JP3728286B2 - Nondestructive high temperature creep damage evaluation method - Google Patents

Nondestructive high temperature creep damage evaluation method Download PDF

Info

Publication number
JP3728286B2
JP3728286B2 JP2002308126A JP2002308126A JP3728286B2 JP 3728286 B2 JP3728286 B2 JP 3728286B2 JP 2002308126 A JP2002308126 A JP 2002308126A JP 2002308126 A JP2002308126 A JP 2002308126A JP 3728286 B2 JP3728286 B2 JP 3728286B2
Authority
JP
Japan
Prior art keywords
stress
damage
amount
temperature creep
dominated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308126A
Other languages
Japanese (ja)
Other versions
JP2004144549A (en
Inventor
光晴 志波
亮一 粂
Original Assignee
財団法人発電設備技術検査協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人発電設備技術検査協会 filed Critical 財団法人発電設備技術検査協会
Priority to JP2002308126A priority Critical patent/JP3728286B2/en
Publication of JP2004144549A publication Critical patent/JP2004144549A/en
Application granted granted Critical
Publication of JP3728286B2 publication Critical patent/JP3728286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、供用中のボイラ等の高温機器において、非破壊測定された物理量を用いて高温クリープ損傷を評価し、寿命・余寿命時間を求める方法に関する。
【0002】
【従来の技術】
構造物の損傷を非破壊評価することは、高経年化したプラントの信頼性を保証し、事故および保全に対する経済性を向上させる上では不可欠な技術である。特に、ボイラ等の機器は、高温、高圧で用いられているために、供用中に材料に高温クリープ損傷が生じ、漏洩等の事故が起こる。そのため、予防保全の観点から機器の交換および補修を定期的に行い、クリープ損傷率を知ることによって、機器の交換・補修時期の予測が求められている。
【0003】
材料の高温クリープ損傷率を非破壊評価する方法は、金属組織を直接または間接に観察し、組織の変化から高温クリープ損傷率を評価する方法(以下、単に「組織観察法」と言う。)と、超音波特性、硬さ特性、電磁気特性等に関する材料の物理量を非破壊測定し、予め求められた測定量と損傷率との相関関係から評価する方法(以下、単に「物理量測定法」と言う。)との2種類に大別できる。
【0004】
組織観察法のうち代表的なレプリカ法では、実機の金属組織をレプリカに写し取り、光学顕微鏡または電子走査型顕微鏡を用いて、炭化物の析出、ボイド率、結晶粒性状等の組織状態を評価し、損傷率と対応させている。レプリカ採取工程において、測定時に実機の表面を鏡面研磨し、腐食させる前処理が必要になる。写し取ったレプリカの評価工程においては、ラボ等に持ち帰り、材料に応じて解析しなければならない。そのため、測定と評価には高度な熟練と多くの時間が要求される。
【0005】
一方、物理量測定法は、組織観察法に比べて、一般に前処理が簡便であり、測定時に直接値が得られる。測定量と損傷率との相関関係が予め求められていれば、その場で損傷率を評価できる。しかし、測定量と損傷率との相関関係は、単純には求められない。測定手法によりその相関関係が異なるため、現場適用に当たり評価手法の確立が望まれていた。
【0006】
これまでのクリープ損傷評価手法としては、Wilshire、横堀等によるクリープ損傷マスターカーブの研究において、材料破断歪を予め求めておけば、負荷中の歪変化率を基にしたマスターカーブにより、クリープ寿命を推定できることが示されている(例えば、非特許文献1参照)。これらの手法を用いて構造物の非破壊評価を行うには、一定期間連続して歪測定を行わなければならず、実機への適用には大きな困難があった。
【0007】
【非特許文献1】
日本学術振興会先端材料強度第129委員会編、「材料強度と破壊学−創造的発展と応用−」、技報堂出版、第1版、(1999年)、第198−202ページ。
【0008】
【発明が解決しようとする課題】
実機における従来の物理量測定法の問題は、以下の3点に整理できる。第1点は、評価のためのマスターカーブ作成方法であり、第2点は評価の基準となる試験片、特に初期材の問題であり、第3点は測定量から損傷率を評価する方法である。
【0009】
マスターカーブの作成方法においては、高温クリープ損傷機構は、材料および供用条件により異なり、かつ、測定手法ごとに検出される信号が異なる傾向にある。そのため、評価を行う供用条件と同一か同様と見なせられる試験体を用意する。実機と同様な条件で高温クリープ試験、または実機の損傷機構と同等と見なせられるクリープ加速試験を破断まで行い、非破壊測定量と損傷率との相関関係を示すマスターカーブを作成しなければならなかった。このことは、実機と同様な材料について、複数の試験条件(圧力、温度、時間)で多くのクリープ破断試験を行わなければならない。その結果、マスターカーブの作成には多大なコストと時間を要した。
【0010】
評価の基準となる試験片、特に初期材の問題について述べる。非破壊測定量のマスターカーブを用いた評価は、初期材の測定値を損傷0%とし、破断時の測定量をクリープ損傷率100%として行われる。このことから、初期材の測定値は重要になる。しかし、非破壊測定量の初期値は、材料の成分、熱処理、加工履歴等の製造条件により異なる。そのため、実機の測定値からクリープ損傷率を評価する場合、実機と同じ材料および加工条件の初期材を入手し、測定することが求められてきた。しかし、高温クリープ損傷評価を必要とするプラントは、高経年化したものが多く、製造時と同じ材料を初期材として入手するにはかなりの困難が伴った。
【0011】
測定量からクリープ損傷率を評価する方法について述べる。高温クリープ損傷は、熱時効による組織の変化を基にして負荷応力の影響により生じたボイドが発生し、亀裂として進展することにより破損に至るものである。しかし、非破壊測定量である高温クリープ測定量は、熱時効による変化量と応力負荷による変化量との双方を含んでいる。そのために、表1に示すように、物理量測定法による高温クリープ測定量は、温度と時間(熱時効)による組織変化と、応力による組織変化の状態に対応する各々の検出特性との組合せにより複雑な挙動が見られた。
【0012】
【表1】

Figure 0003728286
【0013】
これらの問題により、物理量測定法を用いて実機の測定量から高温クリープ損傷率を求めるには多くの困難があった。
【0014】
【課題を解決するための手段】
高温クリープ損傷機構は、組織変化により生じた炭化物等の析出物を起因とし、応力負荷によりボイド発生、連結、亀裂進展が生じて破壊に至る。クリープ時の交流磁化測定量には、熱時効による組織的な変化に起因する変化量および応力負荷に伴う損傷に起因する量が入っている。クリープ損傷は、組織変化を引き金とし、応力負荷により進展することから、直接の損傷評価に対応する量は、応力負荷に伴う損傷量である。高温クリープ時の測定量から熱時効による変化量を除き、応力負荷に伴う損傷(以下、単に「応力支配型損傷」と言う。)に対応する量を応力支配型損傷量と定義して抽出し、評価する。
【0015】
本発明では、実機における高温クリープ損傷の評価対象は、ボイド発生等の応力の影響により生じる損傷である。応力負荷により発生する損傷を評価の対象として、硬さと交流磁化法という測定原理が異なる複数の非破壊評価手法に応用したとところ、よい結果が得られた。この方法を一般化することにより、物理量測定法を用いて実機の高温クリープ損傷評価を行う方法を提供する。
【0016】
本発明の非破壊高温クリープ損傷評価方法は、実機の高温クリープ測定量および熱時効測定量を物理量測定装置(物理量測定法に基づく装置)によって測定すること、前記測定量から応力支配型損傷量を導出すること、前記応力支配型損傷量をパラメータとして用いて、高温クリープ損傷率を評価することからなる。
【0017】
本発明の方法は、熱処理温度および加工履歴を変えた同じ材質について複数の試験体を用いて熱時効時の物理量測定を行い、一定の値に収斂する時間と温度(ラーソンミラーパラメータL)の熱時効測定量を基準値として熱時効材の条件を決めること、該熱時効材から前記応力支配型損傷量を導出することからなる。高温クリープ寿命予測を行うための基準値として、高温クリープ破断時の破断応力と前記物理量測定装置で得られた測定量に基づいてマスターカーブを作成することができる。高温クリープ寿命を、破断応力時の測定量である強度因子と、寿命・余寿命という時間因子との相関関係から求めることができる。
【0018】
【発明の実施形態】
高温クリープ損傷を、非破壊測定量により評価する方法として、応力支配型損傷量をパラメータとして用いて評価する本発明の方法の実施形態について、図1−7を参照して説明する。図1は、以下に述べる本発明の方法の概要を示す説明図である。
【0019】
ボイラ等の高温機器の実機は、運転温度および時間が管理され、記録として残されている。その実機は、応力変動に起因する損傷の可能性が高いこと、および高温クリープ損傷進展を支配するボイドの合体を基点としたクリープ亀裂進展は応力により大きく影響を受けることから、応力支配型の損傷を想定する。
【0020】
物理量測定法による高温クリープ時における測定量MC(T、t、σ)は、下記(1)式に示すように、熱時効量MA(T、t)と応力支配型損傷量S(σ)の畳込み積分であるとする。下記(2)式に示すように、非破壊測定量MC(t)から、熱時効量を逆畳込み積分により、応力支配型損傷量を抽出することが可能となる。下記(1)、(2)式において、Tは温度、tは時間、σは応力である。
【0021】
【数1】
Figure 0003728286
【0022】
【数2】
Figure 0003728286
【0023】
物理量として測定可能な量は、高温クリープ測定量と熱時効測定量とである。予めT、t、σが既知の場合、実機の測定量から、実機と同等な熱時効測定量を逆畳込み積分によって、応力支配型損傷量を抽出することができる。ただし、逆畳込み積分の計算方法は、各物理量測定法固有の応答関数により異なる。
【0024】
応力支配型損傷量を導出する熱時効材の条件を決める方法について述べる。一般に、金属系構造材料は、JIS等において同じ型式のものでも、製造元により材料の成分や熱処理、加工履歴等の製造条件が異なる。そのため、例えば、同じ製造元であってもロットが異なれば、物理量測定法による測定値が異なるという現象が見られた。物理量測定法により測定された値を用いて、損傷率を評価する場合、基準値として損傷がない状態としてこのような初期材を用いることには大きな問題がある。一方、一定の時間を経過した熱時効材では、熱活性化過程により製造時の加工条件や熱処理条件の違いが消失し、材料組成本来に基づく値に収斂する傾向が実験的に得られている。
【0025】
そこで、初期材の製造時の加工条件や熱処理条件の違いを受けず、材料本来の特性を基準値として得る方法として、熱処理温度および加工履歴を変えた同じ材質における複数の試験体を用いて、熱時効時の物理量測定を行い、一定の値に収斂する時間と温度(ラーソンミラーパラメータL)以降の熱時効測定量を基準として用いる。熱時効測定量のマスターカーブf(ML)は、熱時効時の測定量MA(T、t)を縦軸とし、横軸をラーソンミラーパラメータLとしてプロットし、回帰直線または曲線を用いることで実験的に、下記(3)式として導出される。
【0026】
【数3】
Figure 0003728286
【0027】
高温クリープ寿命予測を行うための基準値として、高温クリープ破断時の破断応力と物理量測定法のマスターカーブを用いる方法について述べる。物理量測定法の高温クリープ時における測定量MC(T、t、σ)において、材料の臨界値MC C(T、t、σ)になった場合、高温クリープ破断時における強度(クリープラプチャー強度)σBにおいて破壊が生じるとする。これは、下記(4)式で表される。
【0028】
【数4】
Figure 0003728286
【0029】
(4)式の右辺は、クリープラプチャー強度を横軸に、物理量測定法の値を縦軸にしてプロットし、回帰直線または曲線を用いることで実験的に導出される。
高温クリープ寿命を、破断応力時の測定量である強度因子と、寿命・余寿命の時間因子との相関関係から求める方法について述べる。供用中の材料についての測定値MC(T、t、σ)が臨界値MC C(T、t、σ)になった場合、破壊が生じるとする。上記(1)、(4)式より、応力支配型損傷量SC(σ)を臨界応力支配型損傷量として下記(5)式で表すことができる。
【0030】
【数5】
Figure 0003728286
【0031】
上記(1)、(3)、(5)式より、破断時の測定量と供用時の測定量の比RMは、下記(6)式となる。
【0032】
【数6】
Figure 0003728286
【0033】
ここで、応力支配型損傷量S(σ)および臨界応力支配型損傷量SC(σ)を用いて、応力支配型損傷率RSを下記(7)式のように定義する。すなわち、下記(7)式のRSは、破断試験片と供用材の測定量から各々熱時効の影響を除いた応力による損傷の比である。
【0034】
【数7】
Figure 0003728286
【0035】
次にクリープ損傷率DCを、クリープ供用時間ta、破断時間をtfとし、下記(8)式のように定義する。この(8)式で得られる値は、寿命消費率とも呼ばれている。
【0036】
【数8】
Figure 0003728286
【0037】
次に、応力支配型損傷率RSとクリープ損傷率DCのマスターカーブ作成方法について述べる。クリープ破断試験時の時間tfを100%とし、その間の途中経過における測定量である M A (T,t) 及び M C (T,t, σ ) より各々(7)式で求めたRSとしてプロットする。このようにして、応力支配型損傷率RSとクリープ損傷率DCのマスターカーブが作成される。このマスターカーブから、測定に基づいて得られた応力支配型損傷率RSと測定時taとによって破断時間tfが下記(9)式で推定できる。また、余寿命trは、下記(10)式で求められる。
【0038】
【数9】
Figure 0003728286
【0039】
【数10】
Figure 0003728286
【0040】
次に、本発明の方法を実施するさいに用いる物理量測定装置(物理量測定法に基づく装置)の一例を、図5に示す。
【0041】
図5は、物理量測定装置の概略ブロック図である。図5において、交流磁化プローブ12は、強磁性体のクリープ損傷材である試験体10を交流磁化しかつ交流磁化された波形を検出する。可変交流電源14は試験体10に印加される交流磁束を交流磁化プローブ12に発生させるため、その交流磁化プローブ12に交流電圧(または電流)を印加する。検出波形増幅部16は、交流磁化プローブ12で検出された交流磁化波形を増幅する。A/D変換部18は、交流磁化プローブ12に印加される可変交流電源14からの交流電圧(または電流)および検出された交流磁化波形の電圧(または電流)を変換する。パーソナル・コンピュータ20は、A/D変換部18から印加および検出された交流磁化波形の電圧(または電流)のディジタル・データを受け取り波形処理、演算処理および表示等を行うよう機能する。A/D変換部18は、1対のA/D変換器30および32を有し、検出波形増幅部16および可変交流電源14からのアナログ形式の交流磁化検出波形を2チャンネル同期サンプリングによりディジタル化する。パーソナル・コンピュータ20は、ハードウエアとしては通常の構成のものであり、A/D変換部18からのディジタル・データを受け取る入力インタフェース40、種々の処理を行うマイクロプロセッサ42、その処理プログラムおよびデータ等を記憶するメモリ44、処理結果等を表示するディスプレイ46およびデータや操作指令等を入力するキーボード48を含む。
【0042】
【実施例】
交流磁化測定例
図2は、2.25Cr−1Mo鋼の熱時効時のLMPとクリープ試験時の第三高調波比の測定結果例を示す。熱時効時と、クリープ損傷時とではパラメータの変化量が異なる。
【0043】
図3は、2.25Cr−1Mo鋼のクリープ破断強度と第三高調波比のマスターカーブ例を示す。破断強度との関係では、パラメータにより傾向が変わるため、評価に用いるパラメータごとにマスターカーブが必要である。
【0044】
交流磁化測定における第三高調波比における上記(1)、(2)式との関係は、硬さと同様に実験的に単純な線形関数として取り扱うことができる。熱時効時の交流磁化パラメータを ω (T , t)、クリープ損傷時の交流磁化パラメータ ω (T , , σ)とすると、応力支配型損傷量 ω (σ)は、下記(11)式で求められた。
【0045】
【数11】
Figure 0003728286
【0046】
図4は、2.25Cr−1Mo鋼の第三高調波比で求めた応力支配型損傷率とクリープ損傷率とのマスターカーブ例を示す。これにより、2.25Cr−1Mo鋼においては、供用時の実機における交流磁化測定結果から損傷率を求め、寿命、余寿命評価が可能になった。
【0047】
【発明の効果】
本発明によれば、供用中のボイラ等の高温機器において、非破壊測定された物理量から初期材のバラツキの影響および熱時効による変化量を除き、応力負荷にのみ伴う応力支配型損傷量を用いて、高温クリープ損傷率を評価し、寿命・余寿命時間を求めることができるようになった。
【図面の簡単な説明】
【図1】本発明の方法の概要を示す説明図である。
【図2】2.25Cr−1Mo鋼の熱時効時のLMPとクリープ試験時の第三高調波比の測定結果例を示す。
【図3】2.25Cr−1Mo鋼のクリープ破断強度と第三高調波比のマスターカーブ例を示す。
【図4】2.25Cr−1Mo鋼の第三高調波比で求めた応力支配型損傷率(R)とクリープ損傷率(D)とのマスターカーブ例を示す。
【図5】本発明の方法を実施するさいに用いる物理量測定装置の一例の概略ブロック図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating a high-temperature creep damage using a physical quantity measured nondestructively in a high-temperature device such as a boiler in service, and obtaining a lifetime / remaining lifetime.
[0002]
[Prior art]
Non-destructive assessment of structural damage is an essential technique for ensuring the reliability of an aged plant and improving the economics of accidents and maintenance. In particular, since equipment such as a boiler is used at a high temperature and a high pressure, high temperature creep damage occurs in the material during service, and an accident such as leakage occurs. Therefore, replacement and repair of equipment are regularly performed from the viewpoint of preventive maintenance, and it is required to predict the time for replacement and repair of equipment by knowing the creep damage rate.
[0003]
The method of nondestructive evaluation of the high temperature creep damage rate of a material is a method of directly or indirectly observing the metal structure and evaluating the high temperature creep damage rate from the change of the structure (hereinafter simply referred to as “structure observation method”). , Nondestructive measurement of physical quantities of materials related to ultrasonic characteristics, hardness characteristics, electromagnetic characteristics, etc., and evaluation based on the correlation between measured quantities obtained in advance and damage rate (hereinafter simply referred to as “physical quantity measurement method”) )) And can be roughly divided.
[0004]
In the typical replica method of the structure observation method, the actual metal structure is copied to a replica, and the structure state such as precipitation of carbide, void fraction, and grain properties is evaluated using an optical microscope or an electronic scanning microscope. Corresponding with the damage rate. In the replica collection process, a pre-treatment for polishing the surface of the actual machine by mirror polishing is required at the time of measurement. In the process of evaluating the copied replica, it must be taken back to the laboratory and analyzed according to the material. Therefore, high skill and a lot of time are required for measurement and evaluation.
[0005]
On the other hand, the physical quantity measurement method is generally easier to pretreat than the tissue observation method, and a direct value can be obtained at the time of measurement. If the correlation between the measured amount and the damage rate is obtained in advance, the damage rate can be evaluated on the spot. However, the correlation between the measured amount and the damage rate cannot be simply obtained. Since the correlation differs depending on the measurement method, establishment of an evaluation method was desired for field application.
[0006]
As a conventional creep damage evaluation method, if the material fracture strain is obtained in advance in the study of the creep damage master curve by Wilshire, Yokobori, etc., the creep life can be increased by the master curve based on the strain change rate under load. It is shown that it can be estimated (for example, refer nonpatent literature 1). In order to perform non-destructive evaluation of a structure using these methods, it is necessary to measure strain continuously for a certain period of time, and there is a great difficulty in applying it to an actual machine.
[0007]
[Non-Patent Document 1]
Japan Society for the Promotion of Science, Advanced Materials Strength 129 Committee, “Material Strength and Destructive Science: Creative Development and Application”, Gigakudo Publishing, 1st Edition (1999), pp. 198-202.
[0008]
[Problems to be solved by the invention]
The problems of the conventional physical quantity measurement method in actual machines can be summarized into the following three points. The first point is a method for creating a master curve for evaluation, the second point is a problem with a test piece as an evaluation reference, particularly an initial material, and the third point is a method for evaluating a damage rate from a measured amount. is there.
[0009]
In the method of creating the master curve, the high temperature creep damage mechanism differs depending on the material and service conditions, and the detected signal tends to be different for each measurement technique. Therefore, prepare a test specimen that can be regarded as the same or similar to the service conditions for evaluation. A high-temperature creep test under the same conditions as the actual machine, or a creep acceleration test that can be regarded as equivalent to the damage mechanism of the actual machine, should be performed until breakage, and a master curve indicating the correlation between the nondestructive measurement and the damage rate must be created. There wasn't. This means that many creep rupture tests must be performed on a material similar to the actual machine under a plurality of test conditions (pressure, temperature, time). As a result, the creation of the master curve required a great deal of cost and time.
[0010]
The problem of the test piece, which is the basis for evaluation, particularly the initial material will be described. The evaluation using the master curve of the nondestructive measurement amount is performed with the measured value of the initial material as 0% damage and the measured amount at the time of fracture as the creep damage rate of 100%. For this reason, the measured value of the initial material becomes important. However, the initial value of the nondestructive measurement amount varies depending on manufacturing conditions such as material components, heat treatment, and processing history. Therefore, when evaluating the creep damage rate from the measured value of the actual machine, it has been required to obtain and measure an initial material having the same material and processing conditions as the actual machine. However, many plants that require high-temperature creep damage evaluation have become aged, and it has been quite difficult to obtain the same material as the initial material at the time of manufacture.
[0011]
A method for evaluating the creep damage rate from the measured amount will be described. High-temperature creep damage is caused by the occurrence of voids caused by the effect of load stress based on the change of the structure due to thermal aging and progressing as cracks. However, the high temperature creep measurement amount, which is a nondestructive measurement amount, includes both a change due to thermal aging and a change due to stress loading. Therefore, as shown in Table 1, the high temperature creep measurement amount by the physical quantity measurement method is complicated by the combination of the structure change due to temperature and time (thermal aging) and the respective detection characteristics corresponding to the state of the structure change due to stress. Behavior was observed.
[0012]
[Table 1]
Figure 0003728286
[0013]
Due to these problems, it has been difficult to obtain the high temperature creep damage rate from the measured quantity of the actual machine using the physical quantity measuring method.
[0014]
[Means for Solving the Problems]
The high-temperature creep damage mechanism is caused by precipitates such as carbides caused by the structure change, and void generation, connection, and crack propagation occur due to stress load, leading to fracture. The amount of AC magnetization measured during creep includes the amount of change caused by systematic changes due to thermal aging and the amount caused by damage accompanying stress loading. Since creep damage is triggered by a change in structure and progresses by stress loading, the amount corresponding to direct damage evaluation is the amount of damage accompanying stress loading. Excluding the amount of change due to thermal aging from the amount measured at high temperature creep, the amount corresponding to the stress associated with stress loading (hereinafter simply referred to as “stress-dominated damage”) is defined as the stress-dominated damage amount and extracted. ,evaluate.
[0015]
In the present invention, the evaluation target of the high temperature creep damage in the actual machine is damage caused by the influence of stress such as void generation. Good results were obtained when applied to a plurality of nondestructive evaluation methods with different measurement principles, namely hardness and alternating current magnetization method, with damage caused by stress loading being evaluated. By generalizing this method, a method for evaluating high-temperature creep damage of an actual machine using a physical quantity measurement method is provided.
[0016]
The nondestructive high-temperature creep damage evaluation method of the present invention comprises measuring a high-temperature creep measurement amount and a thermal aging measurement amount of an actual machine with a physical quantity measurement device (an apparatus based on a physical quantity measurement method), and calculating a stress-dominated damage amount from the measurement quantity. Deriving and evaluating the high-temperature creep damage rate using the stress-dominated damage amount as a parameter.
[0017]
In the method of the present invention, physical quantities are measured at the time of thermal aging using a plurality of specimens for the same material with different heat treatment temperatures and processing histories, and the heat of time and temperature (Larson Miller parameter L) is converged to a constant value. The method comprises determining the conditions of the heat aging material using the aging measurement amount as a reference value, and deriving the stress-dominated damage amount from the heat aging material. As a reference value for predicting the high temperature creep life, a master curve can be created based on the breaking stress at the time of high temperature creep rupture and the measured amount obtained by the physical quantity measuring device. The high temperature creep life can be obtained from the correlation between the strength factor, which is a measured amount at the time of rupture stress, and the time factor of life and remaining life.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
As a method for evaluating high-temperature creep damage by a nondestructive measurement amount, an embodiment of the method of the present invention for evaluating using a stress-dominated damage amount as a parameter will be described with reference to FIGS. FIG. 1 is an explanatory diagram showing the outline of the method of the present invention described below.
[0019]
The actual temperature of the high-temperature equipment such as a boiler is managed as the operating temperature and time, and is recorded as a record. The actual machine has a high possibility of damage due to stress fluctuations, and the creep crack growth based on the coalescence of voids that govern high temperature creep damage growth is greatly influenced by stress. Is assumed.
[0020]
The measured amount M C (T, t, σ) at the time of high temperature creep by the physical quantity measurement method is calculated as follows: thermal aging amount M A (T, t) and stress-dominated damage amount S (σ ) Convolution integral. As shown in the following equation (2), it is possible to extract the stress-dominated damage amount from the nondestructive measurement amount M C (t) by deconvolution integration of the thermal aging amount. In the following formulas (1) and (2), T is temperature, t is time, and σ is stress.
[0021]
[Expression 1]
Figure 0003728286
[0022]
[Expression 2]
Figure 0003728286
[0023]
The quantities measurable as physical quantities are the high temperature creep measurement quantity and the thermal aging measurement quantity. When T, t, and σ are known in advance, the stress-dominated damage amount can be extracted from the measured amount of the actual machine by the deconvolution integration of the measured thermal aging quantity equivalent to that of the actual machine. However, the calculation method of the deconvolution integral differs depending on the response function unique to each physical quantity measurement method.
[0024]
This paper describes a method for determining the conditions of thermal aging materials for deriving stress-dominated damage. Generally, even if the metal-based structural material is the same type in JIS or the like, manufacturing conditions such as material components, heat treatment, and processing history differ depending on the manufacturer. Therefore, for example, even if the same manufacturer, lots are different, the measured value by the physical quantity measurement method is different. When the damage rate is evaluated using values measured by the physical quantity measurement method, there is a big problem in using such an initial material as a reference value with no damage. On the other hand, in the heat aging material after a certain period of time, the difference in processing conditions and heat treatment conditions during production disappears due to the thermal activation process, and the tendency to converge to the value based on the original material composition has been experimentally obtained. .
[0025]
Therefore, as a method of obtaining the original characteristics of the material as a reference value without receiving differences in processing conditions and heat treatment conditions during the manufacture of the initial material, using a plurality of specimens in the same material with different heat treatment temperatures and processing histories, The physical quantity is measured at the time of thermal aging, and the thermal aging measured quantity after the time and temperature (Larsson mirror parameter L) that converges to a certain value is used as a reference. The master curve f (M L ) of the thermal aging measurement amount is plotted with the measurement amount M A (T, t) during thermal aging as the vertical axis and the horizontal axis as the Larson Miller parameter L, and a regression line or curve is used. Experimentally, the following equation (3) is derived.
[0026]
[Equation 3]
Figure 0003728286
[0027]
As a reference value for predicting the high temperature creep life, a method using a rupture stress at the time of high temperature creep rupture and a master curve of a physical quantity measurement method will be described. When the critical amount M C C (T, t, σ) of the material measured at high temperature creep in the physical quantity measurement method reaches the critical value M C C (T, t, σ) of the material, the strength at high temperature creep rupture (creep rupture strength) ) Assume that fracture occurs at σ B. This is expressed by the following equation (4).
[0028]
[Expression 4]
Figure 0003728286
[0029]
The right side of equation (4) is derived experimentally by plotting the creep rupture strength on the horizontal axis and the physical quantity measurement value on the vertical axis, and using a regression line or curve.
A method for obtaining the high temperature creep life from the correlation between the strength factor, which is a measured amount at the time of rupture stress, and the time factor of the life and the remaining life is described. It is assumed that destruction occurs when the measured value M C (T, t, σ) for the material in service reaches the critical value M C C (T, t, σ). From the above equations (1) and (4), the stress-dominated damage amount S C (σ) can be expressed by the following equation (5) as the critical stress-dominated damage amount.
[0030]
[Equation 5]
Figure 0003728286
[0031]
From the above formulas (1), (3), and (5), the ratio R M between the measured amount at the time of fracture and the measured amount at the time of service is the following formula (6).
[0032]
[Formula 6]
Figure 0003728286
[0033]
Here, using the stress-dominated damage amount S (σ) and the critical stress-dominated damage amount S C (σ), the stress-dominated damage rate R S is defined as the following equation (7). That is, R S in the following equation (7) is a ratio of damage due to stress excluding the influence of thermal aging from the measured amount of the fracture test piece and the service material.
[0034]
[Expression 7]
Figure 0003728286
[0035]
Next, the creep damage rate D C is defined as the following equation (8), with the creep service time t a and the fracture time t f . The value obtained by this equation (8) is also called the life consumption rate.
[0036]
[Equation 8]
Figure 0003728286
[0037]
Next, a method for creating a master curve for the stress-dominated damage rate R S and the creep damage rate D C will be described. The time t f during the creep rupture test is assumed to be 100%, and R S obtained from Equation (7) from M A (T, t) and M C (T, t, σ ) , which are measured quantities during the course of the creep rupture test. Plot as. In this way, a master curve of the stress-dominated damage rate R S and the creep damage rate D C is created. From this master curve, resulting et stresses governing damage rate R S and the measurement time t a and the rupture time t f can be estimated by the following equation (9) based on the measurement. Further, the remaining life tr is obtained by the following equation (10).
[0038]
[Equation 9]
Figure 0003728286
[0039]
[Expression 10]
Figure 0003728286
[0040]
Next, FIG. 5 shows an example of a physical quantity measuring apparatus (apparatus based on the physical quantity measuring method) used for carrying out the method of the present invention.
[0041]
FIG. 5 is a schematic block diagram of the physical quantity measuring device. In FIG. 5 , an AC magnetized probe 12 AC-magnetizes the test body 10, which is a ferromagnetic creep damage material, and detects a waveform that is AC-magnetized. The variable AC power supply 14 applies an AC voltage (or current) to the AC magnetization probe 12 in order to cause the AC magnetization probe 12 to generate an AC magnetic flux applied to the test body 10. The detected waveform amplification unit 16 amplifies the AC magnetization waveform detected by the AC magnetization probe 12. The A / D converter 18 converts the AC voltage (or current) from the variable AC power source 14 applied to the AC magnetization probe 12 and the detected voltage (or current) of the AC magnetization waveform. The personal computer 20 functions to receive the digital data of the voltage (or current) of the AC magnetization waveform applied and detected from the A / D converter 18 and perform waveform processing, calculation processing, display, and the like. The A / D conversion unit 18 has a pair of A / D converters 30 and 32, and digitizes the AC-type AC magnetization detection waveform from the detection waveform amplification unit 16 and the variable AC power supply 14 by two-channel synchronous sampling. To do. The personal computer 20 has a normal configuration as hardware, and includes an input interface 40 that receives digital data from the A / D conversion unit 18, a microprocessor 42 that performs various processes, its processing program, data, and the like. , A display 46 for displaying processing results, and a keyboard 48 for inputting data, operation commands and the like.
[0042]
【Example】
AC magnetization measurement example
FIG. 2 shows an example of measurement results of the LMP during the thermal aging of the 2.25Cr-1Mo steel and the third harmonic ratio during the creep test. The amount of parameter change differs between thermal aging and creep damage.
[0043]
FIG. 3 shows an example of a master curve of the creep rupture strength and the third harmonic ratio of 2.25Cr-1Mo steel. Since the tendency changes depending on the parameter in relation to the breaking strength, a master curve is required for each parameter used for evaluation.
[0044]
The relationship between the above-mentioned formulas (1) and (2) in the third harmonic ratio in the AC magnetization measurement can be treated as a simple linear function experimentally as with the hardness. When the AC magnetization parameter during thermal aging is m ω A (T , t) and the AC magnetization parameter during creep damage is m ω C (T , t , σ) , the stress-dominated damage amount S ω (σ) is It was determined by the following equation (11) .
[0045]
[Expression 11]
Figure 0003728286
[0046]
FIG. 4 shows an example of a master curve of the stress-dominated damage rate and the creep damage rate determined by the third harmonic ratio of 2.25Cr-1Mo steel. Thereby, in 2.25Cr-1Mo steel, the damage rate was calculated | required from the alternating current magnetization measurement result in the actual machine at the time of service, and lifetime and the remaining life evaluation became possible.
[0047]
【The invention's effect】
According to the present invention, in a high-temperature equipment such as a boiler in service, the stress-dominated damage amount only associated with the stress load is used except for the influence of variation in the initial material and the amount of change due to thermal aging from the physical quantity measured nondestructively. Thus, it has become possible to evaluate the high temperature creep damage rate and obtain the life and remaining life time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a method of the present invention.
FIG. 2 shows an example of measurement results of LMP during thermal aging and third harmonic ratio during creep test of 2.25Cr-1Mo steel.
FIG. 3 shows an example of a master curve of creep rupture strength and third harmonic ratio of 2.25Cr-1Mo steel.
FIG. 4 shows an example of a master curve of a stress-dominated damage rate (R S ) and a creep damage rate (D C ) determined by the third harmonic ratio of 2.25Cr-1Mo steel.
FIG. 5 is a schematic block diagram of an example of a physical quantity measuring apparatus used for carrying out the method of the present invention.

Claims (5)

実機の応力と温度と時間とに対応した物理量である高温クリープ測定量、および、実機と同等な試験体の応力負荷がない状態における温度と時間とに対応した物理量である熱時効測定量を測定すること、
前記高温クリープ測定量と前記熱時効測定量とから応力支配型損傷量を導出すること、
前記応力支配型損傷量をパラメータとして用いて、高温クリープ損傷率を評価することからなる、非破壊高温クリープ損傷評価方法。
Measures high temperature creep measurements that are physical quantities corresponding to actual machine stress, temperature, and time, and thermal aging measurements that are physical quantities that correspond to temperature and time when there is no stress load on the test specimen equivalent to the actual machine. To do,
Deriving a stress-dominated damage amount from the high temperature creep measurement amount and the thermal aging measurement amount;
A nondestructive high temperature creep damage evaluation method comprising evaluating a high temperature creep damage rate using the stress-dominated damage amount as a parameter.
熱処理温度および加工履歴を変えた同じ材質について複数の試験体を用いて前記熱時効測定量を測定し、一定の値に収斂する熱時効測定量を基準値として熱時効材の条件を決めること、該熱時効材から前記応力支配型損傷量を導出することからさらになる、請求項1に記載の方法。  Measuring the thermal aging measurement amount using a plurality of specimens for the same material with different heat treatment temperature and processing history, and determining the conditions of the thermal aging material with the thermal aging measurement amount converged to a constant value as a reference value; The method of claim 1, further comprising deriving the stress-dominated damage from the thermally aged material. 高温クリープ試験で得られた破断時の破断応力と前記応力支配型損傷量とからなる2つのパラメータを用いて、高温クリープ寿命予測を行うためのマスターカーブを作成することからさらになる、請求項1又は2に記載の方法。  The method further comprises creating a master curve for predicting a high-temperature creep life using two parameters consisting of a breaking stress at break obtained in a high-temperature creep test and the stress-dominated damage amount. Or the method of 2. 高温クリープ寿命を、破断応力時の測定量である前記応力支配型損傷量と、寿命・余寿命という時間因子との相関関係から求めることからさらになる、請求項1乃至3の何れか1項に記載の方法。  4. The method according to claim 1, further comprising obtaining a high-temperature creep life from a correlation between the stress-dominated damage amount, which is a measured amount at the time of rupture stress, and a time factor of life / remaining life. 5. The method described. 前記高温クリープ測定量及び前記熱時効測定量のディメンジョンは第三高調波比(dB)である、請求項1乃至4の何れか1項に記載の方法。  The method according to any one of claims 1 to 4, wherein a dimension of the high temperature creep measurement and the thermal aging measurement is a third harmonic ratio (dB).
JP2002308126A 2002-10-23 2002-10-23 Nondestructive high temperature creep damage evaluation method Expired - Fee Related JP3728286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308126A JP3728286B2 (en) 2002-10-23 2002-10-23 Nondestructive high temperature creep damage evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308126A JP3728286B2 (en) 2002-10-23 2002-10-23 Nondestructive high temperature creep damage evaluation method

Publications (2)

Publication Number Publication Date
JP2004144549A JP2004144549A (en) 2004-05-20
JP3728286B2 true JP3728286B2 (en) 2005-12-21

Family

ID=32454346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308126A Expired - Fee Related JP3728286B2 (en) 2002-10-23 2002-10-23 Nondestructive high temperature creep damage evaluation method

Country Status (1)

Country Link
JP (1) JP3728286B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176777B2 (en) * 2006-03-23 2008-11-05 三菱重工業株式会社 Method for predicting crack growth in gas turbine high-temperature parts and crack growth prediction apparatus using this method
JP2008064610A (en) * 2006-09-07 2008-03-21 Kansai Electric Power Co Inc:The Deterioration diagnosing method of aerial strip
JP2010203812A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Method for evaluating life time of high strength ferritic steel
JP5506771B2 (en) * 2011-12-22 2014-05-28 株式会社日立製作所 Long-term creep strength estimation method, remaining life estimation method, and remaining life evaluation apparatus for precipitation strengthened heat resistant alloys
US8874415B2 (en) 2012-01-04 2014-10-28 General Electric Company System and method for forming failure estimates for a heat recovery steam generator
CN103063736B (en) * 2013-01-05 2015-04-29 北京科技大学 Method for online detecting thermal aging condition of duplex stainless steel and system thereof
JP6974984B2 (en) * 2017-08-30 2021-12-01 三菱パワー株式会社 Remaining life evaluation method and maintenance management method
JP7039784B2 (en) * 2017-12-21 2022-03-23 三菱重工業株式会社 Life evaluation device and life evaluation method
JP6990623B2 (en) * 2018-05-30 2022-01-12 三菱パワー株式会社 Creep life evaluation method
CN113533674A (en) * 2021-07-14 2021-10-22 中国特种设备检测研究院 Quantitative evaluation method for creep damage microstructure evolution of heat-resistant steel

Also Published As

Publication number Publication date
JP2004144549A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
EP0382532B1 (en) Method for determining crack lengths
WO2016045024A1 (en) Method for measuring and determining fracture toughness of structural material in high-temperature environment
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
Tarnowski et al. Improvements in the measurement of creep crack initiation and growth using potential drop
Hartweg et al. Analysis of the crack location in notched steel bars with a multiple DC potential drop measurement
Smudde et al. Evaluation of residual stress reproducibility and orientation dependent fatigue crack growth in powder bed fusion stainless steel
JPH03267736A (en) Method and device for dynamic brakage fatigue test of brittle material
JP2010223939A (en) Method for estimating range of breaking stress
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
Härkegård et al. Growth of naturally initiated fatigue cracks in ferritic gas turbine rotor steels
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JPH0634625A (en) High temperature damage evaluation of austenitic heat resistant steel
JP2007225333A (en) Damage evaluation method by metal texture as to creep fatigue damage
JP3803314B2 (en) Creep void non-destructive detection method
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JP2014142304A (en) Life evaluation method for austenite stainless steel
JP2003065921A (en) Method for evaluating integrity in structure material, and program
Abbadi et al. Fatigue crack growth in nickel-based superalloys at elevated temperatures
Davies et al. Continuous creep damage monitoring using a novel potential drop technique
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
JP6523816B2 (en) Life evaluation method of structure
JPH0210900B2 (en)
JP6430220B2 (en) Structure life diagnosis method and structure life diagnosis apparatus
JPH0635971B2 (en) Method for predicting remaining life of metallic materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Ref document number: 3728286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees