JPH10160646A - Method for anticipating fatigue life of structure member - Google Patents

Method for anticipating fatigue life of structure member

Info

Publication number
JPH10160646A
JPH10160646A JP8323099A JP32309996A JPH10160646A JP H10160646 A JPH10160646 A JP H10160646A JP 8323099 A JP8323099 A JP 8323099A JP 32309996 A JP32309996 A JP 32309996A JP H10160646 A JPH10160646 A JP H10160646A
Authority
JP
Japan
Prior art keywords
structural member
fatigue life
crack length
crack
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8323099A
Other languages
Japanese (ja)
Inventor
Kazunari Fujiyama
一成 藤山
Itaru Murakami
格 村上
Takahiro Kubo
貴博 久保
Hiroaki Yoshioka
洋明 吉岡
Daizo Saito
大蔵 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8323099A priority Critical patent/JPH10160646A/en
Publication of JPH10160646A publication Critical patent/JPH10160646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for anticipating fatigue life of a structure member wherein future usable life is appropriately anticipated, by measuring crack length based on low-cycle thermal fatigue occurring with the structure member, for anticipating crack length at operation thereafter. SOLUTION: With stress distribution analysis based on data for use state (1), stress distribution of structure member is divided (2) to set stress-division region (3). From an image input of crack length in the set division region (4), crack length is measured to decide maximum crack length in division region (5 and 6). Damage repetition times ratio is decided as fatigue life reference value of structure member obtained from maser curve generated in advance with the maximum crack length in the division region (7). With the value, while future operation.stop operation times are added (8), future development of crack length of structure is anticipated (9), to be compared to a threshold crack length which leads to damage (10), and based on the difference, start-up.stop operation times for structure is judged (11).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造部材の疲労寿
命予測方法に係り、特に高温状態で長期間に亘って使用
される構造部材に生じる低サイクル熱疲労損傷を計測す
ることにより使用可能寿命を的確に予測する構造部材の
疲労寿命予測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the fatigue life of a structural member, and more particularly to a method of estimating a usable life by measuring low-cycle thermal fatigue damage occurring in a structural member used over a long period of time at a high temperature. The present invention relates to a method for predicting the fatigue life of a structural member that accurately predicts the fatigue life.

【0002】[0002]

【従来の技術】例えば、ガスタービンなどの超大形の原
動機では、ガスタービン燃焼器、ガスタービン静翼、ガ
スタービン動翼などの構造部材に、起動・停止運転の繰
返しに伴う温度変化により熱応力が発生しており、この
熱応力が長時間運転に亘って蓄積される結果、いわゆる
低サイクル熱疲労損傷として構造部材に亀裂が発生する
一つの因子になっている。
2. Description of the Related Art For example, in a very large prime mover such as a gas turbine, thermal stress is applied to structural members such as a gas turbine combustor, a gas turbine stationary blade, and a gas turbine rotor due to a temperature change caused by repeated start / stop operations. This thermal stress accumulates over a long period of operation, and as a result, it is one factor of causing cracks in structural members as so-called low cycle thermal fatigue damage.

【0003】構造部材に発生する亀裂の発達過程は、亀
裂の発生と合体に原因があることが、既に文献(例えば
藤山他、日本機械学会[No.940-34]シンポジウム講演
論文集・材料と構造物の強度と破壊、「簡易シミュレー
ション解析モデルによる超合金の高温低サイクル疲労亀
裂発生・成長過程の予測」)に発表されている。
[0003] It has been reported in the literature (eg, Fujiyama et al., JSME [No.940-34] Symposium Proceedings and Materials, Structural Strength and Fracture, "Estimation of High-Temperature Low-Cycle Fatigue Crack Initiation and Growth Process of Superalloy Using Simple Simulation Analysis Model").

【0004】しかし、構造部材に亀裂が発生した場合、
亀裂の発達が解明されていても、その構造部材の寿命が
どの程度までの期間に亘って使用可能なのか予寿命予測
をすることが難しく、現在模索の段階である。
However, when a crack occurs in a structural member,
Even if the development of cracks has been elucidated, it is difficult to predict the life of the structural member over how long it can be used.

【0005】[0005]

【発明が解決しようとする課題】低サイクル熱疲労損傷
に伴う構造部材の余寿命評価および点検・補修間隔の設
定を的確に行うためには、その正確な評価と予測方法の
確立が必要であるが、従来では直径10mm程度のテスト
ピースの破損繰返し数Nfを寿命の基準とし、このテス
トピースの破損繰返し数Nfが実機に適用する構造部材
の着目部分での亀裂発生に相当すると見做しているに止
まっていた。この場合、テストピースの荷重レベルが定
常状態の75%に低下する時点をもって破損繰返し数N
fと規定されており(JIS規格Z2279)、このと
きの断面積に占める半円状の亀裂断面積が25%とする
と、表面の亀裂長さは約8mmになり、これ以上の亀裂長
さへの適用は保証されていない。
In order to accurately evaluate the remaining life of a structural member due to low-cycle thermal fatigue damage and to set an inspection / repair interval, it is necessary to establish an accurate evaluation and prediction method. However, conventionally, the number of failure cycles Nf of a test piece having a diameter of about 10 mm was used as a reference for the life, and it was considered that the number of failure cycles Nf of the test piece corresponded to the occurrence of a crack in a target portion of a structural member applied to an actual machine. I was stopped. In this case, when the load level of the test piece falls to 75% of the steady state, the number of failure cycles N
f (JIS standard Z2279), and if the cross-sectional area of the semi-circular crack in the cross-sectional area at this time is 25%, the crack length on the surface becomes about 8 mm, and the crack length becomes longer. Is not guaranteed.

【0006】しかし、実機に適用する構造部材は、損傷
領域がテストピースのそれに較べはるかに広く、観察で
きる亀裂長さもテストピースに較べオーダ的に2桁以上
になっている場合が多い。また、同一のひずみ範囲で同
一の破損繰返し数Nfを受けた領域での多数個発生する
亀裂の表面分布形態は、実機適用の構造部材もテストピ
ースもともに同様になると考えられるが、テストピース
では破損繰返し数Nfであるピーク荷重の25%低下時
点を破損と設定しているため、その適用範囲がきわめて
狭い。このため、実機適用の構造部材は、高温状態に晒
されていても、他の構造部材との結合関係により拘束さ
れ、この拘束力で剛性が保たれていれば、損傷領域内で
さらに損傷が進行しても破損に至らず、テストピースの
亀裂に較べ長い亀裂が観測されることもあった。
However, the structural member applied to the actual machine often has a damaged area much larger than that of the test piece, and the observable crack length is more than two orders of magnitude in comparison with the test piece. In addition, the surface distribution pattern of a large number of cracks generated in a region subjected to the same number of failure cycles Nf in the same strain range is considered to be the same for both the structural member and the test piece applied to the actual machine. Since the point at which the peak load, which is the number of failure repetitions Nf, falls by 25% is set as failure, the applicable range is extremely narrow. For this reason, even when the structural member applied to the actual machine is exposed to a high temperature state, the structural member is restrained by the coupling relationship with other structural members, and if the rigidity is maintained by the restraining force, further damage is caused in the damage area. Even if it proceeded, it was not damaged, and a crack longer than the crack of the test piece was sometimes observed.

【0007】したがって、従来の亀裂基準方法では、実
機適用の構造部材にそのまま適用することに不都合、不
具合が出ている。
[0007] Therefore, in the conventional crack reference method, there are inconveniences and disadvantages in directly applying the method to structural members applicable to an actual machine.

【0008】また、既に提案されている構造部材の亀裂
をもとにした疲労寿命評価方法として、例えば特開昭6
3−241341が開示されているが、この評価方法は
極値統計法により実機適用の構造部材の亀裂長さを推定
している。
Further, as a method of evaluating fatigue life based on cracks of a structural member which has already been proposed, for example, Japanese Unexamined Patent Publication No.
This evaluation method estimates the crack length of a structural member applied to an actual machine by an extreme value statistical method.

【0009】しかし、この評価方法も構造部材の亀裂長
さを、テストピースレベルでの範囲に止まっており、実
機適用の構造部材に当てはめること自体無理がある。
However, in this evaluation method, the crack length of the structural member is limited to the range at the test piece level, and it is impossible to apply the crack length to a structural member applicable to an actual machine.

【0010】本発明は、このような事情に基づいてなさ
れたもので、構造部材に発生する低サイクル熱疲労に基
づく亀裂長さを計測し、計測したデータをもとにして以
後の運転における亀裂長さを予測し、将来の使用可能寿
命を的確に予測する構造部材の疲労寿命予測方法を提供
することを目的とする。
The present invention has been made in view of such circumstances, and measures a crack length based on low cycle thermal fatigue generated in a structural member, and based on the measured data, determines a crack in a subsequent operation. An object of the present invention is to provide a fatigue life prediction method for a structural member that predicts a length and accurately predicts a future usable life.

【0011】[0011]

【課題を解決するための手段】本発明に係る構造部材の
疲労寿命予測方法は、上記目的を達成するために、請求
項1に記載したように、使用状況状態のデータから応力
分布解析により構造部材の応力分布領域を区分して応力
区分領域を設定し、この設定した区分領域の亀裂長さを
画像入力し、この画像から亀裂長さを計測して区分領域
内の最大亀裂長さを決定し、区分領域の最大亀裂長さを
基に予め作成されるマスターカーブから求めた構造部材
の疲労寿命基準値としての破損繰返し数比を決定し、こ
の決定した破損繰返し数比に将来の運転・停止運転回数
を加味して将来の構造物の亀裂長さの進展を予測し、こ
の予測された構造物の亀裂長さと構造物の破損に至らし
める限界亀裂長さとを対比してその差分から構造物が将
来、何回の起動・停止運転回数が可能であるかを判定す
るものである。
According to a first aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member, comprising the steps of: Set the stress division area by dividing the stress distribution area of the member, input the crack length of this set division area as an image, measure the crack length from this image and determine the maximum crack length in the division area Then, based on the maximum crack length in the sectioned area, a failure cycle ratio as a fatigue life reference value of the structural member obtained from a master curve created in advance is determined, and the determined failure cycle number Predicting the future growth of the structure's crack length taking into account the number of shutdown operations, comparing the predicted structure's crack length with the critical crack length that can lead to structure damage, and calculating the difference from the difference How many times the object will be activated in the future It is to determine whether it is possible to stop operating frequency.

【0012】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項2に記載したよ
うに、構造部材の亀裂計測部位の酸化皮膜を除去して計
測する酸化皮膜厚さと運転時間から、別途求めた高温酸
化試験の酸化皮膜厚さ、温度、時間のデータを用いて構
造部材の使用温度を推定し、この推定温度から疲労寿命
基準値としての構造部材の破損繰返し数比を補正して構
造部材の寿命を予測するものである。
According to a second aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member, comprising the steps of: From the thickness and operating time, the operating temperature of the structural member was estimated using the data of the oxide film thickness, temperature, and time obtained separately in the high-temperature oxidation test, and from the estimated temperature, repeated damage to the structural member as a fatigue life standard value The life ratio of the structural member is predicted by correcting the numerical ratio.

【0013】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項3に記載したよ
うに、構造部材の酸化皮膜厚さは、酸化皮膜寸法測定器
具を用いて行うものである。
According to a third aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member, wherein the thickness of the oxide film of the structural member is measured using an oxide film size measuring instrument. Is what you do.

【0014】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項4に記載したよ
うに、構造部材の酸化皮膜厚さは、超音波法を用いて非
破壊的に行うものである。
According to a fourth aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member, wherein the thickness of the oxide film of the structural member is non-destructively measured by an ultrasonic method. It is something to be done.

【0015】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項5に記載したよ
うに、構造部材の酸化皮膜厚さは、電磁気法を用いて非
破壊的に行うものである。
According to a fifth aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member, wherein the thickness of the oxide film on the structural member is non-destructively measured by an electromagnetic method. What to do.

【0016】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項6に記載したよ
うに、構造部材の応力区分領域内の亀裂長さを画像処理
するにあたり、単位面積あたりの亀裂長さの総和で表わ
される亀裂長さ密度を計測して亀裂長さ密度分布から構
造部材の応力区分領域を設定するものである。
According to a sixth aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member, the method comprising the steps of: The crack length density represented by the sum of the crack lengths per unit area is measured, and the stress division region of the structural member is set from the crack length density distribution.

【0017】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項7に記載したよ
うに、構造部材の亀裂長さ密度の計測は、レプリカで行
うものである。
In the method for predicting the fatigue life of a structural member according to the present invention, in order to achieve the above object, the crack length density of the structural member is measured by a replica as described in claim 7. .

【0018】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項8に記載したよ
うに、構造部材の疲労寿命基準値としての破損繰返し数
比を、亀裂長さ密度と起動・停止運転回数とから決定す
る評価式を用いるものである。
In order to achieve the above object, the method for predicting the fatigue life of a structural member according to the present invention, as described in claim 8, determines the ratio of the number of failure cycles as the reference value of the fatigue life of the structural member to the crack length. An evaluation formula determined from the density and the number of start / stop operations is used.

【0019】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項9に記載したよ
うに、構造部材の疲労寿命基準値としての破損繰返し数
を決定するにあたり、前回の検査時の亀裂発生回数およ
び亀裂長さから求めた破損繰返し数と、現評価時の亀裂
発生回数および亀裂長さから求めた破損繰返し数とを各
検査毎に識別できる評価式を用いるものである。
In order to achieve the above object, the method for predicting the fatigue life of a structural member according to the present invention, when determining the number of repeated failures as a reference value for the fatigue life of a structural member, as described in claim 9, An evaluation formula that can be used to identify the number of fractures determined from the number of cracks and crack length during the previous inspection and the number of fractures determined from the number of cracks and crack length during the current evaluation for each inspection It is.

【0020】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項10に記載した
ように、構造部材の疲労寿命基準値としての破損繰返し
数比から、応力区分領域に作用する応力・ひずみを求
め、この求めた応力・ひずみ値から構造部材の厚み方向
の応力・ひずみ分布を補正し、構造部材の厚み方向への
亀裂進展量を予測するものである。
According to a tenth aspect of the present invention, there is provided a method for predicting the fatigue life of a structural member according to the present invention. The stress / strain acting on the region is determined, the stress / strain distribution in the thickness direction of the structural member is corrected from the obtained stress / strain value, and the amount of crack propagation in the thickness direction of the structural member is predicted.

【0021】本発明に係る構造部材の疲労寿命予測方法
は、上記目的を達成するために、請求項11に記載した
ように、応力・ひずみ値は、構造部材の繰返し応力・ひ
ずみ関係の式とノイバーの応力・ひずみ関係の式との交
点から求めるものである。
In order to achieve the above object, the method for predicting the fatigue life of a structural member according to the present invention is characterized in that the stress / strain value is calculated by using the equation for the repetitive stress / strain relationship of the structural member. It is obtained from the intersection with the equation of the Neubar stress-strain relationship.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る構造部材の疲
労寿命予測方法の実施形態について添付図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for predicting fatigue life of a structural member according to the present invention will be described below with reference to the accompanying drawings.

【0023】図1は、本発明に係る構造部材の疲労寿命
予測方法の第1実施形態を概念的に示すブロック図であ
る。
FIG. 1 is a block diagram conceptually showing a first embodiment of a method for predicting the fatigue life of a structural member according to the present invention.

【0024】本実施形態は、例えばガスタービンの運転
条件データに基づき構造部材に発生する応力を解析する
応力解析手段1、応力解析により算出した応力データか
ら応力分布を求め、低サイクル熱疲労損傷領域を定める
応力分布設定手段2、低サイクル熱疲労損傷領域から疲
労寿命評価を行う区分領域を設定する区分領域設定手段
3、構造部材の表面亀裂画像を入力する表面画像入力手
段4、入力画像から亀裂の座標データを作成する画像処
理手段5、亀裂の座標データから亀裂長さを計測し、最
大亀裂長さを求める亀裂長さ計測手段6、求めた最大亀
裂長さと起動・停止運転回数のデータから、基準破損繰
返し数比を求める疲労寿命基準価設定手段7、将来の運
転条件を設定する運用条件設定手段8、将来の運用条件
から最大亀裂長さを予測する亀裂長さ予測手段9、区分
領域設定手段3および亀裂長さ計測手段6との情報に基
づいて亀裂が合体するか否かを見定める限界亀裂設定手
段10、限界亀裂設定手段10および亀裂長さ予測手段
9の情報から、許容破損繰返し数比を求めて判定する余
寿命予測手段11を、それぞれ備えたステップになって
いる。
In the present embodiment, for example, a stress analysis means 1 for analyzing stress generated in a structural member based on operating condition data of a gas turbine, a stress distribution is obtained from stress data calculated by stress analysis, and a low cycle thermal fatigue damage region Means for setting a stress distribution setting means for determining the fatigue life from the low-cycle thermal fatigue damage area, means for setting a section area for performing the fatigue life evaluation, surface image input means for inputting a surface crack image of a structural member, cracks from the input image. Image processing means 5 for generating coordinate data of the above, a crack length measuring means 6 for measuring a crack length from the coordinate data of the crack and obtaining a maximum crack length, and a data for the obtained maximum crack length and the number of start / stop operations. , Fatigue life reference value setting means 7 for determining the standard failure cycle number ratio, operating condition setting means 8 for setting future operating conditions, maximum crack length from future operating conditions Critical crack setting means 10, critical crack setting means 10, and critical crack setting means 10 for determining whether or not a crack is to be coalesced based on information on the predicted crack length predicting means 9, segmented area setting means 3, and crack length measuring means 6. Each step is provided with a remaining life estimating means 11 for determining an allowable damage repetition ratio from the information of the estimating means 9.

【0025】上記応力解析手段1は、図2に示すよう
に、運転制御盤13に入力される、例えばガスタービン
12を駆動する燃焼ガスの温度、圧力、流量、流速、回
転数などの運転時間変化に対するデータによりガスター
ビン燃焼器、ガスタービン静翼、ガスタービン動翼など
の構造部材の部分毎の温度解析を行い、この構造部材の
解析温度から各部分に発生する熱応力等を求める応力解
析を行うものである。
As shown in FIG. 2, the stress analysis means 1 operates, for example, the operating time such as the temperature, pressure, flow rate, flow rate, and rotation speed of the combustion gas for driving the gas turbine 12, which is input to the operation control panel 13. A stress analysis that performs temperature analysis for each part of structural members such as gas turbine combustors, gas turbine vanes, and gas turbine rotor blades based on data for changes, and obtains thermal stress and the like generated in each part from the analysis temperature of these structural members Is what you do.

【0026】また、応力分布設定手段2は、上述応力解
析手段1により算出された応力値が、例えばガスタービ
ン静翼に、図3に示すように、応力値の高い順に応力分
布域A>応力分布域B>応力分布域Cとして表わすこと
ができるので、例えば応力分布域Bが構造部材の降伏応
力を超えて低サイクル熱疲労条件になった場合、図4に
示すように応力分布域A,Bをひとまめにして低サイク
ル熱疲労損傷域Dとして設定するものである。
Further, as shown in FIG. 3, the stress distribution setting means 2 applies the stress value calculated by the stress analysis means 1 to the gas turbine stationary blade in the order of the stress value in the order of higher stress values as shown in FIG. Since the distribution area B can be expressed as the stress distribution area C, for example, when the stress distribution area B exceeds the yield stress of the structural member and becomes a low-cycle thermal fatigue condition, as shown in FIG. B is set as a low-cycle thermal fatigue damage area D.

【0027】また、区分領域設定手段3は、図5に示す
ように、上述低サイクル熱疲労損傷域Dと同じ幅をもつ
矩形領域に区分する区分領域を設定するもである。
Further, as shown in FIG. 5, the section area setting means 3 sets a section area to be divided into a rectangular area having the same width as the low cycle thermal fatigue damage area D.

【0028】また、表面画像入力手段は、図6に示すよ
うに、例えばガスタービン静翼点検の際、構造部材14
の曲率に相当するガイド15をセットし、ガイド15に
沿って移動するマウント16に設置した例えばCCDカ
メラなどの画像入力ヘッド17を所定の区分領域18に
スキャンし、デジタル画像データとして入力するもので
ある。この画像は、画像処理手段5により白黒の2値化
処理され、ノイズ消去を行った後、黒い部分の細線化を
行い、亀裂の座標をデータ化したものである。
As shown in FIG. 6, the surface image input means may be used to inspect the structural members
The guide 15 corresponding to the curvature is set, and an image input head 17 such as a CCD camera mounted on a mount 16 that moves along the guide 15 is scanned into a predetermined divided area 18 and input as digital image data. is there. This image is subjected to black-and-white binarization processing by the image processing means 5, noise elimination is performed, black lines are thinned, and the coordinates of cracks are converted into data.

【0029】また、亀裂長さ計測手段6は、図7に示す
ように、亀裂19の外接長方形20を作成し、この長辺
または対角線の長さを、亀裂長さと定めるとともに、亀
裂長さのデータを数値の小さい順に並べかえて最大値a
max を決定すものである。
Further, as shown in FIG. 7, the crack length measuring means 6 creates a circumscribed rectangle 20 of the crack 19, determines the length of the long side or diagonal line as the crack length, and determines the length of the crack. Sort the data in ascending numerical order to get the maximum value a
Determine max.

【0030】また、疲労寿命基準値設定手段7は、上記
決定した亀裂の最大値amax に対する破損繰返し数比N
/Nfを、図8に示すマスターカーブから求めるもので
ある。
In addition, the fatigue life reference value setting means 7 determines the ratio of the number of failure cycles N to the maximum value amax of the crack determined above.
/ Nf is obtained from the master curve shown in FIG.

【0031】このマスターカーブでは、テストピースの
データを基に、最大亀裂長さamaxと破損繰返し数比N
/Nfの関係を次式から求めて作成したものである。
In this master curve, the maximum crack length amax and the number of failure cycles N
/ Nf is obtained from the following equation.

【0032】[0032]

【数1】 但し、Nはテストピースの亀裂発生回数(但し、実機で
は起動・停止運転回数)、Nfはテストピースの破損繰
返し数比、AおよびBは定数をそれぞれ示す。
(Equation 1) Here, N indicates the number of crack occurrences of the test piece (however, the number of start / stop operations in the actual machine), Nf indicates the ratio of the number of times of failure of the test piece, and A and B indicate constants, respectively.

【0033】従来、テストピースの破損と繰返し数Nf
は、テストピースをひずみ制御の低サイクル熱疲労試験
に供したとき、繰返し毎のピーク応力が定常状態の75
%に低下したときの亀裂発生回数Nと定義されている。
このため、テストピースにおける既存時の表面亀裂長さ
は、その断面積の25%が半円の亀裂で占められている
場合、約8mmにしかならず、その適用範囲が図8に示す
破線までしか及ばず、きわめて狭い。
Conventionally, test piece breakage and repetition rate Nf
Shows that when the test piece is subjected to a low cycle thermal fatigue test under strain control, the peak stress at each repetition is 75% of the steady state.
% Is defined as the number N of occurrences of cracks when the number of cracks decreases.
For this reason, the existing surface crack length of the test piece is only about 8 mm when 25% of the cross-sectional area is occupied by a semicircular crack, and its application range extends only to the broken line shown in FIG. Not very narrow.

【0034】したがって、上式(1)では、最大亀裂長
さがテストピースの破損繰返し数Nfに相当する亀裂長
さを超えるときもはや適用外になる。
Therefore, in the above equation (1), the maximum crack length is no longer applicable when the maximum crack length exceeds the crack length corresponding to the number Nf of repeated failures of the test piece.

【0035】しかし、本実施形態では、マスターカーブ
を図8の実線で示す評価線のように、実機構造部材の最
大亀裂長さamax が大幅に増えても破損繰返し数比N/
Nfが適用できるようにしたものである。
However, in this embodiment, as shown in the evaluation line indicated by the solid line in FIG. 8, even if the maximum crack length amax of the actual structural member is greatly increased, the failure repetition ratio N /
Nf can be applied.

【0036】すなわち、最大亀裂は、頻繁に発生する亀
裂の合体により発生する。この場合、亀裂合体率の指標
である累積亀裂合体個数密度Σnc は、観察された亀裂
合体個数を累計し、観察された面積で除したものである
が、この累積亀裂合体個数密度Σnc は次式で与えられ
る。
That is, the maximum crack is generated by coalescence of frequently occurring cracks. In this case, the cumulative crack coalescing number density Σnc, which is an index of the crack coalescence rate, is obtained by accumulating the observed crack coalescing number and dividing by the observed area. Given by

【0037】[0037]

【数2】 但し、Δεf は全ひずみ範囲、I0 は亀裂長さ密度の飽
和値(材料定数)、C,dは定数をそれぞれ示す。
(Equation 2) Here, Δεf indicates the entire strain range, I0 indicates the saturation value (material constant) of the crack length density, and C and d indicate the constants.

【0038】上式(2)は、材料の相違に基づく亀裂長
さ密度の飽和値Io で規格化し、ひずみ範囲の違いをΔ
εf で補正したものである。テストピースのデータか
ら、上式(2)を用いて破損繰返し数比N/Nfを求め
てみると、その評価線は、図9の実線で示すように、単
調増加になっている。この単調増加は、(N/Bf)>
1になっても変っていない。(N/Nf)>1になって
も、評価線が単調増加になっているのは、亀裂の合体に
よる亀裂進展機が塑性ひずみ分布領域内で引き続き生じ
ているためと考えられる。このため、図8で示すマスタ
ーカーブは、テストピースで得られた最大亀裂長さama
x と破損繰返し数比N/Nfの関係をそのまま延長させ
ても実機構造部材にも適用することができる。
The above equation (2) is normalized by the saturation value Io of the crack length density based on the material difference, and the difference in strain range is expressed by Δ
Corrected by εf. When the failure repetition ratio N / Nf is obtained from the test piece data using the above equation (2), the evaluation line monotonically increases as shown by the solid line in FIG. This monotonic increase is (N / Bf)>
Even if it becomes 1, it has not changed. Even when (N / Nf)> 1, it is considered that the reason why the evaluation line is monotonically increasing is that the crack propagating machine due to the coalescence of the cracks is continuously generated in the plastic strain distribution region. For this reason, the master curve shown in FIG. 8 shows the maximum crack length ama obtained with the test piece.
Even if the relationship between x and the failure repetition rate ratio N / Nf is extended as it is, it can be applied to actual structural members.

【0039】実際、実機構造部材は、テストピースに較
べはるかに広い領域に亘って亀裂が発生しており、亀裂
の合体によりその長さも長くなっている。ちなみに、ガ
スタービン静翼を例に採った場合、最大亀裂長さamax
は、図10に示すように、起動・停止運転回数Nによっ
ては200mmを超える場合もある。
Actually, the actual structural member has cracks over a much larger area than the test piece, and the length of the cracks is long due to the coalescence of the cracks. By the way, when taking a gas turbine stationary blade as an example, the maximum crack length amax
May exceed 200 mm depending on the number N of start / stop operations as shown in FIG.

【0040】このような場合でも、実機構造部材の最大
亀裂長さamax を上式(1)に代入して求めた破損繰返
し数比N/Nfと図8で示すマスターカーブから求めた
破損繰返し数比N/Nfとは一致している。なお、評価
時点までの起動・停止運転回数がわかっていると、その
評価時点での疲労寿命基準値としての破損繰返し数Nf
が定まり、この破損繰返し数Nfを基に、将来の亀裂が
どの程度の長さに進展するか予測することができる。
Even in such a case, the number of failure cycles determined by substituting the maximum crack length amax of the actual structural member into the above equation (1) and the number of failure cycles determined from the master curve shown in FIG. This is consistent with the ratio N / Nf. If the number of start / stop operations up to the evaluation time is known, the number of failure cycles Nf as a fatigue life reference value at the evaluation time is determined.
Is determined, and it is possible to predict how long a future crack will grow on the basis of the number Nf of breakage cycles.

【0041】このように、本実施形態に係る疲労寿命基
準値設定手段7は、現評価時点での亀裂の最大値amax
に対する破損繰返し数比N/Nfを、図8に示すマスタ
ーカーブから容易に求めることができるようにしたもの
である。
As described above, the fatigue life reference value setting means 7 according to the present embodiment calculates the maximum value amax of the crack at the time of the current evaluation.
The ratio N / Nf of the number of times of failure can be easily obtained from the master curve shown in FIG.

【0042】次に、亀裂長さ予測手段9は、運用条件設
定手段8からの現評価時点での起動・停止回数の情報を
基に、将来の起動・停止運転回数N′と設定し、その設
定起動・停止回数N′から(N+N′)/Nfを計算
し、この(N+N′)/Nfの値を、図8に示すマスタ
ーカーブの評価線を経て設定した起動・停止運転回数
N′における最大亀裂長さamax 値を予測するものであ
る。
Next, the crack length estimating means 9 sets the future number of start / stop operations N 'based on the information of the number of start / stop operations at the time of the current evaluation from the operation condition setting means 8, (N + N ') / Nf is calculated from the set number of start / stop times N', and the value of (N + N ') / Nf is calculated based on the number of start / stop operations N' set through the master curve evaluation line shown in FIG. This is to predict the maximum crack length amax value.

【0043】一方、限界亀裂設定手段10は、図11に
示すように、例えばガスタービン静翼に定められた区分
領域1,2内に発生している亀裂が合体するか否かを見
定めるものである。すなわち、隣接する区分領域1と区
分領域2とのそれぞれに亀裂が存在する場合、二つの区
分領域のそれぞれに領域幅まで及ぶように亀裂が合体
し、ガスタービン静翼のルート部が破損に至る状態にな
ると、このときの限界亀裂は両区分領域の亀裂長さの和
が両区分領域の幅の和になったと判断される。
On the other hand, as shown in FIG. 11, the limit crack setting means 10 determines whether or not cracks occurring in the divided areas 1 and 2 defined on the gas turbine stationary blade are combined. is there. That is, when a crack is present in each of the adjacent divided areas 1 and 2, the cracks are combined so as to reach the area width of each of the two divided areas, and the root portion of the gas turbine vane is damaged. In this state, it is determined that the limit crack at this time is the sum of the crack lengths of the two divided areas is the sum of the widths of the two divided areas.

【0044】このように、本実施形態に係る限界亀裂設
定手段10は、現評価時点での亀裂長さが亀裂の合体に
よって構造部材の破損に至るまでの亀裂長さを見定める
ものである。
As described above, the limit crack setting means 10 according to the present embodiment determines the length of the crack at the time of the current evaluation until the structural member is broken by the coalescence of the cracks.

【0045】最後に、余寿命判定手段は、上述の限界亀
裂設定手段10により見定められた現評価時点の亀裂長
さの情報から再びマスターカーブを利用して図8に示す
評価線を経て破損繰返し数比N/Nfを求める一方、上
述亀裂長さ予測手段9で予測した最大亀裂長さamax か
らマスターカーブを利用して破損繰返し数比N/Nfを
求め、両方の破損繰返し数比N/Nfを見較べ、構造部
材が破損に至るまでの起動・停止運転回数を判定するも
のである。
Finally, the remaining life judging means repeatedly uses the master curve again from the information on the crack length at the current evaluation pointed out by the above-described limit crack setting means 10 and passes through the evaluation line shown in FIG. While the number ratio N / Nf is determined, the failure repetition ratio N / Nf is determined from the maximum crack length amax predicted by the crack length prediction means 9 using a master curve, and both the failure repetition ratios N / Nf are obtained. In comparison with the above, the number of start / stop operations until the structural member is damaged is determined.

【0046】このように、本実施形態では、従来、適用
範囲のきわめて狭い最大亀裂長さに対する破損繰返し数
比のマスターカーブを、実機構造部材の最大亀裂長さが
大幅に長くなっても破損繰返し数比を求めることができ
るマスターカーブを作成したので、簡便にして的確な疲
労寿命予測を行うことができ、信頼度のきわめて高い構
造部材の疲労寿命予測方法を実現することができる。
As described above, in the present embodiment, conventionally, the master curve of the ratio of the number of failure cycles to the maximum crack length, which is extremely narrow in the applicable range, is used to calculate the number of failure cycles even when the maximum crack length of the actual structural member is greatly increased. Since the master curve from which the numerical ratio can be obtained is created, a simple and accurate fatigue life prediction can be performed, and a highly reliable fatigue life prediction method for a structural member can be realized.

【0047】図12は、本発明に係る構造部材の疲労寿
命予測方法の第2実施形態を概念的に示すブロック図で
ある。本実施形態は、第1実施形態の構成に、酸化皮膜
厚さ計測手段21および温度推定手段22を加えたもの
である。なお、第1実施形態の構成部分と同一部分には
同一符号を付し、異なる部分のみ説明する。
FIG. 12 is a block diagram conceptually showing a second embodiment of the method for predicting the fatigue life of a structural member according to the present invention. In the present embodiment, an oxide film thickness measuring unit 21 and a temperature estimating unit 22 are added to the configuration of the first embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and only different components will be described.

【0048】最近のガスタービンは、高熱効率、高出力
を求めて燃焼ガス温度が1500℃以上にも及ぶ超高温
になっており、この超高温に対処するためガスタービン
の構造部材に熱伝導率の比較的低いセラミックス等の熱
遮蔽層を被覆している。このため、本実施形態では、構
造部材の疲労寿命予測を行うにあたり、熱遮蔽層を除去
する必要がある。
In recent gas turbines, the combustion gas temperature has reached an extremely high temperature of 1500 ° C. or higher in order to achieve high thermal efficiency and high output. In order to cope with this extremely high temperature, the thermal conductivity of the structural members of the gas turbine has been increased. Is covered with a heat shielding layer made of a relatively low ceramic material. For this reason, in the present embodiment, it is necessary to remove the heat shielding layer when predicting the fatigue life of the structural member.

【0049】酸化皮膜厚さ計測手段21は、図13に示
すように、酸化皮膜23をグラインダおよびバフ研磨に
よりメタル面24が完全に現れて金属光沢が出るまで研
磨し、酸化皮膜23を除去していない部分との段差を酸
化皮膜寸法測定器具25を用いて酸化皮膜厚さδを計測
するものである。
As shown in FIG. 13, the oxide film thickness measuring means 21 grinds the oxide film 23 by grinder and buff polishing until the metal surface 24 completely appears and a metallic luster appears to remove the oxide film 23. The oxide film thickness δ is measured by using the oxide film size measuring instrument 25 on the step with respect to the portion not having the part.

【0050】また、温度推定手段22は、構造部材のメ
タル温度を推定するものである。すなわち、酸化皮膜2
3の温度は、図14に示すように、運転時間の関数にな
っている。このため、運転時間および酸化皮膜厚さはと
もに既知であるから、構造部材が酸化皮膜23で被覆し
ていても、構造部材のメタル温度は、図14から容易に
推定することができる。
The temperature estimating means 22 estimates the metal temperature of the structural member. That is, the oxide film 2
The temperature of 3 is a function of the operating time, as shown in FIG. For this reason, since both the operation time and the oxide film thickness are known, even if the structural member is covered with the oxide film 23, the metal temperature of the structural member can be easily estimated from FIG.

【0051】一方、破損繰返し数Nfは、図15に示す
ように、メタル温度T(°K)の関数になっているの
で、次式で表される。
On the other hand, as shown in FIG. 15, the damage repetition number Nf is a function of the metal temperature T (° K), and is expressed by the following equation.

【0052】[0052]

【数3】 但し、No は基準温度T0 での破損繰返し数、Kはボル
ツマン定数、Qは定数をそれぞれ示す。
(Equation 3) Here, No indicates the number of repetitions of the damage at the reference temperature T0, K indicates the Boltzmann constant, and Q indicates the constant.

【0053】上式(3)から求めた破損繰返し数Nf
を、式(1)のNfに置き換えれば、より一層精度の高
い予寿命評価を行うことができる。
The number Nf of failure cycles determined from the above equation (3)
Is replaced with Nf in the equation (1), it is possible to perform a more accurate pre-life evaluation.

【0054】なお、本実施形態に係る酸化皮膜厚さ計測
手段21は、酸化皮膜23の厚さδの計測を、酸化皮膜
寸法測定器具25を用いることで説明したが、表面超音
波計測法または渦電流法に換えてもよい。
The oxide film thickness measuring means 21 according to the present embodiment has been described to measure the thickness δ of the oxide film 23 by using the oxide film dimension measuring instrument 25. The eddy current method may be used instead.

【0055】表面超音波計測法は、図16に示すよう
に、超音波送信プローブ27と超音波受信プローブ28
を用いて、超音波29を被測定部26に入受信させれば
よい。また、表面超音波計測法は、図17に示すよう
に、酸化皮膜23を除去する必要がないが、酸化皮膜2
3と被測定部26とのそれぞれを伝播する超音波の音速
の相違が出る。このため、酸化皮膜23の厚さδは、図
18で示す表面超音速の較正曲線30により正確な値を
求めることができる。なお、被測定部の表面超音速31
は予めテストピースにより計測される。
As shown in FIG. 16, the surface ultrasonic measurement method uses an ultrasonic transmission probe 27 and an ultrasonic reception probe 28.
, The ultrasonic wave 29 may be transmitted to and received from the measured section 26. Further, in the surface ultrasonic measurement method, as shown in FIG. 17, there is no need to remove the oxide film 23, but the oxide film 2
There is a difference between the sound speeds of the ultrasonic waves propagating in each of the measuring part 3 and the measured part 26. Therefore, an accurate value of the thickness δ of the oxide film 23 can be obtained from the surface supersonic calibration curve 30 shown in FIG. Note that the surface supersonic speed 31 of the part to be measured is
Is measured in advance by a test piece.

【0056】一方、渦電流法は、図19に示すように、
渦電流プローブ32を被測定部26に装着して透磁率を
測定するとともに、図20に示すように、渦電流プロー
ブ32を被測定部26の酸化皮膜23に装着して酸化皮
膜23の透磁率を測定し、両者の電圧の相違を、図21
で示す出力電圧の較正曲線34で較正し、酸化皮膜23
の厚みδを測定するものである。
On the other hand, in the eddy current method, as shown in FIG.
An eddy current probe 32 is attached to the measurement section 26 to measure the magnetic permeability. As shown in FIG. 20, the eddy current probe 32 is attached to the oxide film 23 of the measurement section 26 and the magnetic permeability of the oxide film 23 is measured. Was measured, and the difference between the two voltages was measured as shown in FIG.
Is calibrated by the calibration curve 34 of the output voltage indicated by
Is to measure the thickness δ.

【0057】このように、表面超音波計測法といい、渦
電流といい、ともに酸化皮膜23の厚みδを自動的に測
定できるので、その測定精度をより一層高めることがで
きる。
As described above, the surface ultrasonic measurement method and the eddy current, both of which can automatically measure the thickness δ of the oxide film 23, can further improve the measurement accuracy.

【0058】本実施形態は、酸化皮膜厚さ計測手段21
として上述の機械的または電気・磁気的手法により構造
部材の皮膜厚さを計測し、さらに温度推定手段22によ
り酸化皮膜23で被覆された構造部材のメタル温度を推
定し、これらの情報を疲労寿命基準値設定手段7に入力
するので、損傷を受けた構造部材のメタル温度を正確に
評価でき、メタル温度効果を考慮した疲労寿命基準値と
しての破損繰返し数Nfを選定でき、したがってより一
層的確な疲労寿命予測方法を実現することができる。
In this embodiment, the oxide film thickness measuring means 21
The film thickness of the structural member is measured by the mechanical or electric / magnetic method described above, and the metal temperature of the structural member covered with the oxide film 23 is estimated by the temperature estimating means 22. Since the input is made to the reference value setting means 7, the metal temperature of the damaged structural member can be accurately evaluated, and the number Nf of failure cycles as the fatigue life reference value in consideration of the metal temperature effect can be selected. A fatigue life prediction method can be realized.

【0059】図22は、本発明に係る構造部材の疲労寿
命予測方法の第3実施形態を概念的に示すブロック図で
ある。本実施形態は、第1実施形態の構成における、応
力解析手段1、応力分布設定手段2の代りにレプリカ採
取手段35、レプリカ画像入力手段36を設けたもので
ある。なお、第1実施形態の構成部分と同一部分には同
一符号を付してある。
FIG. 22 is a block diagram conceptually showing a third embodiment of the method for predicting the fatigue life of a structural member according to the present invention. In the present embodiment, a replica sampling unit 35 and a replica image input unit 36 are provided instead of the stress analysis unit 1 and the stress distribution setting unit 2 in the configuration of the first embodiment. The same parts as those of the first embodiment are denoted by the same reference numerals.

【0060】本実施形態に係るレプリカ採取手段35
は、図22に示すように、例えばガスタービン静翼の構
造部材14に被覆されている酸化皮膜を除去した後、研
磨し、区分領域18のレプリカ37を採取するものであ
る。レプリカ37で転写した構造部材14の亀裂は、レ
プリカ画像入力手段36で低倍率の顕微鏡を介して画像
入力される。構造部材14の亀裂は、低サイクル熱疲労
により発生する場合、図24に示すように、多数の亀裂
38が密集している。この密集状態に形成される亀裂画
像データから、亀裂長さ計測手段は、亀裂長さの総和
を、観察視野面積で除し、亀裂長さ密度Iを求めるよう
になっている。この場合、同一部品の中で、亀裂長さ密
度Iが同一領域内では、そこに加わっているひずみも同
等であると考えられる。このため、亀裂長さ密度Iを評
価対象領域設定基準とすることにより、応力解析を行わ
なくても評価対象となる区分領域18は決定することが
できる。
The replica collecting means 35 according to the present embodiment
As shown in FIG. 22, for example, after removing an oxide film coated on the structural member 14 of the gas turbine stationary blade, the polishing is performed, and a replica 37 of the sectioned area 18 is collected. The image of the crack of the structural member 14 transferred by the replica 37 is input by a replica image input unit 36 through a low magnification microscope. When the cracks in the structural member 14 are generated by low cycle thermal fatigue, as shown in FIG. 24, a large number of cracks 38 are densely packed. From the crack image data formed in the dense state, the crack length measuring means divides the sum of the crack lengths by the observation visual field area to obtain the crack length density I. In this case, in the same part, in the same region where the crack length density I is the same, it is considered that the strain applied thereto is also equal. Therefore, by using the crack length density I as the evaluation target region setting criterion, the divided region 18 to be evaluated can be determined without performing the stress analysis.

【0061】このように、評価対象となる区分領域18
が設定されると、以後、構造部材14の疲労寿命予測
は、第1実施形態と同様の演算処理が行われる。
As described above, the segmented area 18 to be evaluated
Is set, the prediction of fatigue life of the structural member 14 is performed in the same manner as in the first embodiment.

【0062】また、本実施形態に係る疲労寿命基準値設
定手段7は,第1実施形態におけるそれと同様に、亀裂
最大値amax に対する破損繰返し数比N/Nfを求める
ものであるが、その手法以外に亀裂長さ密度を用いる方
法がある。
Further, the fatigue life reference value setting means 7 according to the present embodiment is for obtaining the failure repetition ratio N / Nf with respect to the maximum crack value amax, similarly to the first embodiment. There is a method using crack length density.

【0063】テストピースにおいて、亀裂長さ密度Iと
破損繰返し数比N/Nfとの関係は、図25の実線で示
す評価線になっているが、この評価線は次式から求めら
れる。
In the test piece, the relationship between the crack length density I and the failure repetition ratio N / Nf is an evaluation line indicated by a solid line in FIG. 25, and this evaluation line is obtained by the following equation.

【0064】[0064]

【数4】 但し、Io は亀裂長さ密度の飽和値(材料定数)、μL
およびσLは定数をそれぞれ示す。
(Equation 4) Where Io is the saturation value (material constant) of crack length density, μL
And σL indicate constants, respectively.

【0065】上式(4)は、I/Io を累積確率と読み
換えると、破損繰返し数比Nf/Nを対数正規分布とし
て表わすことができる。すなわち、亀裂発生長さを一定
値と仮定した場合、上式(4)の左辺は亀裂発生累積確
率と、また上式(4)の右辺は亀裂発生寿命分布式と、
それぞれ見做すことができる。
In the above equation (4), by replacing I / Io with the cumulative probability, the damage repetition rate ratio Nf / N can be expressed as a lognormal distribution. That is, assuming that the crack initiation length is a constant value, the left side of the above equation (4) is the crack occurrence cumulative probability, the right side of the above equation (4) is the crack initiation life distribution equation,
Each can be considered.

【0066】また上式(4)は、亀裂発生が比較的頻繁
に生じるN/Nf<0.5の領域での変化が大きく、比
較的初期の損傷を把握するのに適している。
The above equation (4) has a large change in the region of N / Nf <0.5 where cracks occur relatively frequently, and is suitable for grasping relatively early damage.

【0067】レプリカ採取手段35では、比較的小さな
領域での亀裂しか観察できず、最大亀裂長さを測定でき
ない場合もあるが、亀裂長さ密度では、同一ひずみ範囲
の領域で均一分布にできるので、安定した評価を行うこ
とができる。
The replica sampling means 35 can only observe cracks in a relatively small area and cannot measure the maximum crack length in some cases. However, the crack length density can be uniformly distributed in the same strain range. , Stable evaluation can be performed.

【0068】破損繰返し数比Nf/Nが求まり、疲労寿
命基準値が設定されると、以後、構造部材14の疲労寿
命予測は、第1実施形態と同様の演算処理が行われる。
After the failure repetition rate ratio Nf / N is determined and the fatigue life reference value is set, the same calculation processing as in the first embodiment is performed to predict the fatigue life of the structural member 14.

【0069】本実施形態では、レプリカ採取手段35、
レプリカ画像入力手段36を用いるので構造部材の応力
解析を省略して簡便な疲労寿命予測を行うことができ、
さらに亀裂長さ密度を用いて初期の疲労損傷の疲労寿命
予測を的確に行うことができる。
In this embodiment, the replica collection means 35,
Since the replica image input means 36 is used, a simple fatigue life prediction can be performed by omitting the stress analysis of the structural member,
Further, the fatigue life of the initial fatigue damage can be accurately predicted using the crack length density.

【0070】ところで、構造部材の疲労寿命予測をする
にあたり、構造部材は、運転中、高温燃焼ガスの熱負荷
を受けて苛酷な状態に晒されており、長期間に亘って使
用されている。このため、構造部材に発生する亀裂の成
長度合も定期検査毎に異なって計測されるものと予想さ
れる。
In estimating the fatigue life of a structural member, the structural member is exposed to a severe condition due to the heat load of the high-temperature combustion gas during operation, and has been used for a long period of time. For this reason, it is expected that the degree of crack growth occurring in the structural member will be measured differently for each periodic inspection.

【0071】そこで、第1実施形態、第2実施形態、あ
るいは第3実施形態における疲労寿命基準設定手段7で
は、定期検査毎に式(1)で示す破損繰返し数Nfを識
別しておく必要がある。破損繰返し数Nfの識別は、定
期検査毎の検査データに適用するものとし、それぞれの
データに添字1,2を付すと、定期検査毎の破損繰返し
数Nfは次式で計算される。
Therefore, the fatigue life criterion setting means 7 in the first, second, or third embodiment needs to identify the number of repetitions of damage Nf represented by the equation (1) for each periodic inspection. is there. The identification of the damage repetition number Nf is applied to inspection data for each periodic inspection, and if each data is appended with a suffix 1 or 2, the damage repetition number Nf for each periodic inspection is calculated by the following equation.

【0072】[0072]

【数5】 但し、N1 ,N2 は、定期検査毎の亀裂発生回数、a1
,a2 は定期検査毎の亀裂長さ、Bは定数をそれぞれ
示す。
(Equation 5) Here, N1 and N2 are the number of crack occurrences for each periodic inspection, a1
, A2 indicate the crack length for each periodic inspection, and B indicates a constant.

【0073】このように、本実施形態では、上式(5)
を用いて定期検査毎の構造部材の破損繰返し数Nfが識
別できるようにしたので、定期検査毎の構造部材の亀裂
の進展度合が容易に認識でき、精度の高い疲労寿命予測
を実現することができる。
As described above, in the present embodiment, the above equation (5)
Can be used to identify the number of repetitions of failure Nf of the structural member for each periodic inspection, so that the degree of crack propagation of the structural member for each periodic inspection can be easily recognized, and highly accurate fatigue life prediction can be realized. it can.

【0074】図26は、本発明に係る構造部材の疲労寿
命予測方法の第5実施形態を概念的に示すブロック図で
ある。本実施形態は、第1実施形態に、応力・ひずみ分
布補正手段39と亀裂深さ予測手段40を加えたもので
ある。なお、第1実施形態の構成部分と同一部分には同
一符号を付し、異なる部分のみ説明する。
FIG. 26 is a block diagram conceptually showing a fifth embodiment of the method for predicting the fatigue life of a structural member according to the present invention. This embodiment is obtained by adding a stress / strain distribution correcting means 39 and a crack depth predicting means 40 to the first embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and only different components will be described.

【0075】本実施形態に係る応力・ひずみ分布補正手
段39は、疲労寿命基準値設定手段7の情報と応力分布
設定手段2の情報とにより応力・ひずみの補正をして、
より精度の高いデータにしたものである。
The stress / strain distribution correcting means 39 according to this embodiment corrects the stress / strain based on the information of the fatigue life reference value setting means 7 and the information of the stress distribution setting means 2,
The data is more accurate.

【0076】疲労寿命基準値設定手段7において、疲労
寿命基準値としての破損繰返し数Nfをテストピースか
ら求めているので、構造部材のひずみ範囲Δεt は、図
27に示すように、テストピースの疲労寿命評価線41
から推定することができる。
Since the fatigue life reference value setting means 7 determines the number Nf of failure cycles as the fatigue life reference value from the test piece, the strain range Δεt of the structural member is determined as shown in FIG. Life evaluation line 41
Can be estimated from

【0077】また、応力分布設定手段2は、構造部材の
厚み方向の応力分布を求めたものであるが、応力とひず
みの関係を求める場合、例えばノイバーの方法として知
られる図28に示す線図から求めることができる。ここ
で、ノイバーの式は、弾塑性応力範囲Δσ、弾塑性全ひ
ずみ範囲Δεt 、弾性解析による応力範囲Δσo 、弾性
解析による全ひずみ範囲Δεo とすると、次式になる。
The stress distribution setting means 2 determines the stress distribution in the thickness direction of the structural member. When determining the relationship between stress and strain, for example, a diagram shown in FIG. Can be obtained from Here, the Neubar's equation is as follows, assuming an elasto-plastic stress range Δσ, an elasto-plastic total strain range Δεt, a stress range Δσo by elastic analysis, and a total strain range Δεo by elastic analysis.

【0078】[0078]

【数6】 但し、Kt は弾性応力集中係数(定数)を示す。(Equation 6) Here, Kt indicates an elastic stress concentration coefficient (constant).

【0079】一方、構造部材の繰返し応力・ひずみの関
係は、
On the other hand, the relationship between the repetitive stress and strain of the structural member is as follows:

【数7】 になっている。(Equation 7) It has become.

【0080】したがって、全ひずみ範囲εt が疲労寿命
基準値設定手段7で設定されているので、応力範囲Δσ
は、図28で示す交点から求めることができる。
Therefore, since the entire strain range εt is set by the fatigue life reference value setting means 7, the stress range Δσ
Can be obtained from the intersection shown in FIG.

【0081】また、亀裂深さ予測手段40は、応力分布
設定手段2で設定した構造部材との厚み方向の全ひずみ
範囲分布を、構造部材の表面上において上述疲労寿命基
準値設定手段7で設定した全ひずみ範囲εt に一致させ
る補正を行うものである。
The crack depth predicting means 40 sets the total strain range distribution in the thickness direction with the structural member set by the stress distribution setting means 2 on the surface of the structural member by the fatigue life reference value setting means 7. The correction is made to match the entire strain range .epsilon.t.

【0082】疲労寿命基準値としての破損繰返し数Nf
は、疲労寿命基準値設定手段7により決定しているの
で、亀裂深さCmax の進展評価は、次式を用いて行われ
る。
Number of failure cycles Nf as reference value for fatigue life
Is determined by the fatigue life reference value setting means 7, and the evaluation of the progress of the crack depth Cmax is performed using the following equation.

【0083】[0083]

【数8】 但し、A′,B′は定数である。(Equation 8) Here, A 'and B' are constants.

【0084】上式(8)を用いて、亀裂深さの進展評価
を行うにあたり、運用条件設定手段8で設定した将来の
起動・停止運転回数Neを用いることにより、構造部材
の亀裂深さは、図29に示すように、実線で示す全ひず
み範囲分布曲線から破線で示す全ひずみ範囲分布曲線に
補正でき、精度の高い亀裂深さの進展を予測することが
できる。
In evaluating the progress of the crack depth using the above equation (8), the crack depth of the structural member is calculated by using the future start / stop operation number Ne set by the operating condition setting means 8. As shown in FIG. 29, the total strain range distribution curve shown by the solid line can be corrected to the total strain range distribution curve shown by the broken line, and the development of the crack depth with high accuracy can be predicted.

【0085】他方、余寿命判定手段11では、上述亀裂
深さ予測手段40による構造部材の亀裂深さ評価情報と
限界亀裂設定手段10による構造部材の亀裂長さ評価情
報とを基に、将来の許容される起動・停止運転回数を判
定するので、その判定評価をより一層向上させることが
できる。
On the other hand, the remaining life judging means 11 is based on the information on the evaluation of the crack depth of the structural member by the above-mentioned crack depth estimating means 40 and the information on the evaluation of the crack length of the structural member by the limit crack setting means 10. Since the allowable number of start / stop operations is determined, the evaluation of the determination can be further improved.

【0086】したがって本実施形態によれば、亀裂長さ
の評価情報と亀裂深さの評価情報との双方により将来の
許容される起動・停止回数を予測するので、精度的に高
い疲労寿命予測を行うことができる。
Therefore, according to the present embodiment, the future allowable number of starts / stops is predicted based on both the information on the evaluation of the crack length and the information on the evaluation of the crack depth. It can be carried out.

【0087】[0087]

【発明の効果】以上述べたように、本発明に係る構造部
材の疲労寿命予測方法は、運転データから構造部材の応
力値を求め、求めた応力値を区分領域毎に整理して画像
処理化し、画像処理化した中から亀裂長さをデータ化し
て最大亀裂長さを決定するとともに、最大亀裂長さを基
にマスターカーブにより構造部材の破損繰返し数比を求
めて評価時点での構造部材の破損繰返し数比を決定し、
この決定した構造部材の破損繰返し数比に将来の構造部
材の起動・停止回数を加味して再び将来の構造部材の亀
裂長さをマスターカーブにより予測する一方、構造部材
の破損に至る限界亀裂長さを基にマスターカーブから求
めた破損繰返し数と上記将来の構造部材の亀裂長さに基
づく破損繰返し数比を互いに対比し、対比した両方の破
損繰返し数比から、将来、構造部材が何回起動・停止運
転回数が可能かを判定するので、簡便にして精度の高い
構造部材の疲労寿命予測を実現でき、また、構造部材の
補修・交換などの保守管理上の判断を的確に行うことが
できる等優れた効果を奏する。
As described above, according to the method for predicting the fatigue life of a structural member according to the present invention, the stress values of the structural members are obtained from the operation data, and the obtained stress values are arranged for each of the divided areas and image-processed. From the image processing, the crack length was converted to data to determine the maximum crack length, and based on the maximum crack length, the ratio of the number of repeated failures of the structural member was determined by the master curve based on the maximum crack length. Determine the failure repeat ratio,
The crack length of the future structural member is predicted again by the master curve, taking into account the number of start and stop of the future structural member in addition to the determined number of cycles of failure of the structural member. The number of failure cycles calculated from the master curve and the ratio of the number of failure cycles based on the crack length of the future structural member are compared with each other. Since it is determined whether the number of start / stop operations is possible, it is possible to easily and accurately predict the fatigue life of structural members, and to make accurate maintenance management decisions such as repair and replacement of structural members. Excellent effects, such as possible.

【0088】また、本発明に係る構造部材の疲労寿命予
測方法は、構造部材に被覆された酸化皮膜厚さを機械式
または電気磁気的手法を用いて簡便にして的確に計測す
るので、構造部材の疲労寿命予測を容易に行うことがで
きる。
In the method for predicting the fatigue life of a structural member according to the present invention, the thickness of an oxide film coated on the structural member is measured simply and accurately using a mechanical or electromagnetic method. Can easily predict the fatigue life.

【0089】また、本発明に係る構造部材の疲労寿命予
測方法は、レプリカ採取手法を用い、転写された亀裂長
さの密度を構造部材の評価対象領域設定基準として一つ
にまとめた安定した亀裂長さの計測を行うので、精度の
高い構造部材の疲労寿命予測を行うことができる。特
に、初期状態における構造部材の疲労寿命予測を的確に
行うことができる。
Further, the method for predicting the fatigue life of a structural member according to the present invention employs a replica sampling method and integrates the density of the transferred crack length into a single stable crack as a reference for setting the evaluation target region of the structural member. Since the length is measured, the fatigue life of the structural member can be predicted with high accuracy. In particular, it is possible to accurately predict the fatigue life of the structural member in the initial state.

【0090】また、本発明に係る構造部材の疲労寿命予
測方法は、構造部材の疲労寿命を定期検査毎の破損繰返
し数比を識別できる手法を用いているので、前回の定期
検査時の構造部材の破損繰返し数比と見較べながら交換
・補修などの管理上の判断を容易に行うことができる。
Further, the method for predicting the fatigue life of a structural member according to the present invention uses a method capable of identifying the fatigue life of a structural member by the ratio of the number of failure cycles at each periodic inspection. It is possible to easily make management judgments such as replacement and repair while comparing with the damage repetition ratio.

【0091】また、本発明に係る構造部材の疲労寿命予
測方法は、構造部材に発生する亀裂の応力・ひずみの補
正を行い、応力・ひずみの補正に基づく亀裂深さを予測
する手法を用いているので、構造部材の疲労寿命の予測
にあたり、きわめて信頼度の高い的確な情報を得ること
ができる。
Further, the method for predicting the fatigue life of a structural member according to the present invention uses a method of correcting stress / strain of a crack generated in a structural member and predicting a crack depth based on the correction of the stress / strain. Therefore, in predicting the fatigue life of a structural member, highly reliable and accurate information can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る構造部材の疲労寿命予測方法の第
1実施形態を概念的に示すブロック図。
FIG. 1 is a block diagram conceptually showing a first embodiment of a fatigue life prediction method for a structural member according to the present invention.

【図2】本発明に係る構造部材の疲労寿命予測を行うに
あたり、構造部材の応力解析の基礎となるデータ類の収
集を説明する図。
FIG. 2 is a view for explaining collection of data as a basis for stress analysis of a structural member when predicting a fatigue life of the structural member according to the present invention.

【図3】本発明に係る構造部材の疲労寿命予測方法の応
力分布解析を、ガスタービン静翼に適用した例を示す
図。
FIG. 3 is a diagram showing an example in which the stress distribution analysis of the method for predicting the fatigue life of a structural member according to the present invention is applied to a gas turbine stationary blade.

【図4】本発明に係る構造部材の疲労寿命予測方法の応
力分布解析結果から低サイクル熱疲労領域を設定した例
を示す図。
FIG. 4 is a diagram showing an example in which a low-cycle thermal fatigue region is set from a stress distribution analysis result of the fatigue life prediction method for a structural member according to the present invention.

【図5】本発明に係る構造部材の疲労寿命予測方法の評
価対象となる区分領域の設定例を示す図。
FIG. 5 is a diagram showing a setting example of a segmented area to be evaluated by the method for predicting fatigue life of a structural member according to the present invention.

【図6】本発明に係る構造部材の疲労寿命予測方法の構
造部材の画像入力を説明する図。
FIG. 6 is a view for explaining image input of a structural member in the method for predicting fatigue life of a structural member according to the present invention.

【図7】本発明に係る構造部材の疲労寿命予測方法の亀
裂長さの計測例を示す図。
FIG. 7 is a view showing a measurement example of a crack length in the fatigue life prediction method for a structural member according to the present invention.

【図8】本発明に係る構造部材の疲労寿命予測に用いる
構造部材の最大亀裂長さと破損繰返し数比との関係をマ
スターカーブでまとめた図。
FIG. 8 is a diagram summarizing the relationship between the maximum crack length of the structural member used for predicting the fatigue life of the structural member according to the present invention and the ratio of the number of failure cycles by a master curve.

【図9】本発明に係る構造部材の疲労寿命予測方法に用
いるマスターカーブの基礎となる亀裂累積合体率と破損
繰返し数比との関係を示す図。
FIG. 9 is a diagram showing the relationship between the cumulative crack coalescing rate and the ratio of the number of failure cycles, which is the basis of the master curve used in the method for predicting the fatigue life of a structural member according to the present invention.

【図10】本発明に係る構造部材の疲労寿命予測方法の
最大亀裂長さ評価結果を実機構造部材の計測結果と比較
した図。
FIG. 10 is a diagram comparing the results of evaluation of the maximum crack length by the method for estimating the fatigue life of a structural member according to the present invention with the measurement results of actual structural members.

【図11】本発明に係る構造部材の疲労寿命予測方法の
限界亀裂長さを見定めるために用いた説明図。
FIG. 11 is an explanatory diagram used to determine a limit crack length in the method for predicting fatigue life of a structural member according to the present invention.

【図12】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態を概念的に示すブロック図。
FIG. 12 is a block diagram conceptually showing a second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図13】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における酸化皮膜厚さを機械的に計測する
場合の説明図。
FIG. 13 is an explanatory view of mechanically measuring an oxide film thickness in a second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図14】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における酸化皮膜厚さ、温度、および時間
との関係を示す図。
FIG. 14 is a view showing a relationship among an oxide film thickness, temperature, and time in a second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図15】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態におけるテストピースの破損繰返し数と温
度との関係を示す図。
FIG. 15 is a diagram showing the relationship between the number of repeated failures of the test piece and the temperature in the second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図16】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における構造部材の厚みを超音波法で計測
することを示す模式図。
FIG. 16 is a schematic diagram showing that the thickness of a structural member is measured by an ultrasonic method in the second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図17】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における構造部材の酸化皮膜厚さを超音波
法で計測することを示す模式図。
FIG. 17 is a schematic diagram showing that an oxide film thickness of a structural member is measured by an ultrasonic method in a second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図18】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における超音波音速と酸化皮膜厚さとの関
係を示す図。
FIG. 18 is a diagram showing the relationship between ultrasonic sound speed and oxide film thickness in a second embodiment of the method for predicting fatigue life of a structural member according to the present invention.

【図19】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における構造部材の厚みを渦電流法で計測
するこを示す模式図。
FIG. 19 is a schematic diagram showing that the thickness of a structural member is measured by an eddy current method in a second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図20】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における構造部材の酸化皮膜厚さを渦電流
法で計測することを示す模式図。
FIG. 20 is a schematic view showing that an oxide film thickness of a structural member is measured by an eddy current method in a second embodiment of the method for predicting fatigue life of a structural member according to the present invention.

【図21】本発明に係る構造部材の疲労寿命予測方法の
第2実施形態における渦電流の出力電圧と酸化皮膜厚さ
との関係を示す図。
FIG. 21 is a view showing the relationship between the output voltage of eddy current and the thickness of an oxide film in the second embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図22】本発明に係る構造部材の疲労寿命予測方法の
第3実施形態を概念的に示すブロック図。
FIG. 22 is a block diagram conceptually showing a third embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図23】本発明に係る構造部材の疲労寿命予測方法の
第3実施形態における構造部材の亀裂をレプリカにより
採取することを示す図。
FIG. 23 is a view showing that a crack of a structural member is collected by a replica in the third embodiment of the method for predicting fatigue life of a structural member according to the present invention.

【図24】本発明に係る構造部材の疲労寿命予測方法の
第3実施形態におけるレプリカにより得られた構造部材
の亀裂形態を示す図。
FIG. 24 is a view showing a crack form of a structural member obtained by a replica in the third embodiment of the method for predicting fatigue life of a structural member according to the present invention.

【図25】本発明に係る構造部材の疲労寿命予測方法の
第3実施形態における亀裂長さ密度と破損繰返し数比と
の関係を示す図。
FIG. 25 is a view showing the relationship between the crack length density and the ratio of the number of failure cycles in the third embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図26】本発明に係る構造部材の疲労寿命予測方法の
第5実施形態を概念的に示すブロック図。
FIG. 26 is a block diagram conceptually showing a fifth embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図27】本発明に係る構造部材の疲労寿命予測方法の
第5実施形態におけるテストピースの全ひずみ範囲と破
損繰返し数比との関係を示す図。
FIG. 27 is a view showing the relationship between the total strain range of the test piece and the ratio of the number of failure cycles in the fifth embodiment of the method for predicting the fatigue life of a structural member according to the present invention.

【図28】本発明に係る構造部材の疲労寿命予測方法の
第5実施形態におけるノイバー法を用いて全ひずみ範囲
から応力範囲を定める図。
FIG. 28 is a diagram for determining a stress range from a total strain range using the Neubar method in the fifth embodiment of the fatigue life prediction method for a structural member according to the present invention.

【図29】本発明に係る構造部材の疲労寿命予測方法の
第5実施形態における構造部材の厚み方向ひずみ分布の
補正例を示す模式図。
FIG. 29 is a schematic diagram showing an example of correcting a strain distribution in a thickness direction of a structural member in a fifth embodiment of the method for predicting fatigue life of a structural member according to the present invention.

【符号の説明】[Explanation of symbols]

1 応力解析手段 2 応力分布設定手段 3 区分領域設定手段 4 表面画像入力手段 5 画像処理手段 6 き裂長さ計測手段 7 疲労寿命基準値設定手段 8 運用条件設定手段 9 き裂長さ予測手段 10 限界き裂設定手段 11 余寿命判定手段 12 ガスタービン 13 運転制御盤 14 構造部材 15 ガイド 16 マウント 17 画像入力ヘッド 21 酸化皮膜厚さ計測手段 22 温度推定手段 23 酸化皮膜 25 酸化皮膜寸法測定器具 35 レプリカ採取手段 36 レプリカ画像入力手段 37 レプリカ 39 応力・ひずみ分布補正手段 40 き裂深さ予測手段 DESCRIPTION OF SYMBOLS 1 Stress analysis means 2 Stress distribution setting means 3 Sectional area setting means 4 Surface image input means 5 Image processing means 6 Crack length measuring means 7 Fatigue life reference value setting means 8 Operating condition setting means 9 Crack length prediction means 10 Limit Crack setting means 11 remaining life determining means 12 gas turbine 13 operation control panel 14 structural member 15 guide 16 mount 17 image input head 21 oxide film thickness measuring means 22 temperature estimating means 23 oxide film 25 oxide film size measuring instrument 35 replica sampling means 36 Replica image input means 37 Replica 39 Stress / strain distribution correction means 40 Crack depth prediction means

フロントページの続き (72)発明者 吉岡 洋明 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内 (72)発明者 斎藤 大蔵 神奈川県横浜市鶴見区末広町2の4 株式 会社東芝京浜事業所内Continued on the front page (72) Inventor Hiroaki Yoshioka 2-4 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa Prefecture Inside the Toshiba Keihin Office (72) Inventor Daizo Saito 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Keihin Corporation In business office

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 使用状況状態のデータから応力分布解析
により構造部材の応力分布領域を区分して応力区分領域
を設定し、この設定した区分領域の亀裂長さを画像入力
し、この画像から亀裂長さを計測して区分領域内の最大
亀裂長さを決定し、区分領域の最大亀裂長さを基に予め
作成されるマスターカーブから求めた構造部材の疲労寿
命基準値としての破損繰返し数比を決定し、この決定し
た破損繰返し数比に将来の運転・停止運転回数を加味し
て将来の構造物の亀裂長さの進展を予測し、この予測さ
れた構造物の亀裂長さと構造物の破損に至らしめる限界
亀裂長さとを対比してその差分から構造物が将来、何回
の起動・停止運転回数が可能であるかを判定することを
特徴とする構造部材の疲労寿命予測方法。
1. A stress distribution region of a structural member is divided by stress distribution analysis from data on the state of use to set a stress division region, and a crack length of the set division region is input as an image. Measure the length to determine the maximum crack length in the sectioned area, and the failure cycle ratio as the fatigue life standard value of the structural member obtained from the master curve created in advance based on the maximum crack length in the sectioned area Is determined, and the future crack length of the structure is predicted by considering the determined number of failure cycles and the number of future operation and shutdown operations, and the predicted crack length of the structure and the structure A method for predicting the fatigue life of a structural member, comprising: comparing a critical crack length that leads to breakage with a critical crack length; and determining from the difference the number of times the structure can be started and stopped in the future.
【請求項2】 構造部材の亀裂計測部位の酸化皮膜を除
去して計測する酸化皮膜厚さと運転時間から、別途求め
た高温酸化試験の酸化皮膜厚さ、温度、時間のデータを
用いて構造部材の使用温度を推定し、この推定温度から
疲労寿命基準値としての構造部材の破損繰返し数比を補
正して構造部材の寿命を予測することを特徴とする請求
項1記載の構造部材の疲労寿命予測方法。
2. A structural member using data of an oxide film thickness, a temperature, and a time of a high-temperature oxidation test separately obtained from an oxide film thickness measured by removing an oxide film at a crack measurement site of a structural member and an operation time. 2. The fatigue life of a structural member according to claim 1, wherein a service life of the structural member is estimated by estimating a service temperature of the structural member, and correcting the ratio of the number of cycles of failure of the structural member as a fatigue life reference value from the estimated temperature. Forecasting method.
【請求項3】 構造部材の酸化皮膜厚さは、酸化皮膜寸
法測定器具で行うことを特徴とする請求項2記載の構造
部材の疲労寿命予測方法。
3. The method for predicting the fatigue life of a structural member according to claim 2, wherein the thickness of the oxide film on the structural member is measured with an oxide film size measuring instrument.
【請求項4】 構造部材の酸化皮膜厚さは、超音波法を
用いて非破壊的に行うことを特徴とする請求項2記載の
構造部材の疲労寿命予測方法。
4. The method for predicting the fatigue life of a structural member according to claim 2, wherein the thickness of the oxide film on the structural member is determined non-destructively by using an ultrasonic method.
【請求項5】 構造部材の酸化皮膜厚さは、電磁気法を
用いて非破壊的に行うことを特徴とする請求項2記載の
構造部材の疲労寿命予測方法。
5. The method for predicting the fatigue life of a structural member according to claim 2, wherein the thickness of the oxide film on the structural member is determined non-destructively by using an electromagnetic method.
【請求項6】 構造部材の応力区分領域内の亀裂長さを
画像処理するにあたり、単位面積あたりの亀裂長さの総
和で表わされる亀裂長さ密度を計測して亀裂長さ密度分
布から構造部材の応力区分領域を設定することを特徴と
する請求項1記載の構造部材の疲労寿命予測方法。
6. Image processing of a crack length in a stress division region of a structural member is performed by measuring a crack length density represented by a sum of crack lengths per unit area, and calculating the crack length density distribution from the crack length density distribution. The fatigue life prediction method for a structural member according to claim 1, wherein a stress division region is set.
【請求項7】 構造部材の亀裂長さ密度の計測は、レプ
リカで行うことを特徴する請求項6記載の構造部材の疲
労寿命予測方法。
7. The method for predicting the fatigue life of a structural member according to claim 6, wherein the measurement of the crack length density of the structural member is performed using a replica.
【請求項8】 構造部材の疲労寿命基準値としての破損
繰返し数比を、亀裂長さ密度と起動・停止運転回数とか
ら決定する評価式を用いることを特徴とする請求項6記
載の構造部材の疲労寿命予測方法。
8. The structural member according to claim 6, wherein an evaluation formula for determining the ratio of the number of failure cycles as a fatigue life reference value of the structural member from the crack length density and the number of start / stop operations is used. Fatigue life prediction method.
【請求項9】 構造部材の疲労寿命基準値としての破損
繰返し数を決定するにあたり、前回の検査時の亀裂発生
回数および亀裂長さから求めた破損繰返し数と、現評価
時の亀裂発生回数および亀裂長さから求めた破損繰返し
数とを各検査毎に識別できる評価式を用いることを特徴
とする請求項1記載の構造部材の疲労寿命予測方法。
9. In determining the number of failure cycles as a fatigue life reference value of a structural member, the number of crack occurrences determined from the number of crack occurrences and crack length in the previous inspection, the number of crack occurrences in the current evaluation, and 2. The fatigue life prediction method for a structural member according to claim 1, wherein an evaluation formula is used which can identify the number of breakage cycles determined from the crack length for each inspection.
【請求項10】 構造部材の疲労寿命基準値としての破
損繰返し数比から、応力区分領域に作用する応力・ひず
みを求め、この求めた応力・ひずみ値から構造部材の厚
み方向の応力・ひずみ分布を補正し、構造部材の厚み方
向への亀裂進展量を予測することを特徴とする請求項1
記載の構造部材の疲労寿命予測方法。
10. A stress / strain acting on a stress division region is determined from a failure repetition ratio as a fatigue life reference value of a structural member, and a stress / strain distribution in a thickness direction of the structural member is determined from the obtained stress / strain value. And correcting the amount of crack propagation in the thickness direction of the structural member.
The method for predicting the fatigue life of a structural member as described in the above.
【請求項11】 応力・ひずみ値は、構造部材の繰返し
応力・ひずみ関係の式とノイバーの応力・ひずみ関係の
式との交点から求めることを特徴とする請求項1記載の
構造部材の疲労寿命予測方法。
11. The fatigue life of a structural member according to claim 1, wherein the stress / strain value is obtained from an intersection of an equation of a repeated stress / strain relation of the structural member and an equation of a stress / strain relation of Neubar. Forecasting method.
JP8323099A 1996-12-03 1996-12-03 Method for anticipating fatigue life of structure member Pending JPH10160646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8323099A JPH10160646A (en) 1996-12-03 1996-12-03 Method for anticipating fatigue life of structure member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8323099A JPH10160646A (en) 1996-12-03 1996-12-03 Method for anticipating fatigue life of structure member

Publications (1)

Publication Number Publication Date
JPH10160646A true JPH10160646A (en) 1998-06-19

Family

ID=18151069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8323099A Pending JPH10160646A (en) 1996-12-03 1996-12-03 Method for anticipating fatigue life of structure member

Country Status (1)

Country Link
JP (1) JPH10160646A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156325A (en) * 2000-11-17 2002-05-31 Babcock Hitachi Kk Surface crack depth analytical method of metal member
JP2003004549A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Method of estimating temperature of high-temperature member
JP2003057123A (en) * 2001-08-08 2003-02-26 Central Res Inst Of Electric Power Ind Method for estimating attaining temperature of high- temperature member nondestructively
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
WO2009017013A1 (en) 2007-07-27 2009-02-05 Mitsubishi Heavy Industries, Ltd. Crack progress predicting method and program
JP2009041449A (en) * 2007-08-09 2009-02-26 Hitachi Ltd Repair method for gas turbine rotor vane
JP2009174859A (en) * 2008-01-21 2009-08-06 Jfe Steel Corp Remaining lifetime evaluation method of machine part
US20120089336A1 (en) * 2010-07-14 2012-04-12 Baker Hughes Incorporated System and method for estimating remaining useful life of a downhole tool
JP2013092432A (en) * 2011-10-25 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Life estimation of metallic material due to occurrence of stress corrosion crack, and inspection planning system for structure used under corrosive water environment
JP2014514485A (en) * 2011-03-25 2014-06-19 スネクマ Inspection method of impact marks observed in fan casing
KR20150074034A (en) * 2012-10-16 2015-07-01 지멘스 악티엔게젤샤프트 Method and system for probabilistic fatigue crack life estimation
CN108535105A (en) * 2018-03-22 2018-09-14 中国科学院金属研究所 A kind of prediction technique of vermicular cast iron fatigue strength
CN110763444A (en) * 2019-10-11 2020-02-07 天津大学 Blade fatigue curve measuring method based on high-speed rotation test bed
CN113029835A (en) * 2021-02-25 2021-06-25 中国船舶重工集团公司第七二五研究所 Test measurement method for fatigue crack initiation of special welding structure of boiler
WO2022004110A1 (en) * 2020-07-03 2022-01-06 株式会社日立インダストリアルプロダクツ Rotating electrical machine damage diagnostic system and damage diagnostic method
US11898995B2 (en) 2019-07-04 2024-02-13 Mitsubishi Heavy Industries, Ltd. Method for evaluating crack in metal member and method for evaluating fatigue damage in metal member

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156325A (en) * 2000-11-17 2002-05-31 Babcock Hitachi Kk Surface crack depth analytical method of metal member
JP2003004549A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Method of estimating temperature of high-temperature member
JP2003057123A (en) * 2001-08-08 2003-02-26 Central Res Inst Of Electric Power Ind Method for estimating attaining temperature of high- temperature member nondestructively
JP4693084B2 (en) * 2001-08-08 2011-06-01 財団法人電力中央研究所 Nondestructive method for estimating the temperature reached by a high-temperature member
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
US8109150B2 (en) 2007-07-27 2012-02-07 Mitsubishi Heavy Industries, Ltd. Crack-propagation prediction method and program
WO2009017013A1 (en) 2007-07-27 2009-02-05 Mitsubishi Heavy Industries, Ltd. Crack progress predicting method and program
EP2963406A1 (en) 2007-07-27 2016-01-06 Mitsubishi Hitachi Power Systems, Ltd. Crack-propagation prediction method and program
JP2009041449A (en) * 2007-08-09 2009-02-26 Hitachi Ltd Repair method for gas turbine rotor vane
JP2009174859A (en) * 2008-01-21 2009-08-06 Jfe Steel Corp Remaining lifetime evaluation method of machine part
US8825414B2 (en) * 2010-07-14 2014-09-02 Baker Hughes Incorporated System and method for estimating remaining useful life of a downhole tool
US20120089336A1 (en) * 2010-07-14 2012-04-12 Baker Hughes Incorporated System and method for estimating remaining useful life of a downhole tool
JP2014514485A (en) * 2011-03-25 2014-06-19 スネクマ Inspection method of impact marks observed in fan casing
JP2013092432A (en) * 2011-10-25 2013-05-16 Hitachi-Ge Nuclear Energy Ltd Life estimation of metallic material due to occurrence of stress corrosion crack, and inspection planning system for structure used under corrosive water environment
KR20150074034A (en) * 2012-10-16 2015-07-01 지멘스 악티엔게젤샤프트 Method and system for probabilistic fatigue crack life estimation
JP2015532430A (en) * 2012-10-16 2015-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Method and system for probabilistic fatigue crack life estimation
CN108535105A (en) * 2018-03-22 2018-09-14 中国科学院金属研究所 A kind of prediction technique of vermicular cast iron fatigue strength
US11898995B2 (en) 2019-07-04 2024-02-13 Mitsubishi Heavy Industries, Ltd. Method for evaluating crack in metal member and method for evaluating fatigue damage in metal member
CN110763444A (en) * 2019-10-11 2020-02-07 天津大学 Blade fatigue curve measuring method based on high-speed rotation test bed
WO2022004110A1 (en) * 2020-07-03 2022-01-06 株式会社日立インダストリアルプロダクツ Rotating electrical machine damage diagnostic system and damage diagnostic method
CN113029835A (en) * 2021-02-25 2021-06-25 中国船舶重工集团公司第七二五研究所 Test measurement method for fatigue crack initiation of special welding structure of boiler
CN113029835B (en) * 2021-02-25 2024-01-19 中国船舶重工集团公司第七二五研究所 Test measurement method for fatigue crack initiation of special welding structure of boiler

Similar Documents

Publication Publication Date Title
JP3186866B2 (en) Method and apparatus for predicting deterioration / damage of structural member
JPH10160646A (en) Method for anticipating fatigue life of structure member
KR101115277B1 (en) Crack progress predicting method and computer-readable recording medium embodying crack progress predicting program
US9541530B2 (en) Method and system of deterministic fatigue life prediction for rotor materials
JP3392526B2 (en) Equipment maintenance management support equipment
EP3304034B1 (en) Scheduling inspections and predicting end-of-life for machine components
JP4458815B2 (en) How to monitor the health of turbine blades (buckets) and diagnose prognosis using neural network based diagnostic techniques in conjunction with pyrometer signals
JP2001032724A (en) On-line life diagnostic system
JP2001166819A (en) Abnormality diagnosis/lifetime diagnosis system for prime mover
CN115329283A (en) Method for predicting service life of high-strength commutator of starting motor
EP2256474A1 (en) Method of estimating material property value of ceramic, method of estimating material property value of heat-insulating coating material, method of estimating remaining life of heat-insulating coating material, method of estimating remaining life of high-temperature member, and apparatus for obtaining material property value
JP3976938B2 (en) Creep life evaluation method
JP3414582B2 (en) High temperature equipment life monitoring device
JP2004003922A (en) Method for measuring remaining lifetime of material, and apparatus for measuring remaining lifetime using the same
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP2001174380A (en) Method and apparatus for predicting remaining life of structural material
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JPH11237912A (en) Method and device for maintenance and management of high-temperature structural member
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JP3032606B2 (en) Life prediction device for structural members
JP3015599B2 (en) Creep damage evaluation method for ferritic heat-resistant steel
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP2006242887A (en) Crack occurrence predicting method for gas turbine component, and prediction system
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
JP2007225450A (en) Life estimation method of low-alloy steel used under high-temperature and high-pressure condition, life estimation device, life estimation program and program housing medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Effective date: 20041001

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050405

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050418

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090513

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100513

LAPS Cancellation because of no payment of annual fees