JPH075086A - Method for estimating superposed damage of creep and fatigue of high-temperature structure material - Google Patents

Method for estimating superposed damage of creep and fatigue of high-temperature structure material

Info

Publication number
JPH075086A
JPH075086A JP17103193A JP17103193A JPH075086A JP H075086 A JPH075086 A JP H075086A JP 17103193 A JP17103193 A JP 17103193A JP 17103193 A JP17103193 A JP 17103193A JP H075086 A JPH075086 A JP H075086A
Authority
JP
Japan
Prior art keywords
damage
fatigue
creep
superposed
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17103193A
Other languages
Japanese (ja)
Inventor
Takahiro Kubo
保 貴 博 久
Kazunari Kimura
村 和 成 木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17103193A priority Critical patent/JPH075086A/en
Publication of JPH075086A publication Critical patent/JPH075086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To estimate the life of a part which is subjected to superposed damage non-destructively, quickly, and easily by comparing a standardization parameter which is calculated by combining a plurality of material state quantities for reflecting damage state with that obtained experimentally in advance. CONSTITUTION:An interruption test of a superposed damage is performed in advance in a laboratory to obtain a quantitative index A parameter (number of damage grain boundaries/total number of grain boundaries) of a void for reflecting the damage accumulation state of a creep alone from the material organization of a test piece and the maximum crack length of a fine crack and Vickers hardness reduction quantity ratio, {(amount of softening due to damage)-(amount of softening due to heating)}/(amount of softening due to heating) for reflecting the damage accumulation state of fatigue alone. Then, the standardization parameter for compound evaluation is calculated from the three indexes and a superposed damage master curve is created. Then, the standardization parameter is calculated by measuring the A parameter, the maximum crack length, and hardness of the metal organization of an actual machine material and it is compared with the superposed damage curve, thus estimating the life of the actual machine material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸気タービンケーシン
グなどに代表されるクリープ損傷と疲労損傷が重畳して
働く高温部品の余寿命診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing the remaining life of high temperature parts, which is typified by steam turbine casings, in which creep damage and fatigue damage work in combination.

【0002】[0002]

【従来の技術】高温雰囲気下で使用される蒸気タービン
部品等は、運転中に経年劣化損傷を受ける。しかもその
多くは、主に起動停止時に蓄積される疲労損傷と、定常
運転の継続により蓄積されるクリープ損傷の双方が重畳
して蓄積される。重畳時の寿命は、それぞれの損傷が単
独で作用する場合に比べ、一般に短くなることが知られ
ており、損傷蓄積の和がある限界値に達すると、巨視き
裂の発生を引き起こして、甚大なる損害をもたらす。こ
れらの損傷は部材各部に均一に蓄積するのではなく、部
材および部位ごとに損傷形態と損傷割合が異なるため、
部材ごとの損傷割合を正確に察知することは、安全性、
信頼性ならびに経済性の点からも極めて重要な課題であ
る。
2. Description of the Related Art Steam turbine parts and the like used in a high temperature atmosphere are aged and damaged during operation. Moreover, in many cases, both fatigue damage mainly accumulated at the time of starting and stopping and creep damage accumulated due to continuation of steady operation are accumulated and accumulated. It is known that the lifespan during superposition is generally shorter than that when each damage acts alone, and when the sum of damage accumulation reaches a certain limit value, macroscopic crack initiation is caused and it becomes extremely large. Will cause damage. These damages do not accumulate uniformly on each part of the member, but the damage form and damage ratio differ for each member and site,
Accurately detecting the damage rate for each member is
It is a very important issue in terms of reliability and economy.

【0003】従来の方法では、あらかじめ材料に負荷さ
れる温度および応力などの物理量と損傷量の関係を実験
的に求めておき、実機部材の使用条件から実機材料の消
費寿命を推定して算出している。しかし、このような推
定手法では、温度および応力の計測や推定に起因する誤
差が大きく、確実な推定が行なえなかった。また、使用
中の実機部材に作用する応力は、応力緩和や変形にとも
なう応力の再配分により変化するが、従来手法によりこ
れらを考慮した推定を行なうことは困難であった。
In the conventional method, the relationship between the physical quantity such as temperature and stress applied to the material and the amount of damage is experimentally obtained in advance, and the consumption life of the actual material is estimated and calculated from the usage conditions of the actual material. ing. However, with such an estimation method, the error due to the measurement and estimation of temperature and stress is large, and reliable estimation cannot be performed. Further, the stress acting on the actual machine member in use changes due to the stress redistribution and the redistribution of the stress due to the deformation, but it is difficult to make an estimation in consideration of these by the conventional method.

【0004】そこで近年では、材料の受けた損傷量を、
非破壊的に測定した材料状態量変化より推定する簡便な
方法が適用されるようになってきた。中でも金属組織と
その状態量の変化を計測する実体評価法は、金属組織を
非破壊的に観察するレプリカ法の技術が向上したこと
と、画像処理技術の高精度化、簡素化が図られたことを
受け、信頼性、簡便性が飛躍的に向上した。例えば、ク
リープ損傷量推定にはボイドあるいは硬さを、疲労損傷
量推定には数ミクロンから数ミリの微視き裂の長さを用
いる方法などが考えられており、一部は実機部材の寿命
評価に適用されている。その他超音波、電磁気、X線な
どを用い、部材から非破壊的に得られる情報で損傷度を
評価する方法も考えられた。
Therefore, in recent years, the amount of damage received by a material is
A simple method for estimating from the non-destructively measured change of material state quantity has come to be applied. Among them, the entity evaluation method for measuring changes in the metallographic structure and its state quantity improved the replica method technology for nondestructively observing the metallographic structure, and improved the accuracy and simplification of image processing technology. As a result, reliability and simplicity have improved dramatically. For example, a method using voids or hardness to estimate the amount of creep damage and a microcrack length of several microns to several millimeters to estimate the amount of fatigue damage have been considered. It has been applied to the evaluation. In addition, a method of evaluating the degree of damage using information obtained nondestructively from members using ultrasonic waves, electromagnetic waves, X-rays, etc. has been considered.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法は、本来クリープ損傷と疲労損傷の両方に依存す
る材料状態量変化を、一方の損傷量のみに関連づけるも
ので、他方の損傷の影響が小さい場合のみに適用が限ら
れる。つまり、どちらか一方の損傷だけを受ける部材の
消費寿命推定、余寿命診断は行えるものの、実機部材に
おいて蓄積されるようなクリープと疲労の重畳した損傷
を評価するには不十分である。本発明の目的は、これら
従来未解決であった諸問題を解決し、クリープと疲労の
重畳した損傷を受ける部位の消費寿命を、非破壊的に推
定する方法を提供することにある。
However, in these methods, the change in the material state quantity that originally depends on both creep damage and fatigue damage is related to only one damage amount, and the influence of the other damage is small. Only limited to cases. In other words, although it is possible to estimate the consumption life and the remaining life of a member that receives only one of the damages, it is insufficient to evaluate the damages in which creep and fatigue are superimposed, which are accumulated in the actual machine member. An object of the present invention is to solve these various problems that have not been solved in the past and to provide a method for nondestructively estimating the consumption life of a portion that is damaged by superposition of creep and fatigue.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、クリープと疲労の重畳損傷が蓄積される
実機部材の消費寿命を推定する方法において、疲労単独
の損傷蓄積状態を反映する非破壊的計量値、クリープ単
独の損傷蓄積状態を反映する非破壊的計量値、および疲
労とクリープ量の損傷蓄積によってもたらされる金属組
織状態を反映する非破壊的計量値を測定し、それらの計
量値から規格化パラメータの値を算出し、その値から前
記実機部材の消費寿命を求めることを特徴とするもので
ある。
In order to solve the above problems, the present invention reflects the damage accumulation state of fatigue alone in a method of estimating the consumption life of an actual machine member in which creep and fatigue superimposed damages are accumulated. Measure and measure non-destructive weight values, non-destructive weight values that reflect the damage accumulation state of creep alone, and non-destructive weight values that reflect the metallurgical state caused by damage accumulation of fatigue and creep. The value of the standardization parameter is calculated from the value, and the consumption life of the actual machine member is obtained from the value.

【0007】高温構造材料において、疲労損傷は微視き
裂の発生を引き起こし、クリープ損傷はクリープボイド
の発生を促すが、重畳損傷蓄積時にはその双方が観察さ
れる場合もあり、また、どちらか一方しか観察されない
場合もある。従って、単独パラメータの評価では不十分
であるが、本発明の規格化パラメータを用いて、複数の
指標を複合評価することにより、消費寿命を推定するこ
とが可能である。また、本発明では、重畳損傷の消費寿
命を、レプリカ法を中心とした非破壊手法によって求め
ることができ、従来計算に頼らざるを得なかった消費寿
命推定を、実体計測による非破壊手法のみで、短時間で
容易に且つ的確に推定することが可能となった。
In high temperature structural materials, fatigue damage causes the generation of microscopic cracks, and creep damage promotes the generation of creep voids, but sometimes both are observed when superposed damage accumulates, and either one of them is observed. In some cases, it is only observed. Therefore, although the evaluation of a single parameter is not sufficient, it is possible to estimate the consumption life by performing a composite evaluation of a plurality of indexes using the standardized parameter of the present invention. Further, in the present invention, the consumption life of superposed damage can be obtained by a non-destructive method centered on the replica method, and the consumption life estimation that had to rely on conventional calculation can be performed only by the non-destructive method by actual measurement. It became possible to easily and accurately estimate in a short time.

【0008】[0008]

【実施例】以下、本発明を実施例に基いて具体的に説明
する。実施例では、過去にクリープと疲労の重畳損傷付
与の形態が過去に多く認められている蒸気タービン高圧
ケーシング(CrMoV鋳鋼)材の消費寿命を推定する
場合について説明する。
EXAMPLES The present invention will be specifically described below based on examples. In the example, a case will be described in which the consumption life of a steam turbine high-pressure casing (CrMoV cast steel) material, in which many forms of superimposed damage of creep and fatigue have been recognized in the past, is estimated.

【0009】図1は、本発明の内容を示す概念図であ
る。あらかじめ実験室で重畳損傷の中断試験を実施して
(1)、中断試験片の材料組織を採取し(2a)、採取
組織から、クリープ単独の損傷蓄積状態を反映する非破
壊的計量値のひとつであるボイドの定量化指標Aパラメ
ータ(損傷粒界数/全粒界数)と、疲労単独の損傷蓄積
状態を反映する非破壊的計量値のひとつである微視き裂
の定量量化指標最大き裂長さとを求め、平行して金属組
織状態の非破壊的計量値のひとつであるビッカース硬さ
低下量比{(損傷による軟化量−加熱による軟化量)/
加熱による軟化量}を求める(3a)。それらの3指標
から、複合評価パラメータである規格化パラメータを算
出する(4a)。さらに計算した規格化パラメータ値を
縦軸に、中断試験で与えた重畳損傷の消費寿命を横軸に
とり、グラフにプロットして損傷マスターカーブ(5)
を作成しておく。
FIG. 1 is a conceptual diagram showing the content of the present invention. One of the non-destructive measurement values that reflects the damage accumulation state of creep alone from the material structure of the interrupted test piece (2a) by conducting the interrupted test of superposed damage in advance in the laboratory (1). The quantification index maximum parameter of the microscopic crack, which is one of the non-destructive measurement values that reflect the damage accumulation state of fatigue alone and the quantification index A parameter of voids (number of damaged grain boundaries / total number of grain boundaries) Vickers hardness reduction ratio, which is one of the nondestructive measurement values of the metallographic state, is calculated in parallel with the crack length {(softening amount due to damage-softening amount due to heating) /
The amount of softening by heating} is calculated (3a). A standardization parameter, which is a composite evaluation parameter, is calculated from these three indexes (4a). The calculated standardized parameter value is plotted on the vertical axis, and the consumption life of superposed damage given in the interruption test is plotted on the horizontal axis, which is plotted in a graph to show the damage master curve (5).
Is created.

【0010】前記手順にて重畳損傷マスターカーブを実
験室的に求めたのち、実機材料の金属組織を観察し(2
b)、Aパラメータおよび最大き裂長さを求め、同時に
その硬さを計測して(3b)、それらの計測値から規格
化パラメータ値を算出する(4b)。なお、金属組織の
採取は、前記重畳損傷マスターカーブ作成用データ計測
手順と同様に、レプリカフィルムを用いて行い、硬さ計
測はエコーチップ硬さ計などを利用することにより、実
機材料からの計測は完全に非破壊的に行う。以上の手順
で算出した規格化パラメータ値データを、重畳損傷マス
ターカーブと照らし合せることにより、実機材料の消費
寿命を推定する。
After obtaining the superposed damage master curve in the laboratory by the above-mentioned procedure, the metal structure of the actual material was observed (2
b), the A parameter and the maximum crack length are obtained, the hardness is simultaneously measured (3b), and the standardized parameter value is calculated from these measured values (4b). Note that the metal structure is sampled using a replica film in the same manner as the data measurement procedure for creating the superposed damage master curve, and the hardness is measured by using an echo chip hardness meter or the like to measure from the actual material. Is completely non-destructive. By comparing the normalized parameter value data calculated in the above procedure with the superposition damage master curve, the consumption life of the actual material is estimated.

【0011】図2は、重畳損傷マスターカーブ作成手順
を示す。本実施例では、マスターカーブ作成用の重畳損
傷付与試験として、軸ひずみ制御にて単軸保持サイクル
疲労試験を実施する。ここで保持サイクル疲労は引張側
保持疲労試験を意味し、疲労試験の各サイクルの引張ひ
ずみが頂点に達したとき、その状態のまま一定時間保持
するサイクルを繰返すものである。また保持時間は、実
機の運転パターンをすべて模擬するため、数種類変化さ
せる。
FIG. 2 shows a procedure for creating a superposed damage master curve. In this example, as a superimposed damage imparting test for creating a master curve, a uniaxial holding cycle fatigue test is performed under axial strain control. Here, the holding cycle fatigue means a tensile side holding fatigue test, and when the tensile strain in each cycle of the fatigue test reaches a peak, the cycle of holding the state for a certain period of time is repeated. Further, the holding time is changed in several types in order to simulate all the operation patterns of the actual machine.

【0012】まず、試験条件を決定し、各設定保持時間
での保持サイクル疲労を実施して、破断繰返し数を求め
る。次に、それらと同一条件の下で、試験材料に損傷を
与え、各条件で破断繰返し数の20%、40%、60%
および80%の繰返しサイクルを与えた材料を作成する
(1)。ここで、試験片に与えた繰返し数と、同一保持
時間での破断繰返し数との比を消費寿命と定義する。
First, the test conditions are determined, the holding cycle fatigue at each set holding time is carried out, and the number of repeated breaks is obtained. Next, under the same conditions as those given above, the test material was damaged, and 20%, 40%, 60% of the number of repeated ruptures under each condition.
And make a material that has been given an 80% repeat cycle (1). Here, the ratio of the number of repetitions given to the test piece and the number of repetitions of fracture at the same holding time is defined as the consumption life.

【0013】それぞれの損傷付与材の表面を鏡面研磨
し、仕上げ面をエッチングした後、金属組織をレプリカ
フィルムに転写することによって、金属組織の採取を行
う(2)。前記レプリカフィルムを顕微鏡で写真撮影
し、全結晶粒界数とボイドの発生している結晶粒界数を
計測し、その比であるAパラメータを求める(3)。同
様に撮影した写真から、微視き裂を選択し、その一つ一
つについて長さを計測し、最大である微視き裂の長さを
最大き裂長さとする(3)。このとき試験片の有効部全
部の微視き裂長さを計測することが理想であるが、不可
能な場合は観察面積を基にした統計的処理を行って予測
された最大き裂長さをデータとする。さらに、クリープ
損傷を受けた試験片有効部と、加熱損傷のみを受けた試
験片チャック部のビッカース硬さを測定し、この2つの
差を加熱損傷部硬さで除した硬さ低下量比を計算する
(3)。前記のAパラメータ、最大き裂長さの測定は、
試験片を直接観察して実施しても良いが、本実施例で
は、実機材料からのデータ採取がレプリカフィルムにな
ることを考え、実機材料データとの整合性をとるためレ
プリカ法を採用した。
After the surface of each damage imparting material is mirror-polished and the finished surface is etched, the metal structure is transferred to a replica film to collect the metal structure (2). The replica film is photographed with a microscope, the total number of crystal grain boundaries and the number of crystal grain boundaries in which voids are generated are measured, and the A parameter, which is the ratio, is determined (3). Similarly, microscopic cracks are selected from the photographed images, and the length of each microscopic crack is measured, and the maximum length of the microscopic crack is set as the maximum crack length (3). At this time, it is ideal to measure the microscopic crack length of the entire effective part of the test piece, but if it is not possible, statistically processing based on the observed area is performed to obtain the predicted maximum crack length data. And Furthermore, the Vickers hardness of the effective part of the test piece that was damaged by creep and the chuck part of the test piece that was only damaged by heat were measured, and the difference in hardness between the two was divided by the hardness of the heat damaged part Calculate (3). The above-mentioned A parameter and maximum crack length are measured by
Although the test piece may be directly observed and implemented, in the present example, the replica method is adopted in order to obtain consistency with the actual material data, considering that the data collection from the actual material is a replica film.

【0014】以上の手順で得たデータを元に、規格化パ
ラメータの値を算出して(4)、未使用材、破断材のデ
ータも加えて、横軸に消費寿命、縦軸に規格化パラメー
タをプロットすると、損傷マスターカーブ(5)が得ら
れる。なお、種々の保持時間での損傷付与材測定結果か
ら、消費寿命と規格化パラメータとの間には有意な差が
なく、保持時間の長短によらず、重畳損傷マスターカー
ブは一つで十分であることが判明している。
Based on the data obtained by the above procedure, the value of the standardization parameter is calculated (4), and the data of the unused material and the fractured material are also added, and the horizontal axis represents the consumption life and the vertical axis represents the standardization. Plotting the parameters gives the damage master curve (5). It should be noted that, from the damage imparting material measurement results at various holding times, there is no significant difference between the consumption life and the standardized parameters, and one overlapping damage master curve is sufficient regardless of the length of the holding time. It turns out to be.

【0015】図3は、本実施例における規格化パラメー
タの算出手順である。まず、単独損傷マスターカーブを
3種類作成する(4−1)。なお、ここで単独損傷と
は、クリープ単独損傷と疲労単独損傷の両方を意味す
る。第一に、クリープ単独試験を行い破断寿命を求めた
後、同一の条件下で試験片に種々の割合のクリープ損傷
を付与して、その試験片各々からAパラメータの値を計
測し、単独損傷寿命比を横軸に、Aパラメータ値を縦軸
に取り、単独損傷寿命比vsAパラメータマスターカー
ブを作る。第二に、疲労単独(保持なし)疲労試験を実
施し、その試験片各々から最大き裂長さの値を計測し、
単独損傷寿命比を横軸に、微視き裂の最大き裂長さを縦
軸に取って、単独損傷寿命比vs最大き裂長さマスター
カーブを作る。第三にクリープ単独損傷と、疲労単独損
傷を付与した試験片からビッカース硬さ低下量比を計測
し、単独損傷寿命比を横軸に、ビッカース硬さ低下量比
を縦軸に取って、単独損傷寿命比vsビッカース硬さ低
下量比マスターカーブを作る。
FIG. 3 shows the procedure for calculating the standardized parameters in this embodiment. First, three types of individual damage master curves are created (4-1). Here, the single damage means both creep single damage and fatigue single damage. First, after performing a creep independent test to determine the rupture life, various damage ratios of creep damage were applied to the test pieces under the same conditions, and the A parameter value was measured from each of the test pieces to determine the single damage. The life ratio is plotted on the horizontal axis and the A parameter value is plotted on the vertical axis, and a single damage life ratio vs. A parameter master curve is created. Secondly, fatigue alone (without holding) fatigue test is performed, and the maximum crack length value is measured from each of the test pieces,
The individual damage life ratio is plotted on the horizontal axis, and the maximum crack length of microscopic cracks is plotted on the vertical axis to create a single damage life ratio vs. maximum crack length master curve. Thirdly, measure the Vickers hardness reduction ratio from the test piece with creep single damage and fatigue single damage, and take the single damage life ratio on the horizontal axis and the Vickers hardness reduction ratio on the vertical axis. A master curve is created for the damage life ratio vs. Vickers hardness reduction ratio.

【0016】次に、供試材よりAパラメータ、最大き裂
長さ、ビッカース硬さ低下量比をそれぞれ計測する(4
−2)。これらの計測値を使って、先に求めた3種の単
独損傷マスターカーブより、単独損傷寿命比を逆算す
る。本実施例において、Aパラメータから求めた単独損
傷寿命比をα、最大き裂長さから求めた単独損傷寿命比
をβ、ビッカース硬さ低下量比から求めた単独損傷寿命
比をγとすると、規格化パラメータDは、次式(a)で
求められる(4−4)。 D=Lα+Mβ+Nγ ……………(a) (L,M,N:定数)
Next, the A parameter, the maximum crack length, and the Vickers hardness reduction ratio are measured from the test material (4).
-2). Using these measured values, the individual damage life ratio is calculated back from the previously determined three types of individual damage master curves. In this example, if the single damage life ratio obtained from the A parameter is α, the single damage life ratio obtained from the maximum crack length is β, and the single damage life ratio obtained from the Vickers hardness decrease ratio is γ, The conversion parameter D is calculated by the following equation (a) (4-4). D = Lα + Mβ + Nγ ……………… (a) (L, M, N: constant)

【0017】未使用材では、規格化パラメータの値は、
ほぼ0であるのに対し、重畳損傷付与材では、損傷の蓄
積にしたがってD値が増加する。なお、(a)式中の定
数L,M,Nは、重畳損傷の破断材より、供試材の全損
傷を100としたときに損傷中に占める粒界損傷、粒内
損傷および硬さ低下による損傷の3指標の支配度を求
め、その支配度より決定するものである(4−3)。
In the unused material, the value of the standardization parameter is
While the value is almost 0, in the superposed damage imparting material, the D value increases as the damage accumulates. The constants L, M, and N in the equation (a) are the intergranular damage, the intragranular damage, and the decrease in hardness when the total damage of the test material is 100, rather than the fractured material of the superimposed damage The degree of dominance of the three indicators of damage due to is calculated and determined from the degree of dominance (4-3).

【0018】図4は、全損傷を100としたときに、そ
の中で粒界損傷、粒内損傷、硬さ低下による損傷が支配
する割合を図示したものである。この割合は重畳損傷の
破断材から3指標を測定し、単独損傷の破断時の3指標
とそれぞれ比較して、得られるものである。例えば、粒
界損傷、粒内損傷、硬さ低下による損傷の3者間におい
て、粒界損傷が支配的である材料については、LがM,
Nに比べて高い値となる。
FIG. 4 is a graph showing the proportion of grain boundary damage, intragranular damage, and damage due to hardness reduction in the total damage, which is 100. This ratio is obtained by measuring 3 indices from the fractured material with superposed damage and comparing each with 3 indices at the time of fracture with independent damage. For example, for a material in which intergranular damage is predominant among intergranular damage, intragranular damage, and damage due to hardness reduction, L is M,
It is a higher value than N.

【0019】また、本実施例においては、規格化パラメ
ータDの推定式として、α、β、γを変数とした一次式
を用いたが、重畳損傷観察例から多次式近似等を用いる
ことにより、(b)式で示した関数fも採用できる。 D=f(α、β、γ) ……………(b) この関数fを用いれば、さらに的確な重畳損傷の消費寿
命推定が可能である。
Further, in the present embodiment, the linear expression with α, β and γ as variables is used as the estimation expression of the standardized parameter D, but by using the multi-dimensional approximation or the like from the superposed damage observation example. , The function f shown in the equation (b) can also be adopted. D = f (α, β, γ) (b) By using this function f, it is possible to more accurately estimate the consumption life of the superposed damage.

【0020】図5は、本供試材の未使用材の顕微鏡組織
観察写真に基づく説明図である。本実施例で用いた蒸気
タービン高圧ケーシング(CrMoV鋳鋼)材では、結
晶粒界が明瞭に観察される組織を呈する。この材料にク
リープ単独損傷を付与したとき、クリープ損傷は粒界に
出現するので、図6に示すように結晶粒界に微小なボイ
ドが発生した組織となり、そのボイドが連結、成長し
て、き裂となり、最終的には破断する。したがって、ク
リープ単独損傷の場合は、粒界損傷の評価指標であるA
パラメータで整理できる。
FIG. 5 is an explanatory diagram based on a microstructure observation photograph of an unused material of the present test material. The steam turbine high pressure casing (CrMoV cast steel) material used in this example has a structure in which crystal grain boundaries are clearly observed. When creep-only damage is applied to this material, the creep damage appears at the grain boundaries, so that the structure has microvoids at the crystal grain boundaries as shown in Fig. 6, and the voids are connected and grown. It becomes a crack and eventually breaks. Therefore, in the case of only creep damage, A is the evaluation index of grain boundary damage.
Can be organized by parameters.

【0021】一方、疲労単独(保持なし疲労)損傷を付
与した場合には、損傷は主に結晶粒内に現れるので、図
7に示すように、結晶粒内に数10ミクロン程度の微視
き裂が発生した組織となり、そのき裂が進展、合体して
破断にいたる。したがって、疲労単独損傷の場合は、粒
内損傷の評価指標である最大き裂長さで整理できる。
On the other hand, when fatigue alone (fatigue without holding) damage is applied, the damage mainly appears in the crystal grains, so as shown in FIG. The structure becomes cracked, and the crack propagates and coalesces to fracture. Therefore, in the case of fatigue-only damage, the maximum crack length, which is an evaluation index for intragranular damage, can be arranged.

【0022】クリープと疲労の重畳損傷付与では、その
保持時間の長短により、ボイド、微視き裂が両方発生す
る場合と、どちらか一方しか発生しない場合とがあり、
一つのパラメータではうまく重畳損傷の消費寿命を評価
することはできない。また、どちらの単独損傷の場合で
も、損傷の進行とともに硬さは一様に低下する傾向にあ
るが、その低下傾向は損傷形態により若干異なるため、
硬さ低下量比では、重畳損傷材の消費寿命を一概に推定
できない。
In the superimposed damage imparting of creep and fatigue, there are cases where both voids and microscopic cracks occur and cases where only one of them occurs due to the length of the holding time.
The consumption life of superposed damage cannot be evaluated well with one parameter. Also, in the case of either single damage, the hardness tends to decrease uniformly as the damage progresses, but since the decreasing tendency is slightly different depending on the damage form,
The hardness reduction ratio cannot be used to unequivocally estimate the consumption life of superposed damaged materials.

【0023】しかし、前出の規格化パラメータD値は、
3指標を複合して評価する指標であるので、ボイドと微
視き裂のうちどちらか一方しか発生しない場合でも、両
方発生する場合でも増加し、重畳損傷の保持時間の長短
による損傷機構モード変化に関係なく、寿命消費が進行
するに従い単調に増加する。また、定数L,M,Nを用
いて、3指標にそれぞれ材料固有の重みを付けると、変
化の大きい指標を有効に評価できる。
However, the above-mentioned standardized parameter D value is
As it is an index that combines and evaluates three indicators, it increases both when either one of voids and microscopic cracks occurs, or when both occur, and damage mechanism mode changes due to the length of holding time of superimposed damage. Irrespective of the above, it increases monotonically as the life consumption progresses. In addition, if constants L, M, and N are used and weights peculiar to the respective materials are applied to the three indices, the indices with large changes can be effectively evaluated.

【0024】以上の手順にて採取した規格化パラメータ
データを、横軸に消費寿命、縦軸に規格化パラメータを
とって整理すると、図1および図2に示す重畳損傷マス
ターカーブ(5)が得られる。
When the standardized parameter data collected by the above procedure are arranged with the horizontal axis representing the consumption life and the vertical axis representing the standardized parameters, the superposed damage master curve (5) shown in FIGS. 1 and 2 is obtained. To be

【0025】図8は、実機部材から切り出した同材の消
費寿命を、重畳損傷マスターカーブ(5)より推定した
結果と、材料試験により求めた実寿命とをプロットした
ものである。なお、本実施例では、粒界損傷、粒内損
傷、硬さ低下がすべて出現し、且つその支配割合がほぼ
同等であることが判明したので、規格化パラメータD値
の算出式として、次に示す(c)式を採用した。 D=α+β+γ ……………(c) 図8から明らかなように、本発明方法によればクリープ
と疲労の重畳損傷の消費寿命を精度良く推定できる。
FIG. 8 is a plot of the results of estimating the consumption life of the same material cut from an actual machine member from the superposed damage master curve (5) and the actual life obtained by the material test. In this example, it was found that the grain boundary damage, the intragranular damage, and the decrease in hardness all appeared, and the control rates thereof were almost the same. Therefore, the calculation formula for the normalized parameter D value was as follows. The formula (c) shown is adopted. D = α + β + γ (c) As is apparent from FIG. 8, according to the method of the present invention, it is possible to accurately estimate the consumption life of the superimposed damage of creep and fatigue.

【0026】[0026]

【発明の効果】本発明により、従来は計算に頼らざるを
得なかったクリープと疲労の重畳した損傷の消費寿命
を、非破壊的に、かつ的確に推定することが可能であ
る。
According to the present invention, it is possible to accurately and non-destructively estimate the consumption life of damage in which creep and fatigue are superposed, which conventionally had to rely on calculation.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施例の内容を示す概念図。FIG. 1 is a conceptual diagram showing the content of an embodiment of the invention.

【図2】実施例における重畳損傷マスターカーブ作成手
順。
FIG. 2 is a procedure for creating a superposed damage master curve in an example.

【図3】実施例における規格化パラメータの算出手順。FIG. 3 is a procedure for calculating a standardized parameter according to an embodiment.

【図4】全損傷中に占める粒界損傷、粒内損傷、硬さ低
下による損傷の支配する割合。
FIG. 4 shows the proportion of the intergranular damage, the intragranular damage, and the damage due to the decrease in hardness that occupy the total damage.

【図5】実施例における未使用材の金属組織観察写真。FIG. 5 is an observation photograph of a metal structure of an unused material in an example.

【図6】実施例におけるクリープ単独損傷付与材の金属
組織写真。
FIG. 6 is a photograph of the metallographic structure of the creep-only damage imparting material in the example.

【図7】実施例における疲労単独損傷付与材の金属組織
観察写真。
FIG. 7 is a photograph of the metallographic structure observation of the material with single fatigue damage imparted in the example.

【図8】実施例における実機部材の消費寿命と規格化パ
ラメータから推定した消費寿命との関係図。
FIG. 8 is a diagram showing the relationship between the service life of the actual machine member and the service life estimated from the standardized parameters in the example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高温で使用される金属材料からなる構造部
品のクリープと疲労の両方が重畳して蓄積する部位につ
いて、損傷状態を反映する複数の材料状態量を非破壊的
手法により計測し、それらを組み合わせて重畳損傷を代
表する規格化パラメータを算出し、あらかじめ実験的に
求めてある規格化パラメータと重畳損傷との関係に照ら
して、重畳損傷を推定することを特徴とする高温構造材
料のクリープと疲労の重畳損傷推定方法。
1. A non-destructive method for measuring a plurality of material state quantities reflecting a damage state in a portion where both creep and fatigue of a structural part made of a metal material used at high temperature are accumulated and accumulated, A standardized parameter representative of superposed damage is calculated by combining them, and the superposed damage is estimated in the light of the relationship between the standardized parameter and the superposed damage that have been experimentally obtained in advance. Method for estimating superimposed damage of creep and fatigue.
【請求項2】複数の材料状態量は、疲労単独の損傷蓄積
状態を反映する非破壊的計量値、クリープ単独の損傷蓄
積状態を反映する非破壊的計量値、および疲労とクリー
プの両方の損傷蓄積によってもたらされる金属組織状態
を反映する非破壊的計量値であることを特徴とする請求
項1に記載の高温構造材料のクリープと疲労の重畳損傷
推定方法。
2. A plurality of material state quantities are a non-destructive metric value reflecting a damage accumulation state of fatigue alone, a non-destructive metric value reflecting a damage accumulation state of creep alone, and damages of both fatigue and creep. The method for estimating the superimposed damage of creep and fatigue of a high temperature structural material according to claim 1, which is a non-destructive metric value that reflects a metallic structure state caused by accumulation.
【請求項3】規格化パラメータは請求項2に記載の各非
破壊的計量値のそれぞれの規格値の総和であることを特
徴とする請求項1に記載の高温構造材料のクリープと疲
労の重畳損傷推定方法。
3. The superposition of creep and fatigue of the high temperature structural material according to claim 1, wherein the standardized parameter is the sum of the respective standard values of the respective nondestructive measured values according to claim 2. Damage estimation method.
JP17103193A 1993-06-17 1993-06-17 Method for estimating superposed damage of creep and fatigue of high-temperature structure material Pending JPH075086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17103193A JPH075086A (en) 1993-06-17 1993-06-17 Method for estimating superposed damage of creep and fatigue of high-temperature structure material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17103193A JPH075086A (en) 1993-06-17 1993-06-17 Method for estimating superposed damage of creep and fatigue of high-temperature structure material

Publications (1)

Publication Number Publication Date
JPH075086A true JPH075086A (en) 1995-01-10

Family

ID=15915810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17103193A Pending JPH075086A (en) 1993-06-17 1993-06-17 Method for estimating superposed damage of creep and fatigue of high-temperature structure material

Country Status (1)

Country Link
JP (1) JPH075086A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JPWO2006006412A1 (en) * 2004-07-09 2008-04-24 株式会社産学連携機構九州 Fatigue crack growth curve estimation method, estimation program, and estimation apparatus
JP2010223823A (en) * 2009-03-24 2010-10-07 Chugoku Electric Power Co Inc:The Method of evaluating creep damage
JP2013079916A (en) * 2011-10-05 2013-05-02 Chugoku Electric Power Co Inc:The Remaining life diagnosis method and diagnosis apparatus for metal in which creep damage develops
JP2013104742A (en) * 2011-11-11 2013-05-30 Chugoku Electric Power Co Inc:The Method for diagnosing residual life of metal subjected to creep damage, and diagnostic apparatus
CN107729596A (en) * 2017-08-28 2018-02-23 上海工程技术大学 A kind of method calculated for material damage
CN111896399A (en) * 2020-08-05 2020-11-06 辽宁工业大学 Creep-impact coupling test system and method for research CFRP (carbon fiber reinforced plastics) constrained heat damage coal sample
CN112630075A (en) * 2020-11-19 2021-04-09 西安热工研究院有限公司 Material state evaluation method of low-hardness P91 pipe fitting based on partition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325246A (en) * 2003-04-24 2004-11-18 Toshiba Corp Defect inspection apparatus
JPWO2006006412A1 (en) * 2004-07-09 2008-04-24 株式会社産学連携機構九州 Fatigue crack growth curve estimation method, estimation program, and estimation apparatus
JP2010223823A (en) * 2009-03-24 2010-10-07 Chugoku Electric Power Co Inc:The Method of evaluating creep damage
JP2013079916A (en) * 2011-10-05 2013-05-02 Chugoku Electric Power Co Inc:The Remaining life diagnosis method and diagnosis apparatus for metal in which creep damage develops
JP2013104742A (en) * 2011-11-11 2013-05-30 Chugoku Electric Power Co Inc:The Method for diagnosing residual life of metal subjected to creep damage, and diagnostic apparatus
CN107729596A (en) * 2017-08-28 2018-02-23 上海工程技术大学 A kind of method calculated for material damage
CN111896399A (en) * 2020-08-05 2020-11-06 辽宁工业大学 Creep-impact coupling test system and method for research CFRP (carbon fiber reinforced plastics) constrained heat damage coal sample
CN111896399B (en) * 2020-08-05 2023-08-18 辽宁工业大学 Research CFRP (carbon fiber reinforced plastic) constrained heat damage coal sample creep-impact coupling test system and method
CN112630075A (en) * 2020-11-19 2021-04-09 西安热工研究院有限公司 Material state evaluation method of low-hardness P91 pipe fitting based on partition
CN112630075B (en) * 2020-11-19 2024-03-12 西安热工研究院有限公司 Method for evaluating material state of low-hardness P91 pipe fitting based on partition

Similar Documents

Publication Publication Date Title
US6789428B2 (en) Method and apparatus for evaluating damage of metal material
US5140528A (en) Method for evaluating relationship between the size of discontinuity indications from non-destructive examination of a turbine rotor, stress applied to the rotor and remaining life of the rotor
Haggag et al. Structural integrity evaluation based on an innovative field indentation microprobe
US20040240600A1 (en) Positron annihilation for inspection of land based industrial gas turbine components
JPH0621783B2 (en) Fatigue / remaining life evaluation method for machine parts
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JPH04282455A (en) Method and apparatus for maintenance control of structure part
RU2139515C1 (en) Method determining susceptibility of loaded material to injury and its service life
Roebuck et al. Data acquisition and analysis of tensile properties for metal matrix composites
JP3372437B2 (en) Creep life evaluation method for high temperature equipment materials
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
JP2627925B2 (en) Remaining life evaluation method for metallic materials
JPH07128328A (en) Method for predicting deterioration and residual life of metallic material
RU2207530C1 (en) Method of monitoring article for determination of stressed deformed state by scattering magnetic fields
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
Socha Fatigue damage indicators based on plastic deformation
Tiwari Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads
JP2002168853A (en) Method for evaluating life of metal material
JP3009698B2 (en) Remaining life diagnosis method and remaining life diagnosis system