JP3803314B2 - Creep void non-destructive detection method - Google Patents

Creep void non-destructive detection method Download PDF

Info

Publication number
JP3803314B2
JP3803314B2 JP2002308129A JP2002308129A JP3803314B2 JP 3803314 B2 JP3803314 B2 JP 3803314B2 JP 2002308129 A JP2002308129 A JP 2002308129A JP 2002308129 A JP2002308129 A JP 2002308129A JP 3803314 B2 JP3803314 B2 JP 3803314B2
Authority
JP
Japan
Prior art keywords
creep
amount
magnetization
actual machine
thermal aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308129A
Other languages
Japanese (ja)
Other versions
JP2004144550A (en
Inventor
光晴 志波
亮一 粂
Original Assignee
財団法人発電設備技術検査協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人発電設備技術検査協会 filed Critical 財団法人発電設備技術検査協会
Priority to JP2002308129A priority Critical patent/JP3803314B2/en
Publication of JP2004144550A publication Critical patent/JP2004144550A/en
Application granted granted Critical
Publication of JP3803314B2 publication Critical patent/JP3803314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般にクリープボイドの非破壊検出方法に関し、さらに詳しく言えば、供用中のボイラ等の高温機器において、交流磁化法により非破壊測定された量を用いて、クリープボイドを検出する方法に関する。
【0002】
【従来の技術】
クリープ損傷を非破壊評価するにあたり、供用中の材料の金属組織を観察し、クリープボイドの発生率により損傷量を評価する方法が多く用いられてきた。この方法は、実機の金属組織の一部(数mm)をレプリカに写し取り、光学顕微鏡または電子走査型顕微鏡を用いて、ボイド率、炭化物の析出、結晶粒性状等の組織状態を評価し、損傷率と対応させている。
【0003】
レプリカ採取のために、測定時に実機の表面を鏡面研磨し、腐食させる前処理が必要である。また、写し取ったレプリカの評価においては、ラボ等に持ち帰り材料の損傷機構に応じて解析しなければならない。そのため、測定と評価には高度の熟練と多大な時間が要求される。その結果、時間とコストとの関係を勘案して、測定個所を選択しなければならなかった。従来は、運転時間が同じ場合は、温度および応力が高い部位を中心に測定が行われていた。しかし、実機において必ずしもその部位の損傷が高いとは限らず、詳細な観察を行う前に、簡便に損傷の可能性がある部位を探し出す方法が求められていた。
【0004】
交流磁化法によれば、小型プローブを強磁性試験体に接触させて交流磁化し、そのときの磁化波形を解析することで溶接後熱処理温度の推定(例えば、下記特許文献1)、クリープ損傷の検出(例えば、下記特許文献2)等ができることが、提案された。しかし、この交流磁化法では、クリープ温度および時間ならびに負荷応力ごとに、交流磁化特性のマスターカーブを作成して損傷との対応を行わなければならず、現地において簡便にクリープボイドの検出を行うことはできなかった。
【0005】
【特許文献1】
特開2001−252785号公報
【特許文献2】
特開2001−255305号公報
【0006】
【発明が解決しようとする課題】
本発明は、供用中のボイラ等の高温機器において、交流磁化測定より、現地において簡便かつ非破壊的にクリープボイドを検出する方法を提供することを課題にしている。
【0007】
【課題を解決するための手段】
クリープボイドは、熱時効による組織の変化を基にして負荷応力の影響により生じる。このことから、本発明では、クリープ試験体に対する交流磁化の測定結果から熱時効の影響を除くことにより、クリープボイド発生を簡便に検出する方法を提案する。
【0008】
本発明のクリープボイドの非破壊検出方法は、実機と同等な熱時効測定量を予めマスターカーブとして求めること、実機の測定量から引き算をすることでクリープボイド損傷量を抽出することからなる。ボイド検出評価を行うに当たり、クリープ途中止め試験時の組織観察を行い、クリープボイド損傷量の閾値を求めることができる。実機において同じ供用温度で、応力負荷がある部位と、応力負荷がないと見なせる部位とがあれば、これを熱時効測定量として用いることができる。
【0009】
【発明の実施の形態】
図1−4を参照して、本発明に基づくクリープボイドの非破壊検出方法の実施形態について説明する。
【0010】
図1は、本発明の方法の概要を示す概略説明図である。本発明の方法では、熱時効試験体の交流磁化法によって測定したデータに基づいてマスターカーブを作成し、そのマスターカーブを用いて、ボイラ等の磁性体高温構造材料の供用中に生じたクリープボイドを現地で簡便に検出する。
【0011】
ボイラ等の高温機器の実機は、運転温度および時間が管理され、記録として残されている。部位による損傷の違いは、部位による設計応力の差、想定されていなかった応力変動等に起因すると考えられる。
【0012】
ここで、応力負荷を受けていない金属組織の温度と時間とによる変化は、熱時効として表される。材料の高温クリープ損傷が、熱時効と応力損傷の独立変数として取り扱うことができ、実用的な供用範囲における温度や応力状態において相互作用がなく、線形的な結合として表すことができる場合を考える。
【0013】
交流磁化法によるクリープ時の測定量M(T,t,σ)は、下記(1)式に示すように、熱時効量M(T,t)とクリープボイド損傷量B(σ)の和であるとすれば、下記(2)式に示すように非破壊測定されたMT,t,σ)から、熱時効量を引き算することでクリープボイド損傷量を抽出することが可能となる。ただし、Tは温度、tは時間、σは応力である。
【0014】
【数1】

Figure 0003803314
【0015】
【数2】
Figure 0003803314
【0016】
測定可能な量は、クリープ測定量と熱時効測定量であるから、予めT、t、σが既知の場合、実機の測定量から、実機と同等な熱時効測定量をマスターカーブにより求めておき、実機の測定量から引き算をすることでクリープボイド損傷量を抽出することが可能となる。
【0017】
次に、ボイド検出評価を行うに当たり、B(σ)の閾値を決定しなければならない。閾値の決定は、クリープ途中止め試験時の組織観察を行い、ボイド発生時点のB(σ)より求める。
【0018】
これにより、予め熱時効による交流磁化信号の変化およびその材料におけるボイド発生における交流磁化量の変化を求めておくことで、予め運転時間と温度とが既知である部位について、現地測定時においてクリープボイドの発生の有無を判断できる。
【0019】
なお、実機において同じ供用温度で、応力負荷がある部位と、応力負荷がないと見なせる部位とがあれば、これを熱時効測定量として用いることもできる。
【0020】
図4は、本発明の方法において用いられる交流磁化測定装置の一例の概略構成線図である。
【0021】
図4において、交流磁化プローブ1は、強磁性体のクリープボイド材である試験片2を交流磁化しかつ交流磁化された波形を検出する。周波数発生器3は試験片2に印加される交流磁束を交流磁化プローブ1に発生させるため、その交流磁化プローブ1に励磁電圧(または電流)を印加する。前置増幅器4は、交流磁化プローブ1で検出された交流磁化波形を増幅すると共に、周波数発生器3からの励磁電圧(または電流)を増幅する。波形収録解析装置5は、前置増幅器4からの信号(x1、x2)を受けて交流磁化測定値を記録、解析する。
【0022】
【実施例1】
2.25Cr―1Mo鋼のクリープボイド検出
図2は、2.25Cr―1Mo鋼の再現熱影響部材における熱時効試験時およびクリープ試験時の交流磁化特性(第三高調波比の変化)を示す。第三高調波比は、励磁周波数の強度と第三高調波の強度の比をdBとして表したものである。図2において横軸はラーソンミラーパラメータでそれぞれ表示されている。クリープ温度は873Kで、応力は39MPaおよび54MPaである。
【0023】
第三高調波比は、共にLMPが大きくなる(クリープ時間または熱時効時間が長くなる)に従って低下し、破断材の値が一番小さくなった。
【0024】
第三高調波比では、熱時効試験片はLMP共に測定値は徐々に低下している。クリープ試験片ではLMP21以降において、測定値が急速に低下した。
【0025】
図3は、2.25Cr―1Mo鋼の再現熱影響部材における第三高調波比のマスターカーブによるボイド検出例を示す。同図は、図2のクリープ測定値から熱時効測定値を除いて作成された。図3中の曲線は、39MPaおよび54MPaの負荷応力ごとに求めたが、いずれも第三高調波比2.0dB以上では、組織観察においてクリープボイドは検出されず、2.0dB未満において、クリープボイドが観察された。これより、2.25Cr―1Mo鋼の再現熱影響部の第三高調波比におけるクリープボイド判定値は、2.0dBといえる。
【0026】
【発明の効果】
本発明によれば、供用中のボイラ等の高温機器において、交流磁化測定法により、簡便かつ非破壊的に現地においてクリープボイドを検出することができる。
【図面の簡単な説明】
【図1】本発明の方法の概要を示す概略説明図である。
【図2】2.25Cr―1Mo鋼の再現熱影響部材における熱時効試験時およびクリープ試験時の交流磁化特性(第三高調波比の変化)を示すグラフである。
【図3】2.25Cr―1Mo鋼の再現熱影響部材における第三高調波比のボイド検出例を示す
【図4】本発明の方法を実施するさいに用いる交流磁化測定装置の概略構成線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates generally to a method for detecting non-destructive creep voids, and more particularly, to a method for detecting creep voids in a high-temperature apparatus such as an in-service boiler using an amount measured non-destructively by an alternating current magnetization method. .
[0002]
[Prior art]
In nondestructive evaluation of creep damage, a method of observing the metallographic structure of a material in service and evaluating the amount of damage based on the generation rate of creep voids has been used. In this method, a part (several mm 2 ) of the actual metal structure is copied to a replica, and the structure state such as void fraction, carbide precipitation, crystal grain properties, etc. is evaluated using an optical microscope or an electronic scanning microscope. Corresponding with the damage rate.
[0003]
In order to collect replicas, it is necessary to pre-process the surface of the actual machine by mirror polishing and corroding during measurement. Moreover, in evaluating the copied replica, it must be taken back to the laboratory and analyzed according to the damage mechanism of the material. Therefore, high skill and a great deal of time are required for measurement and evaluation. As a result, the measurement location had to be selected in consideration of the relationship between time and cost. Conventionally, when the operation time is the same, the measurement is performed mainly on a portion where temperature and stress are high. However, in an actual machine, the portion is not necessarily damaged, and a method for easily finding a portion that may be damaged before detailed observation has been demanded.
[0004]
According to the alternating current magnetization method, a small probe is brought into contact with a ferromagnetic test piece to perform alternating current magnetization, and the magnetization waveform at that time is analyzed to estimate the post-weld heat treatment temperature (for example, Patent Document 1 below). It has been proposed that detection (for example, Patent Document 2 below) can be performed. However, with this AC magnetization method, it is necessary to create a master curve of AC magnetization characteristics for each creep temperature, time, and load stress to cope with damage, and to easily detect creep voids on site. I couldn't.
[0005]
[Patent Document 1]
JP 2001-252785 A [Patent Document 2]
Japanese Patent Laid-Open No. 2001-255305
[Problems to be solved by the invention]
An object of the present invention is to provide a method for detecting creep voids on site in a simple and non-destructive manner by AC magnetization measurement in high-temperature equipment such as a boiler in service.
[0007]
[Means for Solving the Problems]
Creep voids are caused by the influence of applied stress based on the change in structure due to thermal aging. Therefore, the present invention proposes a method for easily detecting the occurrence of creep voids by excluding the influence of thermal aging from the measurement result of AC magnetization on the creep test specimen.
[0008]
The creep void nondestructive detection method of the present invention comprises obtaining a measured amount of thermal aging equivalent to that of an actual machine as a master curve in advance and extracting the amount of creep void damage by subtracting from the measured quantity of the actual machine. In performing the void detection evaluation, it is possible to obtain a threshold value of the creep void damage amount by observing the structure during the creep intermediate stop test. If there is a part with a stress load and a part that can be regarded as having no stress load at the same service temperature in an actual machine, this can be used as a thermal aging measurement amount.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
With reference to FIGS. 1-4, embodiment of the nondestructive detection method of the creep void based on this invention is described.
[0010]
FIG. 1 is a schematic explanatory diagram showing an outline of the method of the present invention. In the method of the present invention, a master curve is created based on data measured by the alternating current magnetization method of a thermal aging test specimen, and creep voids generated during the use of a magnetic high-temperature structural material such as a boiler using the master curve. Is easily detected on site.
[0011]
The actual temperature of the high-temperature equipment such as a boiler is managed as the operating temperature and time, and is recorded as a record. It is considered that the difference in damage due to the part is caused by a difference in design stress depending on the part, an unexpected stress fluctuation, and the like.
[0012]
Here, the change due to the temperature and time of the metal structure not subjected to the stress load is expressed as thermal aging. Consider a case where high-temperature creep damage of a material can be treated as an independent variable of thermal aging and stress damage, and can be expressed as a linear combination with no interaction in temperature and stress conditions in a practical service range.
[0013]
The measured amount M C (T, t, σ) during creep by the AC magnetization method is calculated from the following equation (1): thermal aging amount M A (T, t) and creep void damage amount B (σ) if the sum, can be extracted following expression (2) to be non-destructive measurement as shown the M C (T, t, sigma) from the creep void damage amount by subtracting the thermal aging amount It becomes. Where T is temperature, t is time, and σ is stress.
[0014]
[Expression 1]
Figure 0003803314
[0015]
[Expression 2]
Figure 0003803314
[0016]
Measurable amounts, because it is the creep measurement the amount and the heat aging measured quantity, if previously T, t, sigma is known from actual measured quantities, leave the actual and equivalent thermal aging measurements amount determined by the master curve The amount of creep void damage can be extracted by subtracting from the measured amount of the actual machine.
[0017]
Next, in performing void detection evaluation, a threshold value of B (σ) must be determined. The threshold is determined by observing the structure during the creep stop test and obtaining B (σ) at the time of void generation.
[0018]
Thus, by obtaining the change in the AC magnetization signal due to thermal aging in advance and the change in the AC magnetization amount due to the generation of voids in the material, it is possible to obtain creep voids at the time of on-site measurement for parts where the operation time and temperature are known in advance. The presence or absence of occurrence can be determined.
[0019]
In addition, if there exists a site | part with a stress load and the site | part which can be considered that there is no stress load in the same service temperature in an actual machine, this can also be used as a thermal aging measurement amount.
[0020]
FIG. 4 is a schematic configuration diagram of an example of an AC magnetization measuring apparatus used in the method of the present invention.
[0021]
In FIG. 4 , an AC magnetized probe 1 AC magnetizes a test piece 2 that is a creeping void material of a ferromagnetic material and detects a waveform that is AC magnetized. The frequency generator 3 applies an excitation voltage (or current) to the AC magnetization probe 1 in order to cause the AC magnetization probe 1 to generate an AC magnetic flux applied to the test piece 2. The preamplifier 4 amplifies the AC magnetization waveform detected by the AC magnetization probe 1 and amplifies the excitation voltage (or current) from the frequency generator 3. The waveform recording / analyzing apparatus 5 receives the signals (x1, x2) from the preamplifier 4 and records and analyzes the AC magnetization measurement value.
[0022]
[Example 1]
Creep void detection in 2.25Cr-1Mo steel
FIG. 2 shows AC magnetization characteristics (change in the third harmonic ratio) during a thermal aging test and a creep test in a reproducible heat-affected member of 2.25Cr-1Mo steel. The third harmonic ratio represents the ratio of the excitation frequency intensity to the third harmonic intensity as dB. In FIG. 2 , the horizontal axis is indicated by Larson mirror parameters. The creep temperature is 873 K, and the stress is 39 MPa and 54 MPa.
[0023]
Both third harmonic ratios decreased as LMP increased (creep time or thermal aging time increased), and the value of the fractured material was the smallest.
[0024]
At the third harmonic ratio, the measured value of the heat aging test piece for both LMP gradually decreases. In the creep test piece, the measured value decreased rapidly after LMP21.
[0025]
FIG. 3 shows an example of void detection by the master curve method of the third harmonic ratio in the reproduced heat-affected member of 2.25Cr-1Mo steel. This figure was created by removing the thermal aging measurement value from the creep measurement value of FIG . The curves in FIG. 3 were determined for each load stress of 39 MPa and 54 MPa. When the third harmonic ratio was 2.0 dB or more, no creep void was detected in the structure observation, and when less than 2.0 dB, the creep void was detected. Was observed. From this, it can be said that the creep void judgment value at the third harmonic ratio of the reproduced heat-affected zone of 2.25Cr-1Mo steel is 2.0 dB.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in a high temperature apparatus, such as a boiler in service, a creep void can be detected on-site simply and nondestructively by the alternating current magnetization measurement method.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram showing an outline of a method of the present invention.
FIG. 2 is a graph showing AC magnetization characteristics (change in third harmonic ratio) during a thermal aging test and a creep test in a reproduced heat-affected member of 2.25Cr-1Mo steel.
FIG. 3 shows an example of void detection of the third harmonic ratio in a reproducible heat-affected member of 2.25Cr-1Mo steel. FIG. 4 is a schematic configuration diagram of an AC magnetization measuring apparatus used for carrying out the method of the present invention. It is.

Claims (3)

実機の交流磁化法による第三高調波比の測定量から、実機と同等な熱時効に関連する測定量として交流磁化法により測定された第三高調波比の対応する値を引き算し、その差分をクリープボイド損傷量として抽出することからなるクリープボイドの非破壊検出方法。Subtract the corresponding value of the third harmonic ratio measured by the AC magnetization method as the measurement amount related to thermal aging equivalent to the actual machine from the measured amount of the third harmonic ratio by the AC magnetization method of the actual machine. A method for non-destructive detection of creep voids, which comprises extracting the amount of creep void damage. クリープ途中止め試験時の組織観察を行い、クリープボイド発生時点の上記クリープボイド損傷量を閾値として求めることからさらになる、請求項1に記載の方法。The method according to claim 1, further comprising performing a structure observation during a creep intermediate stop test and obtaining the creep void damage amount at the time of creep void generation as a threshold value. 実機において同じ供用温度における応力負荷がない部位の第三高調波比を、上記実機と同等な熱時効に関連する測定量として用いることからさらになる、請求項1又は2に記載の方法。The method according to claim 1, further comprising using a third harmonic ratio of a portion where there is no stress load at the same service temperature in an actual machine as a measurement related to thermal aging equivalent to the actual machine .
JP2002308129A 2002-10-23 2002-10-23 Creep void non-destructive detection method Expired - Fee Related JP3803314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308129A JP3803314B2 (en) 2002-10-23 2002-10-23 Creep void non-destructive detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308129A JP3803314B2 (en) 2002-10-23 2002-10-23 Creep void non-destructive detection method

Publications (2)

Publication Number Publication Date
JP2004144550A JP2004144550A (en) 2004-05-20
JP3803314B2 true JP3803314B2 (en) 2006-08-02

Family

ID=32454349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308129A Expired - Fee Related JP3803314B2 (en) 2002-10-23 2002-10-23 Creep void non-destructive detection method

Country Status (1)

Country Link
JP (1) JP3803314B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290775A (en) * 2016-08-05 2017-01-04 国网河北省电力公司电力科学研究院 A kind of Power Station Boiler Heating Surface SA210C Steel material state evaluating method
CN109142905A (en) * 2018-06-12 2019-01-04 四川斐讯信息技术有限公司 A kind of method for testing temperature rise and system of communication apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439473B (en) * 2013-07-15 2016-01-20 河北省电力建设调整试验所 A kind of 12Cr1MoV steel heating surface state evaluating method
US8991241B1 (en) 2013-10-30 2015-03-31 General Electric Company Gas turbine component monitoring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290775A (en) * 2016-08-05 2017-01-04 国网河北省电力公司电力科学研究院 A kind of Power Station Boiler Heating Surface SA210C Steel material state evaluating method
CN109142905A (en) * 2018-06-12 2019-01-04 四川斐讯信息技术有限公司 A kind of method for testing temperature rise and system of communication apparatus

Also Published As

Publication number Publication date
JP2004144550A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
Helifa et al. Detection and measurement of surface cracks in ferromagnetic materials using eddy current testing
US6606910B1 (en) Method and apparatus for evaluating damage of metal material
JP5017038B2 (en) Eddy current inspection apparatus and eddy current inspection method
CN1013461B (en) Nondestructive test to the ferromagnetic workpiece creep impairment
CA2072029A1 (en) Turbine blade assessment system
KR0151852B1 (en) Non-destructive examination of a part
JP3300810B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
JP3803314B2 (en) Creep void non-destructive detection method
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
JPH05142203A (en) Method for diagnosing environmental stress cracking of high-strength material
JP2002372519A (en) Non-destructive measuring method of secular deterioration associated with change in brittleness of ferromagnetic structure material
JP3461781B2 (en) Method and apparatus for evaluating creep damage of ferromagnetic structure using alternating current magnetization
Willems et al. Early detection of creep damage by ultrasonic and electromagnetic techniques
EP4080204A1 (en) Device and method for testing surface material of steel plate
US6563309B2 (en) Use of eddy current to non-destructively measure crack depth
JP2001133441A (en) Non-destructive hardness measurement method
WO2005074349A2 (en) Non-destructive method for the detection of creep damage in ferromagnetic parts with a device consisting of an eddy current coil and a hall sensor
Shenoy et al. Fatigue Detection and Estimation in Martensitic Stainless-Steel Using Magnetic Nondestructive Evaluation Technique
RU2376594C2 (en) Magnetic method of detecting flaws in blades of turbo-machines made from cobalt alloys in mechanical loading conditions
Zhu et al. Investigation of a new feature for angular defect quantification by eddy current pulsed thermography
Polanschütz Inverse magnetostrictive effect and electromagnetic non-destructive testing methods
RU2795102C1 (en) Device for testing steel plate surface material properties and method for testing steel plate surface material properties
JP2013164282A (en) Method for evaluating carburization depth and method for evaluating lifetime of pipe
RU2386963C1 (en) Method of magnetic diagnostics of turbomachine blade made from alloyed steels

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees