JP2001174380A - Method and apparatus for predicting remaining life of structural material - Google Patents

Method and apparatus for predicting remaining life of structural material

Info

Publication number
JP2001174380A
JP2001174380A JP35616899A JP35616899A JP2001174380A JP 2001174380 A JP2001174380 A JP 2001174380A JP 35616899 A JP35616899 A JP 35616899A JP 35616899 A JP35616899 A JP 35616899A JP 2001174380 A JP2001174380 A JP 2001174380A
Authority
JP
Japan
Prior art keywords
structural member
damage
remaining life
estimating
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35616899A
Other languages
Japanese (ja)
Inventor
Kazunari Fujiyama
一成 藤山
Takashi Izeki
崇司 井關
Taiji Hirasawa
泰治 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP35616899A priority Critical patent/JP2001174380A/en
Publication of JP2001174380A publication Critical patent/JP2001174380A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for predicting a remaining life of a structural member for accurately predicting the remaining life of the structural member with unknown history and condition of use. SOLUTION: The present invention comprises, when predicting a remaining life of a structural member, damage measurement preparation means 1 for polishing and cleaning a damaged part, damage measurement means 2 for measuring a crack in the damaged part, damage parameter evaluation means 3 for calculating, arranging and dividing an information on the measured crack into a crack length and a crack length density, use condition estimation means 4 for estimating use conditions of operation of the past by calculating a strain area and a temperature distribution and a stress to a depth direction of the structural member from the crack, threshold value setting means 5 for determining a threshold value to the direction of a depth from a stress expansion coefficient and a fracture toughness, use history estimating means 6 for calculating a number of repeated strain of the past, and remaining life estimating means 7 for estimating the remaining life of a structural member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造部材の使用可
能な寿命や点検・補修の間隔を予め予測する構造部材の
余寿命予測方法およびこの方法に用いる構造部材の余寿
命予測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the remaining life of a structural member, which predicts in advance the usable life of a structural member and the intervals between inspection and repair, and an apparatus for estimating the remaining life of a structural member used in this method.

【0002】[0002]

【従来の技術】例えば、発電プラントでは、エネルギの
有効利用と地球環境保護の観点から、プラント熱効率の
向上が求められており、これに伴って蒸気タービン、ガ
スタービン、ボイラ、排熱回収ボイラ等の原動機設備に
使用される機器の高温化や大容量化が急速に進められて
いる。このため、原動機設備に適用する構造部材の使用
条件は、従来にも増してより一層過酷になってきてい
る。
2. Description of the Related Art For example, in a power generation plant, from the viewpoint of effective use of energy and protection of the global environment, improvement of the plant thermal efficiency is required. The temperature and capacity of equipment used in prime mover equipment are rapidly increasing. For this reason, the use conditions of the structural member applied to the prime mover equipment have become more severe than ever.

【0003】また、長年に亘って使用されてきた発電プ
ラントでも、起動・停止の繰返し回数が日毎に多くなっ
てきており、これに伴って構造部材に与える衝撃のひず
み繰返し回数も増加し、過酷な状況に晒されている。
Further, even in a power plant that has been used for many years, the number of repetitions of start / stop is increasing every day, and the number of repetitions of the impact strain applied to the structural members is also increased, resulting in a severe situation. Is exposed to various situations.

【0004】特に、高温流体に直接晒されている燃焼器
ライナ、タービン翼およびタービンロータ等に使用する
高温部材では、起動・停止や定常運転中、流体の温度・
圧力の変動に伴う高熱応力が発生し、この高熱応力に基
づく熱疲労による亀裂や遠心力、内圧応力などによるク
リープに基づく損傷の発生が多くなっている。
Particularly, in a high-temperature member used for a combustor liner, a turbine blade, a turbine rotor, or the like which is directly exposed to a high-temperature fluid, the temperature and the temperature of the fluid during start-up / stop or steady operation are reduced.
High thermal stress is generated due to pressure fluctuation, and cracks due to thermal fatigue due to the high thermal stress and damage due to creep due to centrifugal force, internal pressure stress and the like are increasing.

【0005】このような状況の下、最近の発電プラント
では、熱疲労、クリープによる損傷の進展を事前に、か
つ的確に予測し、構造部材が破損または破壊に至る前に
適切な保守管理の措置を講じる必要があり、この措置に
対応する研究成果が数多く発表されている。
[0005] Under these circumstances, in recent power generation plants, the progress of damage due to thermal fatigue and creep is predicted in advance and accurately, and appropriate maintenance management measures are taken before structural members are damaged or destroyed. It is necessary to take measures, and many research results corresponding to this measure have been published.

【0006】しかし、発表された文献は、一面的な物の
見方による解決手段を発表したにすぎず、実際上の適用
に対し、未だ多くの問題が残されており、現在、模索中
である。
[0006] However, the published literature merely discloses a solution from a one-sided perspective, and many problems still remain for practical application and are currently being explored. .

【0007】[0007]

【発明が解決しようとする課題】最近発表された公報や
文献には、例えば、特公平6−76960号公報や「微
視亀裂法によるMod.9Cr−1Mo鋼の高温疲労損
傷計測」(野中他、No.96−1、日本機械学会第7
3期通常総会講演会講演論文集II、151〜152ペ
ージ、1996)などの構造部材の余寿命評価法があ
る。
For example, Japanese Patent Publication No. 6-76960 and "Measurement of High Temperature Fatigue Damage of Mod.9Cr-1Mo Steel by Microcrack Method" (Nonaka et al.) No. 96-1, The 7th Japan Society of Mechanical Engineers
There is a method for evaluating the remaining life of structural members, such as the 3rd Annual General Meeting Lecture Papers II, pp. 151-152, 1996).

【0008】前者は、図26に示すように、検出器4
6、演算器47、判定器48、および表示装置49を組
み込んだ計測装置50と、図27に示す亀裂長さと寿命
比との関係を示すマスターカーブとを用い、繰返し数比
がFactor of 2(倍半分評価グラフ)の範囲
内で亀裂の長さから寿命を予測するようになっている。
[0008] The former is, as shown in FIG.
6. Using a measuring device 50 incorporating the arithmetic unit 47, the judging device 48, and the display device 49, and a master curve showing the relationship between the crack length and the life ratio shown in FIG. 27, the repetition rate ratio is Factor of 2 ( The life is predicted from the length of the crack within the range of (half the evaluation graph).

【0009】また、繰返し数比は、限界亀裂が発生する
までの荷重の繰返し数と構造部材が受ける荷重の実繰返
し数との比で定義され、現繰返し数が既知の場合、限界
亀裂が発生するまでの繰返し数が推定できるようになっ
ている。
The repetition rate ratio is defined as the ratio between the number of repetitions of the load until the occurrence of the limit crack and the actual number of repetitions of the load applied to the structural member. When the current number of repetitions is known, the limit crack is generated. It is possible to estimate the number of repetitions before performing.

【0010】しかし、この余寿命予測手段は、負荷変動
の繰返し数やドレンのフラッシュ繰返し数などの因子が
含まれておらず、実際には適用の範囲が限られ、寿命予
測の精度が粗い。
However, this remaining life prediction means does not include factors such as the number of repetitions of load fluctuations and the number of repetitions of drain flashes, and in practice, its application range is limited, and the accuracy of life prediction is low.

【0011】一方、後者は、図28に示すように、最大
亀裂長さから寿命を予測するまでのものであるが、ひず
み範囲が一義的であり、このひずみ範囲を超えた場合、
もはや余寿命の予測ができない不都合・不具合がある。
[0011] On the other hand, the latter, as shown in FIG. 28, is for estimating the life from the maximum crack length, but the strain range is univocal.
There are inconveniences and defects that can no longer predict the remaining life.

【0012】また、前者、後者ともに、構造部材の使用
履歴や使用条件が不明の場合、実機の余寿命評価への予
測を不正確にしている。
Further, in both the former and the latter, when the use history and use conditions of the structural member are unknown, the prediction of the remaining life evaluation of the actual machine is inaccurate.

【0013】本発明は、このような背景技術に照してな
されたもので、亀裂の実測値から今迄の使用条件や使用
履歴を推定し、推定した使用条件や使用履歴から余寿命
を的確に予測する構造部材の余寿命予測方法およびこの
方法に用いる構造部材の余寿命予測装置を提供すること
を目的とする。
The present invention has been made in light of such background art, and estimates the use conditions and usage history up to now from the actually measured values of cracks, and accurately estimates the remaining life from the estimated use conditions and usage history. It is an object of the present invention to provide a method for estimating a remaining life of a structural member and a device for estimating a remaining life of a structural member used in the method.

【0014】[0014]

【課題を解決するための手段】本発明に係る構造部材の
余寿命予測方法は、上記目的を達成するために、請求項
1に記載したように、被検体の損傷部分を研磨した後、
洗浄液で洗浄し、洗浄した上記損傷部分の亀裂を計測
し、計測した亀裂情報を画像化およびデータベース化す
るとともに、データベース化した亀裂情報を基に最大亀
裂長さと亀裂長さ密度とに計算整理して損傷パラメータ
として使用し、この損傷パラメータを使用してひずみ範
囲、被検体の深さ方向の温度分布および応力分布を算出
して過去の運転における使用条件を推定し、上記温度分
布から破壊靭性分布を、また上記応力分布から応力拡大
係数分布をそれぞれ算出し、算出した破壊靭性分布と応
力拡大係数分布とを突き合せて限界亀裂深さを設定する
一方、上記最大亀裂長さと亀裂長さ密度とからひずみ繰
返し数を算出して使用履歴を推定した後、上記最大亀裂
長さと被検体の深さとを計算して限界破裂深さに至るま
でのひずみ繰返し回数を構造部材の余寿命として設定す
るものである。
According to a first aspect of the present invention, there is provided a method for estimating a remaining life of a structural member, comprising the steps of:
After cleaning with the cleaning liquid, the cracks in the damaged area were measured, and the measured crack information was imaged and compiled into a database.Based on the crack information in the database, the maximum crack length and crack length density were calculated and arranged. Using this damage parameter, calculate the strain range, temperature distribution and stress distribution in the depth direction of the specimen using this damage parameter, estimate the operating conditions in the past operation, and calculate the fracture toughness distribution from the above temperature distribution. Further, the stress intensity factor distribution is calculated from the stress distribution, and the critical crack depth is set by comparing the calculated fracture toughness distribution and the stress intensity factor distribution, while the maximum crack length, the crack length density, and the like. After calculating the number of strain cycles and estimating the usage history, calculate the maximum crack length and the depth of the subject to calculate the number of strain cycles until the critical burst depth is reached. The is set as the remaining life of the structural member.

【0015】また、本発明に係る構造部材の余寿命予測
方法は、上記目的を達成するために、請求項2に記載し
たように、計測した亀裂情報を画像化およびデータベー
ス化する際、亀裂情報のノイズを除去し、2値化処理を
行うものである。
According to a second aspect of the present invention, there is provided a method for estimating a remaining life of a structural member according to a second aspect of the present invention. And performs a binarization process.

【0016】また、本発明に係る構造部材の余寿命予測
方法は、上記目的を達成するために、請求項3に記載し
たように、過去の運転における使用条件を推定する際、
ひずみ範囲は予めグラフ化した最大亀裂長さとひずみ繰
返し数比および亀裂長さ密度とひずみ繰返し数比とを基
に作成した最大亀裂長さ−亀裂長さ密度線図から求める
ものである。
According to a third aspect of the present invention, there is provided a method for estimating a remaining life of a structural member according to a third aspect of the present invention.
The strain range is obtained from a maximum crack length-crack length density diagram prepared in advance based on the maximum crack length and the strain repetition ratio and the crack length density and the strain repetition ratio.

【0017】また、本発明に係る構造部材の余寿命予測
方法は、上記目的を達成するために、請求項4に記載し
たように、限界亀裂深さを設定する際、破壊靭性分布と
応力拡大係数分布との交点を限界亀裂深さと設定するも
のである。
According to a fourth aspect of the present invention, there is provided a method for estimating a remaining life of a structural member according to a fourth aspect of the present invention. The intersection with the coefficient distribution is set as the critical crack depth.

【0018】また、本発明に係る構造部材の余寿命予測
装置は、上記目的を達成するために、請求項5に記載し
たように、構造部材の損傷部分に分布する多数の亀裂を
計測するための表面処理および洗浄を行う損傷計測準備
手段と、損傷部分に分布する多数の亀裂の個々の長さを
計測する損傷計測手段と、この損傷計測手段から得られ
損傷計測量から少なくとも2つ以上の損傷パラメータを
算出する損傷パラメータ評価手段と、少なくとも2つ以
上の損傷パラメータから使用条件を推定するために実験
によって得られたマスターカーブに、少なくとも2つ以
上の損傷パラメータを適用して過去の使用条件を推定す
る使用条件推定手段と、推定した使用条件と構造部材の
破壊限界値から損傷パラメータの限界値を定める限界値
設定手段と、少なくとも2つ以上の損傷パラメータから
使用履歴を推定するために実験によって得られたマスタ
ーカーブに、少なくとも2つ以上の損傷パラメータを適
用して使用履歴を定める使用履歴推定手段と、構造部材
の亀裂長さおよび深さに基づいて算出した限界亀裂深さ
に到達するまでのひずみ繰返し回数を余寿命として設定
する余寿命推定手段とを備えたものである。
According to a fifth aspect of the present invention, there is provided an apparatus for estimating a remaining life of a structural member for measuring a large number of cracks distributed in a damaged portion of the structural member. Damage measurement preparation means for performing surface treatment and cleaning of the damage, damage measurement means for measuring the length of each of a large number of cracks distributed in a damaged portion, and at least two or more of the damage measurement amounts obtained from the damage measurement means. Damage parameter evaluation means for calculating a damage parameter, and past use conditions obtained by applying at least two or more damage parameters to a master curve obtained by an experiment for estimating use conditions from at least two or more damage parameters. Operating condition estimating means for estimating the damage condition; and limiting value setting means for determining a limit value of the damage parameter from the estimated operating condition and the fracture limit value of the structural member. Use history estimating means for determining a use history by applying at least two or more damage parameters to a master curve obtained by an experiment for estimating a use history from two or more damage parameters, and a crack length of a structural member And a remaining life estimating means for setting, as a remaining life, the number of strain repetitions until reaching the limit crack depth calculated based on the depth and the depth.

【0019】また、本発明に係る構造部材の余寿命予測
装置は、上記目的を達成するために、請求項6に記載し
たように、損傷計測準備手段は、被検体の損傷部分をバ
フ仕上げする研磨装置と、上記損傷部分を研磨後、酢酸
メチルで洗浄する洗浄装置とを備えたものである。
According to a sixth aspect of the present invention, there is provided an apparatus for estimating a remaining life of a structural member, wherein the damage measurement preparing means buffs a damaged portion of the subject. It is provided with a polishing device and a cleaning device for cleaning the damaged portion with methyl acetate after polishing.

【0020】また、本発明に係る構造部材の余寿命予測
装置は、上記目的を達成するために、請求項7に記載し
たように、損傷計測手段は、レプリカ装置、CCDカメ
ラ、レーザ顕微鏡、電気抵抗計測装置、電磁気計測装置
および超音波装置のうち、いずれかを選択するととも
に、被検体から計測した亀裂情報を画像化する画像処理
装置を備えたものである。
Further, in order to achieve the above object, the apparatus for estimating the remaining life of a structural member according to the present invention is characterized in that the damage measuring means includes a replica device, a CCD camera, a laser microscope, an electric microscope. The apparatus includes an image processing device that selects any one of a resistance measuring device, an electromagnetic measuring device, and an ultrasonic device and that images crack information measured from a subject.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る構造部材の余
寿命予測方法およびこの方法に用いる構造部材の余寿命
予測装置の実施形態を図面および図面に付した符号を引
用して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for estimating the remaining life of a structural member and an apparatus for estimating the remaining life of a structural member used in the method according to the present invention will be described below with reference to the drawings and the reference numerals attached to the drawings.

【0022】図1は、本発明に係る構造部材の余寿命予
測方法およびこの方法に用いる構造部材の余寿命予測装
置の実施形態を説明するために用いたブロック図であ
る。
FIG. 1 is a block diagram used for explaining an embodiment of a method for estimating a remaining life of a structural member and an apparatus for estimating a remaining life of a structural member used in the method according to the present invention.

【0023】本実施形態は、損傷計測準備手段1、損傷
計測手段2、損傷パラメータ評価手段3、使用条件推定
手段4、限界値設定手段5、使用履歴推定手段6、余寿
命推定手段7を備えて構成される。
This embodiment comprises damage measurement preparation means 1, damage measurement means 2, damage parameter evaluation means 3, use condition estimation means 4, limit value setting means 5, use history estimation means 6, and remaining life estimation means 7. It is composed.

【0024】損傷計測準備手段1は、構造部材に発生し
た亀裂等の損傷部分を研磨する研磨工程と、研磨後の損
傷部分を洗浄する洗浄工程とに区分けされる。
The damage measurement preparing means 1 is divided into a polishing step of polishing a damaged portion such as a crack generated in a structural member, and a cleaning step of cleaning the damaged portion after polishing.

【0025】研磨工程は、図2に示すように、研磨装置
8を被検体9の損傷部10に摺動させて実施される。こ
の研磨装置8は、図3に示すように、グラインダ11を
収容する研磨ヘッド12とグラインダ駆動部13とを備
え、グラインダ駆動部13でグラインダ11を回転駆動
させて被検体9上を摺動させ、被検体9の表面をバフ研
磨仕上げを実施するようになっている。
As shown in FIG. 2, the polishing step is performed by sliding the polishing apparatus 8 against the damaged portion 10 of the subject 9. As shown in FIG. 3, the polishing device 8 includes a polishing head 12 that accommodates a grinder 11 and a grinder driving unit 13. The grinder driving unit 13 drives the grinder 11 to rotate and slide on the subject 9. The surface of the subject 9 is buffed and polished.

【0026】また、洗浄工程は、図4に示すように、洗
浄装置14を用いて実施される。この洗浄装置14は、
洗浄ヘッダ15に収容され、先端にノズル16を備えた
洗浄液供給通路17と、洗浄液を回収する洗浄液回収通
路18と、被検体9を洗浄後、空気を供給して被検体9
を乾燥させる乾燥空気供給通路19とを備え、研磨後の
被検体9の表面を浄化するようになっている。
The cleaning step is performed using a cleaning device 14, as shown in FIG. This cleaning device 14
A cleaning liquid supply passage 17 provided with a nozzle 16 at the tip and housed in the cleaning header 15, a cleaning liquid recovery passage 18 for collecting the cleaning liquid, and after cleaning the subject 9, air is supplied to the subject 9 for cleaning.
And a dry air supply passage 19 for drying the surface of the test object 9 after polishing.

【0027】一方、損傷計測手段2は、図6に示すよう
に、被検体9の損傷部10を検出する損傷検出部20
と、損傷部10に対して損傷検出部20を進退駆動する
損傷計測駆動部21と、損傷部10の亀裂情報を画像化
する画像処理装置22と、損傷部10の亀裂情報を基に
して作成した亀裂長さ分布を整理して(具体的には亀裂
の小さい順または大きい順に並び変えて亀裂の長さ分布
をつくる。)、記憶する亀裂長さ分布記憶部25とを備
え、亀裂情報を画像化し、記憶する際、情報のノイズを
除去し、2値化処理を行うとともに、特定の亀裂情報の
みを抽出できる統計データベース化されている。
On the other hand, as shown in FIG. 6, the damage measuring means 2 includes a damage detecting section 20 for detecting a damaged section 10 of the subject 9.
And a damage measurement drive unit 21 that drives the damage detection unit 20 forward and backward with respect to the damaged part 10, an image processing device 22 that images crack information of the damaged part 10, and a creation based on the crack information of the damaged part 10. The crack length distribution obtained is arranged (specifically, the crack length distribution is created by rearranging the cracks in ascending or descending order) to provide a crack length distribution storage unit 25 for storing the crack information. At the time of image formation and storage, it is a statistical database capable of removing noise of information, performing binarization processing, and extracting only specific crack information.

【0028】なお、損傷検出部20は、例えば図5に示
すように、レプリカ装置24を用いてもよい。このレプ
リカ装置24は、レプリカ採取ヘッド25に組み込ま
れ、被検体9の損傷部10に酢酸メチルを供給する酢酸
メチル供給通路26と、損傷部10に転写紙27を供給
するレプリカ供給ロール28と、ばね29で支持され、
被検体9の損傷部10を転写する際、押圧力を与えると
ともに、転写後、転写紙27から移動させるレプリカ圧
着ロッド30を備えている。
The damage detector 20 may use a replica device 24 as shown in FIG. 5, for example. The replica device 24 is incorporated in a replica sampling head 25 and supplies a methyl acetate supply passage 26 that supplies methyl acetate to the damaged portion 10 of the subject 9, a replica supply roll 28 that supplies transfer paper 27 to the damaged portion 10, Supported by a spring 29,
When transferring the damaged portion 10 of the subject 9, a replica pressure bonding rod 30 is provided which applies a pressing force and moves from the transfer paper 27 after the transfer.

【0029】また、損傷検出部20は、例えば図7に示
すように、画像入力ヘッド31に組み込んだ投影部32
から被検体9の損傷部10に光を投影して映像化するC
CDカメラ33や、図8に示すように、表面凹凸画像入
力ヘッド34に組み込んだレンズ35にレーザ光を投影
し、被検体9の損傷部10を映像化するレーザ顕微鏡3
6や、図9に示すように、電気抵抗計測ヘッド37と電
気抵抗計測端子38とを備え、被検体9の損傷部10を
電流変化に基づいて検出する電気抵抗計測装置39や、
図10に示すように、電磁気計測子40で被検体9の損
傷部10を磁界41の変化に基づいて検出する電磁気計
測装置42や、図11に示すように、超音波送受信子4
3で被検体9の損傷部10を超音波44の変化に基づい
て検出する超音波装置45を用いてもよい。これら損傷
検出部20は、構造部材の材質、使用条件等により適宜
使い分けられ、図6で示した画像処理装置22に接続さ
れ、被検体9の損傷部10のデータが収集できるように
構成されている。
Further, as shown in FIG. 7, for example, the damage detecting section 20 includes a projection section 32 incorporated in an image input head 31.
Projecting light onto the damaged part 10 of the subject 9 from the
A laser microscope 3 that projects a laser beam onto a CD camera 33 or a lens 35 incorporated in a surface unevenness image input head 34 as shown in FIG.
As shown in FIG. 9 and FIG. 9, an electric resistance measuring device 39 including an electric resistance measuring head 37 and an electric resistance measuring terminal 38 for detecting a damaged portion 10 of the subject 9 based on a current change,
As shown in FIG. 10, the electromagnetic measuring device 42 detects the damaged portion 10 of the subject 9 based on the change in the magnetic field 41 with the electromagnetic measuring device 40, and the ultrasonic transmitting and receiving device 4 as shown in FIG.
In 3, an ultrasonic device 45 that detects the damaged portion 10 of the subject 9 based on a change in the ultrasonic wave 44 may be used. These damage detectors 20 are appropriately used depending on the material of the structural member, usage conditions, and the like, are connected to the image processing device 22 shown in FIG. 6, and are configured to collect data on the damaged part 10 of the subject 9. I have.

【0030】図1で示した損傷計測手段2で統計データ
ベース化した亀裂情報は、図12に示すように、亀裂長
さ10,2,3,…に亀裂番号1,2,3,…を付して
対応整理させ、コンピュータにファイル記憶させる。
As shown in FIG. 12, the crack information in the statistical database created by the damage measuring means 2 shown in FIG. 1 has crack lengths 10, 2, 3,. And store them in a computer.

【0031】このように、対応整理させたファイルか
ら、損傷パラメータ評価手段3では、最大亀裂長さa
maxと、亀裂長さ密度(亀裂長さの総和を観察面積で
除したもの)lとを計算し、最大亀裂長さamaxをパ
ラメータ1とし、亀裂長さ密度lをパラメータ2とし、
それぞれを区分け整理する。
As described above, the damage parameter evaluation means 3 calculates the maximum crack length a
max and the crack length density (the sum of the crack lengths divided by the observation area) 1 are calculated, the maximum crack length a max is set as a parameter 1, the crack length density 1 is set as a parameter 2,
Sort and organize each.

【0032】最大亀裂長さamaxをパラメータ1に、
また亀裂長さ密度lをパラメータ2にそれぞれ区分け整
理したファイルから、使用条件推定手段4は、構造部材
の塑性ひずみ範囲Δεpと、その厚み方向の等価弾性応
力範囲Δσとを推定する。
The maximum crack length a max is set to the parameter 1,
From the file in which the crack length density 1 is classified into parameters 2 and arranged, the use condition estimating means 4 estimates the plastic strain range Δεp of the structural member and the equivalent elastic stress range Δσ in the thickness direction thereof.

【0033】塑性ひずみ範囲Δεpは、図13に示すよ
うに、パラメータ1(最大亀裂長さamax)とパラメ
ータ2(亀裂長さ密度l)とのそれぞれの線図から両者
に適合する曲線を一つ選び出すことにより、推定できる
ようになっている。
As shown in FIG. 13, the plastic strain range .DELTA..epsilon.p is obtained by plotting a curve conforming to both the parameter 1 (maximum crack length a max ) and the parameter 2 (crack length density 1) from the respective diagrams. By selecting one, it can be estimated.

【0034】また、塑性ひずみ範囲曲線群は、次のよう
にして作成される。今、図13では、最大亀裂長さa
maxとひずみ繰返し数比N/Nfおよび亀裂長さ密度
lとひずみ繰返し数比N/Nfのそれぞれの関係がグラ
フ化して整理されている。これらの関係は、次式
(1),(2)で表わされる。但し、Nはひずみ繰返し
数、Nfは試験片の破損を基準とした基準ひずみ繰返し
数である。
The plastic strain range curve group is created as follows. Now, in FIG. 13, the maximum crack length a
The relationship between max and the strain repetition rate N / Nf and the relationship between the crack length density 1 and the strain repetition rate N / Nf are graphed and arranged. These relationships are expressed by the following equations (1) and (2). Here, N is the strain repetition number, and Nf is the reference strain repetition number based on the damage of the test piece.

【0035】[0035]

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 (Equation 3)

【0036】亀裂長さ密度lとN/Nfの関係が使用材
料の結晶粒径というミクロ組織の分布形(対数正規分布
形)と同じ分散を備えた対数正規分布形式の関数として
表わすことができるのは、実験から得られたものであ
る。すなわち、式(1)と式(2)とからひずみ繰返し
数比N/NFを消去すると、amax,lおよびμLe
に含まれる塑性ひずみ範囲Δεpの関係が得られ、これ
を図示すると図13の下段で示した塑性ひずみ範囲曲線
群Δεp=0.1%,Δεp=0.5%,Δεp=1.
0%,…が得られる。
The relationship between the crack length density 1 and N / Nf can be expressed as a function of the lognormal distribution form having the same dispersion as the microstructure distribution form (lognormal distribution form) of the crystal grain size of the material used. Are obtained from experiments. That is, when the strain repetition rate ratio N / NF is eliminated from the equations (1) and (2), a max , l and μ Le
Are obtained, and when this is illustrated, the plastic strain range curve group Δεp = 0.1%, Δεp = 0.5%, Δεp = 1.
0%,.

【0037】また、低サイクル疲労試験において、全ひ
ずみ範囲Δεtと塑性ひずみ範囲Δεpには1対1の比
例関係があるので、図14に示したグラフを用いて全ひ
ずみ範囲Δεtも推定することができる。
In the low cycle fatigue test, there is a one-to-one proportional relationship between the total strain range Δεt and the plastic strain range Δεp, so that the total strain range Δεt can be estimated using the graph shown in FIG. it can.

【0038】他方、弾塑性応力範囲Δσは、構造部材の
繰返し応力−ひずみ特性から図15に示すように、全ひ
ずみ範囲Δεtを用いて推定できるが、熱衝撃応力推定
に必要な等価弾性応力範囲Δσn(構造部材が完全弾性
と仮定したときの公称応力)を求めておく必要がある。
図15はこの方法を示したもので、等価弾性応力範囲Δ
σn、弾塑性応力範囲Δσおよび全ひずみ範囲Δεtの
間に次の関係がある。
On the other hand, the elasto-plastic stress range Δσ can be estimated from the cyclic stress-strain characteristics of the structural member using the total strain range Δεt as shown in FIG. It is necessary to determine Δσn (nominal stress when the structural member is assumed to be completely elastic).
FIG. 15 shows this method, in which the equivalent elastic stress range Δ
The following relationship exists between σn, elasto-plastic stress range Δσ, and total strain range Δεt.

【0039】[0039]

【数4】 (Equation 4)

【0040】式(4)と式(5)とで表わした構造部材
の材料特性である繰返し応力−ひずみ特性
The repetitive stress-strain characteristic which is the material characteristic of the structural member represented by the equations (4) and (5)

【数5】 を連立させることにより得られるグラフ上の交点が求め
る解を与え、この時のΔσnが等価弾性応力範囲とな
る。
(Equation 5) Gives a solution determined by the intersection on the graph obtained by simultaneous equations, and Δσn at this time is the equivalent elastic stress range.

【0041】この等価弾性応力範囲Δσnを用いると、
熱衝撃が生じたときの最大熱応力パラメータCが次式
により算出できる。
Using this equivalent elastic stress range Δσn,
Maximum thermal stress parameter C H when the thermal shock is caused can be calculated by the following equation.

【0042】[0042]

【数6】 (Equation 6)

【0043】図16は、式(6)により等価弾性応力範
囲Δσnと最大熱応力パラメータCHの関係を流体温度
変化幅毎に示したものである。図16を用いると、流体
温度変化(作動流体とドレン流体の温度差)に応じて、
最大亀裂長さamaxと亀裂長さ密度lを基に推定した
等価弾性応力範囲Δσnから、最大熱応力パラメータC
を推定することができる。
FIG. 16 shows the relationship between the equivalent elastic stress range Δσn and the maximum thermal stress parameter CH for each fluid temperature change width by the equation (6). Using FIG. 16, according to the fluid temperature change (temperature difference between working fluid and drain fluid),
From the equivalent elastic stress range Δσn estimated based on the maximum crack length a max and the crack length density l, the maximum thermal stress parameter C
H can be estimated.

【0044】最大熱応力パラメータCは、定常状態に
おいては0.5であるが、非定常状態ではビオ数Bi=
bγ/λ、すなわち、板厚b、熱伝達率γおよび熱伝導
率λの関数として使用条件により変化する。温度T1か
らTへのステップ状変化に対しては、最大熱応力パラ
メータCはビオ数Biとの間に図17で示す関係があ
り、この関係から構造部材の熱伝導率λと板厚bを基
に、図18で示すグラフが得られ、最大熱応力パラメー
タCから熱伝達率γを推定することができる。
The maximum thermal stress parameter C H is a 0.5 in the steady state, Biot number is a non-steady state Bi =
bγ / λ, that is, as a function of the plate thickness b, the heat transfer coefficient γ, and the heat conductivity λ, depending on the use conditions. For step change from the temperature T1 to T 0, the maximum thermal stress parameter C H is related shown in Figure 17 between the Biot number Bi, the thermal conductivity λ and the plate thickness of the structural member from the relationship b based on the obtained graph shown in FIG. 18, it is possible to estimate the γ heat transfer rate from the maximum thermal stress parameter C H.

【0045】熱伝達率γと温度変化幅が分かれば、板厚
方向の温度分布と熱応力分布も伝熱解析により推定する
ことができる。
If the heat transfer coefficient γ and the temperature change width are known, the temperature distribution and the thermal stress distribution in the thickness direction can be estimated by heat transfer analysis.

【0046】次に、限界値設定手段において、必要な板
厚方向の応力分布は、伝熱解析から規定した値を、例え
ば表面から板厚方向の距離Xの3次関数として次式で表
わされる。
Next, in the limit value setting means, the necessary stress distribution in the plate thickness direction is expressed by the following formula as a cubic function of the distance X in the plate thickness direction from the surface, for example, a value defined by heat transfer analysis. .

【0047】[0047]

【数7】 (Equation 7)

【0048】式(7)から、亀裂深さaを仮定したとき
の応力拡大係数Kは影響関数法により次式で算出され
る。
From the equation (7), the stress intensity factor K assuming the crack depth a is calculated by the following equation by the influence function method.

【0049】[0049]

【数8】 (Equation 8)

【0050】このように、使用条件推定手段4で板厚方
向温度分布および熱応力分布が得られ、また仮想した亀
裂深さaに対し、応力拡大係数Kが得られると、本実施
形態では限界値設定手段5に移行する。
As described above, if the temperature distribution and the thermal stress distribution in the plate thickness direction are obtained by the use condition estimating means 4 and the stress intensity factor K is obtained for the imaginary crack depth a, the limit in the present embodiment is The process proceeds to the value setting means 5.

【0051】限界値設定手段5は、図19に示すよう
に、既に使用条件推定手段4において、伝熱解析法から
求めた板厚方向温度分布線に基づいて作成した破壊靭性
ICの分布線と、式(7)から求めておいた板厚方向
応力分布線を基に式(8)を用いて作成した応力拡大係
数Kの分布線とを互いに比較する。このとき、破壊靭性
ICの分布線と応力拡大係数Kの分布線との交点P
(K≧KICのとき構造部材が破壊する)が限界亀裂深
さCcrとして設定される。
The limit value setting means 5, as shown in FIG. 19, in the already used condition estimating unit 4, the distribution line of the fracture toughness K IC was created based on the plate thickness direction temperature distribution curve obtained from the heat transfer analysis And a distribution line of the stress intensity factor K created by using the expression (8) based on the stress distribution line in the plate thickness direction obtained from the expression (7). At this time, the intersection P between the distribution line of the fracture toughness K IC and the distribution line of the stress intensity factor K
(The structural member is broken when K ≧ K IC ) is set as the critical crack depth C cr .

【0052】このように、限界値設定手段5で限界亀裂
深さCcrが設定されると、使用履歴推定手段6に移行
する。
When the limit value setting means 5 sets the limit crack depth C cr in this way, the process proceeds to the use history estimating means 6.

【0053】使用履歴推定手段6は、過去の運転におけ
るひずみ繰返し数Nを推定するもので、図20で示した
最大亀裂長さamaxと亀裂長さ密度lとから求めるこ
とができる。
The use history estimating means 6 estimates the number N of strain repetitions in the past operation, and can be obtained from the maximum crack length a max and the crack length density 1 shown in FIG.

【0054】図20で示した最大列長さ−履歴ひずみ繰
返し数のグラフは、最大亀裂長さa maxと亀裂長さ密
度lを選べば、その時点までに繰り返されたひずみ繰返
し数Nが推定できるようになっている。このグラフは、
繰り返されたひずみ回数Nが推定できるマスターカーブ
であり、式(1)と式(2)とから亀裂長さ密度lの値
毎に最大亀裂長さamax、履歴ひずみ繰返し数Nの関
係を求めたものである。
Maximum column length-history distortion repetition shown in FIG.
The graph of the number of return is the maximum crack length a maxAnd crack length dense
If you select the degree l, the strain repetition repeated up to that point
The number N can be estimated. This graph is
Master curve from which the number of repeated strains N can be estimated
From the equations (1) and (2), the value of the crack length density l
Maximum crack length a for eachmax, The relationship between the number of repetitions N
It is the one who asked for a clerk.

【0055】最後に、本実施形態は余寿命推定手段7に
移行する。この余寿命推定手段7は、図21に示すよう
に、構造部材の表面亀裂長さとその深さとから構造部材
の余寿命が推定できるようになっている。
Finally, the present embodiment shifts to the remaining life estimating means 7. As shown in FIG. 21, the remaining life estimation means 7 can estimate the remaining life of the structural member from the surface crack length and the depth of the structural member.

【0056】一般に、構造部材の表面亀裂長さの進展則
は式(1)によって与えられるが、その深さ方向の進展
則は、式(8)の応力拡大係数Kに従って進展する。但
し、式(8)は亀裂長さとその深さの比に依存すること
を考慮する必要がある。このため、本実施形態では、次
のような交互計算が行われる。
In general, the growth law of the surface crack length of a structural member is given by equation (1), but the growth law in the depth direction grows according to the stress intensity factor K of equation (8). However, it is necessary to consider that equation (8) depends on the ratio between the crack length and its depth. Therefore, in the present embodiment, the following alternate calculation is performed.

【0057】構造部材の深さ方向の亀裂進展則は、実験
的に次式で与えられる。
The crack growth rule in the depth direction of the structural member is experimentally given by the following equation.

【0058】[0058]

【数9】 (Equation 9)

【0059】今、亀裂計測検査において、最大亀裂長さ
maxと亀裂深さcが計測されたとする。この亀裂の
進展は、表面亀裂長さの最大amaxを式(1)により
求め、その深さcを式(9)の積分によって交互に計算
し、限界亀裂深さCcrに到達するまでのひずみ繰返し
回数を、構造部材の余寿命Ncとして設定する。
Now, it is assumed that the maximum crack length a max and the crack depth c have been measured in the crack measurement inspection. This crack growth is obtained by calculating the maximum a max of the surface crack length by equation (1), calculating the depth c alternately by integration of equation (9), and reaching the limit crack depth C cr. The number of repeated strains is set as the remaining life Nc of the structural member.

【0060】その際、図13で適用した最大亀裂長さa
maxと繰返しひずみ数比N/Nfとの関係は、図22
に示すように、塑性ひずみ範囲の違いによってさらに別
の関係になることがある。このため、実余寿命を設定す
るにあたっては、亀裂発生最小単位長さの発生回数をN
iとして、図23に示すように、最大亀裂長さama
とひずみ繰返し数比(N−Ni)/(Nf/Ni)との
間に1対1の比例関係が得られ、さらに、図24および
図25に示すように、全ひずみ範囲Δεtおよび塑性ひ
ずみ範囲Δεpとが得られるので、図24および図25
で示したグラフから式(1)に代えてひずみ繰返し数を
求め、余寿命Ncとして設定してもよい。特に、ひずみ
繰返し数比N/Nfが図22の破線で示した位置に値が
集中している場合、有効である。
At this time, the maximum crack length a applied in FIG.
The relationship between max and the repetitive strain ratio N / Nf is shown in FIG.
As shown in (1), there is a case where the relationship is further different depending on the difference in the plastic strain range. Therefore, when setting the actual remaining life, the number of occurrences of the minimum unit length
As i, as shown in FIG. 23, the maximum crack length a ma x
And a strain repetition rate ratio (N−Ni) / (Nf / Ni) is obtained. A one-to-one proportional relationship is obtained. Further, as shown in FIGS. 24 and 25, the total strain range Δεt and the plastic strain range 24 and 25 since Δεp is obtained.
Alternatively, the number of strain repetitions may be obtained from the graph shown in, instead of Expression (1), and set as the remaining life Nc. In particular, this is effective when the value of the strain repetition ratio N / Nf is concentrated at the position indicated by the broken line in FIG.

【0061】このように、本実施形態は、構造部材の過
去の使用履歴や使用条件が不明であっても、最大亀裂長
さamaxおよび亀裂長さ密度lを計測し、これら損傷
計測値から全ひずみ範囲εt、熱応力パラメータC
応力拡大係数範囲ΔK等を算出し、これら算出値から逆
算して構造部材の使用履歴および使用条件を推定し、そ
の推定した使用履歴等を加味して構造部材の余寿命を評
価したので、従来に較べて精度の高い余寿命評価を行う
ことができ、次回の定期検査の時期を的確に予測して構
造部材の交換や補修等の準備を行うことができる。
As described above, the present embodiment measures the maximum crack length a max and the crack length density 1 even if the past use history and use conditions of the structural member are unknown, and from these damage measurement values. The total strain range εt, the thermal stress parameter C H ,
Since the stress intensity factor range ΔK and the like were calculated, the use history and use conditions of the structural member were estimated by back calculation from these calculated values, and the remaining life of the structural member was evaluated in consideration of the estimated use history and the like. It is possible to evaluate the remaining life with higher accuracy as compared with the above, and to accurately predict the time of the next periodic inspection, and to prepare for replacement or repair of a structural member.

【0062】[0062]

【発明の効果】以上の説明のとおり、本発明に係る構造
部材の余寿命予測方法およびこの方法に用いる構造部材
の余寿命予測装置は、計測値から構造部材の過去の不明
な使用履歴や使用条件を推定し、この推定した使用履歴
等を加味して構造部材の余寿命を評価したので、的確な
余寿命を評価することができ、次回の定期検査まで構造
部材を安定状態で運転させることができる。
As described above, the method for estimating the remaining life of a structural member and the apparatus for estimating the remaining life of a structural member used in this method according to the present invention are based on the measured values and show the past unknown usage history and usage of the structural member. Since the conditions were estimated and the remaining life of the structural member was evaluated in consideration of the estimated use history, etc., it was possible to accurately evaluate the remaining life, and to operate the structural member in a stable state until the next periodic inspection. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る構造部材の余寿命予測方法および
この方法に用いる構造部材の余寿命予測装置の実施形態
を説明するために用いたブロック図。
FIG. 1 is a block diagram used to explain an embodiment of a method for estimating a remaining life of a structural member according to the present invention and a device for estimating a remaining life of a structural member used in the method.

【図2】本発明に係る構造部材の余寿命予測方法および
この方法に用いる構造部材の余寿命予測装置において、
損傷計測準備手段を説明するために用いた概念図。
FIG. 2 shows a method for estimating a remaining life of a structural member and a device for estimating a remaining life of a structural member used in the method according to the present invention;
FIG. 3 is a conceptual diagram used for explaining damage measurement preparation means.

【図3】本発明に係る損傷計測準備手段の第1変形例を
説明するために用いた概念図。
FIG. 3 is a conceptual diagram used to explain a first modification of the damage measurement preparing means according to the present invention.

【図4】本発明に係る損傷計測準備手段の第2変形例を
説明するために用いた概念図。
FIG. 4 is a conceptual diagram used for explaining a second modification of the damage measurement preparing means according to the present invention.

【図5】本発明に係る損傷計測準備手段の第3変形例を
説明するために用いた概念図。
FIG. 5 is a conceptual diagram used for explaining a third modification of the damage measurement preparing means according to the present invention.

【図6】本発明に係る構造部材の余寿命予測方法および
この方法に用いる構造部材の余寿命予測装置において、
損傷計測手段を説明するために用いた概念図。
FIG. 6 shows a method for estimating a remaining life of a structural member and a device for estimating a remaining life of a structural member used in the method according to the present invention;
FIG. 4 is a conceptual diagram used for explaining a damage measuring unit.

【図7】本発明に係る損傷計測準備手段の第4変形例を
説明するために用いた概念図。
FIG. 7 is a conceptual diagram used to explain a fourth modification of the damage measurement preparing means according to the present invention.

【図8】本発明に係る損傷計測準備手段の第5変形例を
説明するために用いた概念図。
FIG. 8 is a conceptual diagram used to explain a fifth modification of the damage measurement preparing means according to the present invention.

【図9】本発明に係る損傷計測準備手段の第6変形例を
説明するために用いた概念図。
FIG. 9 is a conceptual diagram used for describing a sixth modification of the damage measurement preparation unit according to the present invention.

【図10】本発明に係る損傷計測準備手段の第7変形例
を説明するために用いた概念図。
FIG. 10 is a conceptual diagram used for describing a seventh modification of the damage measurement preparing means according to the present invention.

【図11】本発明に係る損傷計測準備手段の第8変形例
を説明するために用いた概念図。
FIG. 11 is a conceptual diagram used to explain an eighth modification of the damage measurement preparing means according to the present invention.

【図12】本発明に係る構造部材の余寿命予測方法およ
びこの方法に用いる構造部材の余寿命予測装置におい
て、損傷パラメータ評価手段を説明するために用いた
図。
FIG. 12 is a view used to explain damage parameter evaluation means in the method for estimating the remaining life of a structural member and the apparatus for estimating the remaining life of a structural member used in the method according to the present invention.

【図13】本発明に係る構造部材の余寿命予測方法およ
びこの方法に用いる構造部材の余寿命予測装置におい
て、使用条件推定手段を説明するために用いた図。
FIG. 13 is a view used to explain a use condition estimating means in the method for estimating the remaining life of a structural member and the apparatus for estimating the remaining life of a structural member used in the method according to the present invention.

【図14】本発明に係る使用条件推定手段において、塑
性ひずみ範囲から全ひずみ範囲を求めることを説明する
ために用いたグラフ。
FIG. 14 is a graph used to explain that the use condition estimating means according to the present invention obtains a total strain range from a plastic strain range.

【図15】本発明に係る使用条件推定手段において、全
ひずみ範囲から全応力範囲を推定することを説明するた
めに用いた繰返し応力−ひずみ特定線図。
FIG. 15 is a repetitive stress-strain specific diagram used for explaining that the use condition estimating means according to the present invention estimates a total stress range from a total strain range.

【図16】本発明に係る使用条件推定手段において、等
価弾性応力範囲から最大熱応力パラメータを推定するこ
とを説明するために用いたグラフ。
FIG. 16 is a graph used to explain that the use condition estimating means according to the present invention estimates a maximum thermal stress parameter from an equivalent elastic stress range.

【図17】本発明に係る使用条件推定手段において、最
大熱応力パラメータからビオ数をを推定することを説明
するために用いたグラフ。
FIG. 17 is a graph used to explain that the use condition estimating means according to the present invention estimates a Biot number from a maximum thermal stress parameter.

【図18】本発明に係る使用条件推定手段において、最
大熱応力パラメータから熱伝導率を推定することを説明
するために用いたグラフ。
FIG. 18 is a graph used to explain estimating the thermal conductivity from the maximum thermal stress parameter in the use condition estimating means according to the present invention.

【図19】本発明に係る構造部材の余寿命予測方法およ
びこの方法に用いる構造部材の余寿命予測装置におい
て、限界値設定手段を説明するために用いた図。
FIG. 19 is a view used to explain a limit value setting means in the method for estimating the remaining life of a structural member according to the present invention and the apparatus for estimating the remaining life of a structural member used in the method.

【図20】本発明に係る構造部材の余寿命予測方法およ
びこの方法に用いる構造部材の余寿命予測装置におい
て、使用履歴推定手段を説明するために用いた図。
FIG. 20 is a view used to explain a use history estimating means in the method for estimating the remaining life of a structural member and the apparatus for estimating the remaining life of a structural member used in the method according to the present invention.

【図21】本発明に係る構造部材の余寿命予測方法およ
びこの方法に用いる構造部材の余寿命予測装置におい
て、余寿命推定手段を説明するために用いた図。
FIG. 21 is a view used to explain a remaining life estimating means in the method for estimating the remaining life of a structural member and the apparatus for estimating the remaining life of a structural member used in the method according to the present invention.

【図22】本発明に係る使用条件推定手段において、最
大亀裂長さと繰返し数比とがひずみ範囲に依存すること
を説明するために用いたグラフ。
FIG. 22 is a graph used to explain that the maximum crack length and the repetition rate ratio depend on the strain range in the use condition estimating means according to the present invention.

【図23】本発明に係る使用条件推定手段において、最
大亀裂長さと繰返し数比との関係を亀裂発生回数により
補正したグラフ。
FIG. 23 is a graph in which the relationship between the maximum crack length and the repetition rate ratio is corrected by the number of crack occurrences in the use condition estimating means according to the present invention.

【図24】本発明に係る使用条件推定手段において、亀
裂発生回数と全ひずみ範囲の関係を示すグラフ。
FIG. 24 is a graph showing the relationship between the number of crack occurrences and the total strain range in the use condition estimating means according to the present invention.

【図25】本発明に係る使用条件推定手段において、亀
裂発生回数と塑性ひずみ範囲との関係を示すグラフ。
FIG. 25 is a graph showing the relationship between the number of crack occurrences and the range of plastic strain in the use condition estimating means according to the present invention.

【図26】従来の構造部材の余寿命予測測定方法および
その装置を説明するために用いたブロック図。
FIG. 26 is a block diagram used to explain a conventional method and apparatus for predicting and measuring remaining life of a structural member.

【図27】従来の構造部材の余寿命予測測定方法および
その装置に適用する亀裂長さ−寿命比を示すグラフ。
FIG. 27 is a graph showing a crack length-life ratio applied to a conventional method for measuring and predicting the remaining life of a structural member and its apparatus.

【図28】従来の構造部材の余寿命予測測定方法および
その装置に適用する別の最大亀裂長さ−寿命比を示すグ
ラフ。
FIG. 28 is a graph showing another maximum crack length-life ratio applied to a conventional method for measuring and measuring the remaining life of a structural member and its apparatus.

【符号の説明】[Explanation of symbols]

1 損傷計測準備手段 2 損傷計測手段 3 損傷評価パラメータ評価手段 4 使用条件推定手段 5 限界値設定手段 6 使用履歴推定手段 7 余寿命推定手段 8 研磨装置 9 被検体 10 損傷部 11 グラインダ 12 研磨ヘッド 13 グラインダ駆動部 14 洗浄装置 15 洗浄ヘッダ 16 ノズル 17 洗浄液供給通路 18 洗浄液回収通路 19 乾燥空気供給通路 20 損傷検出部 21 損傷計測駆動部 22 画像処理装置 23 亀裂長さ分布ファイル部 24 レプリカ装置 25 レプリカ採取ヘッド 26 酢酸メチル供給通路 27 転写紙 28 レプリカ供給ロール 29 ばね 30 レプリカ圧着ロッド 31 画像入力ヘッド 32 投影部 33 CCDカメラ 34 表面凹凸画像入力ヘッド 35 レンズ 36 レーザ顕微鏡 37 電気抵抗計測ヘッド 38 電気抵抗計測端子 39 電気抵抗計測装置 40 電磁気計測子 41 磁界 42 電磁計測装置 43 超音波送受信子 44 超音波 45 超音波装置 46 検出器 47 演算器 48 判定器 49 表示装置 50 計測装置 REFERENCE SIGNS LIST 1 damage measurement preparation means 2 damage measurement means 3 damage evaluation parameter evaluation means 4 use condition estimation means 5 limit value setting means 6 usage history estimation means 7 remaining life estimation means 8 polishing apparatus 9 subject 10 damaged part 11 grinder 12 polishing head 13 Grinder drive unit 14 Cleaning device 15 Cleaning header 16 Nozzle 17 Cleaning liquid supply passage 18 Cleaning liquid collection passage 19 Dry air supply passage 20 Damage detection unit 21 Damage measurement drive unit 22 Image processing device 23 Crack length distribution file unit 24 Replica device 25 Replica collection Head 26 Methyl acetate supply passage 27 Transfer paper 28 Replica supply roll 29 Spring 30 Replica pressure rod 31 Image input head 32 Projection unit 33 CCD camera 34 Surface unevenness image input head 35 Lens 36 Laser microscope 37 Electric resistance measurement head 38 Electricity Resistance measuring terminal 39 an electric resistance measuring device 40 electromagnetically Keisokuko 41 field 42 electromagnetic measurement apparatus 43 ultrasonic Sojushinko 44 Ultrasonic 45 ultrasonic device 46 detector 47 calculator 48 determines 49 the display device 50 measuring device

フロントページの続き (72)発明者 平澤 泰治 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 2G024 AD05 BA12 CA30 DA30 FA02 2G053 AA11 AA14 AB01 BA24 BB02 2G060 AA09 AD04 AE01 AF06 EA05 EB05 2G061 BA03 CB13 EA10 EB06 EB07 EB08 EC03 EC05 Continuation of the front page (72) Inventor Yasushi Hirasawa 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 2K024 AD05 BA12 CA30 DA30 FA02 2G053 AA11 AA14 AB01 BA24 BB02 2G060 AA09 AD04 AE01 AF06 EA05 EB05 2G061 BA03 CB13 EA10 EB06 EB07 EB08 EC03 EC05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検体の損傷部分を研磨した後、洗浄液
で洗浄し、洗浄した上記損傷部分の亀裂を計測し、計測
した亀裂情報を画像化およびデータベース化するととも
に、データベース化した亀裂情報を基に最大亀裂長さと
亀裂長さ密度とに計算整理して損傷パラメータとして使
用し、この損傷パラメータを使用してひずみ範囲、被検
体の深さ方向の温度分布および応力分布を算出して過去
の運転における使用条件を推定し、上記温度分布から破
壊靭性分布を、また上記応力分布から応力拡大係数分布
をそれぞれ算出し、算出した破壊靭性分布と応力拡大係
数分布とを突き合せて限界亀裂深さを設定する一方、上
記最大亀裂長さと亀裂長さ密度とからひずみ繰返し数を
算出して使用履歴を推定した後、上記最大亀裂長さと被
検体の深さとを計算して限界破裂深さに至るまでのひず
み繰返し回数を構造部材の余寿命として設定することを
特徴とする構造部材の余寿命予測方法。
After polishing a damaged portion of an object, the sample is washed with a cleaning liquid, cracks in the washed damaged portion are measured, and the measured crack information is imaged and stored in a database. The maximum crack length and the crack length density are calculated and arranged based on the damage parameters, and the damage range is used to calculate the strain range, the temperature distribution in the depth direction of the specimen, and the stress distribution. Estimate the operating conditions in operation, calculate the fracture toughness distribution from the above temperature distribution, and calculate the stress intensity factor distribution from the stress distribution, and compare the calculated fracture toughness distribution with the stress intensity factor distribution to determine the critical crack depth. On the other hand, after setting the number of strain cycles from the maximum crack length and the crack length density and estimating the use history, the maximum crack length and the depth of the subject are calculated. A method of estimating the remaining life of a structural member, wherein the number of strain repetitions up to a critical burst depth is set as the remaining life of the structural member.
【請求項2】 計測した亀裂情報を画像化およびデータ
ベース化する際、亀裂情報のノイズを除去し、2値化処
理を行うことを特徴とする請求項1記載の構造部材の余
寿命予測方法。
2. The method for estimating the remaining life of a structural member according to claim 1, wherein when the measured crack information is imaged and converted into a database, noise of the crack information is removed and binarization processing is performed.
【請求項3】 過去の運転における使用条件を推定する
際、ひずみ範囲は予めグラフ化した最大亀裂長さとひず
み繰返し数比および亀裂長さ密度とひずみ繰返し数比と
を基に作成した最大亀裂長さ−亀裂長さ密度線図から求
めることを特徴とする請求項1記載の構造部材の余寿命
予測方法。
3. When estimating a use condition in a past operation, a strain range is determined by a maximum crack length and a strain repetition rate ratio, and a maximum crack length created based on a crack length density and a strain repetition rate ratio in a graph. 2. The method for predicting the remaining life of a structural member according to claim 1, wherein the method is obtained from a sa-crack length density diagram.
【請求項4】 限界亀裂深さを設定する際、破壊靭性分
布と応力拡大係数分布との交点を限界亀裂深さと設定す
ることを特徴とする請求項1記載の構造部材の余寿命予
測方法。
4. The method according to claim 1, wherein when setting the critical crack depth, an intersection of the fracture toughness distribution and the stress intensity factor distribution is set as the critical crack depth.
【請求項5】 構造部材の損傷部分に分布する多数の亀
裂を計測するための表面処理および洗浄を行う損傷計測
準備手段と、損傷部分に分布する多数の亀裂の個々の長
さを計測する損傷計測手段と、この損傷計測手段から得
られ損傷計測量から少なくとも2つ以上の損傷パラメー
タを算出する損傷パラメータ評価手段と、少なくとも2
つ以上の損傷パラメータから使用条件を推定するために
実験によって得られたマスターカーブに、少なくとも2
つ以上の損傷パラメータを適用して過去の使用条件を推
定する使用条件推定手段と、推定した使用条件と構造部
材の破壊限界値から損傷パラメータの限界値を定める限
界値設定手段と、少なくとも2つ以上の損傷パラメータ
から使用履歴を推定するために実験によって得られたマ
スターカーブに、少なくとも2つ以上の損傷パラメータ
を適用して使用履歴を定める使用履歴推定手段と、構造
部材の亀裂長さおよび深さに基づいて算出した限界亀裂
深さに到達するまでのひずみ繰返し回数を余寿命として
設定する余寿命推定手段とを備えたことを特徴とする構
造部材の余寿命予測装置。
5. A damage measurement preparation means for performing surface treatment and cleaning for measuring a number of cracks distributed in a damaged portion of a structural member, and a damage for measuring individual lengths of the number of cracks distributed in the damaged portion. Measuring means; damage parameter evaluating means for calculating at least two or more damage parameters from the damage measurement amount obtained from the damage measuring means;
The master curve obtained experimentally to estimate the operating conditions from one or more damage parameters should have at least 2
A use condition estimating means for estimating past use conditions by applying one or more damage parameters; a limit value setting means for determining a limit value of a damage parameter from the estimated use conditions and a fracture limit value of a structural member; A use history estimating means for determining a use history by applying at least two or more damage parameters to a master curve obtained by an experiment to estimate a use history from the above damage parameters; and a crack length and a depth of a structural member. And a remaining life estimating means for setting as a remaining life the number of strain repetitions until reaching a limit crack depth calculated based on the remaining life.
【請求項6】 損傷計測準備手段は、被検体の損傷部分
をバフ仕上げする研磨装置と、上記損傷部分を研磨後、
酢酸メチルで洗浄する洗浄装置とを備えたことを特徴と
する請求項5記載の構造部材の余寿命予測装置。
6. A damage measuring preparation means, comprising: a polishing device for buffing a damaged portion of a subject; and a polishing device for polishing the damaged portion.
6. The apparatus according to claim 5, further comprising a cleaning device for cleaning with methyl acetate.
【請求項7】 損傷計測手段は、レプリカ装置、CCD
カメラ、レーザ顕微鏡、電気抵抗計測装置、電磁気計測
装置および超音波装置のうち、いずれかを選択するとと
もに、被検体から計測した亀裂情報を画像化する画像処
理装置を備えたことを特徴とする請求項5記載の構造部
材の余寿命予測装置。
7. The damage measuring means is a replica device, a CCD,
A camera, a laser microscope, an electric resistance measuring device, an electromagnetic measuring device, or an ultrasonic device, and an image processing device for imaging crack information measured from the subject while selecting any of the devices. Item 6. An apparatus for estimating a remaining life of a structural member according to Item 5.
JP35616899A 1999-12-15 1999-12-15 Method and apparatus for predicting remaining life of structural material Pending JP2001174380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35616899A JP2001174380A (en) 1999-12-15 1999-12-15 Method and apparatus for predicting remaining life of structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35616899A JP2001174380A (en) 1999-12-15 1999-12-15 Method and apparatus for predicting remaining life of structural material

Publications (1)

Publication Number Publication Date
JP2001174380A true JP2001174380A (en) 2001-06-29

Family

ID=18447683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35616899A Pending JP2001174380A (en) 1999-12-15 1999-12-15 Method and apparatus for predicting remaining life of structural material

Country Status (1)

Country Link
JP (1) JP2001174380A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156325A (en) * 2000-11-17 2002-05-31 Babcock Hitachi Kk Surface crack depth analytical method of metal member
JP2003035528A (en) * 2001-07-19 2003-02-07 Ohbayashi Corp System and method for evaluating damage degree of structure by crack image measurement
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2007078376A (en) * 2005-09-12 2007-03-29 Universal Shipbuilding Corp Maintenance management system and maintenance management program of hull structure
CN105021473A (en) * 2015-07-06 2015-11-04 北京航空航天大学 Cryogenic crack expansibility characterization and life estimation method
CN107478518A (en) * 2017-07-14 2017-12-15 天津大学 Simplified processing method for high-temperature structure containing multi-elliptic buried defects
JP2019168274A (en) * 2018-03-22 2019-10-03 三菱重工業株式会社 Damage probability calculation device, damage probability calculation method and program
JP2019174313A (en) * 2018-03-29 2019-10-10 三菱日立パワーシステムズ株式会社 Dense crack depth measuring method using electric resistance method
JP2019174314A (en) * 2018-03-29 2019-10-10 三菱日立パワーシステムズ株式会社 Dense crack depth measuring device using electric resistance method
CN114034772A (en) * 2021-10-18 2022-02-11 武汉科技大学 Expert system for detecting potential failure and predicting residual service life of roller
CN114910122A (en) * 2022-04-15 2022-08-16 中国矿业大学 Detection system and detection method for crack symptoms of structural member and excavator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156325A (en) * 2000-11-17 2002-05-31 Babcock Hitachi Kk Surface crack depth analytical method of metal member
JP2003035528A (en) * 2001-07-19 2003-02-07 Ohbayashi Corp System and method for evaluating damage degree of structure by crack image measurement
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
JP2005345157A (en) * 2004-05-31 2005-12-15 Toshiba Corp Crack depth inspection method of metallic material
JP2007078376A (en) * 2005-09-12 2007-03-29 Universal Shipbuilding Corp Maintenance management system and maintenance management program of hull structure
JP4711786B2 (en) * 2005-09-12 2011-06-29 ユニバーサル造船株式会社 Hull structure maintenance management system and maintenance management program
CN105021473A (en) * 2015-07-06 2015-11-04 北京航空航天大学 Cryogenic crack expansibility characterization and life estimation method
CN107478518A (en) * 2017-07-14 2017-12-15 天津大学 Simplified processing method for high-temperature structure containing multi-elliptic buried defects
CN107478518B (en) * 2017-07-14 2019-10-29 天津大学 Simplified processing method for high-temperature structure containing multi-elliptic buried defects
JP2019168274A (en) * 2018-03-22 2019-10-03 三菱重工業株式会社 Damage probability calculation device, damage probability calculation method and program
JP2019174313A (en) * 2018-03-29 2019-10-10 三菱日立パワーシステムズ株式会社 Dense crack depth measuring method using electric resistance method
JP2019174314A (en) * 2018-03-29 2019-10-10 三菱日立パワーシステムズ株式会社 Dense crack depth measuring device using electric resistance method
JP7116570B2 (en) 2018-03-29 2022-08-10 三菱重工業株式会社 Dense Crack Depth Measurement Method Using Electric Resistance Method
JP7174526B2 (en) 2018-03-29 2022-11-17 三菱重工業株式会社 Dense crack depth measurement device using electrical resistance method
CN114034772A (en) * 2021-10-18 2022-02-11 武汉科技大学 Expert system for detecting potential failure and predicting residual service life of roller
CN114034772B (en) * 2021-10-18 2023-09-19 武汉科技大学 Expert system for detecting potential failure of roller and predicting residual service life
CN114910122A (en) * 2022-04-15 2022-08-16 中国矿业大学 Detection system and detection method for crack symptoms of structural member and excavator

Similar Documents

Publication Publication Date Title
JP2001174380A (en) Method and apparatus for predicting remaining life of structural material
Ohba Inflection S-shaped software reliability growth model
CA2604118C (en) A system and method for real-time prognostics analysis and residual life assessment of machine components
Li et al. Dynamic prognostic prediction of defect propagation on rolling element bearings
CN103528782A (en) Thin-walled structure part vibration test device and method based on piezoelectric ceramic vibration exciter
JP2008249732A (en) Method and device for diagnosing life of member
JP4458815B2 (en) How to monitor the health of turbine blades (buckets) and diagnose prognosis using neural network based diagnostic techniques in conjunction with pyrometer signals
CN115329283B (en) Method for predicting service life of high-strength commutator of starting motor
JP3392526B2 (en) Equipment maintenance management support equipment
WO2020006971A1 (en) Multi-scale real-time monitoring and analysis method for mechanical seal
EP2724141A2 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
JP4979730B2 (en) Creep damage evaluation method
JPH10160646A (en) Method for anticipating fatigue life of structure member
JP3976938B2 (en) Creep life evaluation method
US8126657B2 (en) Method and apparatus for the calculation of coal ash fusion values
JP3064107B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
JPH11237912A (en) Method and device for maintenance and management of high-temperature structural member
Seif et al. Deformation and strain fields in pin specimens in sliding contact by laser speckle and metallographic techniques
JP2005339249A (en) Repair plan support method and apparatus for plant equipment member
JPH0875107A (en) Method for estimating life time of high temperature pressure resistant part
JP3064110B2 (en) High-temperature damage evaluation method for austenitic heat-resistant steel
JP2020118566A (en) High-temperature apparatus remaining life evaluation method and remaining life evaluation assisting system
JP2609309B2 (en) Remaining life diagnosis device by non-destructive inspection