JPH10163780A - 圧電単結晶からなる振動子の製造方法 - Google Patents

圧電単結晶からなる振動子の製造方法

Info

Publication number
JPH10163780A
JPH10163780A JP32393596A JP32393596A JPH10163780A JP H10163780 A JPH10163780 A JP H10163780A JP 32393596 A JP32393596 A JP 32393596A JP 32393596 A JP32393596 A JP 32393596A JP H10163780 A JPH10163780 A JP H10163780A
Authority
JP
Japan
Prior art keywords
vibrator
single crystal
piezoelectric single
base material
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32393596A
Other languages
English (en)
Inventor
Takashi Yoshino
隆史 吉野
Minoru Imaeda
美能留 今枝
Kenji Kato
賢治 加藤
Takao Soma
隆雄 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP32393596A priority Critical patent/JPH10163780A/ja
Publication of JPH10163780A publication Critical patent/JPH10163780A/ja
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】圧電単結晶の母材から振動子を形成するのに際
して、振動子の外形の加工精度を向上させうるような新
たな加工方法を提供することである。 【解決手段】圧電単結晶からなる振動子の製造方法であ
って、圧電単結晶からなる母材に対してレーザー光を照
射し、光化学的な反応によって前記母材の分子を解離お
よび蒸発させ、母材を振動子の形態に合わせて除去加工
することによって、振動子を形成する。好ましくは、振
動子が回転角速度センサ用の振動子であり、振動子の駆
動振動と検出振動とが所定平面内で行われるものであ
り、圧電単結晶が、水晶、ニオブ酸リチウム、タンタル
酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固
溶体およびランガサイトからなる群より選ばれる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、圧電単結晶からな
る振動子の製造方法に関するものである。
【0002】
【従来の技術】回転系内の回転角速度を検出するための
角速度センサとして、圧電体を用いた振動型ジャイロス
コープが、航空機や船舶、宇宙衛星などの位置の確認用
として利用されてきた。最近では、民生用の分野として
カーナビゲーションや、VTRやスチルカメラの手振れ
の検出などに使用されている。
【0003】このような圧電振動型ジャイロスコープ
は、振動している物体に角速度が加わると、その振動と
直角方向にコリオリ力が生じることを利用している。そ
して、その原理は力学的モデルで解析される(例えば、
「弾性波素子技術ハンドブック」、オーム社、第491
〜497頁)。そして、圧電型振動ジャイロスコープと
しては、これまでに種々のものが提案されている。例え
ば、スペリー音叉型ジャイロスコープ、ワトソン音叉型
ジャイロスコープ、正三角柱型音片ジャイロスコープ、
円筒型音片ジャイロスコープ等が知られている。
【0004】圧電振動型ジャイロスコープについては、
「圧電形振動ジャイロスコープ角速度センサ」(電子情
報通信学会論文誌 C−I、Vol.J78−C−I
No.11 第547〜556頁、1995年11月発
行)にまとめられている。また、いわゆる音叉型の圧電
振動子は、例えば特開平8−114457号公報に記載
されている。
【0005】しかし、圧電振動子を使用した振動型ジャ
イロスコープを更に新たな用途に展開するためには、そ
の量産技術が最も重要である。しかし、圧電単結晶から
なる振動子を、十分な精度を確保しつつ量産すること
は、極めて困難であった。現在、単結晶の加工方法とし
ては、エッチング加工が通常である。また、特開平8−
78985号公報においては、圧電共振子をレーザービ
ームの照射によって形成する方法が提案されている。
【0006】
【発明が解決しようとする課題】エッチングによって単
結晶母材を加工する場合には、加工断面の形状が、単結
晶母材の表側と裏側とで非対称になり、加工精度が低い
という問題がある。このようにエッチング面の形状が母
材の表側と裏側とで非対称になると、これによってシミ
ュレーション値とは異なる不必要な振動モードが発生
し、ノイズ信号の増大の原因となる。
【0007】また、特開平8−78985号公報におい
ては、振動電極を設けた圧電体板に、レンズ等の集光手
段によって集光されたレーザービームを操作しながら照
射し、これによって、端面が傾斜面である圧電共振子を
切り出すことを提案している。圧電体の種類としてはP
ZT、水晶、LiTaO3 が例示されており、レーザー
ビームの種類としてはヘリウム・ネオンレーザー、CO
2 レーザー、アルゴンレーザー、クリプトンイオンレー
ザー、キセノンレーザー等のガスレーザー、ルビーレー
ザー、YAGレーザー等の固体レーザーが挙げられてい
る。具体的には、板厚1.5mmのマザーボードに、4
ワットの強度のYAGレーザーを照射している。
【0008】本発明者は、回転角速度センサー用の圧電
振動子を圧電単結晶板から切り出す目的で、特開平8−
78985号公報の記載に従って、ニオブ酸リチウム基
板、タンタル酸リチウム基板、ランガサイト基板、水晶
基板から振動子を切り出す実験を行った。しかし、実際
にはこれらの圧電単結晶の基板から、振動子を良好な精
度で切り出すことは不可能であることが判明してきた。
具体的には、CO2 レーザーをこれらの基板に照射する
と、クラックが発生し、切断加工が不可能であった。ま
た、Nd−YAGレーザーを照射した場合には、加工が
ほとんど進行しなかった。このように、レーザービーム
を圧電単結晶の母材に照射しても、振動子の外形を精密
加工することは不可能であることが判明した。これらの
理由から、圧電単結晶の母材から振動子を一定の精度を
もって量産する技術が求められている。
【0009】本発明の課題は、圧電単結晶の母材から振
動子を形成するのに際して、振動子の外形の加工精度を
向上させうるような新たな加工方法を提供することであ
る。
【0010】
【課題を解決するための手段】本発明は、圧電単結晶か
らなる振動子の製造方法であって、圧電単結晶からなる
母材に対してレーザー光を照射し、光化学的な反応によ
って母材の分子を解離および蒸発させ、母材を振動子の
形態に合わせて除去加工することによって、振動子を形
成することを特徴とする、圧電単結晶からなる振動子の
製造方法に係るものである。
【0011】本発明者は、圧電単結晶からなる母材をレ
ーザー光で切断する実験に失敗した後、失敗の原因につ
いて更に詳細に検討した結果、次の知見を得た。即ち、
圧電単結晶の母材に対してレーザービームを照射して加
熱溶融させ、加工するときには、母材の照射部分で、局
所的に急熱と急冷とが起こる。しかし、圧電単結晶、特
にニオブ酸リチウム、タンタル酸リチウムなどは、熱衝
撃に非常に弱い。なぜなら、圧電単結晶の内部で急激な
温度変化があると、温度が変化した部分とその周辺で急
激に焦電が発生し、クラックが不可避的に発生するから
である。例えば、CO2 レーザービーム(波長10.6
μm)を照射すると、こうした焦電に起因するものと見
られるクラックが多数発生し、これを抑制することはで
きず、実質上加工は不可能であった。
【0012】このため、本発明者は、いわゆるレーザー
アブレーション技術に着目し、圧電単結晶を切断して振
動子を製造するプロセスにレーザーアブレーション技術
を適用できないかを検討した。従来、圧電単結晶材料を
レーザーアブレーション技術によって切断加工すること
は、まったく類例がない。
【0013】例えば、ニオブ酸リチウム単結晶の結合エ
ネルギーは8〜9eVであるので、これ以上のエネルギ
ーを有するレーザー光を照射すると、純粋なアブレーシ
ョン加工が可能になるはずである。しかし、8eVのエ
ネルギーは波長に換算すると約150nmとなるが、1
50nm以下の波長を有するレーザー光は極めて特殊な
ものしかないため、実用的ではない。
【0014】本発明者は、純粋なレーザーアブレーショ
ン技術ではなく、各圧電単結晶の吸収端の波長の近傍の
レーザー光を高密度に集光し、圧電振動子母材の表面に
照射することによって、多光子吸収過程によって圧電振
動子の母材を切断できることを見いだした。この場合に
は、圧電振動子の母材の切断加工プロセスにおいて、若
干の熱的影響があるので、擬似熱的加工と呼ぶ。
【0015】具体的には、圧電単結晶の吸収端の波長
と、レーザー光の波長との差を、100nm以下とする
ことが好ましく、50nm以下とすることが一層好まし
い。
【0016】圧電振動子としては、水晶、ニオブ酸リチ
ウム、タンタル酸リチウム、ニオブ酸リチウム−タンタ
ル酸リチウム固溶体またはランガサイト(La3Ga5
SiO1 4 )が特に好ましく、ニオブ酸リチウム、タン
タル酸リチウム、ニオブ酸リチウム−タンタル酸リチウ
ム固溶体またはランガサイトが一層好ましい。レーザー
光の波長は、300nm以下とすることが一層好まし
い。ただし、実用的な観点からは、150nm以上とす
ることが好ましい。また、現実の光源としては、エキシ
マレーザー光源、Nd−YAGの四次高調波(266n
mのレーザー光)、エキシマランプが、現在のところ実
用的である。
【0017】レーザー光の照射装置としては、いわゆる
一括露光方式の装置と多重反射方式の装置とが知られて
いる。多重反射方式の場合には、マスクの開孔率が小さ
い場合にも、光の利用率が高いという特徴を有してい
る。本発明においては、多重反射系による照射装置を使
用することが一層好ましい。
【0018】エキシマレーザーは、紫外線のパルス繰り
返し発振レーザーであり、ArF(波長193nm)、
KrF(波長248nm)、XeCl(波長308n
m)などの気体状の化合物が発振する紫外光を、光共振
機により方向性を揃えて取り出したものである。
【0019】エキシマレーザーを用いたアブレーション
加工は、例えば、ポリイミド等の微細加工のために孔を
開けるのに使用されており、良好な形状の微細な孔の形
成が可能であることが報告されている。エキシマレーザ
ーの応用技術に関する文献としては、「O plus
E」1995年11月号、第64〜108頁の特集「実
用期に入ったエキシマレーザー」を挙げることができ
る。
【0020】本発明において、レーザー光によって圧電
単結晶を切断加工する加工方法としては、いわゆるスポ
ットスキャン加工、一括転写加工、スリットスキャン加
工を挙げることができる。
【0021】本発明の好ましい実施形態においては、振
動子が回転角速度センサ用の振動子であり、振動子の駆
動振動と検出振動とが所定平面内で行われるものであ
る。この実施形態について更に詳細に説明する。
【0022】本発明者は、振動子の振動アームが回転軸
に対して垂直方向に延びるように振動子を設置した場合
にも、振動子から回転軸の方向に向かって一定重量の突
出部を設けることなく、十分に高い感度で回転角速度を
検出できるような振動子を作製する実験を行ってきた。
こうした振動子は、例えば、自動車の車体回転速度フィ
ードバック式の車両制御システムに用いる回転速度セン
サーに使用できる。このシステムにおいては、操舵輪の
方向自身は、ハンドルの回転角度によって検出する。こ
れと同時に、実際に車体が回転している回転速度を振動
ジャイロスコープによって検出する。そして、操舵輪の
方向と実際の車体の回転速度を比較して差を求め、この
差に基づいて車輪トルク、操舵角に補正を加えることに
よって、安定した車体制御を実現する。
【0023】本発明者は、このために、振動子の駆動振
動と検出振動とが所定平面内で行われるような圧電単結
晶製の振動子を、本発明の方法によって製造することに
成功した。単結晶薄板に本発明に従ってレーザー光を照
射し、擬似熱加工することによって、この振動子の全体
を形成できる。
【0024】このような振動子は、温度変化に対して特
に鈍感であるため、温度安定性を必要とする車載用セン
サーの振動子として好適である。この点について更に説
明する。音叉型の振動子を使用した角速度センサとして
は、例えば特開平8−128833号公報に記載された
圧電振動型ジャイロスコープがある。しかし、こうした
振動子において、振動子が2つの方向に向かって振動す
る。つまり、振動子がX−Y平面内で振動するのと共
に、Z方向にも振動する。このため、振動子を特に前記
したような単結晶によって形成した場合には、単結晶の
2方向の特性を合わせる必要がある。
【0025】一方、一般に圧電振動型ジャイロスコープ
では、測定感度を良好にするために、駆動の振動モード
の固有周波数と検出の振動モードの固有周波数との間
に、一定の振動周波数差を保つことが要求されている。
しかし、単結晶は異方性を持っており、結晶面が変化す
ると、振動周波数の温度変化の度合いが異なる。例え
ば、ある特定の結晶面に沿って切断した場合には、振動
周波数の温度変化がほとんどないが、別の結晶面に沿っ
て切断した場合には、振動周波数が温度変化に敏感に反
応する。
【0026】ここで、振動子が2つの方向に向かって振
動すると、2つの振動面のうち少なくとも一方の面は、
振動周波数の温度変化が大きい結晶面になる。
【0027】これに対して、振動子の全体を所定平面内
で振動するように、振動子を形成することで、前記した
単結晶の異方性の影響を受けないようにし、圧電単結晶
の最も特性の良い結晶面のみを振動子において利用でき
るようになった。
【0028】具体的には、振動子の振動が単一平面内で
すべて行われていることから、圧電単結晶のうち、振動
周波数の温度変化がほとんどない結晶面のみを利用して
振動子を製造することができる。これによって、きわめ
て温度安定性の高い振動型ジャイロスコープを提供でき
る。
【0029】こうした振動子を例示する。まず、一対の
振動片を所定平面内で基部により結合してなる音叉型振
動子と、この音叉型振動子を外部の固定部材に所定平面
内において固定するための支持体とからなる振動子であ
って、所定平面内において、支持体に支持体の固定部材
と接続した固定部分を支点とする屈曲運動が生じるよう
構成できる。
【0030】図1は、この実施形態に係る振動子1を示
す斜視図である。振動子1は、音叉型振動子と、支持体
2とを備えている。音叉型振動子は、一対の振動片3
A、3Bを備えており、各振動片3A、3Bは、それぞ
れ、X−Y平面内で支持体2の先端部分に対して接続部
5、基部4を介して接続されている。支持体2の他端部
が、外部の固定部材6に対してXY平面内において固定
されている。一対の振動片3A、3Bは、互いにほぼ平
行であり、かつ支持体2に対して平行に延びている。各
接続部5は、支持体2に対して略垂直方向に延びてい
る。
【0031】図示しない励振手段により、各振動片3
A、3Bに、X─Y平面内において位相が完全に逆にな
るように、矢印Bで示すような振動を励起する。この状
態で、Z軸を中心として振動子1の全体を回転角速度ω
で回転させると、コリオリの力により、各振動片3A、
3Bには、矢印Dで示すように、Y軸に沿って互いに逆
向きの力が作用する。その結果、音叉型振動子におい
て、基部4および接続部分5の両端側で、基部4を中心
とする互いに同じ向きのモーメントC1、C2が働く。
このモーメントC1、C2により、支持体2に、その固
定部分7を中心とするXY平面内の屈曲振動Aが生じ
る。この屈曲振動Aを、図示しない屈曲信号検出手段に
より検出することで、回転角速度ωを測定することがで
きる。
【0032】また、基部と、基部から基部の長さ方向に
対して交差する方向に延びる少なくとも一本の屈曲振動
片とを備えており、基部と屈曲振動片とが実質的に所定
平面内に延びるように形成されており、振動子の基部の
一方の端部が固定されている振動子について例示する。
【0033】図2は、この振動子9を示す正面図であ
る。振動子9においては、基部10が固定部材6から垂
直に延びており、基部10の一方の端部10aが固定部
材6に固定されている。基部10内に所定の励振手段1
4A、14Bが設けられている。基部10の他方の端部
10b側に、基部10に対して垂直方向に延びる2本の
屈曲振動片12A、12Bが設けられている。
【0034】この振動子9の振動のモードについて説明
する。励振手段14A、14Bに対して駆動電圧を印加
し、基部10を、固定部材6への固定部分7を中心とし
て、矢印Eに示すように屈曲振動させる。この屈曲振動
に伴い、振動子9の基部10だけでなく、各屈曲振動片
12A、12Bの各点も、矢印Eのように振動する。
【0035】Z軸を回転軸とし、振動子9をz軸を中心
として回転させる。基部10を、矢印Eに示すように屈
曲振動させているときに、振動子9の全体をZ軸を中心
として回転させると、矢印Fで示すようにコリオリ力が
作用する。この結果、各屈曲振動片12A、12Bが、
それぞれ基部10の他方の端部10bとの接続部分11
を中心として、矢印Fで示すように屈曲振動する。
【0036】このように、基部10の屈曲振動によっ
て、各屈曲振動片12A、12BにおいてX−Y平面内
に発生するコリオリ力を、各屈曲振動片12A、12B
の接続部分11を中心とする屈曲振動に変換し、その屈
曲振動から回転角速度を求めることができる。これによ
って、振動子の振動アームが回転軸Zに対して垂直方向
に延びるように振動子を設置しても、回転角速度を高感
度で検出できる。
【0037】本発明においては、振動子を圧電単結晶に
よって形成するので、励振手段(検出手段)14A、1
4B、13A、13B、13C、13Dとしては、電極
を使用する。励振手段(または検出手段)14Aと14
Bとの一方があれば、少なくとも励振(または検出)を
行うことが可能である。また、検出手段(または励振手
段)13A、13B、13C、13Dのうちの一つがあ
れば、少なくとも検出(または励振)を行うことが可能
である。
【0038】また、前記のような振動子を、いわゆるH
型の形態の振動子に対して適用することができる。例え
ば、両端が固定されている固定片部と、固定片部の一方
の側に設けられている基部と、基部から基部の長さ方向
に対して交差する方向に延びる少なくとも一本の屈曲振
動片と、固定片部の他方の側に設けられている共振片と
を備えており、固定片部、基部、屈曲振動片および共振
片が実質的に所定平面内に延びるように形成されている
振動子を製造できる。
【0039】図3は、この実施形態に係る振動子18を
示す正面図である。振動子18では、固定片部19によ
って励振手段側と検出手段側とを分離している。固定片
部19の両端を固定部材17によって固定する。固定片
部19の一方の側に細長い基部24を設け、基部24の
端部24bから、基部24の長さ方向に対して直交する
方向に延びる2本の屈曲振動片27A、27Bを設けて
いる。
【0040】固定片部19の他方の側に、共振片40が
設けられている。共振片40は、固定片部19から垂直
方向に延びる長方形の支持部20を備えており、支持部
20内に所定の励振手段21A、21Bが設けられてい
る。支持部20の他方の端部20b側に、支持部20に
対して垂直方向に延びる2本の振動片23A、23Bが
設けられている。基部24の端部24aと共振片40の
端部20aとが、固定片部19に対して連続している。
【0041】この振動子18の振動のモードについて説
明する。励振手段21A、21Bに対して駆動電圧を印
加し、共振片40を、固定片部19との接続部分22を
中心として、矢印Gのように振動させる。この振動に対
する共振によって、基部24および一対の屈曲振動片2
7A、27Bが、固定部材19との接続部分25を中心
として、矢印Hのように振動する。
【0042】この振動子18の全体が、回転軸Zを中心
として回転すると、各屈曲振動片27A、27Bにコリ
オリ力が作用する。この結果、各屈曲振動片27A、2
7Bが、それぞれ接続部分26を中心として、矢印Iで
示すように振動する。この屈曲振動を、検出手段28
A、28B、28C、28Dによって検出する。
【0043】このように、共振片40の接続部分22を
中心とする屈曲振動によって、各屈曲振動片27A、2
7BにおいてX−Y平面内に発生するコリオリ力を、各
屈曲振動片27A、27Bの接続部分26を中心とする
屈曲振動に変換し、その屈曲振動から回転角速度を求め
ることができる。これによって、振動子の振動アームが
回転軸Zに対して垂直方向に延びるように振動子を設置
しても、回転角速度を高感度で検出できる。
【0044】また、図4(a)、(b)は、三脚音叉型
の振動子25を示す正面図である。この振動子の動作
は、「日本音響学会 平成8年春季研究発表会 講演論
文集II」社団法人 日本音響学会 1996年3月
第1071〜1072頁「水平横置き・振動ジャイロス
コープセンサを目的とした三脚音さ共振子」に記載され
ている。振動子25は、外部の固定部材に固定されるべ
き基部29と、基部29から突出している3本の音叉型
の振動片26、27、28を備えている。両端の振動片
26、28は、基部29から細長く突出している本体部
分26a、28aと、各本体部分26a、28aから垂
直方向に向かって延びている質量部26b、28bとを
備えている。
【0045】この三脚音叉を振動ジャイロとして用いる
場合の駆動振動モードは、対称−水平一次共振モード
(HS−MODE)とし、検出用振動モードは、非対称
−水平1次共振モード(HA−MODE)とする。これ
らの2つのモードは、理想的には、互いに縮退させてお
く。角速度を検出する際には、予めHS−MODEを駆
動させておく。図4(a)は、HS−MODEの駆動状
態を示すものであり、音叉型振動片26が、矢印Kで示
すように振動し、音叉型振動片28が矢印Lで示すよう
に、振動片26とは反対側に振動する。
【0046】角速度ωが振動子に加わると、各振動片2
6、28の先端部分にある負荷質量部26b、28b
に、駆動振動の方向K、Lに対して垂直な方向に向かっ
てコリオリ力が発生する。コリオリ力が負荷質量部26
b、28bに対して加わると、駆動振動の方向に向かっ
てモーメントが働き、図4(b)に示すように、HA−
MODEが励起される。即ち、各振動片26、28が矢
印M、Nで示すように、互いに同じ方向へと向かって振
動する。これと同時に、中央の振動片27が、矢印Pで
示すように、各振動片26、28とは反対側へと向かっ
て振動する。このHA−MODEの振動を検出すること
によって、角速度ωを測定する。なお、前記した駆動振
動と検出振動とは互いに可逆的である。
【0047】一般に圧電振動型ジャイロスコープでは、
測定感度を良好にするために、駆動の振動モードの固有
周波数と検出の振動モードの固有周波数との間に、一定
の振動周波数差を保つことが要求されている。なぜな
ら、駆動の振動モードの固有周波数と検出の振動モード
の固有周波数とが近くなると、感度は良くなるが、応答
速度が悪化し、この差が大きくなると、応答速度は良く
なるが、感度が悪化するからである。
【0048】この問題を解決するために、本発明の好適
な実施形態においては、母材を除去加工して振動子を形
成した後、振動子の駆動振動の周波数と検出振動の周波
数とを調整するために、レーザー光を振動子の表面に照
射して、振動子を構成する圧電単結晶の少なくとも表面
領域を昇華させ、除去することができる。
【0049】具体的には、図1の振動子1においては、
各音叉型振動子の各振動片3A、3Bと接続部分5との
境界に、張出部分35A、35Bを形成する。そして、
いったんこの平面形状を有する振動子1を圧電単結晶母
材から切り出した後、張出部分35A、35Bに対して
レーザー光を照射し、質量を除去する加工を施す。これ
によって、各振動片3A、3Bの振動Bの振動モードの
固有周波数を変化させる。
【0050】また、図2に示す振動子9においては、基
部10の他方の端部10b側に、屈曲振動片12A、1
2Bから突出する突出部36が設けられている。そし
て、突出部36から質量を除去する加工を施すことによ
って、基部10の振動Eの振動モードの固有周波数を変
化させる。また、各屈曲振動片12A、12Bの各先端
側の37A、37Bから質量を除去する加工を行うこと
によって、各屈曲振動片の振動Fの振動モードの固有周
波数を、それぞれ独立して変化させることができる。
【0051】また、図3に示す振動子18においては、
基部24の他方の端部24b側に、屈曲振動片27A、
27Bから突出する突出部36が設けられている。そし
て、突出部36から質量を除去する加工を施すことによ
って、基部24の振動Hの振動モードの固有周波数を変
化させる。また、各屈曲振動片27A、27Bの各先端
側の37A、37Bから質量を除去する加工を行うこと
によって、各屈曲振動片の振動Iの振動モードの固有周
波数を、それぞれ独立して変化させることができる。
【0052】これらの場合、通常は振動子から取り去る
べき質量は僅かであるので、振動子を構成する圧電単結
晶を切断するに至る必要はなく、圧電単結晶の表面部分
のみを除去して凹部を形成するのみで良い。本発明の方
法、特にパルスレーザー光を所定時間照射する方法は、
こうした一定質量の除去に特に適している。
【0053】以下、更に具体的な実験結果について述べ
る。(実施例1)厚さ0.2mmのLiTaO3 のZ板
からなる母材を準備した。これにNd−YAGのレーザ
ーの4次高調波(波長266nm)のパルスレーザーを
照射し、母材を切断加工した。母材の表面におけるレー
ザー光のパワーを250mWとし、レーザー光の走査速
度を0.2mm/秒とし、パルスの繰り返し周波数を2
kHzとし、パルスの幅を45nsecとした。加工面
の直角度は90±0.1deg.であり、中心線平均表
面粗さRaは4μmであった。この方法により、図4に
示す平面形状の振動子25を前記母材から切り出した。
【0054】(比較例1)厚さ0.2mmのLiTaO
3 のZ板からなる母材を準備した。これにCO2レーザ
ー(波長10600nm)のパルスレーザーを照射し、
母材の切断加工を試みた。母材の表面におけるレーザー
光のパワーを100Wとし、レーザー光の走査速度を
0.2mm/秒とし、パルスの繰り返し周波数を2kH
Zとし、パルスの幅を200μsecとした。しかし、
母材に微細なクラックが無数に発生したため、切断加工
はできなかった。
【0055】(比較例2)厚さ0.2mmのLiTaO
3 のZ板からなる母材を準備した。これにYAGレーザ
ー(波長1060nm)のパルスレーザーを照射し、母
材の切断加工を試みた。母材の表面におけるレーザー光
のパワーを300mWとし、レーザー光の走査速度を
0.2mm/秒とし、パルスの繰り返し周波数を2kH
Zとし、パルスの幅を45nsecとした。しかし、母
材はレーザー光を吸収しにくいために、母材を切断する
までに至らなかった。
【0056】
【発明の効果】以上述べたように、本発明によれば、圧
電単結晶の母材から振動子を形成するのに際して、振動
子の外形の加工精度を向上させうるような新たな加工方
法を提供できる。
【図面の簡単な説明】
【図1】本発明の方法で製造できる振動子の一形態を示
す斜視図である。
【図2】本発明の方法で製造できる振動子の一形態を示
す正面図である。
【図3】本発明の方法で製造できる振動子の一形態を示
す正面図である。
【図4】本発明の方法で製造できる振動子の一形態を示
す正面図である。
【符号の説明】
1、9、18、25 振動子 2 支持体 3A、
3B 一対の振動片 6、17 外部の固定部材 7 振動子の固定部材6
への固定部分 10、24 基部 12A、12
B、27A、27B 基部に対して垂直方向に延びる2
本の屈曲振動片 13A、13B、13C、13D、
14A、14B、21A、21B 28A、28B、2
8C、28D 励振手段(検出手段) 19 固定片
部 40 共振片 A 支持体2の屈曲振動 B
各振動片3A、3Bの振動 C1、C2 回転のモ
ーメント E 基部10の固定部分7を中心とする屈
曲振動 F 各屈曲振動片12A、12Bの接続部
分11を中心とする屈曲振動 G 共振片40の接続
部分22を中心とする振動 H 基部24の接続部分25を中心とする振動 I
屈曲振動片27A、27Bの接続部分26を中心とする
振動 X、Y 振動子が振動する所定平面 Z 回転軸
フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 41/24 H01L 41/18 101A H03H 9/19 41/22 A (72)発明者 相馬 隆雄 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】圧電単結晶からなる振動子の製造方法であ
    って、前記圧電単結晶からなる母材に対してレーザー光
    を照射し、光化学的な反応によって前記母材の分子を解
    離および蒸発させ、前記母材を前記振動子の形態に合わ
    せて除去加工することによって、前記振動子を形成する
    ことを特徴とする、圧電単結晶からなる振動子の製造方
    法。
  2. 【請求項2】前記圧電単結晶が、水晶、ニオブ酸リチウ
    ム、タンタル酸リチウム、ニオブ酸リチウム−タンタル
    酸リチウム固溶体およびランガサイトからなる群より選
    ばれた一種以上の圧電単結晶であることを特徴とする、
    請求項1記載の圧電単結晶からなる振動子の製造方法。
  3. 【請求項3】前記母材が平板形状の母材であり、この母
    材の主面に対して前記レーザー光を照射して前記母材を
    切断することによって、平板形状の振動子を製造するこ
    とを特徴とする、請求項1または2記載の振動子の製造
    方法。
  4. 【請求項4】前記振動子が回転角速度センサ用の振動子
    であり、前記振動子の駆動振動と検出振動とが所定平面
    内で行われるものであることを特徴とする、請求項3記
    載の圧電単結晶からなる振動子の製造方法。
  5. 【請求項5】前記母材を除去加工して前記振動子を形成
    した後、前記振動子の前記駆動振動の周波数と前記検出
    振動の周波数とを調整するために、前記レーザー光を前
    記振動子の表面に照射して前記圧電単結晶を削除するこ
    とを特徴とする、請求項4記載の圧電単結晶からなる振
    動子の製造方法。
JP32393596A 1996-12-04 1996-12-04 圧電単結晶からなる振動子の製造方法 Withdrawn JPH10163780A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32393596A JPH10163780A (ja) 1996-12-04 1996-12-04 圧電単結晶からなる振動子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32393596A JPH10163780A (ja) 1996-12-04 1996-12-04 圧電単結晶からなる振動子の製造方法

Publications (1)

Publication Number Publication Date
JPH10163780A true JPH10163780A (ja) 1998-06-19

Family

ID=18160281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32393596A Withdrawn JPH10163780A (ja) 1996-12-04 1996-12-04 圧電単結晶からなる振動子の製造方法

Country Status (1)

Country Link
JP (1) JPH10163780A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194158A (ja) * 2000-01-12 2001-07-19 Microstone Corp 圧電型運動センサにおけるセンサ振動体の製造方法
JP2002192370A (ja) * 2000-09-13 2002-07-10 Hamamatsu Photonics Kk レーザ加工方法
JP2002213963A (ja) * 2001-01-22 2002-07-31 Microstone Corp 振動ジャイロスコープ
US6992026B2 (en) 2000-09-13 2006-01-31 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP2008175578A (ja) * 2007-01-16 2008-07-31 Nec Tokin Corp 圧電振動ジャイロ用振動子
US7605344B2 (en) 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
JP2010034712A (ja) * 2008-07-25 2010-02-12 Citizen Finetech Miyota Co Ltd 水晶片の製造方法
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
JP2014003711A (ja) * 2008-12-27 2014-01-09 Seiko Epson Corp 振動片、振動子、センサー及び電子部品
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US8993922B2 (en) 2004-01-09 2015-03-31 Hamamatsu Photonics K.K. Laser processing method and device
US9352414B2 (en) 2004-01-09 2016-05-31 Hamamatsu Photonics K.K. Laser processing method and device
US9511449B2 (en) 2004-01-09 2016-12-06 Hamamatsu Photonics K.K. Laser processing method and device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194158A (ja) * 2000-01-12 2001-07-19 Microstone Corp 圧電型運動センサにおけるセンサ振動体の製造方法
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US6992026B2 (en) 2000-09-13 2006-01-31 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP2002192370A (ja) * 2000-09-13 2002-07-10 Hamamatsu Photonics Kk レーザ加工方法
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
JP2002213963A (ja) * 2001-01-22 2002-07-31 Microstone Corp 振動ジャイロスコープ
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US8852698B2 (en) 2003-07-18 2014-10-07 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US7605344B2 (en) 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
US9511449B2 (en) 2004-01-09 2016-12-06 Hamamatsu Photonics K.K. Laser processing method and device
US9352414B2 (en) 2004-01-09 2016-05-31 Hamamatsu Photonics K.K. Laser processing method and device
US8993922B2 (en) 2004-01-09 2015-03-31 Hamamatsu Photonics K.K. Laser processing method and device
US10293433B2 (en) 2004-01-09 2019-05-21 Hamamatsu Photonics K.K. Laser processing method and device
US11241757B2 (en) 2004-01-09 2022-02-08 Hamamatsu Photonics K.K. Laser processing method and device
JP2008175578A (ja) * 2007-01-16 2008-07-31 Nec Tokin Corp 圧電振動ジャイロ用振動子
JP2010034712A (ja) * 2008-07-25 2010-02-12 Citizen Finetech Miyota Co Ltd 水晶片の製造方法
JP2014003711A (ja) * 2008-12-27 2014-01-09 Seiko Epson Corp 振動片、振動子、センサー及び電子部品

Similar Documents

Publication Publication Date Title
JPH10163780A (ja) 圧電単結晶からなる振動子の製造方法
JP2003337025A (ja) 振動子および振動型ジャイロスコープ
JPH11281372A (ja) 振動子、振動型ジャイロスコープ、直線加速度計および回転角速度の測定方法
JP3694160B2 (ja) 振動型ジャイロスコープおよびその調整方法
JPH10163779A (ja) 圧電部材の製造方法
JP4107768B2 (ja) 振動子および振動型ジャイロスコープ
JPH11248465A (ja) 振動子、振動型ジャイロスコープおよび回転角速度の測定方法
JP4356881B2 (ja) 振動型ジャイロスコープ
JP2984245B2 (ja) 基材上の金属膜の加工方法、振動子の製造方法および振動デバイスの製造方法
JP4305625B2 (ja) 振動子および物理量測定用信号発生素子
JP4385477B2 (ja) 振動型ジャイロスコープおよびその製造方法
JP4281708B2 (ja) 振動型ジャイロスコープ
JP2001208545A (ja) 圧電振動ジャイロスコープ
JP2004301552A (ja) 振動子および物理量測定装置
JP4035264B2 (ja) 振動型ジャイロスコープ
JPH10160478A (ja) 振動子、振動子の調整方法およびこの振動子を使用した振動型ジャイロスコープ
JPH10170270A (ja) 振動子およびこの振動子を使用した振動型ジャイロスコープ
JP4067044B2 (ja) 振動子および振動型ジャイロスコープ
JP2003207338A (ja) 振動型ジャイロスコープ用振動子および振動型ジャイロスコープ
JPH11230756A (ja) 振動子、振動型ジャイロスコープ、直線加速度計および回転角速度の測定方法
JPH07174569A (ja) 共振型振動素子
JPH07115338A (ja) 非導電性基板への回路形成方法
JPH0674834A (ja) 温度検出用水晶振動子
JP2003014464A (ja) 振動ジャイロおよびその調整方法
JP2001264067A (ja) 振動型ジャイロスコープ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302