、ラミネートフィルムから構成される。このラミネートフィルムは、外部保護層7と、熱可塑性樹脂を含有する内部保護層8と、外部保護層7と内部保護層8の間に配置される金属層9とを含む。容器本体1には蓋体6が内部保護層8の熱可塑性樹脂を用いてヒートシールによって固定され、それにより容器内に電極群2が密封される。正極3には正極タブ10が接続され、負極4には負極タブ11が接続され、それぞれ容器の外部に引き出されて、正極端子及び負極端子の役割を果たす。   As shown in FIG.1 and FIG.2, the electrode group 2 is accommodated in the container main body 1 which makes | forms a rectangular cup shape. The electrode group 2 has a structure in which a laminate including a positive electrode 3, a negative electrode 4, and a separator 5 disposed between the positive electrode 3 and the negative electrode 4 is wound into a flat shape. The nonaqueous electrolyte is held in the electrode group 2. A part of the edge of the container body 1 is wide and functions as the lid plate 6. The container body 1 and the cover plate 6 are each composed of a laminate film. The laminate film includes an external protective layer 7, an internal protective layer 8 containing a thermoplastic resin, and a metal layer 9 disposed between the external protective layer 7 and the internal protective layer 8. A lid 6 is fixed to the container body 1 by heat sealing using a thermoplastic resin of the inner protective layer 8, whereby the electrode group 2 is sealed in the container. A positive electrode tab 10 is connected to the positive electrode 3, and a negative electrode tab 11 is connected to the negative electrode 4, and each is pulled out of the container and serves as a positive electrode terminal and a negative electrode terminal.

本発明者らは鋭意研究を重ねた結果、充放電サイクル寿命が低下する原因は負極の電解液含浸状態にあり、前述した(1)式を満足する負極を用いることによって、充放電サイクル寿命が向上されることを見出した。これは、前述した(1)式を満足する負極が、正極と負極の電解液バランスを適正範囲内に保ちつつ(負極が電解液を吸収し過ぎず)、負極の非水電解液分布の均一性を高めることができるためであると推測されるが、詳細は明らかではない。   As a result of intensive studies, the inventors have found that the reason why the charge / discharge cycle life is reduced is that the negative electrode is in an electrolyte-impregnated state. By using the negative electrode satisfying the above-described formula (1), the charge / discharge cycle life is reduced. I found it to be improved. This is because the negative electrode satisfying the above-described formula (1) maintains the electrolyte solution balance between the positive electrode and the negative electrode within an appropriate range (the negative electrode does not absorb the electrolyte too much), and the non-aqueous electrolyte distribution in the negative electrode is uniform. Although it is assumed that it is possible to enhance the nature, details are not clear.

次いで、本発明に係る非水電解質二次電池の製造方法について説明する。   Subsequently, the manufacturing method of the nonaqueous electrolyte secondary battery which concerns on this invention is demonstrated.

本発明に係る非水電解質二次電池の製造方法は、集電体及び前記集電体に担持される活物質含有層を含み、かつ静電容量比(Cs/CsCu)が前記(1)式を満足する負極と、正極と、前記正極及び前記負極に保持される非水電解質とを備えた未初充電二次電池を組み立てる工程と、
前記未初充電二次電池を圧力容器内で加圧する工程と
前記未初充電二次電池に初充電を施す工程と
を具備することを特徴とするものである。
The method for producing a nonaqueous electrolyte secondary battery according to the present invention includes a current collector and an active material-containing layer supported on the current collector, and the capacitance ratio (Cs / Cs Cu ) is the above (1). Assembling a non-initial charge secondary battery comprising a negative electrode satisfying the formula, a positive electrode, and a non-aqueous electrolyte held by the positive electrode and the negative electrode;
The method includes a step of pressurizing the uncharged secondary battery in a pressure vessel and a step of initially charging the uncharged secondary battery.

(第1工程)
集電体及び前記集電体に担持される活物質含有層を含み、かつ静電容量比(Cs/CsCu)が前記(1)式を満足する負極と、正極と、前記正極及び前記負極に保持される非水電解質とを備えた未初充電二次電池を組み立てる。
(First step)
A negative electrode comprising a current collector and an active material-containing layer carried by the current collector, and having a capacitance ratio (Cs / Cs Cu ) satisfying the formula (1), a positive electrode, the positive electrode, and the negative electrode A non-initial charge secondary battery having a non-aqueous electrolyte held in the battery is assembled.

この未初充電の二次電池は、例えば、正極及び負極を含む電極群を作製した後、前記電極群を容器内に収容し、非水電解液を注入し、容器に密閉処理を施すことにより得られる。得られた未初充電の二次電池にエージング処理などを施すことができる。   The uncharged secondary battery is prepared by, for example, preparing an electrode group including a positive electrode and a negative electrode, then housing the electrode group in a container, injecting a nonaqueous electrolyte, and subjecting the container to a sealing process. can get. An aging process etc. can be given to the obtained secondary battery of the first charge.

(第2工程)
未初充電二次電池を圧力容器内で加圧する。
(Second step)
The uncharged secondary battery is pressurized in a pressure vessel.

加圧処理は、圧力容器内に加圧媒体を供給する方法を採用することができる。この加圧媒体としては、例えば、炭酸ガス、乾燥空気、アルゴンガスや窒素のような不活性ガス、水等を挙げることができる。使用する加圧媒体の種類は、1種類もしくは2種類以上にすることができる。加圧媒体としては、気体、特に水分を含まない気体を用いることが望ましい。   For the pressurization, a method of supplying a pressurizing medium into the pressure vessel can be adopted. Examples of the pressurizing medium include carbon dioxide gas, dry air, an inert gas such as argon gas and nitrogen, and water. The type of the pressure medium to be used can be one type or two or more types. As the pressurizing medium, it is desirable to use a gas, particularly a gas not containing moisture.

加圧力は、ゲージ圧で0.3MPa〜1MPaの範囲内にすることが好ましい。これは以下に説明する理由によるものである。加圧力をゲージ圧で0.3MPa未満にすると、負極の非水電解液の分布を均一にすることが困難になる恐れがある。一方、加圧力がゲージ圧で1MPaを超えると、電極群が過度に圧縮されるため、その反動で初充電の際に負極が大きく膨張して電極群に歪が生じやすくなる。電極群が歪むと、正極と負極間の電極間距離のばらつきが大きくなるため、充放電斑が生じ易くなり、長い充放電サイクル寿命を得られない可能性がある。さらに好ましい範囲は、0.5〜0.9MPaである
(第3工程)
未初充電二次電池に初充電を施す。
The applied pressure is preferably in the range of 0.3 MPa to 1 MPa as a gauge pressure. This is due to the reason explained below. If the applied pressure is less than 0.3 MPa in terms of gauge pressure, it may be difficult to make the distribution of the non-aqueous electrolyte in the negative electrode uniform. On the other hand, when the applied pressure exceeds 1 MPa as the gauge pressure, the electrode group is excessively compressed, so that the negative electrode expands greatly during the initial charge due to the reaction, and the electrode group is likely to be distorted. When the electrode group is distorted, variation in the distance between the positive electrode and the negative electrode is increased, so that charging / discharging spots are likely to occur, and a long charge / discharge cycle life may not be obtained. A more preferable range is 0.5 to 0.9 MPa (third step).
First charge the uncharged secondary battery.

以上説明した本発明に係る非水電解質二次電池の製造方法では、静電容量比(Cs/CsCu)が前記(1)式を満足する負極を備えた未初充電二次電池に圧力容器内で加圧処理を施しているため、二次電池の充放電サイクル寿命をさらに向上することができる。 In the method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention described above, a pressure vessel is applied to an uninitialized secondary battery provided with a negative electrode having a capacitance ratio (Cs / Cs Cu ) satisfying the above formula (1). Since the pressure treatment is performed in the battery, the charge / discharge cycle life of the secondary battery can be further improved.

[実施例]
以下、本発明の実施例を図面を参照して詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
<負極の作製>
炭素材料としてのメソフェーズピッチ系炭素繊維(MCF)に、結着剤としてカルボキシメチルセルロース(CMC)とスチレン−ブタジエンゴム(SBR)を下記表1に示す配合比で添加し、これらを水の存在下で混練し、スラリーを調製した。前記スラリーを厚さが12μmの銅箔からなる集電体の両面に塗布し、乾燥し、ロール直径が160mmφの一対の金属ロールで下記表1に示す線圧でプレスすることにより、活物質含有層が集電体の両面に担持された構造の負極を作製した。
(Example 1)
<Production of negative electrode>
Carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) are added as binders to mesophase pitch-based carbon fibers (MCF) as a carbon material in the mixing ratio shown in Table 1 below, and these are added in the presence of water. The slurry was kneaded to prepare a slurry. The slurry is applied to both surfaces of a current collector made of a copper foil having a thickness of 12 μm, dried, and pressed with a pair of metal rolls having a roll diameter of 160 mmφ at the linear pressure shown in Table 1 below, thereby containing an active material. A negative electrode having a structure in which the layer was supported on both sides of the current collector was produced.

得られた負極の静電容量(Cs)を図3に示す評価用セルを用いて測定した。この評価用セルは、負極を作用極とし、かつ対極および参照極としてLi金属を用いた3電極式のセルである。   The capacitance (Cs) of the obtained negative electrode was measured using the evaluation cell shown in FIG. This evaluation cell is a three-electrode cell using a negative electrode as a working electrode and Li metal as a counter electrode and a reference electrode.

図3に示すように、外装ケース21内には、銅箔からなる集電体22の片面のみに活物質含有層23が形成された測定用負極(作用極)24が収容されている。作用極24の活物質含有層23上には、ガラスフィルターからなる測定用セパレータ25が積層されている。測定用セパレータ25上には、ニッケル網26にリチウム箔27を貼付した対極が積層されている。一方、作用極24の集電体22には、作用極24の集電を取るためにニッケル板28が積層されている。以上説明した構成の電極積層体は、例えばアクリル板からなる2枚の電極押え板29a,29bで挟まれている。一方の電極押え板29aはニッケル網26上に積層されており、他方の電極押え板29bはニッケル板28に積層されている。電極押え板29a,29bは、ボルト30とナット31により固定され、これにより対極とセパレータと作用極とを密着させた状態で固定することができる。   As shown in FIG. 3, a measurement negative electrode (working electrode) 24 in which an active material-containing layer 23 is formed only on one side of a current collector 22 made of copper foil is accommodated in the outer case 21. On the active material-containing layer 23 of the working electrode 24, a measurement separator 25 made of a glass filter is laminated. On the measurement separator 25, a counter electrode obtained by attaching a lithium foil 27 to a nickel net 26 is laminated. On the other hand, a nickel plate 28 is laminated on the current collector 22 of the working electrode 24 in order to collect current from the working electrode 24. The electrode laminate having the above-described configuration is sandwiched between two electrode pressing plates 29a and 29b made of, for example, an acrylic plate. One electrode pressing plate 29 a is stacked on the nickel net 26 and the other electrode pressing plate 29 b is stacked on the nickel plate 28. The electrode pressing plates 29a and 29b are fixed by bolts 30 and nuts 31, and can be fixed in a state where the counter electrode, the separator, and the working electrode are in close contact with each other.

測定用非水電解液32は、外装ケース21内に収容されている。測定用非水電解液32の組成は、実際のセルで使用するのと同様な組成に併せることが望ましい。実施例1の場合、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)が重量比率(EC:GBL)が35:65で混合された非水溶媒に四フッ化ホウ酸リチウム(LiBF4)を1.5モル/L溶解させたものを測定用非水電解液32として使用する。また、測定用非水電解液32の液量は、電極押え板を含めた積層物全体が十分に浸るような量とすることが望ましい。 The nonaqueous electrolytic solution 32 for measurement is accommodated in the outer case 21. The composition of the nonaqueous electrolytic solution 32 for measurement is desirably combined with the same composition as that used in an actual cell. In the case of Example 1, lithium tetrafluoroborate (LiBF 4 ) was added to a non-aqueous solvent in which ethylene carbonate (EC) and γ-butyrolactone (GBL) were mixed at a weight ratio (EC: GBL) of 35:65. A solution dissolved at 5 mol / L is used as the nonaqueous electrolyte solution 32 for measurement. Further, it is desirable that the amount of the nonaqueous electrolytic solution 32 for measurement is such that the entire laminate including the electrode pressing plate is sufficiently immersed.

リチウム箔からなる参照極33は、測定用非水電解液32中に浸漬されている。なお、ニッケル網26、ニッケル板28及び参照極33は、電流・電圧検出器(図示しない)にリードによって電気的に接続されている。   A reference electrode 33 made of lithium foil is immersed in the nonaqueous electrolyte solution 32 for measurement. The nickel net 26, the nickel plate 28, and the reference electrode 33 are electrically connected to a current / voltage detector (not shown) by leads.

次いで、測定方法を具体的に説明する。   Next, the measurement method will be specifically described.

まず、得られた負極を2×2cm四方に切り出し、集電体の両面に形成された活物質含有層のうち片側を剥し、試験用負極(作用極)24を用意した。これに、2×2cm四方に切り出してリードをつけたNi金属板28を作用極24に押し付けて作用極の集電をとった。集電体の両面に活物質含有層が担持されたままの状態で静電容量を測定すると、裏側の活物質含有層(対極と対向していない活物質含有層)も充放電反応に関与するので、対極と対向している活物質含有層の特性を正確に評価することができなくなる。また、両面にすると、活物質含有層の厚さの影響を無視できなくなる。さらに、作用極24とNi金属板28との接触抵抗が大きくなる。よって、集電体の片面当りの活物質含有層の電解液含浸性を正確に測定するために、片方の活物質含有層を剥した状態で測定を行なうことが望ましい。   First, the obtained negative electrode was cut into a 2 × 2 cm square, and one side of the active material-containing layer formed on both sides of the current collector was peeled off to prepare a test negative electrode (working electrode) 24. A Ni metal plate 28 cut into a 2 × 2 cm square and provided with a lead was pressed against the working electrode 24 to collect current on the working electrode. When the capacitance is measured with the active material-containing layer supported on both sides of the current collector, the active material-containing layer on the back side (the active material-containing layer not facing the counter electrode) is also involved in the charge / discharge reaction. Therefore, it becomes impossible to accurately evaluate the characteristics of the active material-containing layer facing the counter electrode. In addition, if the two surfaces are used, the influence of the thickness of the active material-containing layer cannot be ignored. Furthermore, the contact resistance between the working electrode 24 and the Ni metal plate 28 increases. Therefore, in order to accurately measure the electrolyte impregnation property of the active material-containing layer per one side of the current collector, it is desirable to perform the measurement with one active material-containing layer peeled off.

静電容量の測定には、Hewlett packard社製のLCRメータ4284Aを使用し、周波数が42.0Hzで、0.1Vの電圧を印加して行なった。   The capacitance was measured by using an LCR meter 4284A manufactured by Hewlett packard and applying a voltage of 0.1 V at a frequency of 42.0 Hz.

また、作用極24として試験用負極の代わりに2×2cm四方の銅箔を使用すること以外は、前述したのと同様にして集電体の静電容量(CsCu)を測定した。 Further, the capacitance (Cs Cu ) of the current collector was measured in the same manner as described above except that a 2 × 2 cm square copper foil was used as the working electrode 24 instead of the test negative electrode.

得られた静電容量比(Cs/CsCu)を下記表1に示す。 The obtained capacitance ratio (Cs / Cs Cu ) is shown in Table 1 below.

(実施例2〜11及び比較例1〜7)
炭素材料の種類、CMC添加量、SBR添加量及び負極プレス線圧を下記表1に示すように設定することにより静電容量比(Cs/CsCu)を下記表1に示すように変更すること以外は、前述した実施例1で説明したのと同様にして負極を作製した。なお、表1のMCMBは、メソフェーズピッチ系カーボンマイクロビーズを示す。
(Examples 2-11 and Comparative Examples 1-7)
The capacitance ratio (Cs / Cs Cu ) is changed as shown in Table 1 by setting the type of carbon material, CMC addition amount, SBR addition amount, and negative electrode press linear pressure as shown in Table 1 below. Except for the above, a negative electrode was produced in the same manner as described in Example 1 above. In addition, MCMB in Table 1 indicates mesophase pitch-based carbon microbeads.

次いで、得られた負極を用いて前述した図1,2に示す構造の薄型非水電解質二次電池を組み立て、充放電サイクル寿命の測定を行なった。   Next, using the obtained negative electrode, the thin non-aqueous electrolyte secondary battery having the structure shown in FIGS. 1 and 2 was assembled, and the charge / discharge cycle life was measured.

<正極の作製>
まず、リチウムコバルト酸化物(LixCoO2;但し、Xは0<X≦1である)粉末90重量%に、アセチレンブラック5重量%と、ポリフッ化ビニリデン(PVdF)5重量%のジメチルフォルムアミド(DMF)溶液とを加えて混合し、スラリーを調製した。前記スラリーを厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した後、乾燥し、プレスすることにより、正極層が集電体の両面に担持された構造の正極を作製した。
<Preparation of positive electrode>
First, 90% by weight of lithium cobalt oxide (Li x CoO 2 ; X is 0 <X ≦ 1) powder, 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride (PVdF) dimethylformamide (DMF) solution was added and mixed to prepare a slurry. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm, then dried and pressed to produce a positive electrode having a structure in which the positive electrode layer was supported on both sides of the current collector.

<セパレータ>
厚さが25μmで、多孔度45%の微多孔性ポリエチレン膜からなるセパレータを用意した。
<Separator>
A separator made of a microporous polyethylene film having a thickness of 25 μm and a porosity of 45% was prepared.

<電極群の作製>
前記正極の集電体に帯状アルミニウム箔(厚さ100μm)からなる正極リードを超音波溶接し、前記負極の集電体に帯状ニッケル箔(厚さ100μm)からなる負極リードを超音波溶接した後、前記正極及び前記負極をその間に前記セパレータを介して渦巻き状に捲回し、電極群を作製した。この電極群を加熱しながらプレス機で加圧することにより、偏平状に成形した。
<Production of electrode group>
After the positive electrode lead made of a strip-shaped aluminum foil (thickness 100 μm) is ultrasonically welded to the positive electrode current collector, and the negative electrode lead made of a strip-shaped nickel foil (thickness 100 μm) is ultrasonically welded to the negative electrode current collector The positive electrode and the negative electrode were spirally wound through the separator between them to prepare an electrode group. The electrode group was formed into a flat shape by applying pressure with a press while heating.

アルミニウム箔の両面をポリエチレンで覆った厚さ100μmのラミネートフィルムを、プレス機により矩形のカップ状に成形し、得られた容器内に前記電極群を収納した。   A laminate film having a thickness of 100 μm in which both surfaces of an aluminum foil were covered with polyethylene was formed into a rectangular cup shape by a press machine, and the electrode group was housed in the obtained container.

次いで、容器内の電極群に80℃で真空乾燥を12時間施すことにより電極群及びラミネートフィルムに含まれる水分を除去した。   Next, the electrode group in the container was vacuum dried at 80 ° C. for 12 hours to remove moisture contained in the electrode group and the laminate film.

<非水電解液の調製>
エチレンカーボネート(EC)及びγ−ブチロラクトン(GBL)を重量比率(EC:GBL)が35:65になるように混合して非水溶媒を調製した。得られた非水溶媒に四フッ化ホウ酸リチウム(LiBF4)をその濃度が1.5モル/Lになるように溶解させて、非水電解液を調製した。この非水電解液の粘度(20℃)は6.8(cP)で、電導度(20℃)が6.3(mS/cm)であった。
<Preparation of non-aqueous electrolyte>
A non-aqueous solvent was prepared by mixing ethylene carbonate (EC) and γ-butyrolactone (GBL) so that the weight ratio (EC: GBL) was 35:65. Lithium tetrafluoroborate (LiBF 4 ) was dissolved in the obtained non-aqueous solvent so that its concentration was 1.5 mol / L to prepare a non-aqueous electrolyte. This non-aqueous electrolyte had a viscosity (20 ° C.) of 6.8 (cP) and an electric conductivity (20 ° C.) of 6.3 (mS / cm).

容器内の電極群に前記非水電解液を電池容量1Ah当たりの量が4.8gとなるように注入し、ヒートシールにより封止した後、前述した図1、2に示す構造を有し、厚さが3.6mm、幅が35mm、高さが62mmで、公称容量が0.60Ahの未充電状態の非水電解質二次電池を組み立てた。   After injecting the non-aqueous electrolyte into the electrode group in the container so that the amount per battery capacity 1Ah is 4.8 g and sealing by heat sealing, the structure shown in FIGS. An uncharged non-aqueous electrolyte secondary battery having a thickness of 3.6 mm, a width of 35 mm, a height of 62 mm, and a nominal capacity of 0.60 Ah was assembled.

つづいて、この二次電池を圧力容器であるオートクレーブ内に設置し、この圧力容器内に乾燥空気を供給することにより前記二次電池をゲージ圧0.5MPaで10分間加圧した。   Subsequently, the secondary battery was placed in an autoclave that was a pressure vessel, and dry air was supplied into the pressure vessel to pressurize the secondary battery at a gauge pressure of 0.5 MPa for 10 minutes.

この非水電解質二次電池に対し、初充放電工程として以下の処置を施した。室温で0.2Cで4.2Vまで定電流・定電圧充電を15時間行った。その後、室温で0.2Cで3.0Vまで放電し、非水電解質二次電池を製造した。   The following treatment was applied to the non-aqueous electrolyte secondary battery as an initial charge / discharge process. Constant current / constant voltage charging was performed for 15 hours at room temperature to 4.2 V at 0.2C. Then, it discharged to 3.0V at 0.2C at room temperature, and manufactured the nonaqueous electrolyte secondary battery.

ここで、1Cとは公称容量(Ah)を1時間で放電するために必要な電流値である。よって、0.2Cは、公称容量(Ah)を5時間で放電するために必要な電流値である。   Here, 1C is a current value necessary for discharging the nominal capacity (Ah) in one hour. Therefore, 0.2 C is a current value necessary for discharging the nominal capacity (Ah) in 5 hours.

(充放電サイクル特性)
各非水電解質二次電池について、充放電レート1C、充電終止電圧4.2V、放電終止電圧3.0Vの充放電試験を温度20℃の環境中において繰り返し、放電容量が1サイクル目の放電容量の80%に低下した際のサイクル数を測定し、その結果を下記表1に示す。

Figure 2005222773
(Charge / discharge cycle characteristics)
For each nonaqueous electrolyte secondary battery, a charge / discharge test at a charge / discharge rate of 1 C, a charge end voltage of 4.2 V, and a discharge end voltage of 3.0 V was repeated in an environment at a temperature of 20 ° C., and the discharge capacity was the discharge capacity of the first cycle. The number of cycles when the ratio was reduced to 80% was measured, and the results are shown in Table 1 below.
Figure 2005222773

表1から明らかなように、静電容量比(Cs/CsCu)が5〜15の範囲内である負極を備えた実施例1〜11の二次電池は、充放電を繰り返した後の放電容量が、サイクル前の放電容量に対して80%になるサイクル数が400を超えており、繰り返し充放電を行いながら使用する携帯機器の電源としてふさわしい。これは、負極の電解液の含浸状態が適切な状態となり、均一な充放電が行なわれたためである。 As is clear from Table 1, the secondary batteries of Examples 1 to 11 having the negative electrode having a capacitance ratio (Cs / Cs Cu ) in the range of 5 to 15 were discharged after repeated charge and discharge. The number of cycles in which the capacity reaches 80% of the discharge capacity before the cycle exceeds 400, and it is suitable as a power source for portable devices that are used while being repeatedly charged and discharged. This is because the negative electrode is in an appropriate state of impregnation with the electrolyte, and uniform charge / discharge is performed.

一方、静電容量比(Cs/CsCu)が5未満の負極を備えた比較例1,4〜7の二次電池は、放電容量が300サイクル程度で80%まで下がる。これは、静電容量比(Cs/CsCu)が5未満の負極では、電解液の含浸が悪く、初期充電がまだらになりサイクルを重ねると、Liが析出する電析が起こることにより、サイクル特性が悪くなるからである。このうちの比較例5〜7に示すように、静電容量比(Cs/CsCu)が5未満の場合には加圧条件をいろいろに変化させても400サイクル以上の長寿命を得られなかった。 On the other hand, in the secondary batteries of Comparative Examples 1 and 4 to 7 including the negative electrode having a capacitance ratio (Cs / Cs Cu ) of less than 5, the discharge capacity decreases to 80% after about 300 cycles. This is because the negative electrode with a capacitance ratio (Cs / Cs Cu ) of less than 5 is poorly impregnated with the electrolyte, and when the initial charge becomes mottled and the cycle is repeated, the deposition of Li occurs. This is because the characteristics deteriorate. As shown in Comparative Examples 5 to 7, when the capacitance ratio (Cs / Cs Cu ) is less than 5, a long life of 400 cycles or more cannot be obtained even if the pressurization conditions are changed variously. It was.

また、静電容量比(Cs/CsCu)が15を超える負極を備えた比較例2,3の二次電池も、放電容量が300サイクル程度で80%まで下がる。これは、静電容量比(Cs/CsCu)が15超える負極によると、電解液を吸いすぎて、負極側に液が偏在してしまうため、セパレータあるいは正極の周辺の液量が不足し、充放電がうまくいかなくなるため、サイクル特性が悪くなるからである。よって、比較例1〜7の二次電池は、繰り返し充放電を行いながら使用する携帯機器の電源としては不適切である。 In addition, the secondary batteries of Comparative Examples 2 and 3 having the negative electrode having a capacitance ratio (Cs / Cs Cu ) exceeding 15 are also reduced to 80% in about 300 cycles. This is because, according to the negative electrode having a capacitance ratio (Cs / Cs Cu ) of more than 15, the electrolyte is sucked too much and the liquid is unevenly distributed on the negative electrode side, so the amount of liquid around the separator or the positive electrode is insufficient. This is because charging / discharging is not successful and the cycle characteristics are deteriorated. Therefore, the secondary batteries of Comparative Examples 1 to 7 are inappropriate as a power source for portable devices that are used while being repeatedly charged and discharged.

したがって、(負極の静電容量比)及び(充放電サイクル特性)の結果より、実際に携帯機器の電源として用いることができるのは、実施例1〜11の非水電解質二次電池である。   Therefore, the nonaqueous electrolyte secondary batteries of Examples 1 to 11 can actually be used as the power source of the portable device based on the results of (capacitance ratio of negative electrode) and (charge / discharge cycle characteristics).

次いで、加圧処理条件と静電容量比との関係を検討する。   Next, the relationship between the pressure treatment condition and the capacitance ratio is examined.

加圧処理条件を一定にした場合、静電容量比が8〜12の範囲にある実施例1,2,4の二次電池の方が、静電容量比が6,14である実施例3,5の二次電池に比較してサイクル寿命が長かった。よって、良好なサイクル特性を得るためには静電容量比が8〜12であることが望ましいことがわかる。   Example 3 in which the secondary batteries of Examples 1, 2, and 4 in which the capacitance ratio is in the range of 8 to 12 have a capacitance ratio of 6 and 14 when the pressure treatment conditions are constant. , 5 had a longer cycle life than the secondary battery. Therefore, it can be seen that the capacitance ratio is desirably 8 to 12 in order to obtain good cycle characteristics.

また、静電容量比が同じ10である実施例1,9,10を比較すると、ゲージ圧が0.5〜0.9MPaの実施例1,9の方が、ゲージ圧が1.2MPaの実施例10に比較してサイクル寿命が長かった。この結果から、良好なサイクル特性を得るためにはゲージ圧を0.5〜0.9MPaの範囲に設定することが好ましいことがわかる。   Further, when Examples 1, 9, and 10 having the same capacitance ratio of 10 are compared, Examples 1 and 9 having a gauge pressure of 0.5 to 0.9 MPa have an gauge pressure of 1.2 MPa. Compared to Example 10, the cycle life was longer. From this result, it is understood that the gauge pressure is preferably set in the range of 0.5 to 0.9 MPa in order to obtain good cycle characteristics.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明に係わる非水電解質二次電池の一実施形態である薄型非水電解質二次電池を示す斜視図。The perspective view which shows the thin nonaqueous electrolyte secondary battery which is one Embodiment of the nonaqueous electrolyte secondary battery concerning this invention. 図1の非水電解質二次電池を短辺方向に沿って切断した部分断面図。FIG. 2 is a partial cross-sectional view of the nonaqueous electrolyte secondary battery in FIG. 1 cut along a short side direction. 実施例1の非水電解質二次電池に用いる負極の静電容量比(Cs/CsCu)を測定するための評価用セルの概略を示す構成図。Configuration diagram showing an outline of a cell for evaluation for measuring the capacitance ratio of the negative electrode (Cs / Cs Cu) used for the nonaqueous electrolyte secondary battery of Example 1.

符号の説明Explanation of symbols

1…容器本体、2…電極群、3…正極、4…負極、5…セパレータ、6…蓋板、7…外部保護層、8…内部保護層、9…金属層、10…正極タブ、11…負極タブ、21…外装ケース、22…集電体、23…活物質含有層、24…作用極、25…測定用セパレータ、26…ニッケル網、27…リチウム箔、28…ニッケル板、32…測定用非水電解液、33…参照極。   DESCRIPTION OF SYMBOLS 1 ... Container body, 2 ... Electrode group, 3 ... Positive electrode, 4 ... Negative electrode, 5 ... Separator, 6 ... Cover plate, 7 ... External protective layer, 8 ... Internal protective layer, 9 ... Metal layer, 10 ... Positive electrode tab, 11 DESCRIPTION OF SYMBOLS ... Negative electrode tab, 21 ... Exterior case, 22 ... Current collector, 23 ... Active material containing layer, 24 ... Working electrode, 25 ... Measuring separator, 26 ... Nickel net, 27 ... Lithium foil, 28 ... Nickel plate, 32 ... Nonaqueous electrolyte for measurement, 33... Reference electrode.

Claims (2)

正極と、
集電体及び前記集電体に担持される活物質含有層を含み、かつ下記(1)式を満足する負極と、
非水電解質と
を具備することを特徴とする非水電解質二次電池。
5≦Cs/CsCu≦15 (1)
但し、Csは前記負極の静電容量(nF)で、CsCuは前記集電体の静電容量(nF)である。
A positive electrode;
A negative electrode comprising a current collector and an active material-containing layer carried by the current collector, and satisfying the following formula (1):
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte.
5 ≦ Cs / Cs Cu ≦ 15 (1)
Where Cs is the capacitance (nF) of the negative electrode, and Cs Cu is the capacitance (nF) of the current collector.
集電体及び前記集電体に担持される活物質含有層を含む非水電解質二次電池用負極であって、下記(1)式を満足することを特徴とする非水電解質二次電池用負極。
5≦Cs/CsCu≦15 (1)
但し、Csは前記負極の静電容量(nF)で、CsCuは前記集電体の静電容量(nF)である。
A non-aqueous electrolyte secondary battery negative electrode comprising a current collector and an active material-containing layer carried by the current collector, wherein the following formula (1) is satisfied: for a non-aqueous electrolyte secondary battery Negative electrode.
5 ≦ Cs / Cs Cu ≦ 15 (1)
Where Cs is the capacitance (nF) of the negative electrode, and Cs Cu is the capacitance (nF) of the current collector.
JP2004028097A 2004-02-04 2004-02-04 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4746272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028097A JP4746272B2 (en) 2004-02-04 2004-02-04 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028097A JP4746272B2 (en) 2004-02-04 2004-02-04 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005222773A true JP2005222773A (en) 2005-08-18
JP4746272B2 JP4746272B2 (en) 2011-08-10

Family

ID=34998246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028097A Expired - Fee Related JP4746272B2 (en) 2004-02-04 2004-02-04 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4746272B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045519A1 (en) * 2013-09-27 2015-04-02 Necエナジーデバイス株式会社 Secondary battery and production method therefor
JP6381754B1 (en) * 2017-07-31 2018-08-29 住友化学株式会社 Non-aqueous electrolyte secondary battery
KR20180129678A (en) * 2017-05-26 2018-12-05 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte seconday battery
CN110010826A (en) * 2017-12-19 2019-07-12 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
WO2020091058A1 (en) * 2018-11-01 2020-05-07 住友化学株式会社 Nonaqueous electrolyte secondary battery
US10707517B2 (en) 2017-12-19 2020-07-07 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298137A (en) * 1995-04-26 1996-11-12 Ricoh Co Ltd Secondary battery and electrode used in this secondary battery
JPH09293500A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Manufacture of electrode plate for use in storage battery
JPH10116604A (en) * 1996-10-15 1998-05-06 Nec Corp Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
JPH10188956A (en) * 1996-12-26 1998-07-21 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery
JPH10214617A (en) * 1997-01-29 1998-08-11 Fuji Film Selltec Kk Sheet type electrode and non-aqueous secondary battery using the same
JPH10228896A (en) * 1997-02-13 1998-08-25 Nec Corp Non-aqueous electrolyte secondary battery
JPH1186875A (en) * 1997-09-10 1999-03-30 Asahi Glass Co Ltd Positive electrode for nonaqueous secondary battery
JPH11345632A (en) * 1998-04-02 1999-12-14 Toshiba Battery Co Ltd Inspection method of secondary battery
JP2000133316A (en) * 1998-10-27 2000-05-12 Ngk Insulators Ltd Lithium secondary battery and fabricating method for electrode plate
JP2002117894A (en) * 2000-10-05 2002-04-19 At Battery:Kk Flat battery
JP2002362912A (en) * 2001-06-06 2002-12-18 Jeol Ltd Method of removing residual active hydrogen oxide
JP2003045432A (en) * 2001-08-02 2003-02-14 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous secondary battery and its manufacturing method
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2003272627A (en) * 2002-03-18 2003-09-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2004095203A (en) * 2002-08-29 2004-03-25 Electric Power Dev Co Ltd Negative electrode and nonaqueous secondary battery using the same
JP2004139961A (en) * 2002-08-21 2004-05-13 Toshiba Corp Manufacturing method of battery and battery
JP2004158441A (en) * 2002-10-15 2004-06-03 Toshiba Corp Nonaqueous electrolyte secondary battery

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298137A (en) * 1995-04-26 1996-11-12 Ricoh Co Ltd Secondary battery and electrode used in this secondary battery
JPH09293500A (en) * 1996-04-26 1997-11-11 Sanyo Electric Co Ltd Manufacture of electrode plate for use in storage battery
JPH10116604A (en) * 1996-10-15 1998-05-06 Nec Corp Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
JPH10188956A (en) * 1996-12-26 1998-07-21 Japan Storage Battery Co Ltd Now-aqueous electrolyte secondary battery
JPH10214617A (en) * 1997-01-29 1998-08-11 Fuji Film Selltec Kk Sheet type electrode and non-aqueous secondary battery using the same
JPH10228896A (en) * 1997-02-13 1998-08-25 Nec Corp Non-aqueous electrolyte secondary battery
JPH1186875A (en) * 1997-09-10 1999-03-30 Asahi Glass Co Ltd Positive electrode for nonaqueous secondary battery
JPH11345632A (en) * 1998-04-02 1999-12-14 Toshiba Battery Co Ltd Inspection method of secondary battery
JP2000133316A (en) * 1998-10-27 2000-05-12 Ngk Insulators Ltd Lithium secondary battery and fabricating method for electrode plate
JP2002117894A (en) * 2000-10-05 2002-04-19 At Battery:Kk Flat battery
JP2002362912A (en) * 2001-06-06 2002-12-18 Jeol Ltd Method of removing residual active hydrogen oxide
JP2003045432A (en) * 2001-08-02 2003-02-14 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous secondary battery and its manufacturing method
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2003272627A (en) * 2002-03-18 2003-09-26 Mitsubishi Chemicals Corp Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2004139961A (en) * 2002-08-21 2004-05-13 Toshiba Corp Manufacturing method of battery and battery
JP2004095203A (en) * 2002-08-29 2004-03-25 Electric Power Dev Co Ltd Negative electrode and nonaqueous secondary battery using the same
JP2004158441A (en) * 2002-10-15 2004-06-03 Toshiba Corp Nonaqueous electrolyte secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045519A1 (en) * 2013-09-27 2015-04-02 Necエナジーデバイス株式会社 Secondary battery and production method therefor
KR20180129678A (en) * 2017-05-26 2018-12-05 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte seconday battery
KR101970914B1 (en) * 2017-05-26 2019-04-19 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6381754B1 (en) * 2017-07-31 2018-08-29 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP2019029232A (en) * 2017-07-31 2019-02-21 住友化学株式会社 Non-aqueous electrolyte secondary battery
US10707517B2 (en) 2017-12-19 2020-07-07 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10777844B2 (en) 2017-12-19 2020-09-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10950838B2 (en) 2017-12-19 2021-03-16 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US10957941B2 (en) 2017-12-19 2021-03-23 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN110010826A (en) * 2017-12-19 2019-07-12 住友化学株式会社 Nonaqueous electrolytic solution secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN110010826B (en) * 2017-12-19 2022-06-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP2020072038A (en) * 2018-11-01 2020-05-07 住友化学株式会社 Non-aqueous electrolyte secondary battery
WO2020091058A1 (en) * 2018-11-01 2020-05-07 住友化学株式会社 Nonaqueous electrolyte secondary battery
JP7096755B2 (en) 2018-11-01 2022-07-06 住友化学株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4746272B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4752574B2 (en) Negative electrode and secondary battery
JP3566891B2 (en) Lithium secondary battery
JP2000123873A (en) Solid electrolyte battery
EP1193788A2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery.
JP4746272B2 (en) Nonaqueous electrolyte secondary battery
JP2002015771A (en) Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
JP4900994B2 (en) Nonaqueous electrolyte secondary battery
KR20190090723A (en) Method of manufacturing negative electrode for lithium secondary battery
JP4193248B2 (en) Gel electrolyte battery
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP2002329529A (en) Nonaqueous electrolyte secondary battery
JP4287123B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2002184462A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP4351858B2 (en) Nonaqueous electrolyte secondary battery
JP4537851B2 (en) Nonaqueous electrolyte secondary battery
JP2004241222A (en) Manufacturing method of nonaqueous electrolytic solution battery
JP4817483B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4707324B2 (en) Nonaqueous electrolyte secondary battery
JP2004063145A (en) Secondary battery using non-aqueous electrolyte
JPH08180878A (en) Lithium secondary battery
JP4015837B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4746272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees