JPH10226572A - ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途 - Google Patents

ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途

Info

Publication number
JPH10226572A
JPH10226572A JP9337488A JP33748897A JPH10226572A JP H10226572 A JPH10226572 A JP H10226572A JP 9337488 A JP9337488 A JP 9337488A JP 33748897 A JP33748897 A JP 33748897A JP H10226572 A JPH10226572 A JP H10226572A
Authority
JP
Japan
Prior art keywords
mol
less
sintered body
powder
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9337488A
Other languages
English (en)
Inventor
Kenichi Ito
謙一 伊藤
Tsutomu Takahata
努 高畑
Akio Kondo
昭夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9337488A priority Critical patent/JPH10226572A/ja
Publication of JPH10226572A publication Critical patent/JPH10226572A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】 【課題】 スパッタ法により特性の優れたビスマス
系層状ペロブスカイト強誘電体薄膜を得ることのできる
スパッタリングターゲットを提供する。 【解決手段】 Bi2XY29(X=Sr,Ba、Y=
Ta,Nb)1モルに対して、0モル以上2モル以下の
BiYO4(Y=Ta,Nb)および0モルを超え2モ
ル未満のBi23を含んでなる相対密度95%以上の焼
結体であり粒径3μm以下のBi2XY29粉末、粒径
5μm以下のBiYO4粉末及びBi23粉末との混合
粉末を900℃〜1400℃で焼結することにより得ら
れる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体デバイス等
の強誘電体薄膜を形成するのに使用されるビスマス系層
状ペロブスカイト焼結体およびその製造法並びにその用
途であるスパッタリングターゲットに関する。
【0002】
【従来の技術】強誘電体は、圧電性や焦電性、電気光学
効果などの電気特性を利用して、圧電フィルタや赤外線
センサ、光変調素子など、いろいろな分野に応用されて
いる。また、強誘電体薄膜は電子デバイスに応用され、
半導体分野などにおいて薄膜化の検討が精力的に行われ
ている。特に、残留分極を利用した不揮発性強誘電体メ
モリは、強誘電体の応用分野としてもっとも注目されて
いる分野である。
【0003】従来から不揮発性強誘電体メモリに使用さ
れる強誘電体薄膜材料として、PZT(チタン酸ジルコ
ン酸鉛)、PLZT(チタン酸ジルコン酸ランタン鉛)
等の鉛含有酸化物強誘電体が長年に渡って検討が進めら
れている。
【0004】近年、これら一連の鉛含有酸化物強誘電体
に比べ、メモリの書き換え回数が数桁以上上回る耐疲労
特性を示すビスマス系層状ペロブスカイト強誘電体が報
告され、ビスマス系層状ペロブスカイト強誘電体の半導
体メモリへの実用化のために、薄膜化の検討が盛んに行
われている。
【0005】上記の強誘電体膜の形成法として、金属有
機化合物溶液を塗布することによって成膜するゾルゲル
法、Metal Organic Decomposi
tion(MOD)法等の化学的成膜法、スパッタター
ゲットを用いたスパッタ法や蒸着等の物理的成膜法が考
えられる。ゾルゲル法、MOD法等の化学的成膜法の検
討は活発であり、数多くの技術的検討結果が報告されて
いる。
【0006】
【発明が解決しようとする課題】スパッタ法は従来より
良く知られ、工業的な薄膜製造にも利用されてきた。ス
パッタ法では、薄膜と同一成分のターゲットにグロー放
電させたアルゴンガスイオンを衝突させ、ターゲットの
構成原子を叩き出し、基板上に原子を堆積させることに
より成膜が行われている。
【0007】しかしながら、ビスマス系層状ペロブスカ
イト強誘電体をスパッタ法で成膜する場合、その構成元
素であるビスマスは蒸気圧が高いために、スパッタ中に
昇華され薄膜中に取り込まれるビスマスが不足する問題
がある。
【0008】また、強誘電体薄膜形成において良好な特
性を得るためには、成膜後にポストアニールを行い結晶
性を上げる事が一般的であり、スパッタ法による成膜に
おいてもこのポストアニールが行われる。しかし、ビス
マス系層状ペロブスカイト強誘電体膜において、結晶性
を上げるためにポストアニールを行うと、薄膜中に取り
込まれている酸化ビスマスが揮散し、薄膜中のビスマス
が不足する事も生じうる。
【0009】このビスマスの不足を補うために、複数の
ターゲットを用いた反応性スパッタによる組成合わせも
考えられるが、装置サイズが大きくなる点やスパッタ時
の制御が複雑になる点において生産性の低下を招く恐れ
がある。また、ターゲット組成をビスマス過剰にしただ
けでは、ターゲットからのビスマスの昇華等により、ス
パッタ時間の増加にともない経時的に組成ずれを生じる
事が起こり得る。
【0010】本発明の目的は、ビスマス系層状ペロブス
カイト強誘電体薄膜を、複数のターゲットを用いる反応
性スパッタではなく、1枚のターゲットによるスパッタ
で形成することを可能とした焼結体を提供するものであ
り、さらには、ポストアニールで良好な薄膜および優れ
た生産性を得るためのスパッタリングターゲットを供給
するものである。
【0011】
【課題を解決するための手段】本発明者らは、上記のよ
うな現状に鑑み、鋭意検討を重ねた結果、一般式:Bi
2XY29(X=Sr,Ba、Y=Ta,Nb)で代表
される層状ペロブスカイト相を主成分とし、過剰のBi
及びY(Y=Ta,Nb)成分を含み、かつ、その気孔
率が5%以下である焼結体を用いて作製したスパッタリ
ングターゲットを用いることにより、長時間のスパッタ
によっても、形成される強誘電体薄膜の組成変化がな
く、かつ、ターゲットの割れの発生もない高強度のスパ
ッタリングターゲットが得られ、さらに、形成される薄
膜に十分な量のビスマスを含有させることができ、ポス
トアニールによって良好な特性を有する強誘電体薄膜が
得られることを見出し、本発明を完成するに至った。
【0012】すなわち、本発明の焼結体は、一般式:B
2XY29(X=Sr,Ba、Y=Ta,Nb)で表
される化合物1モルに対して、0モルを超え1モル未満
のBi23を含んでなり、相対密度が95%以上又は気
孔率が5%以下である焼結体であり、また、一般式:B
2XY29(X=Sr,Ba、Y=Ta,Nb)で表
される化合物1モルに対して、0モルを超え2モル以下
のBiYO4 (Y=Ta,Nb)、および0モルを超
え2モル未満のBi23を含んでなり、相対密度が95
%以上又は気孔率が5%以下である焼結体である。
【0013】さらに、本発明の焼結体は、一般式:Bi
2XY29(X=Sr,Ba、Y=Ta,Nb)で代表
される層状ペロブスカイト相を含み、焼結体全体の平均
組成が、BibXY2c(X=Sr,Ba、Y=Ta,
Nb)の表記において、bの値が2以上4以下、cの値
が8以上13以下であり、かつ、気孔率が5%以下であ
る焼結体であり、また、一般式:Bi2XY29(X=
Sr,Ba、Y=Ta,Nb)で代表される層状ペロブ
スカイト相を含み、焼結体全体の平均組成が、Bib
yc(X=Sr,Ba、Y=Ta,Nb)の表記にお
いて、bの値が2以上8以下、yの値が2以上4以下、
cの値が8以上24以下であり、かつ、気孔率が5%以
下である焼結体である。
【0014】なお、XはSr又はBaであるが、Srの
一部をBaで置換したものであっても良い。同様に、Y
はTa又はNbであるが、Taの一部をNbで置換した
ものであっても良い。
【0015】本発明の焼結体はその相対密度を上げ、気
孔率を低減して、焼結体を緻密なものとすることによ
り、オープンポアの減少により、スパッタ中におけるタ
ーゲットの表面近傍からのビスマスの昇華を抑制するこ
とができ、ターゲットの組成と形成される薄膜の組成と
のずれを小さくでき、さらに、形成される薄膜組成のス
パッタ時間の増加にともなう経時変化を抑えることを可
能としたものである。なお、焼結体の相対密度を増大さ
せ、気孔率を低減して、焼結体を緻密なものとすること
により、焼結体の熱伝導率が増大するとともに、機械的
強度が増大するため、スパッタによる熱衝撃による割れ
の発生を抑制することもできる。焼結体の相対密度が9
5%以上、又は気孔率が5%以下であれば上記の効果が
得られるが、焼結体の相対密度を98%以上、又は気孔
率を2%以下とすることがさらに好ましい。また、焼結
体の密度としては、8.2g/cm3以上が好ましく、
さらに好ましくは8.5g/cm3以上である。
【0016】なお、本発明でいう相対密度とは、Bi2
XY29(但し、XおよびYは前記に同じ)、BiYO
4(但し、Yは前記に同じ)およびBi23の密度の相
加平均から求められる理論密度に対する相対値である。
相加平均から求められる理論密度とは、Bi2XY29
(但し、XおよびYは前記に同じ)、BiYO4(但
し、Yは前記に同じ)およびBi23との各重量百分率
をそれぞれa,b,c(wt%)、理論密度をそれぞれ
A,B,C(g/cm3)とした場合、100×A×B
×C/(a×B×C+b×A×C+c×A×B)より求
められる。
【0017】また、本発明における気孔率は、例えば、
走査型電子顕微鏡(SEM)などにより観察される単位
観察面の気孔率の平均値として算出することができる。
ここで単位観察面の気孔率は、走査型電子顕微鏡(SE
M)などにより2000倍の倍率で観察される結晶組織
写真(約80μm×50μm)において、観察面の全面
積をAとし、気孔の面積の合計をAβとすると、式:A
β/A×100(%)により求められる。なお、気孔の
面積は、例えばSEM写真に対して方眼紙をあて、気孔
内のマス目数を数えて面積に換算する方法やSEM写真
をコンピュータを用いて画像解析する方法などを例示す
ることができる。そして、少なくとも50の観察面につ
いて気孔率を求め、それらの平均値を求めることによ
り、本発明の気孔率を求めるのが好ましい(例えば、
「セラミックプロセシング」、技報堂出版(198
5)、p192〜p194参照)。
【0018】また、焼結体の組織を平均粒径5μm以下
の単位粒子(焼結体の構成粒子)で構成することによ
り、ターゲットの単位体積あたりの結晶粒の数が増加す
るため結晶の面方位が多様化し、ターゲット表面から放
出されるスパッタ粒子の放出角度が一定方向に偏ること
なく均一に分散されるために、スパッタ膜の膜厚分布が
向上する。さらに、結晶粒径を小さくすることにより結
晶粒の表面積が増加するため、結晶粒界に存在する過剰
な酸化ビスマスの分散性が良くなり、より均一な組成の
焼結体を得ることが可能となり、従って、得られたスパ
ッタ膜の組成分布も向上する。これらの効果をさらに高
めるために、単位粒子の平均粒径を2μm以下とするこ
とがさらに好ましい。
【0019】なお、上述の結晶粒の規定は、少なくとも
ターゲットのスパッタ面における結晶粒の状態がこの規
定の範囲に入っていれば良い。
【0020】本発明でいう焼結体の構成粒子の粒径と
は、走査型電子顕微鏡(SEM)などにより観察される
結晶粒界で分けられる1つの結晶粒を含む最小円の直径
である。また、焼結体の構成粒子の平均粒径とは、前記
手段により観察された結晶粒の粒径の平均値であり、少
なくとも100個の結晶粒の平均値とすることが好まし
い。
【0021】上述のような焼結体は、例えば、以下のよ
うな方法で製造することができる。即ち、本発明の焼結
体は、粒径3μm以下、好ましくは1μm以下のBi2
XY29(但し、XおよびYは前記に同じ)粉末1モル
に対して、粒径5μm以下、好ましくは1μm以下のB
23粉末を0モルを超え1モル未満混合した混合粉末
を、850℃以上1300℃以下の温度で焼結すること
により得ることができる。
【0022】より具体的には、まず、Bi、XおよびY
(但し、XおよびYは前記に同じ)の元素をそれぞれ含
んだ物質を元素比でBi:X:Y(但し、XおよびYは
前記に同じ)=2:1:2となるように混合・仮焼する
ことによって、粒径3μm以下のBi2XY29(但
し、XおよびYは前記に同じ)粉末を得る。仮焼温度と
しては、仮焼粉の粒径を大きくしないために1200度
以下が好ましく、より好ましくは850〜1050℃で
ある。また、この際の雰囲気としては、非還元性雰囲気
が好ましく、酸素下などの酸素雰囲気や大気中を例示す
ることができる。
【0023】Bi、X及びY(但し、XおよびYは前記
に同じ)の元素をそれぞれ含んだ物質とは、Bi、X及
びY(但し、XおよびYは前記に同じ)の単体又はそれ
らの元素を含んだ化合物であれば特に問題はないが、例
えば、金属粉、酸化物、炭酸塩や塩化物などを例示する
ことができる。
【0024】次に、得られたBi2XY29(但し、X
およびYは前記に同じ)仮焼粉末1モルに対し、0モル
を超え1モル未満の粒径5μm以下、好ましくは1μm
以下のBi23粉末を加え粉砕・混合し、この混合紛を
メカプレス等により成形し成形体を得る。特に、Bi2
3粉の粒径を5μm以下、好ましくは1μm以下とす
ることにより、焼結体の気孔の成長を抑制し、得られる
焼結体の密度低下が抑制される。
【0025】Bi23粉末のより好ましい添加量は成膜
の際のスパッタ条件などにより変化するが、Bi2XY2
9(但し、XおよびYは前記に同じ)仮焼粉末1モル
に対して、0.1モル以上0.5モル以下が好ましい。
【0026】続いて、得られた成形体を850℃〜13
00℃の温度で焼結し焼結体を得る。焼結温度を850
℃〜1300℃とすることにより、高密度で、結晶粒が
細かく、均一な焼結体を得ることができる。この際の雰
囲気としては、非還元性雰囲気が好ましく、酸素下など
の酸素雰囲気や大気中を例示することができる。
【0027】また、本発明のY成分をより多く含む焼結
体は、例えば、以下のような方法で製造することができ
る。即ち、本発明の焼結体は、粒径3μm以下、好まし
くは1μm以下のBi2XY29(但し、XおよびYは
前記に同じ)粉末1モルに対して、粒径5μm以下、好
ましくは1μm以下のBiYO4(但し、Yは前記に同
じ)粉末を0モルを超え2モル以下、および粒径5μm
以下、好ましくは1μm以下のBi23粉末を0モルを
超え2モル未満混合した混合粉末を、900℃以上14
00℃以下の温度で焼結することにより得ることができ
る。
【0028】より具体的には、まず、Bi、XおよびY
(但し、XおよびYは前記に同じ)の元素をそれぞれ含
んだ物質を元素比でBi:X:Y(但し、XおよびYは
前記に同じ)=2:1:2となるように混合・仮焼する
ことによって、粒径3μm以下のBi2XY29(但
し、XおよびYは前記に同じ)粉末を、さらに、元素比
でBi:Y(但し、Yは前記に同じ)=1:1となるよ
うに混合・仮焼することによって、粒径5μm以下のB
iYO4(但し、Yは前記に同じ)粉末を得る。仮焼温
度としては、仮焼粉の粒径を大きくしないために120
0度以下が好ましく、より好ましくは850〜1100
℃である。また、この際の雰囲気としては、非還元性雰
囲気が好ましく、酸素下などの酸素雰囲気や大気中を例
示することができる。
【0029】次に、得られたBi2XY29(但し、X
およびYは前記に同じ)仮焼粉末1モルに対し、0モル
を超え1モル以下の粒径5μm以下、好ましくは1μm
以下のBiYO4(但し、Yは前記に同じ)仮焼粉末、
および0モルを超え2モル未満の粒径5μm以下、好ま
しくは1μm以下のBi23粉末を加え粉砕・混合し、
この混合紛をメカプレス等により成形し成形体を得る。
特に、Bi23粉の粒径を5μm以下、好ましくは1μ
m以下とすることにより、焼結体の気孔の成長を抑制
し、得られる焼結体の密度低下が抑制される。
【0030】BiYO4(但し、Yは前記に同じ)粉
末、およびBi23粉末のより好ましい添加量は成膜の
際のスパッタ条件などにより変化するが、Bi2XY2
9(但し、XおよびYは前記に同じ)仮焼粉末1モルに
対して、BiYO4(但し、Yは前記に同じ)が0モル
を超え1モル以下、Bi23は0.1モル以上0.6モ
ル以下が好ましい。
【0031】続いて、得られた成形体を900℃〜14
00℃の温度で焼結し焼結体を得る。焼結温度を900
℃〜1400℃とすることにより、高密度で、結晶粒が
細かく、均一な焼結体を得ることができる。この際の雰
囲気としては、非還元性雰囲気が好ましく、酸素下など
の酸素雰囲気や大気中を例示することができる。
【0032】また、本発明のY成分をより多く含む焼結
体は、例えば、以下のような方法で製造することもでき
る。即ち、本発明の焼結体は、粒径3μm以下、好まし
くは1μm以下のBi2XY29(但し、XおよびYは
前記に同じ)粉末1モルに対して、粒径5μm以下、好
ましくは1μm以下のY25(但し、Yは前記に同じ)
粉末およびBi23粉末を各々0モルを超え1モル以
下、さらに粒径5μm以下、好ましくは1μm以下のB
23粉末を0モルを超え2モル未満加えて混合した混
合粉末を、900℃以上1400℃以下の温度で焼結す
ることにより得ることもできる。
【0033】より具体的には、前記方法で得られた粒径
3μm以下のBi2XY29(但し、XおよびYは前記
に同じ)仮焼粉末1モルに対し、0モルを超え1モル以
下の粒径5μm以下、好ましくは1μm以下のY2
5(但し、Yは前記に同じ)粉末とBi23粉末、およ
び0モルを超え2モル未満の粒径5μm以下、好ましく
は1μm以下のBi23粉末を加え粉砕・混合し、この
混合紛をメカプレス等により成形し成形体を得る。特
に、Bi23粉の粒径を5μm以下、好ましくは1μm
以下とすることにより、焼結体の気孔の成長を抑制し、
得られる焼結体の密度低下が抑制される。
【0034】Y25(但し、Yは前記に同じ)、Bi2
3粉末のより好ましい添加量は成膜の際のスパッタ条
件などにより変化するが、Bi2XY29(但し、Xお
よびYは前記に同じ)仮焼粉末1モルに対して、Y25
(但し、Yは前記に同じ)およびBi23が各々0モル
を超え0.5モル以下、さらに加えるBi23は0.1
モル以上0.6モル以下が好ましい。
【0035】続いて、得られた成形体を900℃〜14
00℃の温度で焼結し焼結体を得る。焼結温度を900
℃〜1400℃とすることにより、高密度で、結晶粒が
細かく、均一な焼結体を得ることができる。この際の雰
囲気としては、非還元性雰囲気が好ましく、酸素下など
の酸素雰囲気や大気中を例示することができる。
【0036】以上のようにして得られた焼結体にターゲ
ット作製のための後処理(研削、バッキングプレートへ
のボンディングなど)を行うことによって、スパッタリ
ングターゲットとすることができる。
【0037】得られたスパッタリングターゲットを用い
て成膜した後、膜の結晶性をあげるために、ポストアニ
ールを行うこともできる。本発明のターゲットによれ
ば、ターゲット中のビスマスの昇華を抑制できるので、
ターゲットの組成と薄膜の組成とのずれを小さくでき、
また、薄膜組成のスパッタ時間の増加にともなう経時変
化を抑えることができる。ポストアニールの条件として
は特に制限はないが、例えば、大気中または酸素雰囲気
中、常圧(大気圧)で、700〜800℃に膜を保てば
よい。
【0038】
【実施例】
(実施例1)元素比Bi:Sr:Ta=2:1:2にな
るように、Bi23、SrCO3及びTa25粉末をボ
ールミルで24時間混合し、この混合粉を900℃、大
気中で仮焼しBi2SrTa29の仮焼粉を得た。この
時の仮焼粉の粒径は1μmであった。この仮焼粉1モル
に対して、粒径2μmのBi23粉末を0.4モル加え
てボールミルで24時間粉砕・混合し、この混合粉を1
軸メカプレス(面圧:200kg/cm2)及び静水圧
加圧(面圧:3t/cm2)により成形を行い成形体を
得た。さらに、この成形体を950℃、3時間、大気中
で焼結し焼結体を得た。X線回折による分析により、得
られた焼結体は層状ペロブスカイト相と酸化ビスマス相
の2相からなることが認められた。この焼結体に常法に
より後処理を施しスパッタリングターゲットを作製し
た。このターゲットは、相対密度98.3%、気孔率
1.7%、密度8.62g/cm3で、SEM観察より
求めた焼結体の構成粒子の平均粒径は2μmであった。
【0039】スパッタ法により作製した基板(Siウェ
ハ/SiO2(200nm)/Ti(20nm)/Pt
(200nm))のPt膜上に、このターゲットを用い
て、膜厚200nmの誘電体膜を形成し、結晶性を高め
るために酸素雰囲気下、800℃でポストアニールを行
った。スパッタ条件は、圧力:0.6Pa、ガス流量比
Ar:O2=8:2、基板温度:300℃である。この
時のスパッタ後の誘電体膜の組成分析を行ったところ、
Srに対するBi及びTaの組成比は、スパッタ後でB
i/Sr=2.26、Ta/Sr=1.93であり、ア
ニール後に良好な層状ペロブスカイト相結晶膜が得られ
た。また、10kWh経過後も膜組成のずれは3%以内
であり、ターゲット寿命に至るまで割れの発生は見られ
なかった。
【0040】(実施例2)元素比Bi:Ta=1:1に
なるように、Bi23及びTa25粉末をボールミルで
24時間混合し、この混合粉を1000℃、大気中で仮
焼し、BiTaO4の仮焼粉を得た。この時の仮焼粉の
粒径は1μmであった。
【0041】実施例1と同様にして得た粒径1μmのB
2SrTa29の仮焼粉1モルに対して、上記のBi
TaO4仮焼粉を0.5モル、粒径1μmのBi23
末を0.5モル加えてボールミルで24時間混合し、こ
の混合粉を1軸メカプレス(面圧:200kg/c
2)及び静水圧加圧(面圧:3t/cm2)により成形
して成形体を作製した。さらに、この成形体を1100
℃、3時間、大気中で焼結し焼結体を得た。X線回折に
よる分析により、得られた焼結体は層状ペロブスカイト
相、ビスマス・タンタル酸化物相及び酸化ビスマス相の
3相からなることが認められた。この焼結体に常法によ
り後処理を施しスパッタリングターゲットを作製した。
このターゲットは、相対密度97.6%、気孔率2.2
%、密度8.63g/cm3で、SEM観察より求めた
焼結体の構成粒子の平均粒径は2μmであった。
【0042】実施例1と同様にスパッタ法により作製し
た基板(Siウェハ/SiO2(200nm)/Ti
(20nm)/Pt(200nm))のPt膜上に、こ
のターゲットを用いて、膜厚200nmの誘電体膜を形
成し、結晶性を高めるために酸素雰囲気下、800℃で
ポストアニールを行った。
【0043】得られた誘電体膜の組成分析を行ったとこ
ろ、Srに対するBi及びTaの組成比は、スパッタ後
でBi/Sr=2.85、Ta/Sr=2.53であ
り、アニール後に良好な層状ペロブスカイト相結晶膜が
得られた。また、10kWh経過後も膜組成のずれは3
%以内であり、ターゲット寿命に至るまで割れの発生は
見られなかった。
【0044】(実施例3)実施例1と同様にして得た粒
径1μmのBi2SrTa29の仮焼粉1モルに対し
て、粒径1μmのTa25を0.25モル、粒径1μm
のBi23粉末を0.75モル加えてボールミルで24
時間混合し、この混合粉を1軸メカプレス(面圧:20
0kg/cm2)及び静水圧加圧(面圧:3t/cm2
により成形して成形体を作製した。さらに、この成形体
を1100℃、3時間、大気中で焼結し焼結体を得た。
X線回折による分析により、得られた焼結体は層状ペロ
ブスカイト相、ビスマス・タンタル酸化物相及び酸化ビ
スマス相の3相からなることが認められた。この焼結体
に常法により後処理を施しスパッタリングターゲットを
作製した。このターゲットは、相対密度95.3%、気
孔率4.8%、密度8.43g/cm3で、SEM観察
より求めた焼結体の構成粒子の平均粒径は2μmであっ
た。
【0045】実施例1と同様にスパッタ法により作製し
た基板(Siウェハ/SiO2(200nm)/Ti
(20nm)/Pt(200nm))のPt膜上に、こ
のターゲットを用いて、膜厚200nmの誘電体膜を形
成し、結晶性を高めるために酸素雰囲気下、800℃で
ポストアニールを行った。
【0046】得られた誘電体膜の組成分析を行ったとこ
ろ、Srに対するBi及びTaの組成比は、スパッタ後
でBi/Sr=2.81、Ta/Sr=2.56であ
り、アニール後に良好な層状ペロブスカイト相結晶膜が
得られた。また、10kWh経過後も膜組成のずれは
3.5%以内であり、ターゲット寿命に至るまで割れの
発生は見られなかった。
【0047】(比較例1)実施例1で得られたBi2
rTa29の仮焼粉をボールミルで24時間粉砕し、実
施例1と同様に、この粉砕粉を1軸メカプレス(面圧:
200kg/cm2)及び静水圧加圧(面圧:3t/c
2)により成形して成形体を得た。X線回折による分
析により、得られた焼結体は層状ペロブスカイト相のみ
からなることが認められた。この焼結体に常法により後
処理を施しスパッタリングターゲットを作製した。この
ターゲットは、相対密度64.5%、気孔率35.5
%、密度5.67g/cm3で、SEM観察より求めた
焼結体の構成粒子の平均粒径は2μmであった。
【0048】実施例1と同様にスパッタ及びアニールを
行い、得られた薄膜の組成分析を行ったところ、Srに
対するBi及びTaの組成比は、スパッタ後でBi/S
r=1.67、Ta/Sr=2.08であり、アニール
後に良好な層状ペロブスカイト相結晶膜は得られなかっ
た。また、膜中に取り込まれるビスマス量はスパッタ時
間の増加にともなって経時的に減少し、10kWh経過
後の薄膜中のビスマス量は当初の85%程度であった。
さらに、成膜実験後のターゲット表面に割れが観察され
た。
【0049】(比較例2)Bi2SrTa2O1の仮焼
粉、BiTaO4仮焼粉及びBi23粉末の混合粉から
なる成形体の焼結を850℃で10時間行ったこと以外
は実施例2と同様にして焼結体を得た。X線回折による
分析により、得られた焼結体は層状ペロブスカイト相、
ビスマス・タンタル酸化物相及び酸化ビスマス相の3相
からなることが認められた。この焼結体に常法により後
処理を施しスパッタリングターゲットを作製した。この
ターゲットは、相対密度90%、気孔率10%、密度
7.96g/cm3で、SEM観察より求めた焼結体の
構成粒子の平均粒径は2μmであった。
【0050】実施例1と同様にスパッタ法により作製し
た基板(Siウェハ/SiO2(200nm)/Ti
(20nm)/Pt(200nm))のPt膜上に、こ
のターゲットを用いて、膜厚200nmの誘電体膜を形
成し、結晶性を高めるために酸素雰囲気下、800℃で
ポストアニールを行った。
【0051】得られた誘電体膜の組成分析を行ったとこ
ろ、Srに対するBi及びTaの組成比は、スパッタ後
でBi/Sr=2.75、Ta/Sr=2.58であ
り、アニール後に良好な層状ペロブスカイト相結晶膜が
得られた。また、膜中に取り込まれるビスマス量はスパ
ッタ時間の増加にともなって経時的に減少し、10kW
h経過後の薄膜中のビスマス量は当初の90%程度であ
った。さらに、成膜実験後のターゲット表面に割れが観
察された。
【0052】なお、上記の実施例及び比較例において、
相対密度の計算に用いた理論密度は、Bi2SrTa2
9が8.785g/cm3(引用文献:ActaCrys
t.(1992).B48,418−428)、Bi2
3が8.65g/cm3 (引用文献:岩波書店「理化
学辞典」)であり、ビスマス・タンタル酸化物相は9.
33g/cm3を使用した。
【0053】
【発明の効果】本発明のスパッタリングターゲットを用
いれば、複数のターゲットを用いることなく、目的組成
のビスマス系層状ペロブスカイト強誘電体薄膜が容易に
再現性良く得られる。

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 一般式:Bi2XY29(X=Sr,B
    a、Y=Ta,Nb)で表される化合物1モルに対し
    て、0モルを超え1モル未満のBi23を含んでなり、
    相対密度が95%以上である焼結体。
  2. 【請求項2】 一般式:Bi2XY29(X=Sr,B
    a、Y=Ta,Nb)で表される化合物1モルに対し
    て、0モルを超え1モル未満のBi23を含んでなり、
    気孔率が5%以下である焼結体。
  3. 【請求項3】 一般式:Bi2XY29(X=Sr,B
    a、Y=Ta,Nb)で代表される層状ペロブスカイト
    相を含み、焼結体全体の平均組成が、BibXY2
    c(X=Sr,Ba、Y=Ta,Nb)の表記におい
    て、bの値が2以上4以下、cの値が8以上13以下で
    あり、かつ、気孔率が5%以下である焼結体。
  4. 【請求項4】 一般式:Bi2XY29(X=Sr,B
    a、Y=Ta,Nb)で表される化合物1モルに対し
    て、0モルを超え2モル以下のBiYO4(Y=Ta,
    Nb)、および0モルを超え2モル未満のBi23を含
    んでなり、相対密度が95%以上である焼結体。
  5. 【請求項5】 一般式:Bi2XY29(X=Sr,B
    a、Y=Ta,Nb)で表される化合物1モルに対し
    て、0モルを超え2モル以下のBiYO4(Y=Ta,
    Nb)、および0モルを超え2モル未満のBi23を含
    んでなり、気孔率が5%以下である焼結体。
  6. 【請求項6】 一般式:Bi2XY29(X=Sr,B
    a、Y=Ta,Nb)で代表される層状ペロブスカイト
    相を含み、焼結体全体の平均組成が、BibXYy
    c(X=Sr,Ba、Y=Ta,Nb)の表記におい
    て、bの値が2以上8以下、yの値が2以上4以下、c
    の値が8以上24以下であり、かつ、気孔率が5%以下
    である焼結体。
  7. 【請求項7】 焼結体の密度が8.2g/cm3以上で
    ある、請求項1〜6のいずれか1項に記載の焼結体。
  8. 【請求項8】 焼結体の構成粒子が平均粒径5μm以下
    の単位粒子からなる、請求項1〜7のいずれか1項に記
    載の焼結体。
  9. 【請求項9】 Bi2XY29(X=Sr,Ba、Y=
    Ta,Nb)粉末とBi23粉末との混合粉末を850
    ℃〜1300℃の温度で焼結することを特徴とする、請
    求項1〜3のいずれか1項に記載の焼結体の製造法。
  10. 【請求項10】 Bi2XY29(X=Sr,Ba、Y
    =Ta,Nb)粉末とBiYO4(Y=Ta,Nb)粉
    末、およびBi23粉末との混合粉末を900℃〜14
    00℃の温度で焼結することを特徴とする、請求項4〜
    6のいずれか1項に記載の焼結体の製造法。
  11. 【請求項11】 Bi2XY29(X=Sr,Ba、Y
    =Ta,Nb)粉末とY25(Y=Ta,Nb)粉末、
    およびBi23粉末との混合粉末を900℃〜1400
    ℃の温度で焼結することを特徴とする、請求項4〜6の
    いずれか1項に記載の焼結体の製造法。
  12. 【請求項12】 請求項1〜8のいずれか1項に記載の
    焼結体からなるターゲット。
JP9337488A 1996-12-09 1997-12-08 ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途 Pending JPH10226572A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9337488A JPH10226572A (ja) 1996-12-09 1997-12-08 ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-342364 1996-12-09
JP34236496 1996-12-09
JP9337488A JPH10226572A (ja) 1996-12-09 1997-12-08 ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途

Publications (1)

Publication Number Publication Date
JPH10226572A true JPH10226572A (ja) 1998-08-25

Family

ID=26575814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9337488A Pending JPH10226572A (ja) 1996-12-09 1997-12-08 ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途

Country Status (1)

Country Link
JP (1) JPH10226572A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010874A1 (ja) * 2005-07-15 2007-01-25 Asahi Glass Company, Limited タンタル酸ストロンチウムビスマス微粒子の製造方法
JP2008231313A (ja) * 2007-03-22 2008-10-02 Kumamoto Univ 酸化物ナノシート蛍光体及びその製造方法
JP2008255480A (ja) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp 蒸着材及びその製造方法
JP2009107345A (ja) * 2000-06-21 2009-05-21 Seiko Epson Corp セラミックス膜およびその製造方法ならびに半導体装置、圧電素子およびアクチュエータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107345A (ja) * 2000-06-21 2009-05-21 Seiko Epson Corp セラミックス膜およびその製造方法ならびに半導体装置、圧電素子およびアクチュエータ
WO2007010874A1 (ja) * 2005-07-15 2007-01-25 Asahi Glass Company, Limited タンタル酸ストロンチウムビスマス微粒子の製造方法
JP5056414B2 (ja) * 2005-07-15 2012-10-24 旭硝子株式会社 タンタル酸ストロンチウムビスマス微粒子の製造方法
JP2008255480A (ja) * 2007-03-09 2008-10-23 Mitsubishi Materials Corp 蒸着材及びその製造方法
JP2008231313A (ja) * 2007-03-22 2008-10-02 Kumamoto Univ 酸化物ナノシート蛍光体及びその製造方法

Similar Documents

Publication Publication Date Title
JP2000508835A (ja) モノリシック多層圧電アクチュエータおよびその製造方法
JPH0817245A (ja) 強誘電体薄膜およびその製造方法
CN107235724B (zh) 压电陶瓷溅射靶材、无铅压电薄膜以及压电薄膜元件
US10593863B2 (en) Piezoelectric ceramic sputtering target, lead-free piezoelectric thin film and piezoelectric thin film element using the same
EP2623481B1 (en) Piezoelectric composition and piezoelectric element
JP2007084408A (ja) 圧電セラミックス
Wang et al. Enhanced dielectric properties of low-temperature sintered SrBi 2 Nb 2 O 9/Ag composites
US9831418B2 (en) Piezoelectric composition and piezoelectric element
JPH10226572A (ja) ビスマス系層状ペロブスカイト焼結体およびその製造法並びにその用途
JPH0649638A (ja) 強誘電体薄膜作製方法
KR20180111687A (ko) 산질화물 박막 및 용량 소자
KR101013762B1 (ko) 전계 가변형 BST-Pb계 파이로클로어 복합 유전체박막과 제조방법
US20120018664A1 (en) Method of producing a lead zirconium titanate-based sintered body, lead zirconium titanate-based sintered body, and lead zirconium titanate-based sputtering target
JPWO2005024091A1 (ja) スパッタリング用ターゲット
EP3584848B1 (en) Piezoelectric ceramics, piezoelectric element, and electronic apparatus
Li et al. The effect of bottom electrode on structure and electrical properties of BaZr0. 15Ti0. 85O3 films on SrTiO3 substrates
Ullah et al. Dielectric, Ferroelectric and Strain Properties of (Bi 0.5 Na 0.5) 0.935 Ba 0.065 Ti 1− x (Al 0.5 Nb 0.5) x O 3 Lead-free Piezoelectric Ceramics
TWI672283B (zh) 氮氧化物薄膜與電容元件
JPH111768A (ja) 強誘電体薄膜用ターゲット、その製造方法および強誘電体薄膜
CN109767915B (zh) 金属氮氧化物薄膜及金属氮氧化物薄膜的制造方法、以及电容元件
JP7064205B2 (ja) 非鉛強誘電体薄膜
JP2005203613A (ja) コンデンサ及びキャパシタ膜の成膜方法
JP2017190487A (ja) BiFeO3系焼結体からなるスパッタリングターゲット及びその製造方法
Lee et al. Electrical properties of AgNbO3 thick films by aerosol deposition followed by post-annealing in oxygen atmosphere
JP6642800B2 (ja) 誘電体薄膜、誘電体薄膜の製造方法、及び薄膜コンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408